
TR-54S

PROGRf\M L\BRf\RY
COMPUTER SCIENCE CENTER

UNIVERSITY Of t,~,I\.T{Lf\ND

May 1977

A STIJDY IN AUTa.1ATI C DEBUGGING OF CDMPILERS

BY

Hanan Samet
Computer Science Department

University of Maryland
College Park, Maryland 20742

Abstract

Automatic debugging is examined in the context of compiler correctness.

A system is described whose goal is to prove the correctness of translations

involving heuristically optimized code. Use of the system in automatically

pinpointing errors is demonstrated along with a discussion of the prospects
- -- - - ~------

of automatic debugging of a complex program that was incorrectly translated.

The actual debugging procedure is seen to take several iterations at the end

of which a correctly translated program is obtained.

Keywords and phrases: automatic progrannning, debugging, compilers, error

detection, error correction, program verification, self repairing software

*This work was supported in part by the Advanced Research Projects Agency of

the Department of Defense under Contract DAHC lS-73-C-043S. The views ex

pressed are those of the author.

A STUDY IN AUTOMATIC DEBUGGING OF COMPILERS'

by

Hanan Samet
Computer Science Department

University of Maryland
College Park, Maryland 20742

Abstract

Automatic debugging is examined in the context of compiler correctness. A
system is described whose goal is to prove the correctness of translations involving

heuristically optimized code. Use of the system in automatically pinpointing errors

is demonstrated along with a discussion of the prospects of automatically correcting

them. The viability of the approach is illustrated by the automatic debugging of a

complex program that was incorrectly translated. The actual debugging procedure is

seen to take several iterations at the end of which a correctly translated program

is obtained.

Keywords and phrases: automatic programming, debugging, compilers, error detection,

error correction, program verification, self repairing software

*This work was supported in part by the Advanced Research Projects Agency of the

Department of Defense under Contract DAHC 15-73-C-0435. The views expressed are

those of the author.

tOI

I
dl!

i

[S
,

pri

a~
I

we
"

v~
I

c

o

m

c

t

[

s

a

3S. A

:>lving

3rrors

3cting

of a

1re is

'ogram

tion,

f the

j are

INTRODUCTION

A significant amount of current research in automatic programming is devoted

to the construction of more efficient programs. Researchers have basically taken

t~O approaches to this problem. At one end, work is proceeding towards the

automatic development of programs from task specifications. These efforts range

from the automatic construction of manipulator programs [Taylor76] to more

conventional programming tasks such as sorting [Green76]. The latter is driven by

dialogues which explain the desired task. Other work makes use of examples

[summers75]. At the other end, progress is being made at rendering existing

programs more efficient. Such work is typified by studies such as [Low74] which aim

at automatically selecting the data structure thereby relieving the programmer from

~orrying about such issues. In the middle of th~ spectrum lies work in program

verification [Waldinger69] and debugging [Sussman75].

Our work lies in the middle of the above spectrum. We describe the use of a

compiler testing system [Samet75] in detecting errors in heuristically optimized

code as well as the prospects for automatically correcting them. This work is

motivated by the realization that often there is no a priori knowledge of how

certain computer programs are to be optimized. In such a case, there may be a need

to resort to heuristics. Such a paradigm embodies "hypothesis and test" techniques

[Newel173] thereby necessitating a mechanism for verifying that the various attempts

at optimization do indeed function properly. Currently, a system exists [~amet75J

which proves that programs are correctly translated as well as pinpoints the

mistakes in erroneous translations. The goal of our presentation is to illustrate

the errors that can be detected and to demonstrate that often the error information

is sufficient to indicate the necessary correction. Thus it will be shown that a

significant number of errors, in addition to being detected, could also be corrected

automatically.

Such an error detection and correction capability is attractive in the

context of self repairing software. In many artificial intelligence applications,

programs write other programs which they later execute. In such a case, efficiency

considerations may lead to the invocation of a compiler to translate the newly

created program. Use of techniques presented here can lead to a greater degree of

reliability of compilers used in such an environment. In particular, if one is

operating in a hostile environment, say Mars, then it would be difficult to debug a

program such as a compiler from Earth. Thus just as self checking circuits find

Usefulness in hardware, we feel that at times a need exists for their software

analogs, self repairing programs.

This paper is organized into sev eral sections. First, we present
a bl"t

overview of the concept of compiler testing . This .is followed by a shor t eXatnpl ~r

illustrate the type of programs our
e t

system can handle . Next , we discuss the a
detection capabilities of the system.

et't'Qt>
Fina l l y , an erroneous ly encoded com

Ple~
is led through t he er rors t hat t he s ys t em disco'l

el'ed
corrections. Often, t he actua l corrections ar

example is given and the reader

as well as the necessary
e qUi te

straightforward thereby justifying a conclusion that automatic error correctio .
n los

feasible in a large number of situations.

2. COMPILER TESTING

Compiler testing is a term we use to describe a means of proving that given

a compiler (or any translation procedure) and a program to be compiled, the

translation has been correctly performed. The actual test consists of demonstrating

a correspondence or equivalence between a program input to the compiler and the

corresponding translated program. By equivalence we mean that the two programs must

b~ capable of being proved to be structurally equivalent [Lee72] that is they have

identical execution sequences except for certain valid rearrangements of

computations. Note that this is a more stringent requirement than that posed by the

conventional definition which holds that two programs are equivalent if they have a

common domain and range and both produce the same output for any given input in

their common domain. For example, using our techniques, we cannot prove that a high

level insertion sort program is equivalent to a low level quicksort program.

The actual testing procedure relies on the existence of an intermediate

representation common to both the source and object programs. This representation

reflects all of the computations performed on all possible execution paths. Given exi

the existence of such a representation, the testing procedure consists of three

steps (see fig. 1). First,

intermediate representation

transformations. Second,

the high

via the

the low

level language program

use of a suitable

level program must be

is converted to the

set of syntactiC

converted to the

intermediate representation. This is achieved by use of a process

interpretation [Samet76] which interprets procedural descriptions

·C termed syrobOl1

of low level

machine operations to build the intermediate representation. Third, a check roust be

performed of the equivalence of the two representations. This check is in the for~
of a procedure which applies equivalence preserving transformations to the resultS

of the first two steps in attempting to reduce them to a common representation.

2

lin1

LIS

LI~

CDF

a i

to

'en

.ng

~he

1St

lve

of

~he

~ a

in

igh

ate

ion

yen

ree

the

tie

the

.lie

~ vel

, be

'or!ll

I
high leVel!
language
program
----r-----

Ilow level I,.

'

language
program I

---r-----

I syntactic
I transformations

symbolic ~I 1
interpretation I

I
----1:--------- ________ i _____ _ __ 1 __ _

I intermediate ~ I intermediate I I correct II··

:~~:~~~~:~:~~~ I "r-----i; :~~:~~~~:~:~~~, '~::F~-
I I I
I I I ___ i ___ *___ _ __ _ 1 __ _

I proof of f FALSE ~ 'I pinpoint I !equivalence~,------~~~~------~errors I

-----r----
TRUE I

I
I

-t-
lendl

Fig. 1 - Compiler testing system diagram

In this paper we are primarily concerned with the error detection

capabilities of such a technique and the implications it has for error correction.

To this end we need a sample system. We use a subset of LISP 1.6 [Quam72] (a

variant of LISP [McCarthy60]) as the high level language and LAP [Quam72] (a variant

of the PDP-10 [DEC69] assembly language) as the low level language. A suitable

intermediate representation for our subset of LISP in the form of a tree is shown to

exist in [Samet77].

An an example, consider fig. 2 where a function, REVERSE, which reverses the

links of a list, is encoded in MLISP [Smith70], an ALGOL-like [Naur60] version of

LISP.

REVERSE(L) = if NULL(L) then L
else *APPEND(REVERSE(CDR(L)) ~IST(CAR(L)))

Fig. 2 - Definition of REVERSE

Prior to presenting a LAP encoding we describe our execution environment. A

11ts LISP cell is represented by a full word whose left and right halves point to CAR and

CDR respectively. Addresses of atoms are represented by (QUOTE <atom-name» and by

Zero in the case of NIL. A stack is used for control with accumulator 12 containing

a stack pointer, and upon function entry the return address is found on the top of

3

the stack. A LAP program expects to find all of its arguments in t he accumUlat
and returns its result in accumulator 1. The accumul ator s containing

Ol's
the pal"alll t

e ~l"
always of such a form that a o is in t he left half and the LISP . s are pOlnter i

the right half. All parameters assumed t o be valid LISP poi nte r s.
S in

are Whenev
of all

el'
recursion or a call to an external function occur, the contents

Of the
accumulators (except 12) are assumed to be destroyed with the exception of CONS
XCONS , and NCONS, in which case all accumulators but 1 in the case of NCONS , and 1
and 2 in the case of CONS and XCONS , have the same values before and after the call.
XCONS is the antisymmetric counterpart of CONS - i.e. , CONS(A,B) = XCONS(B,A) While

NCONS obeys the relation NCONS(A) = CONS(A ~IL) = LIST(A).

Fig. 3 contains a LAP encoding for the function given in fig. 2. The format

of a LAP instruction is (OPCODE AC ADDR INDEX) where INDEX and AD DR are optional.

OPCODE is a PDP-10 instruction optionally suffixed by @ which denotes indirect

addressing. ADDR denotes the address field. AC and INDEX denote respectively the

accumulator associated with the instruction and the accumulator to be used in case

of indexing. These two fields contain a number between 0 and decimal 15. (CALL 1

(E NCONS» denotes that NCONS is a recursive function of type EXPR (call by value)

and is called with one argument. Similarly, JCALL corresponds to a non-recursive

function call. JCALL is used to invoke *APPEND since once this function is exited

nothing remains to be computed in REVERSE.

REVERSE

pcg

(SKIPN 2 1)

!
POPJ 12)
HLRZ 1 0 1)
CALL 1 (E NCONS»
PUSH 12 1)

!
HRRZ 1 0 2)
CALL 1 (E REVERSE»
POP 12 2)
JCALL 2 (E *APPEND»

load acc. 2 with L and skip if not NIL
return NIL
l oad acc. 1 ~itb CAR(L)
comput e LISTt CAR(L»
pus h LIST(CAR(L» on the s t ack
load acc. 1 with CDR(L)
comput e HEVERSE (CDR(L»
pop LIST(CAR(L» f r om the stack
comput e *AP PEND(REVERSE(CDR(L» ~IST(CAR(L»)

Fig. 3 - LAP encoding of REVERSE

The intermediate representation obtained by the symbolic interpretation

procedure is given in fig. 4. Notice that we have a symbolic representation and a

numeric representation. The numbers in the latter are unique to each computation

and execution path and their purpose is to indicate a relative ordering for the

sequence of computations. The numbers are used in a proof to enable us to prove

that equivalence is preserved when certain functions are computed out of order.

However, these numbers can also be used profitably in the process of error

detection. Since the numbers are unique to each computation and execution path, we

may determine from each computation where in the program it was computed and thUS

pinpoint the error. This is accomplished by maintaining a dictionary of computatiotJ

4

tJ1..11llber~

were er

(EQ ~

3. ERI'

can be

dictiOl

errors

procedl

as coml

detect

the OD,

the ex

result

other.

(1) Er

se

le

an

ca

in

ac

er.

er

(2) AJ

e>

m,
n

he

S,

. 1

.1.

.1e

nat

~ l.

act

the

ase

L 1

ue)

where with each entry is
r!umbers

encountered along the execution path starting at function entry.
were

(eQ ~,NIL)

stored an instruction address and the labels that

(10 ~ 0) ,

(*APPEND (REVERSE (CDR L)) (CONS (CAR L) NIL)) 0 (20 (18 (16 5)) (14 (12 5) 0))
NIL

Fig. 4 - Intermediate representation of fig. 3

ERRORS

Errors in the translated program that are caused by the translation process

can be detected. This is accomplished, in part, with the aid of the computation

dictionary mentioned in the previous section. There are basically four classes of

errors. Errors of the first class are detected by the symbolic interpretation

procedure while the remaining three classes are detected during the proof procedure

as computations are being matched in the two intermediate representations. Errors

detected during the symbolic interpretation phase pertain to the well-formedness of

the object program - i.e. violations of the rules set forth in the definition of

ive the execution environment. Errors detected during the proof procedure are often the

ted result of computations occuring in one intermediate representation and not in the

other.

der·

rror

, we

thUS

tior!

(1) Errors pertaining to the well-formedness of the program include improper calling

sequences, illegal stack pointer formats, illegal operations on certain high

level data structures, etc. For example, performing arithmetic on LISP pointers

and possibly attempting to pass the result to another LISP function. Using a

calling sequence which combines or replaces an accumulator with a stack location

incorrectly. Storing data in locations which are off limits - i.e., certain

accumulators and even unknown addresses. The stack also serves as a source of

error due to confusion as to the status of the stack pointer. All of these

errors are detected during the symbolic interpretation phase. Whenever such an

error is encountered, the current execution path is abandoned and symbolic

interpretation is continued on an alternate path so that a maximal number of

errors can be detected.

(2) All of the computations in one of the intermediate representations were found to

exist in the other representation, but the reverse is not true. Such an error

may occur when certain side effect computations occur in one of the programs and

not in the other. Alternatively, this may also occur when certain tests are

performed in one program and not in the other.
5

(3) There are occasions when each of the intermediate representations reflects tn~
performance of the same computations along each execution path, yet, the two
representations are not identical. This occurs when the results of tn~
execution paths are different. For example, consider the two represen ta tion~

given below. Notice that all computations performed on the left are also

performed on the right. However, the results of the two right subtrees are not

equivalent (i.e., (CDR A) is not equivalent to (CDR B».

(EQ (CDR A) (CDR B» (EQ (CDR A) (CDR B» . ' , "

NIL (CDR A) NIL (CDR B)

(4) The actual proof procedure may reach a point at which it cannot continue. This

is the case when a function in the intermediate representation of the low level

program can not be matched with a function in the intermediate representation

corresponding to the original high level program. This is caused by such

factors as invalid rearranging of computations, mistakes in the object program,

invalid optimizations, etc. Some of the errors of this class that have been

detected (see section 4) include use of wrong accumulators, misuse of

antisymmetry, misspelling of operation codes and operands thereby causing the

wrong instruction to be executed, and testing the wrong sense of a condition.

When errors of type (1)-(3) occur, the system will return a message

indicating the error type. We also indicate the erroneous computation (somewhat

meaningless for type (1) errors) as well as what should have been computed according

to the intermediate representation corresponding to the original high level program.

In addition, the values of the conditions in terms of truth values are given so that

the offending path can be identified.

We are primarily interested in errors of type (4). When such errors occur,

the system returns the invalid computation along with the computation dictionarY

entry corresponding to the computation number of the outermost function - i.e., the

address of the instruction computing this function and the labels associated witb

the path. The actual error is caused by either the wrong function applied to a set

of arguments or the function applied to the wrong set of arguments. For example,

consider an error in *LESS(A ~). The error could be that we desire *GREAT(A~) or

possibly *LESS(A ,C).

attempting to match

The proof system indicates that an error has

the computation *LESS(A ~). In addition, it also

occurred wheP

returns the

address of the instruction corresponding to the *LESS function which is denoted as

the location of error as well as the path along which the error was detected. ThUs

6

0

.SO

lOt

lis

7el

Lon

loh

30m I

~ en

of

~ he

30ge

1at

ing

:tm.

:try

t. he

ith

set

le ,

or

the

as

nuS

debugging the program we must ascertain whether the error was in the function
when
or in the arguments.

Error correction is a difficult area. Currently, we only have a limited set

of heuristics to guide us. Nevertheless, it does seem to be a powerful one. As

mentioned earlier, whenever an error occurs in a function, we must determine if the

error is caused by the wrong function being applied to a set of arguments (e.g. ,

error (13) in section 4) or the correct function being applied to the wrong set of

arguments (e.g. I error (4) in section 4). Our approach is first to attempt to

correct the function. Next, an attempt is made to correct the arguments (e.g. ,

errors (5) and (7) in section 4) . When correcting arguments, we' know the

accumulators which must contain the arguments and thus we can work backwards to

determine where and when the wrong values were computed and loaded into the

accumulators (e.g. , error (7) in section 4). Often the debugging process is aided

by the presence of instructions that manipulate data that will no longer be

referenced in the program (e.g. , error (12) in section 4). Such instructions often

serve as candidates for removal and replacement by the correct instruction. Errors

also occur frequently in the sense of a condition - i.e. , the wrong sense is being

tested. This is especially common with arithmetic relations such as less than and

greater than (e.g., errors (6) ,(8), and (9) in section 4). Such occurrences are

signaled by the presence of errors in both subtrees of a condition in close

proximity (in terms of the logical flow of the program) to the instruction at which

the condition is tested. This can be corrected in the following manner. Reverse

the sense of the test. If all of the errors disappear, then the diagnosis is

clearly correct. If some of the errors disappear, then the diagnosis is quite

likely to be valid. The previous is especially true if at least one error in each

subtree disappears after making the change. Note that changing the sense of the

test may lead to new errors. However, as long as some of the current errors

disappear, the correction is likely to be valid.

4. EXAMPLE

In this section we examine the error detection capabilities of the system

reported in [Samet75J as well as the potential for automatic error correction. We

use a rather complex function known as HIER1 which is fairly typical of the type of

functions found in artificial intelligence programs. The algorithm originated in

the FOL [Weyhrauch74J system where it is used extensively. We will not dwell to any

length on the actual effect of the function except for the following brief summary.

7

Application of the function results in the conversion of a list repreSenti~~

expression with prefix and infix opera t ors t o a tree-like representation ~
primary driving force in the determination of t he operands correspond i ng to e~Oh~~

or the operators is a set of binding powers (operator precedence). The second a~gUm
e~\

to the function denotes the binding power of the operator correspondi ng t o L

~ha
expression in question.

Fig. 5 contains an encoding of HIER1 in MLISP. Note the use of SqU
~r~

This is an MLISP construct which is very useful in visualizing th~ brackets.

structure of a list. Each index indicates a number, say num, which is interpret '
e~

as being equivalent to num-1 CDR operations followed by a CAR operation. Th~ '

brackets can be likened to a function whose arguments indicate a sequence of CDR a~

CAR operations applied from left to right. For example L[2,1] is equivalent t
0,

(CAADDR L) - i.e., CAR(CAR(CDR(CDR(L»». Angle brackets are used to indicate a'

list consisting of the elements separated by commas within the angled brackets. For
I

example, <A ~ ,C> is equivalent to LIST(A,B ,C). We also use the single quote symbol

instead of the word QUOTE.

EXPR HI ER1(L ,RBP);
I F NULL(L[1]) & NULL(CDDR(L» THEN L
ELSE IF NULLC CD DR(L» THEN HIER1«CDR(L[1]) ,CONS(L[1,1] ,L[2]» ,RBP)
ELSE I F NULL(L[1]) THEN

IF RBP GEQ BP1(L[3 ,1] ,'LEFT&) THEN L
ELSE H I ER1(CONS (NIL~

. CON~(CONS(L[3~1]~
CON~(LL2]~

(SETI,,/(L .
HiER1(CONS(L[3s2][,

BP1(Lf~~1~~'~i6~1~~~~~t~j~~ :
CDDR(L») ,

RBP)
ELSE IF BP1(L[1 1] 'PRIGHT&) GEQ BP1(L[3 1] 'LEFT&) THEN

HIER1(CONS(CDR(L[1]) ,CONS(CONS(L[1,1i,LL2]) ,CDDR(L») ,RBP)
ELSE HIER1(CONS(L[1])

CONS~ (SETQ(L ,

RBP) ;

EXPR BP1 (X ,Y);
GET(X ,Y);

HIER1(CONS(NIL CDR(L»
BP1(L[1 ,i] ,'PRIGlh&»»[2],

CDDR(L») ,

Fig. 5 - MLISP encoding of HIER1

Fig. 6 denotes the LAP encoding of HIER 1 that is generated by t he LISP 1,&
. . niJ1S

compiler. The meaning of the instruct io ns shoul d be clear f rom the ad Jol
nand

comments. In addition, an encoding i s given i n f i g . 7 , obtained by a

occurred dur j,llg
optimization process, containing a number of err ors . These errors

j.on
the optimization process and were not intentional . The remainder of th e disCUSS

tnS

focusses on these errors and demonstrates t he error detection capability of

8

s)

bE

t

t

o

n.g ~ll

't'h~
en of ,

Utnetlt

o th~

:qUa.r-e '

Ig the

'l"eted

The

lR a.nd

mt to

late a

• For

lymbol

SP 1.6

oiniog

a haOd

dut'iog

I

. 00 ussl. I

of t~e

We show how the errors were detected and how the available information can

be used to correct them. All corrections are made relative to the encoding in fig.

1 and thus all instruction locations refer to fig. 7. During this process, we

successively make the corrections deemed necessary by the error detection mechanism

until a correct program results. Unfortunately, the errors preclude fig. 7 from

containing a completely commented encoding. However, the meaning of the uncommented

instructions will become clear as the corrections are being discussed. Note that

the scenario presented, sans the automatic error correction, is essentially a

transcript of a user session with our system. The only difference is that we have

omitted the numeric representation from our discussion.

TAG2

TAG4

TAG7

PUSH 12 1)
PUSH 12 2)
HLRZ@ 1 1)
JUMPN 1 TAG2)
HRRZ@ 1 -1 12)
HRRZ@ 1 1)

. JUMPN 1 TAG2)
MOVE 1 -1 12)
JRST 0 TAG1)
HRRZ@ 1 -1 12)
HRRZ@ 1 1)
JUMPN 1 TAG4)
HRRZ@ 2 -1 12)
HLRZ@ 2 2)
HLRZ@ 1 -1 12)
HLRZ@ 1 1)
CALL 2 (E CONS»
CALL 1 (E NCONS»
HLRZ@ 2 -1 12)
HRRZ@ 2 2)
CALL 2 (E XCONS»
MOVE 2 0 12)
CALL 2 (E HIER1»
JRST 0 TAG1)
HLRZ@ 1 -1 12)
JUMPN 1 TAG5)
MOVEI2 (QUOTE LEFT&»
HRRZ@ 1 -1 12)
CALL 1 (E CAADR»
CALL 2 (E BP1»
MOVE 2 0 12)
CALL 2 (E *GREAT»

, JUMPN 1 TAG7)
MOVE 1 -1 12)
JRST 0 TAG6)
HRRZ@ 2 -1 12)
HRRZ@ 2 2)
HRRZ@ 2 2)
HRRZ@ 1 -1 12)
CALL 1 ~E CDADR ~) CALL 1 E CADR)
CALL 2 E CONS)
HRRZ@ 2 -1 12)
HRRZ@ 2 2j HLRZ@ 2 2
HRRZ@ 2 2
HLRZ@ 2 2
CALL 2 (E XCONS»
PUSH 12 1)

HLRZ@ 1 1) !
HRRZ@ 1 -2 12)

PUSH 12 1)
HRRZ@ 1 -3 12)
CALL 1 (E CAADR»

(MOVEI 2 (QUOTE RIGHT&»

save L on the stack
save RBP on the stack
load acc. 1 with L[1]
jump to TAG2 if L[1] is not NIL
load acc. 1 with CDR(L)
load aco. 1 with CDDR(L)
jump to TAG2 if CDDR (L) is not NIL
load acc . 1 with L
jump to TAG1
loaa acc. 1 with CDR(L)
load acc. 1 with CDDR(L)
jump to TAG4 if CDDR\L) is not NIL:
loa a acc. 2 with CDR L)
load acc. 2 with L~2
load acc. 1 with L 1
load acc. 1 with L 1 ,1]
compute CONS(L[1,1 L[2])
compute <CONS(L[1 ,rftL[2]»
load acc. 2 with L[1
load acc. 2 with CDR L)
compute <CDR(L[1]) ,CONS(L[1,1] ,L[2J»
load acc. 2 with RBP
compute HIER1«CDR(L[1]) ,CONS(L[1 ,1] ,L[2J» ,RBP)
jump to TAG1
load acc.1 with L[1]
jump to TAG5 if L[1J is not NIL
load acc. 2 with 'LEFT&
load acc. 1 with CDR(L)
891-[=+ 0[3 1]
compute BP1lL[3,1] ,'LEFT&)
load acc. 2 with RBP
compute BP1(L[3 1J 'LEFT&»RBP
jumR to TAG7 if 'BP1'(L[3 ,1] ,'LEr'T&»RBP
loaa acc. 1 with L
jump to TAG6
loaa ace. 2 with CDR(L)
load ace. 2 with CDDR(L)
load aoo. 2 with CDDDR(L)
load acc. , with CDR(L)
compute CDR(L[3J)
compute L[3 3]
compute CONS(L[3 ,3J J CDDDR(L»
load acc. 2 with CD~(L)
load acc. 2 with CDDR(L)
load acc. 2 with L[3]
load ace. 2 with CDR{L[3J)
load acc. 2 with L[3 2J
compute CONS(L[3 ,2]}!ONS(L[3 ,3J

rl
CDDDRCL»)

save CONS(L[3 ,2J ,CONS(L[3 ,3] ,CD DR(L»))
on the stack
load aec. 1 with CDR(L)
load a9c 1 with L[2J
save LL2j on the stack
load acc. 1 with CDR(L)
compute L[3 ,1 J
load acc. 2 with 'RIGHT&

9

TAG6
TAG5

PUSH 12 1)
HRRZ@ 1 -4 12)
CALL 1 (E CAADR»
CALL 2 (E BP1»
MOVE 2 1)
EXCH 1 -2 12)

(CALL 2 (E HIER1»

(HRRZ@ 2 1)

(HLRZ@ 2 2)

(EXCH 1 -1 12)
(CALL 2 (E CONS»

(POP 12 2)
(CALL 2 (E XCONS»

(H RRZ@ 2 0 12)

(HRRZ@ 2 2)

(CALL 2 (E CONS»

(MOVEI 2 (QUOTE NIL»
(CALL 2 (E XCONS»

(MOVE 2 -2 12)
(CALL 2 (E HIER1»

(POP 12 -3 12)
(SUB 12 (C 0 0 1 1)

\

JRST 0 TAG1)
MOVEI2 (QUOTE PRIGHT&»
HLRZ@ 1 -1 12)
HLRZ@ 1 1)
CALL 2 (E BP1»
MOVE I 2 (QUOTE LEFT&»

save L[3 ,1J on the stack
load acc. 1 with CDR(L)
compute L[3 1]
compute BP1 (L[3 ,1] 'RIGHT&)
loaa acc. 2 with BP1(L[3 ,1J ,'RIGHT&)
exchange acc. 1 with
CONS(LL3 ,2J ,CONS(L[3 ,3] ,CDDDR(L»)
compute
HIER1 (CONS(L[3}2] ,CONS(L[3 ,31 ,CDDDR(L») ,

BP1(L(3 ,11 ,'RIGHT&»
load acc. 2 with
CDR(HIER1(CONS(L[3 j 2] ,CONS(L[3,3J ,CDDDR(L»)

BP1 (L[3 , IJ ,'RIGHT&») ,
load acc. 2 with
HIER1(CONS(L[3}2J ,CONS (L~3r13J ,CDDDR(L»),

BP1(L[3 ,d ,'RIGHT& h2]
exchange aoc. 1 with L[2
compute
CONS(L[2]

HIER l' (CONS (L[3 }2] ,CONS (L [3 ,.13] ,CDDDR (L) » I

BP1(L[3 IJ 'RIGHT&»L2J)
load acc. 2 wi th Ll3 ,iJ from the stack
compute
CONS (L[3,.11J,..,

CON;::>(LL2J,
HIER1(CONS(L[3,2] ,CONS(L[3,..,3J ,CDDDR(L»)

BP1 (L[3 ,] ,'RIGHT&) h2]» ,
load acc. 2 with
CDR(HIERl (CONS(L[3 ,2J ,CONS(L[3 ,3] ,CDDDR(L») ,

BP1(L[3,1] ,'RIGHT&)))
load aoc. 2 with
CDDR(HIER1(CONS(L[3.,2J ,CONS(L[3,3] ,CDDDR(L»),

BP1(L[3 ,I] ,'RIGHT&J»
compute
CONS(CONS(L[3~1],..,

CON;::>(LL2]
HIERi(CONS(L[3 2J

CONS(Ll3.)3]..,tCDDDR(L») I

BP1 (L[3 1] 'R1GHT&))[2]» I

CDDR(HIER1 (CONS(L[3 ,2] ,CONS(L[3 ,3J ,CDDDR(L»),
BP1(L[3 ,1] ,'RIGHT&»»

load acc. 2 with NIL
compute
CONS(NIL

CONS(CONS(L[3,.11],..,
CON;::>(LL2]

HIER'(CONS(L[3,.12],..,
CON;:) (L L3 ,3] ,

CODDR (L) »
BPl (L[3 ,1 J ,'RI GHT&))['2)) ,

CDDRCHI ER1(CONS(L[3,.12],..,)
CON;::>(LL3 3J CDDDR(L» ,

BP1(L[3,1] ,'RIGHT&»»)
load acc. 2 with RBP from the stack
compute
HIERl (CONS(NIL

CONS(CONS(L[3,.11J,..,
CON;::>(LL2J ,

HlER1(CONS(L[3~2J,..,)
CON;:)t5b6Jthf) h

RBP)

BP1(L[3 1],
'RIGHT&))[2]»'

CDDR(HIER1(CONS(L[3,.12J,..,
CON;::>(LL3 ,3J ,

CDDDR(L»)) ,)
BPl (L[3 ,1] ,'RIGHT&) ») ,

remove a stack entry
remove a stack entry
jump to TAG1
load acc. 2 with 'PRIGHT&
load acc. 1 with L[1J
load acc. 1 with L[1 ,1J
compute BP1(L[1 ,1] ,'PRIGHT)
load acc. 2 with 'LEFT&

10

TAG12

TAG1

I)) ,
TAG12

) ,
))) ,

)')) I

TAG1

(PUSH 12 1)
(HRRZ@ 1 -2 12)

!
CALL 1 (E CAADR»
CALL 2 (E BP1»
POP 12 2)
CALL 2 (E *GREAT»
JUMPN 1 TAG12)

HRRZ@ 2 -1 12)
HLRZ@ 2 2)
HLRZ@ 1 -1 12)
HLRZ@ 1 1)
CALL 2 (E CONS»
HRRZ@ 2 -1 12)
HRRZ@ 2 2)
CALL 2 (E CONS»
HLRZ@ 2 -1 12)
HRRZ@ 2 2)
CALL 2 (E XCONS»

(MOVE 2 0 12)
(CALL 2 (E HIER1»

1
JRST 0 TAG1)
HRRZ@ 2 -1 12)
MOVEI 1 (QUOTE NIL»
CALL 2 (E CONS»

(PUSH 12 1)
HLRZ@ 1 - 2 12)
MOVEI 2 (QUOTE PRIGHT& »
PUSH 12 1)
HLRZ@ 1 -3 12)
HLRZ@ 1 1)
CALL 2 (E B P 1))
MOVE 2 1)

(EXCH 1 -1 12)
(CALL 2 (E HIER1»

(HRRZ@ 2 1)

(HRRZ@ 2 2)

(MOVEM 1 -3 12)

(CALL 1 (E CADR»

(CALL 2 (E CONS»

(POP 12 2)
(CALL 2 (E XCONS»

(MOVE 2 -1 12)
(CALL 2 (E HIER1»

(SUB 12 (C 0 0 1 1»
(SUB 12 (C 0 0 2 2»
(POPJ 12)

save BP1(L[1 ,1] ,'PRIGHT) on the stack
load acc. 1 with CDR(L)
compute L[3 1]
compute BP1 (L[3 ,1] ,'LEFT&)
load acc. 2 with BP1(L[1 ,1] 'PRIGHT)
compute BP1(L[3,1] ,'LEFT»BP1(L[1,1] ,'PRIGHT)
jump to TAG12 if
BPHL[3,1] ,'LEFT»BP1(L[1 ,1] ,'PRIGHT)
load acc. 2 with CDR~L)
load acc. 2 with Ll2
load acc. 1 with L 1
load acc. 1 with L 1 ,1]
compute CONS(L[1,1 .1[2])
load acc. 2 with CD~(L)
load acc. 2 with CDDR(L)
compute CONS(CONS(L[1 ,1] ,1[2]) ,CDDR(L»
load acc. 2 with L[1]
load acc. 2 with CDR(L[1])
compute
CONS(CDR(L[1])

CONS(CONS(L[1 ,1] ,L[2]) ,CDOR(L»)
load acc. 2 with RBP
compute
HIER1(CONS(COR(L[1])

CONS(CONS(L[1 ,1] ,1[2]) ,CDOR(L»),
RBP)

jump to TAG1
load acc. 2 with CDR(L)
load acc. 1 with NIL
compute CONS(NIL ,COR(L»
save CONS(NIL ,COR(L» on the stack
load acc. 1 with L[1]
load acc. 2 with 'PRIGHT&
save L[1] on t he s t ack
load acc. 1 wi th L[1]
load acc . 1 wi tb L [1 1]
comput e EP1 (L[1,1] ' P'RIGHT&)
l oad acc. 2 with BPl(L[1,1] ,'P RIGHT&)
excbange acc. 1 with CONS(NIL ,CDR(L»
compute
HIER1 (CONS(NIL ,COR(L» ,BP1 (L[1 ,1] ,'PRIGHT&»
compute
COR(HIER1(CONS(NIL ,CDR(L» ,BP1(L[1,1] ,'PRIGHT&»)
comput e
CDD R (HIER 1 (CONS (N IL ,CDR (L» ,BP 1 (L [1 ,1] " PRIGHT&) »
repl ace t he ol d val ue of L on the stack with
BIER l (CONS (N IL ,CDR(L» ,BP 1 (L[1 ,1] ,' PRIGHT&»
comp ute
HIER 1(CONS (N IL ,CDR (L» ,BP 1(L [1 ,1] ,' PRI GHT& »)[2]
compute
CONS(HI ER 1(CO NS(N IL -(CDR (L»H

CDDR (liifJ ~ ~b~~s ~tl~r~egR rt~ ~ ~12] ,
BP1(L [1,1] ,·PRIGtiT&»»

load acc . 2 wi t b L[1]
compute
CONS (L[1]

CONS (aIER 1 (CO NS (NIL
1
CDR(L»H

CDDR (H~k~ ~t MNS h/~L~~gR 1t ~ ~ ~12] ,
B P 1 (L [1 I!] ,'P RIG HT &)))))

l oad acc. 2 wi t h RBP
compute
HIER1(CONS(L[1]

CONS(HIER1(CONS(NIL~CDR(L» . 1
BP1(L[1 I] 'PRIGHT&»)[2],

CDDR(HIER1(CONS(NIL~CDR(L».f
BP1(L[l ,I] ,'PRIGHT&»»),

RBP)
remove one entry from the stack
undo the first two stack operations
return

Fig. 6 - LISP 1.6 compiler generated encoding for HIER1

11

The optimized encoding makes use of several optimizations which are briefly

described. In some instances recursion is achieved by bypassing the start of the

program via use of the label HIERA. This is motivated by the fOIIO~i~g

observations. First, for the recursive calls the second argument need never be

present in accumulator 2 because accumulator 2 is never being referenced prior to

being overwritten. Second, observe that whenever recursion occurs, the second

argument is already on the stack and thus there is no need to place it on the stack TAGX

again. Hence, the first instruction may be bypassed and therefore for internal

recursive calls there is no need to follow a calling sequence which makes USe of

accumulators. Instead, a calling sequence is used where one parameter is in

accumulator while the other parameter is on the stack. Other optimizations

include common subexpression elimination and a wide use of accumulators to store

temporary values across functions whose invocation does not result in the

destruction of the contents of all of the accumulators (e.g., CONS, XCONS, and

NCONS). Finally, conditions are compiled more efficiently so that redundant tests

are avoided. This was a problem in the LISP 1.6 compiler generated LAP program due

to the use of the AND operation in some of the conditions present in the original

LISP function definition. The result of these optimizations, when chains of CAR-CDR

operations are expanded in line, is an encoding containing 105 instructions instead

of 145 instructions. Timing measurements indicated that the new encoding was about

40% faster and required 50% less stack space.

HIERl
HIERA

TAG2

TAGB

TAG1

1 PUSH 12 2)
2 HLRZ 5 0 1)
3 JUMPN 5 TAG2)
1+ HRRZ 4 0 1)
5 HRRZ 3 0 4)
6 JUMPE 3 TAGA)
1 JRST 0 TAGB)
8 HRRZ 4 0 1)
91HRRZ 3 0 4·)

10 JUMPN 3 TAGC)

B ~t~~ ~ g a~
113 CALL 2 (E CONS»
4 CALL 1 (E NCONS»

1
15 HRRZ 2 0 4)
6 CALL 2 (E XCONS»

111 JRST 0 HIERA)
8 'PUSH 12 1)

19 HLRZ 1 0 3)
20 HLRZ 1 0 1)
21 MOVEI 2 (QUOTE LEFT&»
22 CALL 2 (E BP1»
223 MOVE 2 -1 12)

1+ CALL 2 (E ·GREAT»
25 JUMPN 1 TAG7)
26 POP 12 1)

2
27 JRST 0 TAGA)

8 HRRZ@ 1 0 12)
29 HRRZ 1 0 1~
30 HLRZ 1 0 1
31 HLRZ 1 0 1
32 ,MOVEI 2 (QUOTE RIGHT&»
333 CALL 2 (E BP1»

4 PUSH 12 1)

save RBP on the stack
load ace. 5 with L[l]
jump to TAG2 if L[1] is not NIL
load aoo. 4 with CDR(L)
load aec . 3 with CDDR(L)
jump to TAGA if CDDR(L) is NIL
Jump to TAGS
load acc. 2 with CDR(L)
load ace. 3 with CDDR(L)
jump to TAGC if CDDR(L} is not NIL
load acc. 1 with L~111]
load ace . 2 with L 2
compute CONS(L[l ,1 1L[2])
compute <CONS(L[1 A ' ~(2]>
load aec. 2 with ~DD~(L)
compute <CDDR(L) ,CONS(L[l 1] jL[2]»
compute HIER1«CDDR(L) ,CONS(L[l ,1] ,L[2]» ,RBP)
save L on the stack
load aee. 1 with L[3]
load ace . 1 with L [3.-! 1]
load aec. 2 with 'LEr"T&
compute BP1(L[3 ,1] ,'LEFT&)
load ace. 2 with RBP
compute BP1(L[3 ,1] ,'LEFT&»RBP
jump to TAG7 if BP1 (L[3 ,1] ,'LEFT&»RBP
load ace. 1 with L
jump to TAGA
load ace. 1 with CDR(L)
load acc. 1 with CDDR(L)
load ace . 1 with L[3]
load ace. 1 with L[3d1]
load acc . 2 with 'RI HT&
compute BP1(L[3 ,']~'RIGHT&)
save BPl (L[3,1] ,'R.LGHT&) on the stack

12

TAG

TAO

TAl

!f1.~

the

1in&

, be

. to

!Ond

,ack

'na1.

! Of

; in

,Ons

the

and

sts

due

nal

CDR

ead

out

)

rAGC

TAG12

TAGY

35 (HRRZ@ 5 -1 12)
36 (HRRZ 4 0 5)

37 1HLRZ
3 0 4j 38 HLRZ 5 0 ~

39 HRRZZ 41 00 5 40 HLR
41 1 HLRZ 2 0 4) 42 CALL 2 (E CONS»
43 MOVE 2 4)
44 CALL 2 (E XCONS»
45 PUSHJ 12 HIERA)
46 HRRZ 5 0 1)
47 HLRZ 2 0 1)
48 HRRZ@ 4 0 12)
49 HLRZ 1 0 4)
50 CALL 2 (E CONS»
51 HRRZ 3 0 4)
52 HLRZ 2 0 3)
53 !HLRZ 2 0 2) 54 CALL 2 (E XCONS»
55 HRRZ 2 0 5)
56 CALL 2 (E CONS»
57 MOVEI 2 (QUOTE NIL»
58 CALL 2 (E XCONS»
59 SUB 12 (C 0 0 1 1»
60 JRST 0 HIERA)
61 PUSH 12 1)
62 HLRZ 1 0 3)
63 HLRZ 1 0 1)
64 MOVEI 2 (QUOTE LEFT&»
65 CALL 2 (E BP1»
66 PUSH 12 1)
67 HLRZ@ 1 -1 12)
68 HLRZ 1 0 1)
69 MOVEI 2 (QUOTE PRIGHT»
70 CALL 2 (E BP1»
71 POP 12 2)
72 CALL 2 (E *GREAT»
73 (JUMPE 1 TAG12)

74 HLRZ@ 5 0 12)
'75 HLRZ 1 0 5)
76HRRZ@ 4 0 12)
777 HLRZ 2 0 4)

8 CALL 2 (E CONS»
79 HRRZ 2 0 4)
80 fCALL 2 (E CONS»
81 HRRZ 2 0 5)
82 CALL 2 (E XCONS»

8
8

3 (SUB 12 (C 0011»
4 (JRST 0 HIERA)

85
86

~~
89
90
91
92
§~
95
96
§~
99

100
101
102
103

HLRZ@ 1 0 12)
HLRZ 1 0 1)
MOVEI2 (QUOTE PRIGHT&»
CALL 2 (E BP1»
PUSH 12 1)
HRRZ@ 2 -1 12)
MOVEI 2 (QUOTE NIL»
CALL 2 (E CONS»
PUSHJ 12 HIERA)
HRRZ 5 a 1~ HLRZ 1 0 5
HRRZ 2 0 5
CALL 2 (E CONS»
HLRZ@ 2 0 12)

l
CALL 2 (E XCONS»
SUB 1 2 (C 0 0 1 1)
JRST 0 HIERA)
SUB 12 (C 0 0 1 1)
POPJ 12)

load acc. 5 with CDR(L)
load acc. 4 with CDDR(L)
load acc. 3 with L[3]
load acc. 5 with L[3,1]
load acc. 1 with CD DDR(L)
load acc. 4 with L[3,1,1]
load acc. 2 with Lf3 ,1 ,1 ,1]
compute CONS(CDDDR L) ,L[3 ,1,1,1])
load acc. 2 with L 3 1 lJ
compute CONS(L[3 ,1 ,11 ,CONS(CDDDR(L) ,L[3 ,1 ,1 ,1]»

save L on the stack
load acc. 1 with L[3]
load ace. 1 with L[3,../1 J
load acc . 2 with 'LErT&
compute BP1(L [3 ,1] 'L EFT&)
save BP1(L[3,lJ ,'LEFT&) on the stack
load ace. 1 with L[l]
load acc. 1 with L[l 1]
load acc. 2 with 'FRIGHT

load acc. 2 with BFl (L[3 1 'LEFT&)
compute SPl (L[l ,1] ' PRIGHT ~

compute SP1(L[l ,1] ,'PRIGHT >'SP1(L[3 ,1] ,'LEFT&)
jump to TAG12 if
BPl tL[l 11],J'PRIGHT~ LEQ BP1(L[3 ,1] ,'LEFT&)
load acc. ~ with L 1]
load acc. 1 with L 1 1]
load ace. 4 with CDR(L)
load acc. 2 with L[2J
compute CONS(L[1 ,1] ,1[2])
load acc. 2 with CDDR(L)
compute CONS(CONS(L[1 ,1]1L[2J) ,CDDR(L»
load ace. 2 with CDR(L[1)
compute
CONS(CDR(L[1])

CONS(CONS(L[1,1] ,L[2J) ,CDDR(L»)
remove an entry from the stack
compute
RIER1(CONS(CDR(L[1])

CONS(CONS(L[l ,1J ,L[2J) ,CDDR{L»),
RBP)

load acc. 1 with L[l]
load acc. 1 with 1[1 1]
load acc . 2 with ' PRIGHT&
compute BP1{Lr1 ,1] ' PRIGHT&)
save BP 1(L[1 ,i] ,'PR'IGHT&) on the stack
load acc . 2 with CDR(L')
load acc. 2 with NIL
compute CONS(BP1(L[1 ,1] ,'PRIGHT&) ,NIL)

13

Fig. 7 - Erroneous hand optimized encoding of HIER1

When attempting to prove the equivalence of the encoding in fig. 7
anti the

original LISP function definition of HIER1 , the following errors were

type (1) errors, the error message indicates the location at which

detected.
FOt>

the error
'tlaa

detected. For type (4) errors, the error message ind icates the location at 'tlhich

the function that could not be found to occur in the original program was com puted.,
In both cases a set of instruction locations corresponding to the branches that We~e

pursued is given. Note that in the interest of clarity we do not use brackets to

express chains of CARs and CDRs in errors - i.e. , we use CAR(CAR(L» instead Of

CAAR (L) or L[1 ,1], This is done in order to aid the reader in understanding when

the various errors were detected.

(1)

(2)

(4)

Return address on the stack must be a label.
Detected at instruction 45 along path 1 ,3 ,4 ,6 ,7 ,18 ,25 ,28.

Return address on the stack must be a label.
Detected at instruction 93 along path 1 ,3,8,10,61 ,73 ,85.

Tbe following computation does not occur in the original LISP program:
CONS(NIL

CONS(CONS(CAR(CAR(L» ,
CAR(CDR(L)) ,

NIL))
Computed at instruction 16 along path 1 ,3,8,10,11.

The following computation does not occur in the original LISP program:
'PRIGHT

Computed at instruction 69 along path 1,3,8,10,61.

Errors (1) and (2) were detected by the symbolic interpretation procedure,

They resulted from invalid return addresses on the stack at instructions 45 and 93

when recursion was implemented by bypassing the start of the program. In this case

the stack is being used instead of accumulator 2 to contain the second argument.

However, the contents of the stack are wrong. In particular, the return addresses

(i.e. , locations 46 and 94) appear in the stack at a position where the binding of

the second argument is expected (i.e" the top of the stack). Thus when a return

will be made from the recursive call, execution will not resume at locations 46 or

94. Also, all references to the top of the stack will fetch the return addresS

rather than the binding of RBP. The solution is to place the return address on the

stack before the binding of RBP. In the case of error (1), the binding of RBP is

BP1(CAR(CAR(CDR(CDR(L»» ,'RIGHT&) which is computed starting at location 28 and

pushed on the stack at location 34. Thus the return address may be placed on the

stack anywhere after location 27 and before location 34. We choose to do thiS

between locations 27 and 28 (i.e., location 27A). In the case of error (2), the

binding of RBP is BP1 (CAR(CAR(L» ,'PRIGHT&) which is computed starting at location

14

tl1e s

betVlel

first ,

locat:

the r

rdust '

(i.e.

stack

betVle

detel

func

(HRF

thaI

ins

the

the

fol

Ref

foJ

to

of

en

'e.

93

ses

of

.lrn

or

is

:Lnd

tbe

his

tbe

ion

85 and pushed on the stack at location 89. Thus the return address may be placed on

tbe stack anywhere after location 84 and before location 89. We choose to do this

between locations 84 and 85 (i.e. , location 84A). However, we are not yet through.

first, we must insure that all references to labels TAG7 and TAG12 refer to

locations 27A and 84A instead of locations 28 and 85 respectively. Second, since

the return addresses are no longer placed on the stack at locations 45 and 93, we

rrtUSt only do a jump (i.e. , JRST) rather than a push of a return address and a jump

(i.e. ,PUSHJ) at locations 45 and 93. Third, placing the return address on the

stack at locations 27A and 84A has caused the stack to contain an extra entry

between locations 27 and 45 and 84 and 93. Thus all references to stack entries

below the position holding the new return address must be incremented by one.

Tberefore , we make the following changes and additions:

location
location
location
location
location
location
location
location

27A:
28:
~5:
8~A :
85:
90:
93 :

~
HRRZ@ 1 0 12)
HRRZ@ 5 -1 12)
PUSHJ 12 HIERA)

(HLRZ@ 1 0 12)
(HRRZ@ 2 -1 12)
(PUSHJ 12 HIERA)

becomes
becomes
becomes
becomes
becomes
becomes
becomes
becomes

PUSH 12 (C 0 0 TAGX 0»
HRRZ@ 1 -112)
HRRZ@ 5 -2 12)
JRST 0 HIERA)
PUSH 12 (C 0 0 TAGY 0»
HLRZ@ 1 -112)
HRRZ@ 2 -2 12)
JRST 0 HIERA)

Errors (3) and (4) were detected during the proof procedure. Error (3) was

detected when CAR(L) was not NIL and CDDR(L) was NIL. Referring to the original

function definition we see that at this point we want the following:

CONS(CDR(CAR(L»
CONS(CONS(CAR(CAR(L» ,

CAR(CDR(L») ,
NIL))

Therefore, the error is in the arguments to the function being computed at

location 16 (i.e. , CONS). The first argument to this CONS operation is NIL which is

identical to CDDR(L). Looking at the code we find that at location 15 we perform

(HRRZ 2 0 4) which has the effect of loading accumulator 2 with CDR(CDR(L» rather

than the desired CDR(CAR(L». However, CDR(CAR(L» can be achieved by changing the

instruction to refer to accumulator 5 instead of accumulator 4. Thus we see that

there are several possible causes for the error. Among them are a confusion about

the contents of certain accumulators, and mistyping of a 4 for a 5. We make the

fOllOWing modification:

location 15: (HRRZ 2 0 4) becomes (HRRZ 2 0 5)

Error (4) was detected when both (CAR L) and CDDR(L) were not NIL.

Referring to the original function definition we see that at this point we want the

fOllowing:

'PRIGHT&

15

Therefore, the error is in the argument

location 69. This time there is no doubt

to the function being computeQ
a.t

that the cause of the erro~

misspelling of the atom PRIGHT&. We make the following modification:
wa.~

location 69: (MOVEI2 (QUOTE PRIGHT» becomes (MOVEI2 (QUOTE PRIGHT&))

Once the previous errors have been corrected in the LAP program, we inp
ut

the resulting program to the proof system and obtain the following errors.

(5)

(6)

The following computation does not occur in the original LISP program:
CAR(CAR(CAR(CDR(CDR(L»»)

Computed at instruction 40 along path 1 ,3,4,6,7,18,25 ,27A.

The following computation does not occur in the original LISP program:
*LESS (BP1 (CAR(CAR(CDR (CDR (L) ») , I LEFT&) ,

BP1 (CAR.(CAR(L» I PRIGHT&»
Computed at instruction 72. along path 1 ,3,8,10,61.

Error (5) was detected when CAR(L) was NIL, CDDR(L) was not NIL, and RBP <

[Une tj

*GREA~

inter]

conta1

the f

this

of th

than

the 1

BP1(L[3 ,1] ,I LEFT&). Referring to the original function definition, the argument to (7)

the CAR operation at location 40 has already been found to occur in the intermedia~

representation of the original program. Moreover, at this point a CDR operation is (8)

required as shown below:

CDR(CDR(CAR(CDR(CDR(L»»)

We temporarily disregard the fact that the argument to the outermost CDR

operation is wrong - i.e., it has not yet been found to occur in the original

program. The next sequence of debugging will find this error. Recall from section

3 that we first attempt to correct the function, and only once this is done do we

attempt to correct the arguments. Inspection of the code reveals that at

instruction 40 we perform (HLRZ 4 0 5) which has the wrong effect. Moreover, the

result of this operation, i.e. , CAR(CAR(CAR(CDR(CDR(L) »», was not matched and thus

it can be changed to a (HRRZ 4 0 5) instruction. The cause for this error can be

confusion as to the contents of a location or again misspelling. However, we lean

towards the former since the error is of a compound nature as will be seen at the

next stage of debugging. We make the following modification:

location 40: (HLRZ 4 0 5) becomes (HRRZ 4 0 5)

Error (6) was detected when both CAR(L) and CDDR(L) were not NIL. One of

the characteristics of the intermediate representation is that operations known to

be antisymmetric are always represented by only one of the two possible choiceS.

Thus CONS and XCONS are represented by CONS and similarly, *LESS and *GREAT are

represented by *LESS. Therefore, according to the original function definition, ~e

want the computation:

*LESS(BP1 (CAR(CAR(L) 'PRIGHT&) ,
BP1 (CAR(CAR(CDRtCDR (L»» ,'LEFT&»

16

(9)

loc

arg

ins

loe

loe

wit

Opt

abl

liJ

th

I <
to

ite

is

~DR

In other words, the error is in the order of the arguments to the *LESS

function. Looking at the LAP program we find that at location 72 (CALL 2 (E

*GREAT))) is performed rather than the necessary (CALL 2 (E *LESS)). An equivalent

interpretation of the error is that the contents of accumulators 1 and 2 (which must

contain the arguments to the function) have been permuted. Nevertheless, we opt for

the first interpretation since less code need be changed. Clearly, the source of

thiS error is a misunderstanding by the programmer of the antisymmetric properties

of the arithmetic relations less than, greater than, less than or equal, and greater

than or equal. We make the following modification.

the
(7)

(8)

(9)

location 72: (CALL 2 (E *GREAT)) becomes (CALL 2 (E *LESS))

Once the previous errors have been corrected in the LAP program, we input

resulting program to the proof system and obtain the following errors.

The following computation does not occur in the original LISP program:
CDR(CAR(CAR(CDR(CDR(L)))))

Computed at instruction 40 along path 1 ,3,4,6 ,7 ,18 ,25 ,27A.

The following computation does not occur in the original LISP program:
CONS(BP1 (CAR(CAR(L)) ,'PRIGHT&) ,NIL)

Computed at instruction 92 along path 1 ,3,8,10,61 ,73 ,84A.

The following computation does not occur in the original LISP program:
CAR(CDR(L))

Computed at instruction 77 along path 1 ,3,8,10,61 ,73,74.

1a1 Error (7) was detected when CAR(L) was NIL, CDDR(L) was not NIL, and RBP <

Lon BP1(L[3 ,1J ,'LEFT&). Referring to the original function definition, we see that the

we

at

~he

1US

be

of

to

function computed at location 40 is being applied to the wrong argument. Recall

from the last debugging session that the desired computation was:

CDR(CDR(CAR(CDR(CDR(L)))))

to the function being Therefore, the error is in the argument

location 40. The instruction at location 40 is

computed at

argument is in accumulator 5 which is set at

(HRRZ 4 0

location 38

5) • Therefore its

by a (HLRZ 5 o 3)

instruction. We note that accumulator 5 is not referenced with this value except at

location 40 , and thus it is quite reasonable to believe that an error occurred at

location 38. The instruction at location 38 has the effect of loading accumulator 5

~ith CAR(CAR(CDR(CDR(L)))) rather than the desired CDR(CAR(CDR(CDR(L)))). However,

this is a relatively easy modification since we merely need to replace the HLRZ

operation at location 38 by a HRRZ operation. The cause of this error is confusion

about the contents

light of the remedy.

of accumulators or misspelling. We lean towards the latter in

Recall that this was part of a compound error as discussed in

the analysis of the previous set of bugs. We make the following modification:

location 38: (HLRZ 5 0 3) becomes (HRRZ 5 0 3)

17

Errors (8) and (9) occured when both CAR(L) and CDDR(L) were not NIL . !h~

difference is that error (8) occurs when BP1(L[1 ,1] ,'PRIGHT&) is greater than Cl'

equal to BP1 (L[3 ,1] ,'LEFT&) and error (9) occurs when the latter condition

true. If we were to proceed along lines proposed earlier, we would check

functions computed at these locations are erroneous or if their arguments are nCt

correct. Using this strategy, we would discover that we do not get a real idea as

·to the error. The problem is that we have branched on the wrong sense of the

condition computed at location 72 and tested at location 73. Such errors

possibility when there are two errors in the subtrees of the same condition. The

error could be detected by the scheme discussed in section 3 . In the case of this

example, we did indeed test the wrong sense of the condition. We were aware of this

fact during the last debugging session; however, we did not discuss it

feel that the present setting is more enlightening. Nevertheless,

becaUse Vie

the problem

should have been fixed at that time since the error did occur in the computation Of

a function. Such problems in the context of multiple errors are quite difficult and

an adequate method to dispose of them is a subjec t for future research. Therefore ,
change the sense of the test performed at location 73 by making the following

modification:

location 73: (JUMPE 1 TAG12) becomes (JUMPN 1 TAG12)

Once the previous errors have been corrected in the LAP program, we input

the resulting program to the proof system and obtain the following errors.

(10)

(1 1)

The fOllowin~ computation does not occur in the original LISP
CONS(CDR CDR(CDR(L)))

CAR CDR(CDR(CAR(CDR(CDR(L)))))))
Computed at instruction 42 along path 1 ,3,4,6,7,18,25 ,27A.

program:

The following computation does not occur in the original LISP program:
CONS(BP1lCAR(CAR(L)) ,'PRIGHT&) ,

NIL)
Computed at instruction 92 along path 1 ,3,8 ,61 ,73 ,84A.

Error (10) was detected when CAR(L) was NIL, CDDR(L) was not NIL, and RBP <

BP1 (L[3 ,1] ,'LEFT&). Referring to the original function definition, we see that at .

this point we want the following:

CONS(CAR(CDR(CDR(CAR(CDR(CDR(L)))))) ,
CDR(CDR(CDR(L))))

Clearly, the order of the arguments to t he CONS operation bas been r eversed.

Inspection of the code reveals that at l ocati on 42 we per fo rm (CALL 2 (E CONS))

rather than the necessary (CALL 2 (E xeONS)). This conclusion is mad e on t he b8S!6

f CONS b . t' t· ft' A . 1 t · t t t · of the error o elng an an lsymme rlC unc lone n equlva en ln erpre a 10D
to

is that the contents of accumulators 1 a nd 2 (which mus t contain t he arguments

18

si

as

B

to

t

he

ot

he

lot

as

-he

! a

~he

1is

1is

we

1em

of

3.nd

re,

ing

put

3P <

c. at

sed. I

NS))

aSiS

rror'

s to

the function) have been permuted. Nevertheless, we opt for the first interpretation

since less code needs to be changed. Clearly, the cause of the error is a confusion

as to the contents of accumulators 1 and 2. We make the following modification:

location 42: (CALL 2 (E CONS))becomes (CALL 2 (E XCONS))

Error (11) was detected when both CAR(L) and CDDR(L) were not NIL and

BP1(L[1 ,1] ,'PRIGHT&) was not greater than or equal to BP1(L[3,1] ,'LEFT&). Referring

to the original function definition we see that at this point we want the following:

CONS(NIL ,CDR(L))

Therefore, the error is in the arguments to the function being computed at

location 92. The desired arguments, NIL and CDR (L) , have already been computed at

locations 91 and 92 respectively and found to occur in the intermediate

representation of the original program. Thus the correction is to simply make sure

that they reside in the proper accumulators for the CONS operation at location 92 to

be correct. This means that instead of loading accumulator 2 with NIL at location

91 , we load accumulator 1 with this value. Notice that the error that was made was

to load accumulator 2 with NIL at location 91 via (MOVEI 2 (QUOTE NIL)) thereby

destroying the previous contents which was CDR(L). This error was detected, and

quite easily corrected, because we always record all computations that have been

performed whether or not they are referenced. This is useful because the proof

procedure will make sure that the computation is performed. Thus when errors occur

in arguments to functions we can easily make a correction since we know where and

when the desired arguments are computed even though they may have been misused. The

error in this case can be clearly attributed to an oversight by the programmer in

typing a 2 instead of a 1. We make the following modification:

location 92: (MOVEI 2 (QUOTE NIL)) becomes (MOVEI 1 (QUOTE NIL))

Once the previous errors have been corrected in the LAP program, we input

the resulting program to the proof system and obtain the following errors.

(12) The following computation does not occur in the original LISP program:
CONS(CDR(CDR(CAR(CDR(CDR(L))))) ,

CONS(CAR(CDR(CDR(CAR(CDR(CDR(L)))))) ,
CDR(CDR(CDR(L)))))

Computed at instruction 44 along path 1 ,3,4,6,7 ,18 ,25 ,27A.

Error (12) was detected when CAR(L) was NIL, CDDR(L) was not NIL, and RBP <
BP1 (L[3 ,1] ,'LEFT&). Referring to the original function definition we see that at

this point we want the following:

CONS(CAR(CDR(CAR(CDR(CDR(L))))) ,
CONS(CAR(CDR(CDR (CAR(CDR(CDR(L)))))) ,

CDR(CDR(CDR(L)))))

19

Therefore, the error is in the arguments to the function being computed
ttt

is invalid location 44. The desired second argument is correct, but the first one

The instruction performed at location 44 is (CALL 2 (E XCONS» and thus the argUm .
ent

in accumulator 2 is wrong . The desired contents of accumulator 2
is

CAR(CDR(CAR(CDR(CDR(L»»). Inspection of the code

last loaded at location 43 by the instruction (MOVE

reveals that accumulator

2 4). However, this

not necessary in the future and thus the instruction at this
value is

location may be

removed. The validity of the previous removal is obvious when we recall the that

eql

thE

SUC

the value in accumulator 2 is not referenced past location 44. An alternative 5.

reason is that the XCONS operation is assumed to destroy accumulators 1 and 2. In

its place we need to compute CAR(CDR(CAR(CDR(CDR(L»») since it has not yet been

computed. This can be done quite easily since at this point accumulator 5 already

contains CDR(CAR(CDR(CDR(L»» and thus we need only obtain CAR of the

register 5. This is quite easily done by inserting (HLRZ 2 0 5) at

contents Of

location 43.

The cause of this error is obviously confusion on the part of the programmer as to

the contents of accumulator 2. We make the following modification:

location 43: (MOVE 2 4) becomes (HLRZ 2 0 5)

Once the previous errors have been corrected in the LAP program, we input I

the resulting program to the proof system and obtain the following error.

(13) The following computation does not occur in the original LISP program:
CAR(HIER1 (CONS(CAR(CDR(CAR(CDR(CDRCL»») ,

CONS(CAR(CDR(CDR(CAR(CDR(CDR(L»»» ,
CDR(CDR(CDR(L»»)

BP 1(CAR (CAR (CDR (CDR (L)) » " RiGHT&)))
Computed at instruction 47 along path 1,3,4 ~ J ,18 ,25 ~7A.

At

ren

In

be

CU

de

he

mts

6.

[DE,

Error (13) was detected when CAR(L) was NIL, CDDR(L) was not NIL, and RBP < Pre

BP1(L[3 ,1] ,'LEFT&). Referring to the original function definition we see that this Frc

computation is unnecessary.

following:

Moreover what is required at this point is the

CDR (HIER 1 (CONS (CAR~' CDR (CAR~ CDR (CDR (L) »» ,
CONS(CAR CDR(CDR CAR(CDR(CDR(L»»» ,

CDR CDR (CDR L»») ,
BP1(CAR(CAR(CDR(CDR(L»» ,'RIGHT&»)

Clearly, what happened here is that a CAR operation was computed rather than

a CDR operation. In terms of machine instructions the previous is translated intO I

the performance of a HLRZ rather than a HRRZ. By now we are rather adept at maki~

such corrections and we simply replace the (HLRZ 2 0 1) instruction at location 47
by (HRRZ 2 0 1). Note that we made use of the fact that results of the previOUS

instruction at location 47 were never referenced in the future. Clearly, the caUse

of this error is mistyping of HLRZ for HRRZ. We make the following modification:

location 47: (HLRZ 2 0 1) becomes (HRRZ 2 0 1)
20

[LE

Pp.

[Lc

Stc

Sta

[Me

COD

[Na

·'1e

In
~ en

idy

of

~ 3.

to

put

P <
his

the

,han

.nto

:iog

I ~7

At this point the proof system finds the corrected LAP program

U
ivalent to the original LISP program.

eq
Thus we have seen how the system

to be

can aid

the user in debugging his program. Our goal is to construct a system, employing

reasoning as we have performed in this section, to debug and correct

erroneous programs. Of course, not all errors could be caught by such a system.

However, we feel that quite a reasonable number could be detected and corrected by

such an automatic system.

5· CONCLUSION

We have demonstrated the performance of a semi-automatic debugging system.

At the present, only the errors are detected and pinpointed automatically. It

remains for the programmer to make use of this information to correct the program.

In the future, we believe that the correction task can, in a large number of cases,

be performed automatically. This is especially true for errors of class (4).

Currently, we need to continue to exercise the system with erroneous encodings to

determine if any more error-correction heuristics can be discovered. Such

heuristics also provide an insight into the programming process.

might prove to be useful in future automatic programming systems.

6. REFERENCES

These insights

[DEC69] - "PDP-10 System Reference Manual," Digital Equipment Corporation, Maynard,

Massachusetts, 1969.

[Green76] _ Green, C.C., "The Design of the PSI Program Synthesis System ,"

Proceedings of the Second International Conference on Software Engineering, San

Francisco, California, 1976.

[Lee72] - Lee, J .A.N. , Computer Semantics, Van Nostrand Reinhold, New York, 1972 ,

Pp. 346-347.

[Low74] - Low, J.R., "Automatic Coding: Choice of Data Structures ," Ph.D. Thesis,

Stanford Artificial Intelligence Project Memo AIM-242 ,Computer Science Department,

Stanford University, 1974.

[McCarthy60] - McCarthy, J. , "RecursiVe Functions of Symbolic Expressions and their

Computation by Machine ," Communications of the ACM, April 1960 , pp. 184-195.

[Naur60] - Naur, P. , (Ed.), "Revised Report on the Algorithmic Language ALGOL 60,"

~unications of the ACM, May 1960, pp. 299-314.

21

[Newel173] - Newell, A., "Artificial Intelligence and the Concept

Computer Models of J:.holdRht. and Language (Eds. Schank and Colby), W.H.

Francisco, 1973, pp. 1-60.

of Mind II •
, l.tj

Freeman 0:-
, ..:la. tj

[Quam72] Quam, L.H.

Artificial Intelligence

and Diffie, W., "Stanford LISP 1.6 Manual," StanfOl"q

Project Operating Note 28.7, Computer Science Department ,
Stanford University, 1972.

[Samet75] Samet, H., "Automatically Proving the Correctness of Translations

Involving Optimized Code: Ph.D. Thesis, Stanford Artificial Intelligence Project

Memo AIM-259, Computer Science Department, Stanford University, 1975.

[Samet76] - Samet, H., "Compiler Testing Via Symbolic Interpretation ," Proce~

of the ACM 29th Annual Confer~nce, 1976, pp. 492-497.

[Samet77] - Samet, H., "A Normal Form for Compiler Testing ," ProceedinR§. _\2..(~

SIGAB..TlSItlElo.Mi Symposium on Artificial IntEl-Digence 1i!lQ. Erogral}!!1Lln.& Languages, (also

in SIGPLAN NOTICES, Vol. 12, No.8, August 1977 and in SIGART Newsletter, No. 64,

August 1977), Rochester, New York, August 1977, pp. 155-162.

[Smith70] - Smith, D.C. , "MLISP ," Stanford Artificial Intelligence Project Memo AIM-

135, Computer Science Department, Stanford University, October 1970.

[Summers75] - Summers, P.O., "Program Construction from Examples," Ph.D. Thesis,

Computer Science Department, Yale University, 1975.

[Su ssman7 5] Sussman, G. J., .A Computer Model of ~kill Acquisition, American

Elsevier, New York, 1975.

[Taylor76] - Taylor, R.H. ,"A Synthesis of Manipulator Control Programs from Task

Level Specification," Ph.D. Thesis, Stanford Artificial Intelligence Project Memo

AIM-282, Computer Science Department, Stanford University, 1976.

[Waldinger69] - Waldinger, R.J. , "Constructing Programs Automatically Using Theorem

Proving ," Ph.D. Thesis, Department of Computer Science, Carnegie-Mellon University,

Pittsburgh, Pennsylvania, 1969.

[Weyhrauch74] - Weyhrauch, R.W. , and Thomas, A.J. , "FOL: a Proof Checker for First'

order Logic, Stanford Artificial Intelligence Project Memo AIM-235 , Computer Science

Department, Stanford University, September 1974.

22

