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Abstract
Data-parallel primitives for performing operations

on the PM1 quadtree and the bucket PMR quadtree
are presented using the scan model. Algorithms are
described for building these two data structures that
make use of these primitives. The data-parallel algo-
rithms are assumed to be main memory resident. They
were implemented on a Thinking Machines CM-5 with
32 processors containing 1GB of main memory.

1 Introduction
Spatial data consists of points, lines, regions, rect-

angles, surfaces, volumes, etc. Spatial data arises in
applications in many areas including computer graph-
ics, computer vision, image processing, and pattern
recognition. The e�ciency of solutions to problems
in all of these areas is enhanced by the choice of an
appropriate representation (see, e.g., [11, 12]).

The representations which we discuss sort the data
with respect to the space that it occupies. This results
in speeding up operations involving search. The e�ect
of the sort is to decompose the space from which the
data is drawn into regions called buckets. Our presen-
tation is for spatial data consisting of a collection of
lines such as that found in road maps, utility maps,
railway maps, etc. The key issue is that the volume of
the data is large. This has led to an interest in parallel
processing of such data.

In this paper our focus is on the primitives that are
needed to e�ciently construct data-parallel members
of the PM quadtree family using the scan model of
parallel computation. Our goal is one of showing the
reader how the analogs of relatively simple sequential
operations can be implemented in a data-parallel en-
vironment. Our presentation assumes that the data-
parallel algorithms are main memory resident. Our
algorithms were implemented in C� on a minimally
con�gured Thinking Machines CM-5 with 32 proces-
sors containing 1GB of main memory (the algorithms
have also been run on a 16K processor CM-2).

*This work was supported in part by the National Science

Foundation under grants IRI-92-16970 and BIR-93-18183, and

by a grant from the ComputerResearch and ApplicationsGroup

at Los Alamos National Laboratory.

The rest of this paper is organized as follows. Sec-
tion 2 briey describes the spatial data structures on
which we focus. Section 3 reviews the scan model of
parallel computation. Section 4 discusses the data-
parallel primitives that are used to construct the data
structures, while Section 5 presents the algorithms in
terms of these primitives. Section 6 contains some
concluding remarks.

2 Spatial Data Structures
In this section we review the three data structures

that are discussed in the subsequent sections. In gen-
eral, we often retain the original names of the data
structures although a more proper description would
use the quali�er data parallel. We do not make use of
it unless the distinction needs to be emphasized in the
case of a potential for misunderstanding a claim.

The PM1 quadtree [13] is a vertex{based member of
the PM quadtree family. When inserting line segments
into a region, the region is repeatedly subdivided until
each resulting region contains at most a single vertex.
Additionally, if a region contains a line segment ver-
tex (or endpoint), it may not contain any portion of
another line segment unless that other line segment
shares a single vertex with the original line segment
in the same region. For example, in Figure 1a, line
segments c, d, and i share a common endpoint which
falls in the region labeled A of the quadtree. Do note
that the large shaded region was subdivided as it con-
tains line segments d and i (which share a common
endpoint that falls outside the shaded regions).
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Figure 1: (a) PM1 quadtree, (b) PMR quadtree, and (c)
bucket PMR quadtree.

The PMR quadtree (for polygonal map random
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[10]) is an edge{based member of the PM quadtree
family. It makes use of a probabilistic splitting rule
where a block is permitted to contain a variable num-
ber of line segments. The PMR quadtree is con-
structed by inserting the line segments one-by-one into
an initially empty structure consisting of one block.
Each line segment is inserted into all of the blocks
that it intersects. During this process, the occupancy
of each a�ected block is checked to see if the insertion
causes it to exceed a predetermined splitting threshold.
If the splitting threshold is exceeded, then the block
is split once, and only once, into four blocks of equal
size. The rationale is to avoid splitting a node many
times when there are a few very close lines in a block.

The advantage of the PMR quadtree over the PM1

quadtree is that there is no need to subdivide in or-
der to separate line segments that are very \close"
or whose vertices are very \close". This is important
since four blocks are created at each subdivision step,
and when many subdivision steps occur, many empty
blocks are created, thereby leading to an increase in
the storage requirements. Generally, as the splitting
threshold is increased, the construction times and stor-
age requirements of the PMR quadtree decrease while
the time needed to perform operations on it increases.

Figure 1b is an example of a PMR quadtree with a
splitting threshold of two corresponding to a set of 9
edges labeled a through i inserted in increasing order.
Observe that the shape of the PMR quadtree for a
given dataset is not unique; instead, it depends on the
order in which the lines are inserted into it.

Unfortunately, in the data-parallel environment,
lines are inserted simultaneously during data structure
construction. Thus, the ordering of the lines is un-
known. Therefore, the de�nition of the PMR quadtree
is slightly modi�ed to yield the bucket PMR quadtree
where instead of splitting an overowing block once,
the block (or bucket) is split repeatedly until each sub-
bucket contains no more than b lines (where b is the
maximal bucket capacity). The shape is independent
of the line segment insertion order. Note that un-
less the bucket capacity is greater than or equal to
the maximal number of intersection lines, the recur-
sive decomposition will continue to the maximaldepth
allowed by the bucket PMR quadtree. For example,
consider Figure 1c where the regions corresponding to
the endpoints of line i subdivide until the maximal
depth of the quadtree (three in this case) is reached.

3 Scan Model of Parallel Computation
The scan model of parallel computation [2, 3] is

de�ned in terms of a collection of primitive oper-
ations that can operate on arbitrarily long vectors
(single dimensional arrays) of data. Three types
of primitives (elementwise, permutation, and scan)
are used to produce result vectors of equal length.
A scan operation [14] takes an associative operatorL

, a vector [a0; a1; � � � ; an�1], and returns the vec-
tor [a0; (a0

L
a1); � � � ; (a0

L
a1
L

� � �

L
an�1)]. The

scan model considers all primitive operations (includ-
ing scans) as taking unit time on a hypercube architec-
ture. This allows sorting operations to be performed
in O(logn) time.

3.1 Scanwise Operations
In addition to being classi�ed as either upward or

downward, scan operations may be segmented. A seg-
mented scan may be thought of as multiple parallel
scans, where each operates independently on a seg-
ment of contiguous processors. Segment groups are
commonly delimited by a segment bit, where a value
of 1 denotes the �rst processor in the segment. For
example, in Figure 2, there are four segment groups,
corresponding to segments of size 3, 4, 2, and 3.

3 1 2 1 0 1 2 2 1 0 3 3
1 0 0 1 0 0 0 1 0 1 0 0

3 4 6 1 1 2 4 2 3 0 3 6
0 3 4 0 1 1 2 0 2 0 0 3

6 3 2 4 3 3 2 3 1 6 6 3
3 2 0 3 3 2 0 1 0 6 3 0

data
sf:segment flag

  
up-scan(data,sf,+,in)
up-scan(data,sf,+,ex)

down-scan(data,sf,+,in)
down-scan(data,sf,+,ex)

Figure 2: Segmented scans for both the upward and
downward directions (as well as inclusive and exclusive).

Finally, scan operations may be further classi�ed
as being either inclusive or exclusive. For example,
an upward inclusive scan operation returns the vec-
tor [a0; (a0

L
a1); � � � ; (a0

L
a1
L

� � �

L
an�1)], while

an upward exclusive scan returns the vector
[0; a0; � � � ; (a0

L
a1
L

� � �

L
an�2)]. Various combina-

tions of segmented scans (where
L

is bound to the
addition operator) are shown in Figure 2.

3.2 Elementwise Operations
An elementwise primitive is an operation that takes

two vectors of equal length and produces an answer
vector, also of equal length. The ith element in the
answer vector is the result of the application of an
arithmetic or logical primitive to the ith element of the
input vectors. In Figure 3, an example elementwise
addition operation is shown. A and B correspond to the
two input vectors, and ew(+,A,B) denotes the answer
vector.

0 1 2 1 4 3 6 2 9 5
4 7 2 0 3 6 1 5 0 4

4 8 4 1 7 9 7 7 9 9

A
B

  
ew(+,A,B)

Figure 3: Example elementwise addition operation.

3.3 Permutations
A permutation primitive takes two vectors, the data

vector and an index vector, and rearranges (permutes)
each element of the data vector to the position spec-
i�ed by the index vector. Note that the permuta-
tion must be one-to-one; two or more data elements
may not share the same index vector value. Fig-
ure 4 provides an example permutation operation. A
is the data vector, index is the index vector, and
permute(A,index) denotes the answer vector.
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0 1 2 3 4 5 6 7 8 9
a b c d e f g h i j
3 2 6 0 1 8 7 4 5 9

0 1 2 3 4 5 6 7 8 9
d e b a h i c g f j

position
A

index

position  
permute(A,index)

Figure 4: Example of a permutation.

4 Spatial Primitive Operations
In this section we describe the primitive operations

that are needed to construct a PM1 quadtree and a
bucket PMR quadtree. Several of the lower-level prim-
itives have been described elsewhere (i.e., [7, 9]).

4.1 Cloning
Cloning (also termed generalize [9]) is the process of

replicating an arbitrary collection of elements within
a linear processor ordering. Figure 5 shows an exam-
ple cloning operation. Cloning may be accomplished
using an exclusive upward addition scan operation, an
elementwise addition, and a permutation operator.

a b c d e f g
1 0 0 1 0 1 0

a a b c d d e f f g

X
clone flag

  
X'

Figure 5: Example of a cloning operation.

Figure 6 details the various operations necessary to
complete the cloning operation. In the �gure, clone
flag indicates which elements of x must be cloned; in
this example, elements a, d, and g are to be cloned.
The basic technique is to calculate the o�set neces-
sary that each existing element must be move toward
the right in the linear ordering in order to make room
for the new cloned elements. This may be accom-
plished by employing an upward exclusive scan which
sums the clone ags, as denote by up-scan(CF,+,ex)
in the �gure. After the o�set has been determined,
an elementwise addition on the o�set value (F1) and
the position index (P) determines the new position for
each element in the ordering (ew(+,P,F1)). A simple
permutation operation is then used to reposition the
elements (permute(X,F2)). Finally, the cloning op-
eration is completed when when each of the cloning
elements copies itself into the next element in the lin-
ear ordering (denoted by the small curved arrows in
the �gure).

4.2 Unshu�ing
Unshu�ing is the process of physically separating

two arbitrary, mutually exclusive and collectively ex-
haustive subsets of an original group. This operation,
when applied without monotonic mappings, has also
been termed packing [8] or splitting [2]. Unshu�ing
can be accomplished using two inclusive scans (one up-
ward and one downward), two elementwise operations
(an addition and a subtraction), and a permutation
operator. An example unshu�ing operation is shown
in Figure 7.

0 1 2 3 4 5 6
a b c d e f g
1 0 0 1 0 1 0
0 1 1 1 2 2 3
0 2 3 4 6 7 9

0 1 2 3 4 5 6 7 8 9
a a b c d d e f f g

P
X

 clone flag CF
up-scan(CF,+,ex) F1

ew(+,P,F1) F2
  

P  
permute(X,F2)

Figure 6: Mechanics of the cloning operation.

Figure 7: Example of an unshu�ing operation.

The actual mechanics of the unshu�e operation for
the data of Figure 7 are illustrated in Figure 8. The
two di�erent types which must be unshu�ed have
type identi�ers a and b. Assume that the a's are
to be repositioned toward the left, and the b's to-
ward the right in our linear ordering. The basic tech-
nique is, for each element of the two groups, to cal-
culate the number of elements from the other group
that are positioned between itself and its desired po-
sition at either the left end or the right end. An
upward inclusive scan (up-scan(X=b,+,in)) is used
to count the number of b's between each a and the
left end of the ordering. Similarly, a downward in-
clusive scan (down-scan(X=a,+,in)) is also used to
count the number of a's between each individual b
and the right end of the linear ordering. Once these
two values are calculated, two elementwise operations
are used to calculate the new position index for each
element of the linear ordering. For each a element,
an elementwise subtraction of the calculated number
of interposed b's (F1) from the original position index
P determines the new position index (ew(-,P,F1)).
Similarly, for each b element, an elementwise addition
of the calculated number of interposed a's (F2) and
the original position index P determines their new po-
sition indices (ew(+,P,F2)). Finally, given the new
position indices in F3, a simple permutation operation
(permute(x,F3)) will reposition each element into the
proper position in the linear ordering.

0 1 2 3 4 5 6 7 8 9
a a b a b b a b b a
0 0 1 1 2 3 3 4 5 5
5 4 3 3 2 2 2 1 1 1
0 1 5 2 6 7 3 8 9 4

0 1 2 3 4 5 6 7 8 9
a a a a a b b b b b

P
X

 up-scan(X=b,+,in) F1
down-scan(X=a,+,in) F2
 {X=a} ew(-,P,F1) F3

  

P  
permute(X,F3)

{X=b} ew(+,P,F2)

Figure 8: Mechanics of the unshu�e operation.
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4.3 Duplicate Deletion
Duplicate deletion (also termed concentrate [9]) is

the process of removing duplicate entries from a sorted
linear processor ordering. Figure 9 is an example du-
plicate deletion (with the duplicate elements shaded).
Duplicate deletion is accomplished using an upward
exclusive scan operation, followed by a elementwise
subtraction and �nally a permutation operation.

a b c c d e e f f g

a b c d e f g

X
 
  

X'

Figure 9: Example of a duplicate deletion operation.

Assuming that the elements in the linear ordering
have been sorted by identi�er, the basic technique em-
ployed when deleting duplicate entries is to count the
number of duplicates between each element and the
left side of the ordering. Each element is then moved
toward the left by this number of positions. Consider
Figure 10 where the elements are sorted and the dupli-
cate items are marked (duplicate flag), an upward
exclusive scan operation (up-scan(DF,+,ex)) is used
to sum the number of elements in the linear order-
ing that are to be deleted. An elementwise operation
(ew(-,P,F1)) is then employed to subtract the num-
ber of interposed items to be deleted (F1) from the
element's position index P. This value is then used as
the new position index in a simple permutation op-
eration (permute(X,F2)) in completing the duplicate
deletion operation.

0 1 2 3 4 5 6 7 8 9
a b c c d e e f f g
0 0 0 1 0 0 1 0 1 0
0 0 0 0 1 1 1 2 2 3
0 1 2 - 3 4 - 5 - 6

0 1 2 3 4 5 6
a b c d e f g

P
X

 duplicate flag DF
up-scan(DF,+,ex) F1

{DF=0} ew(-,P,F1) F2
  

P  
{DF=0} permute(X,F2)

Figure 10: Mechanics of the duplicate deletion operation.

4.4 Node Capacity Check
For spatial decompositions such as the bucket PMR

quadtree and the R-tree whose node splitting rule fo-
cuses solely on the number of items in a node, a node
capacity check can be used in determining if a node
in the tree is overowing and needs to be split. This
can be accomplished using a downward inclusive addi-
tion scan operation, followed by an elementwise write
(or read) operation. In Figure 11, the downward scan
is shown for an example dataset. Following the de-
termination of the node counts, nodes whose bucket
capacity is exceeded may be marked for subdivision.

4.5 Should a PM1 Quadtree Node Split
For the PM1 quadtree, the process of determining

whether or not a node should split requires more infor-
mation than simply the number of lines that intersect
the node. Given the maximum and minimum number

of endpoints associated with all lines within a node,
it is possible to determine whether or not some of the
nodes must subdivide. The node must subdivide if
either the maximal number of endpoints is equal to
two, or if the maximal number is one and the mini-
mal number is zero. If, however, the maximum and
minimum numbers are equal to each other (i.e., 0 or
1), then additional information is necessary before the
subdivision determination can be made.

lines

nodes

b d e a f b c g h

1 2 3 4

ii a

ab
c

d

e
f

gi

h

1 2

3 4

count 3 2 1 2 1 2 4 3 2 11 5

Figure 11: Example of a downward inclusive segmented
scan operation being used in a node capacity check.

The additional information that is necessary in the
case of node where the maximum and minimum are
both one, is whether or not a single endpoint exists
within the node. If there are two or more endpoints
within the node, then the node must be subdivided.
This endpoint count may be determined by forming
the minimal bounding box of the endpoints that lie
within the node [1]. If the endpoint bounding box
is trivially a point, then this indicates that all lines
within the node share a common vertex, thus there
is no need to further subdivide the node. Otherwise,
the node must subdivide as there is more than one
endpoint in the node.

In the case where both the minima and maxima are
equal to zero, it is necessary to determine the number
of lines within the node. If the number of lines within
the node is greater than one, then the node must sub-
divide.

lines

nodes

b c a c b

1

a

b

c

1 2

3 4

2A3 4

a b c

W

X Y

Z

EPs 1 1 1 0 0 1 1 1
min EPs 1 1 0 0 0 1 1 1
max EPs 1 1 1 0 0 1 1 1

Figure 12: Initial con�guration of nodes and lines. Using
a sequence of downward segmented scans, the maximum
and minimum number of endpoints associated with all
lines in a node is determined. The grayed node is deter-
mined to require a split.

In parallel, each line �rst determines the number of
its endpoints that exist within the node; either 0, 1, or
2. In Figure 12, this number is represented by the EPs
(for endpoints) �eld. Using a sequence of downward
inclusive segmented scan operations, the maximum
and minimal number of endpoints associated with all
lines within the node is determined. Figure 12 repre-
sents these values in the min EPs and max EPs �elds.
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These two numbers are then communicated by the �rst
line in each segment group to the corresponding node
in the tree. Based upon the calculated maximum and
minimum endpoint values, it can be determined that
node 2 in Figure 12 must subdivide.

lines

nodes

b c a c b

1

a

b

c

1 2

3 4

2A3 4

a b c

W

X Y

Z

MBBs W X - Z Z Z
X Z Z

Z

Figure 13: Calculation of the endpoint minimum bound-
ing boxes (MBBs) for nodes where the maximumand min-
imum number of endpoints are equal. The dark gray
node 2 was previously determined in Figure 12 to require
a split, the light gray node 1 is currently determined to
require a split, while the crossed node 4 does not require
a subdivision.

For the remaining nodes in the example, additional
information is necessary in order to determine whether
or not the node must subdivide. For nodes where the
minimumand maximumnumber of endpoints is equal
to one, the required information is whether the node
contains a single endpoint that is shared among all
lines in the node. This can be determined by forming
the minimum bounding box of the endpoints that lie
within the node. If the vertex bounding box is triv-
ially a point, then this indicates that all lines within
the node share a common vertex. Thus there is no
need to further subdivide the node. The minimum
bounding boxes can be determined using a small se-
quence of downward inclusive segmented scan opera-
tions. In Figure 13, the minimumbounding boxes are
represented by the collection of endpoint labels (i.e.,
W, X, Y, and Z) beneath each line. For example, the
endpoint minimum bounding box for node 1 contains
endpoints X and W, while the minimum bounding box
for node 4 contains only endpoint Z. Based upon the
calculated bounding boxes, node 1 must subdivide,
while node 4 does not need to subdivide.

lines

nodes

b c a c b

1

a

b

c

1 2

3 4

2

A
A3 4

a b c

W

X Y

Z count 1

Figure 14: Calculation of the line count for the remaining
node (3). Based upon the count of 1, the node is not
required to subdivide. Note that previously, nodes 1 and
2 were determined to require subdivision, while node 4
did not require subdivision.

When both the minima and maxima are equal to
zero, it is necessary to determine the number of lines
within the node. If the number of lines within the node

is greater than one, then it is necessary to subdivide
the node. In Figure 14, the line count is calculated
with a simple downward inclusive segmented scan us-
ing the addition operator. For the remaining node in
question (node 3), a line count of 1 implies that the
node does not need to subdivide. This �nal operation
completes the determination of whether or not a PM1

quadtree node must subdivide.

4.6 Splitting a Quadtree Node
The technique employed to split a quadtree node

is a two stage process. After determining that a node
should split, the node is �rst split vertically, and then
horizontally. This results in the subdivision of the
node into equal sized quadrants.

lines

nodes

a b c d e

1

a

b
c

d

1

count 5 4 3 2 1
e

Figure 15: Example initial line to node association during
a node splitting process. The node capacity check phase
of the process is highlighted.

A node capacity check �rst is employed to count
the number of lines associated with the node and de-
termine whether or not the node should be split. Fig-
ure 15 depicts this process for a single node and �ve
associated line segments. If the number of lines asso-
ciated with the node processor exceeds the prede�ned
node capacity (4 in this example), then the node must
be split into four subnodes and each of the lines must
be regrouped, according to the nodes it intersects.

lines

nodes

a b c d e

1

a

b
c

d

1

clone 1 1 0 0 0
e

Figure 16: Determining which lines intersect the hori-
zontal split axis and must be cloned.

Node splitting occurs in two stages, with the �rst
stage corresponding to a vertical split of the node into
two pieces. In parallel, each line in the splitting node
determines whether or not it intersects the split axis.
If the line intersects the split axis, it must be cloned.
For the example dataset, each intersecting line (lines a
and b) is shown with the clone value of 1. A cloning
operation, as described in Section 4.1, is then per-
formed on the lines in the node that intersect the split
axis. This is shown in Figure 16.

Once the intersecting lines have been cloned, it is
necessary to regroup the lines according to whether
they lie in the top or the bottom half of the splitting
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lines

nodes

a a b b c

1

a

b
c

d

1

side T B T B B
e

d

T

e

B

Figure 17: Following line cloning, each line in parallel
determines whether it lies in the top (T) or bottom (B)
half of the two resulting nodes. An unshu�e operation
is then applied based upon which half the line resides in.

node. In parallel, each line may make this determi-
nation because each line stores the size and position
of the node that it resides in. In Figure 18, the side
value represents whether the associated line is in the
top (T) or bottom (B) half of the splitting node. Re-
grouping of the lines is achieved with an un-shu�e
operation as detailed in Section 4.2. The un-shu�e
is used to concentrate the lines together into two new
segments, each of which corresponds to all of the line
processors lying either in whole or in part above or be-
low the y coordinate value of the center of the splitting
node. The un-shu�e operation completes the �rst half
of the quadtree node splitting operation. The result
of this un-shu�e operation is depicted in Figure 18.

lines

nodes

a b d a b

1

a

b
c

d

1

clone 0 0 0 0 1
e c

0

2

2

e

0

Figure 18: Result of the vertical node split. The second
phase begins with each line which intersects the horizon-
tal split axis being cloned.

The second half of the node splitting operation uses
analogous techniques in splitting the two resulting
nodes again in half horizontally. This horizontal split
results in the original node depicted in Figure 15 being
subdivided into four equal sized regions. The second
stage begins with each line determining whether or not
it intersects the horizontal split and should be cloned.
In Figure 18, the intersecting line (line b in node 2) is
shown with its clone value set to 1.

Following the line cloning, each line in parallel de-
termines whether it lies on the left (L) or right (R) side
of the split axis. Based upon the line's position rela-
tive to the split axis, an un-shu�e operation is used
on each of the two nodes in parallel to create two seg-
ment groups for each of the two splitting nodes. Each
segment group will corresponds to all of the line pro-
cessors which lie either in whole or in part to the left
or the right of the split axis. The un-shu�e opera-
tion is shown for the example dataset in Figure 19.
The result of the un-shu�e operation is depicted in
Figure 20. At this point, the quadtree node splitting

lines

nodes

a b d a b

1

a

b
c

d

1

side R L L R L
e

b

R

2
2

c

R

e

R

Figure 19: Following line cloning, each line in parallel
determines whether it lies in the left (L) or right (R) half
of the two resulting nodes. An unshu�e operation is
then applied based upon which half the line resides in.

operation is completed.

lines

nodes

b d a b a

1

a

b
c

d

1

e
b

2

2

c e

3 4

3 4

Figure 20: Final result of the node split operation.

5 Data-Parallel Build Algorithms
In this section we show how to build a PM1

quadtree and a bucket PMR quadtree. The algorithms
are brief and make use of the primitives described in
Section 4.

5.1 PM1 Quadtree Construction
Building a data-parallel PM1-quadtree begins with

each line assigned to a single quadtree node as de-
picted in Figure 21. The basic PM1 quadtree construc-
tion is an iterative process where nodes are subdivided
until their splitting criterion (refer to Sections 2 and
4.5 for a detailed description) is no longer satis�ed.

Using the same technique as described in Sec-
tion 4.5, the root node is marked for subdivision based
upon the maximum number of endpoints being equal
to two. The node is subdivided and the lines are split
and redistributed using the quadtree node splitting
method described in Section 4.6.

lines

nodes

a b c d e f g h i

1

ab

c

d

e
f

gi

h

1

Figure 21: Initial con�guration.

Following the subdivision of the root node, we are
left with the situation shown in Figure 22. Note that
lines a, b, and i were cloned during this node split
as they each intersected one of the split axes. This
completes the �rst iteration of node subdivisions.
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lines

nodes

b d e a f b c g h

1 2 3 4

ii a

ab
c

d

e
f

gi

h

1 2

3 4

Figure 22: Result of the �rst round of node splitting.

Each subsequent iteration is similar to the �rst:
each node is �rst checked to see if it must subdi-
vide, and then if needed, subdivide the node using the
quadtree node splitting primitive from Section 4.6. In
Figure 22, the nw, ne, and se nodes must subdivide.

lines

nodes
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Figure 23: After second round of node splitting.

The result of the second iteration of node splitting
is shown in Figure 23. At this point, one remain-
ing subdivision must be performed on the nw child of
the se quadrant (node 10). The �nal iteration results
in the decomposition shown in Figure 24. Because
node more nodes must be split, the PM1 quadtree con-
struction process is completed. For n line segments,
the data-parallel PM1 quadtree construction opera-
tion takes O(logn) time, where each of the O(logn)
subdivision stages requires O(1) computations (a con-
stant number of scans, clonings, and un-shu�es).
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Figure 24: Result of the PM1 quadtree build process.

5.2 Bucket PMR Quadtree Construction
In the data-parallel environment, all lines are in-

serted simultaneously when constructing a spatial
data structure. Thus there is no particular ordering
of the data upon insertion. The conventional PMR
quadtree's node splitting rule is one that splits a node
once and only once when a line is being inserted. This
is the case even if the number of lines that result ex-
ceeds the node's capacity. Such a splitting rule is non-
deterministic in the sense that the decomposition de-
pends on the order in which the lines are inserted. For
example, consider the situation depicted in Figure 25

where changing the insertion order of lines 3 and 4 re-
sults in di�erent decompositions. This nondetermin-
ism is unacceptable when many lines are inserted in
a node simultaneously as we do not know how many
times the node should be split. In order to avoid this
situation, we chose the bucket PMR quadtree for the
data-parallel environment as its shape is independent
of the order in which the lines are inserted and its well-
behaved bucket splitting rule (i.e., there is no ambigu-
ity with respect to how many subdivisions take place
when several lines are inserted simultaneously).
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(a)

1 2

3

4

(b)

Figure 25: (a) An example PMR quadtree (splitting
threshold of 2), with the lines inserted in numerical order,
and (b) the resulting PMR quadtree when the insertion
order is slightly modi�ed so line 4 is inserted before line
3.
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Figure 26: Initial PMR quadtree processor assignments.

A bucket PMR quadtree is built in an iterative fash-
ion, similar to the PM1 quadtree construction algo-
rithm. Initially, a single processor is assigned to each
line in the data set, and one processor to the resultant
bucket PMR quadtree as depicted for the sample data
set in Figure 26 (with the example dataset, assume we
have an 8�8 quadtree of maximal height 3). The �rst
iteration begins with the quadtree node splitting prim-
itive as described in detail in Section 4.6. Basically,
each node determines the number of lines contained
in its associated segment group, and if this number
exceeds the bucket capacity, the node is split using
a sequence of cloning and unshu�ing operations. In
Figure 26, the single quadtree node 1 is subdivided as
the the number of lines (9) exceeds the bucket capacity
of 2 in this example. The result of the �rst subdivision
is shown in Figure 27. Continuing with this iterative
process, in Figure 27, the nw and se nodes will subdi-
vide, resulting in the situation depicted in Figure 28.

This iterative subdivision process continues until all
nodes in the bucket PMR quadtree have a line count
less than or equal to the bucket capacity, or the max-
imal resolution of the quadtree has been reached (i.e.,
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Figure 27: Result of the �rst node subdivision.
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Figure 28: Result of the second node subdivisions.

a node of size 1 � 1). This is not a problem as for
practical bucket capacities (e.g., 8 and above), this
situation is exceedingly rare and will not cause any
algorithmic di�culties provided that the bucket PMR
quadtree algorithms do not assume an upper bound
on the number of lines associated with a given node.
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Figure 29: Result of the PMR quadtree build process.

Since node 7's bucket capacity is exceeded (see Fig-
ure 28), and the maximal resolution has not yet been
reached, another round of subdivision is needed. The
result of the third and �nal subdivision for our exam-
ple data set is shown in Figure 29. Note that one of
the quadtree nodes (node 9) still has its bucket capac-
ity exceeded. In the example, the maximal resolution
has been reached (i.e., 8� 8). Therefore, node 9 will
not be further subdivided. The data-parallel bucket
PMR quadtree building operation takes O(logn) time,
where each of the O(logn) subdivision stages requires
O(1) computations (a constant number of scans and
un-shu�es).

6 Conclusion
A number of data-parallel primitive operations used

in building spatial data structures such as the PM1

quadtree, bucket PMR quadtree, and the R-tree were
described as well as the algorithms. These primitives
have been used in the implementation of other data-
parallel spatial operations such as polygonization and
spatial join [4, 5, 6]. It would be interesting to see
whether these primitives are su�cient for other spatial

operations and whether a minimal subset of operations
can be de�ned. This is a subject for future research.
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