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         EQUIVALENCE AND INEQUIVALENCE OF INSTANCES OF FORMULAS
                                by  
                           Hanan Samet

                            
Abstract

An algorithm is presented for determining whether or not two instances
of formulas are equal based on previous equality and inequality declarations.  The
equality determination algorithm is shown to be linear along with a
completeness proof.

I.  INTRODUCTION 

We are interested in a system to handle equality operations based on 
known equivalences and inequivalences of instances of s-expressions.  
Some of the requests which we would like to be able to respond to are:  

1.  Are two items known to be equal?  
2.  Are two items known to be unequal?  
3.  Is the equality of two items known?  
4.  Update the data base to include an additional equality.  
5.  Update the data base to include an additional inequality.  
6.  Does the inequality of two items lead to a contradiction (i.e. an 
    implied equality)?  
7.  Does the equality of two items lead to a contradiction (i.e. an 
    implied inequality)?  
8.  The results of equality tests should be independent of the order in 
    which the equality pairs are processed.  

A few examples of the type of requests made to the system are given below:  

Ex. 1: Given: a = b 
c = d 
b = c 

Derive: g(a) = g(d) 

Ex. 2: Given: g(b) = f(a) 
g(c) = f(b) 
a = b 
c = d 

Derive: g(a) = g(d) 

Ex. 3: Given: c = d 
f(a) = a 
a = c 

Derive: f(f(a)) = a 

Ex. 4: Given: f(b) = a 
f(a) = a 
f(f(a)) = c 

Derive: f(f(b)) = c 

Note that these examples, and all future examples, are written in the 
more familiar infix functional notation although our system is for 
s-expressions.  
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II.  OTHER APPROACHES 

One way of keeping track of the equivalences is by means of 
equivalence classes.  When a new equality is seen, the 
current list of equivalences is updated to reflect all possible 
members based on the new equivalence.  One pitfall of such an approach 
is that all possible equalities can not be generated since such a 
procedure will not terminate (i.e. f(a)=a  will cause substitution to 
go on forever).  A variation of this approach is to have pointers to 
all equivalence classes.  When an equality is determined, all 
subexpressions of the equality pair that appear in previous equivalence 
classes have their respective pointers substituted.  Next, the class name 
of the new equivalence class is substituted in all equivalence classes 
where members of the new equivalence appear as a subexpression.  Another 
pitfall, which must be considered in all approaches, is the case when 
two items are known to be inequivalent, yet subsequent equality operations 
could cause a contradiction.  A specific case in point is when 
f(a,b)is known to be inequivalent to f(c,d).  This implies that a≠b or 
c≠d or both, but not equality (i.e. a=b and c=d).  This means that we don't 
want any contradictions.  

Closer examination of example 4 will reveal that in effect f(f(b)) is 
being reduced to a during the process of trying to prove f(f(b))=c.  This 
indicates a process of equivalence by reduction which is like parsing.  
Thus, our problem perhaps can be specified in terms of grammars:  

Given a grammar GS for our language of s-expressions we 
wish to determine if two sentences of the language are equal based on a 
known set of equalities.  The set of equalities is a set of pairs of strings 
that are sentences of the language generated by GS (henceforth referred 
to as L(GS) ).  The set of equalities can be considered as a set of symmetric 
productions where each member of the equality is interpreted to be a 
nonterminal symbol with an added production going from the nonterminal to 
its corresponding terminal symbol.  

Thus the problem has been formulated in 
terms of formal languages.  Namely, there is a set of productions, GE, 
containing two productions for each equality and one production for each 
terminal symbol.  The problem of equality determination can now be reformulated:  

Given a pair of sentences of L(GS), determine if after reducing 
each terminal symbol of the first sentence, say S1, to its corresponding 
nonterminal symbol, the set of strings generated from this string of nonterminals 
contains the second sentence, say S2.  

However, GE is a type 0 grammar whose 
decision problem is undecidable (decidable for context sensitive grammars 
but this is not such a grammar since for each production the length of the left 
hand side of the production is not necessarily ≤ the length of the right hand 
side of the production).  In other words the procedure of generating all 
sentences of a given length, inefficient as it might be, is impossible.  The 
problem, formulated in such terms, is undecidable for the general case.  One 
of the basic troubles of this approach is that it does not make use of 
transitivity information or of the syntax of L(GS).  In other words 
transitivity must be rederived each time it is desired to check if two items 
are equal.  An advantage of such a method, if it were feasible, is that when 
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new equality relations are determined, updating the data base consists of 
merely adding the symmetric productions.  

III. SOLUTION 

The procedure that we will use is based on some special properties of our 
grammar, GS, given below:  

S ==>  <atom> 
S ==> (<fname1> S S . . . S) 
S ==> (<fname2> S S . . . S) 

. 

. 

. 
S ==> (<fnameN> S S . . . S) 

<atom> indicates a variable name 
There is one production for each function consisting of the function name 
and as many S symbols as there are arguments expected by the function.  

The basic problem to which we will address ourselves is that of creating and 
updating a data base for equalities so that a simple decision algorithm can be 
used to determine if two sentences of L(GS) are indeed equal.  We will use the 
notion of equivalence classes to keep track of all sentences known to be equal.  
An equivalence class is constructed for each valid sentence of L(GS) which 
has been encountered while processing equalities of L(GS).  Moreover, the 
components of each valid sentence of L(GS) are represented in terms of their 
equivalence classes.  This is a crucial property of the system for it enables the 
representation to be recursive (i.e. the components of an equivalence class may 
refer to the class).  In fact it is this property which distinguishes the system 
from one of the typical approaches mentioned earlier and enables us to represent 
such equalities as f(a)=a .  

For example, if f(a)=f(b) , then when this equality 
is processed an equivalence class is created for a (say A0), for f(a) (say A1 
whose contents is f(A0) ), for b (say A2), and for f(b) (say A3 whose contents is 
f(A2) ).  The equality of f(a) and f(b) is noted by merging the two equivalence 
classes A1 and A3, and all subsequent references to f(a) or f(b) are by use of 
the lowest numbered equivalence class which was merged - i.e . A1 in our case.  
As another example, suppose a=b, then all subsequent references to a or b are via 
their class name (i.e. A0).  Thus if f(a) or f(b) were to occur in other sentences, 
then they would be represented by a unique equivalence class name whose contents 
is f(A0).  A final example is  the representation of f(a)=a .  In this case a is 
identified by the equivalence class A0, while f(a) is identified by the equivalence 
class A1 whose contents is f(A0).  The instance of equality is represented by the 
fact that all future references to a and f(a) are by their equivalence class name - 
i.e. A0.  

Thus we see that our data base must include the various equivalence 
classes and their contents in terms of other equivalence classes.  At this point 
it becomes clear that we have constructed an equality grammar, GE, whose 
nonterminals are the names of the equivalence classes and the productions are 
simply the equivalence class names deriving each of their respective members.  

The process of adding an equality to our data base consists of:  

1.  determine for each half of the equality the equivalence class in which it is 
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contained (and the creation of one if it is not contained in any equivalence 
class).  

2.  merge the two equivalence classes.  

3.  update all references to the merged equivalence classes to point to the new 
equivalence class.  

4.  merge all equivalence classes whose equivalence is a direct consequence of 2.  

As a clarification of 4 consider the case when 
a=b, and f(a) and f(b) appear in separate equivalence classes.  Then 2  
implies that f(a) and f(b) are uniquely represented as f(<eq class name of a=b>) 
and thus the two classes containing f(a) and f(b) are merged.  In other words 
all classes are checked against each other for elements in common; and if yes, then 
a merge occurs and only one of the duplicate entries is kept in the newly formed 
equivalence class.  

The process of determining the equivalence class containing a sentence of L(GS) 
is the same as parsing a sentence of of L(GS).  The only difference is that 
instead of making a reduction to the nonterminal S (and also the start symbol), 
we reduce to the appropriate equivalence class.  If a reduction can not be made, 
then the sentence is not a member of any of the known equivalence classes, and a 
new equivalence class (containing only the sentence in question) is created and 
parsing continues.  Reductions, if they exist, are always unique since any sentence 
is contained in only one equivalence class.  In fact, the ability to add 
equivalence classes while parsing is what enables us to prove that f(a)=f(b) 
given that a=b .  

Equality, in general, can not be determined for arbitrary grammars.  However, in 
our case GS has some special properties.  The main problem in parsing is that the 
sentence being parsed may not be in any equivalence class.  This is equivalent to 
stating that there is a reduction to be made, yet there is no nonterminal 
symbol to which the handle is to be reduced.  In our case the problem is somewhat 
alleviated by the fact that GE is always simple precedence (see proof in section 
VII) and thus we always know when a reduction is desired.  We take advantage of 
this 
situation by examining the equivalence classes and determining if a reduction 
exists.  If yes, then the reduction is made and processing continues in a normal 
manner.  If not, then it is known that the current handle (which is a sentence of 
L(GS) ) is not a member of any equivalence class, and thus a new class is created 
with the handle as its sole member.  This is a natural extension to the process of 
creating a class for each atom not already in a class since atoms are also valid 
sentences of L(GS) .  By atom we mean variable names and not function names.  
Note that since equivalence classes always contain valid sentences of L(GS), the 
equivalence classes have the same precedence relations as S (the start symbol).  
Also, two equivalence class names can only have the precedence relation = between 
them, and in fact they always have this relation.  The remaining precedence 
relations are given in the precedence matrix below:  (note the use of <ecln> to 
denote an equivalence class name) 

   <atom> <fname>  <ecln>     (       ) 

<atom>      ≥                ≥       ≥       ≥ 
<fname> ≤      =  ≤ 
<ecln> ≤      =  ≤       = 
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   (     = 
   )    ≥      ≥  ≥    ≥ 

In the ensuing discussion remember that we are always dealing with valid sentences 
of L(GS).  The reason we cannot handle arbitrary grammars with our algorithm is 
that it is not usual to be able to identify when a reduction is to be made.  This 
is
true even if we have a simple precedence grammar since if a handle can not be 
identified, then it is impossible to tell when a reduction is to be made.  This 
rules out top-down parsing methods since they operate by finding reductions, and 
if such reductions do not exist, then we can't very well know when they ought to be 
created.  The primary reason for our success is that our grammar, GS, has only 
one non-terminal symbol, namely the start symbol.  Moreover, all equivalence 
classes are merely renames of the start symbol that allow us to keep track of 
what the start symbol represents.  Thus reductions are easy to determine, and, 
once determined, the nonterminal to which the handle is being reduced is either 
found or created.  

The equality data base consists of a set of entries each of which is a sentence of 
L(GE).  Each entry is uniquely numbered and has a left part, which is the 
sentence value, and a right part which is a pointer to the sentence representing 
the equivalence class to which it belongs.  A sentence value 
is either an atom or a list consisting of a function name followed by pointers to 
the equivalence classes containing the arguments of the function being represented 
by the sentence.  Thus it is seen that each entry in the data base is a production: 

right ==> left 

Also note that all references to a member of an equivalence class are in terms of 
its head (i.e. the lowest numbered member of the equivalence class).  The nature 
of adding entries to the data base, and the fact that when a merge occurs the head 
of the new equivalence class becomes the lowest numbered component of the merge 
insure that all sentence values are in terms of lower numbered equivalence classes. 
Moreover, by step 5 of the following algorithm no sentence is included in more than 
one equivalence class, and, in addition, each sentence appears only once in an 
equivalence class.  

IV.  EQUALITY DETERMINATION ALGORITHM 

To add an equality pair:  

1.  classl← result of parsing left half
2.  classr← result of parsing right half 
3.  mods← nil 
4.  a.  m← min(classl,classr) 
    b.  n← max(classl,classr) 
    c.  for j← m+1 step 1 until maxclass do begin 

if null right(eqtable(j)) then nil 
else if atom left(eqtable(j)) then nil 
else if member(m,cdr left(eqtable(j))) then mods← merge(j,mods) 
else nil 
end 

    d.  for j← n step 1 until maxclass do begin 
if null right(eqtable(j)) then nil 
else begin 
    if right(eqtable(j)) = n then right(eqtable(j))← m ; 
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    if atom left(eqtable(j)) then nil 
    else if member(n,cdr left(eqtable(j))) then begin 

subst(m,n,cdr left(eqtable(j))) ; 
mods← merge(j,mods) 
end 

    else nil 
    end 
end 

5.  while not null mods do begin 
for k← 2 step 1 until length(mods) do begin 
    if left(eqtable(mods(1))) = left(eqtable(mods(k))) then begin 

temp← right(eqtable(mods(k))) ; 
mods← delete(k,mods) ; 
right(eqtable(mods(k)))← nil ; 
if right(eqtable(mods(1))) ≠ temp then begin 
    classl← temp ; 
    classr← right(eqtable(mods(1))) ; 
    go to 4 
    end 
end 

    end ; 
mods← cdr mods 
end 

In the above algorithm eqtable is an array, accessed by left and right, which 
contains one entry for each s-expression.  mods is a sorted list containing 
pointers to entries in eqtable which refer to any members of merged equivalence 
classes.  maxclass is the number associated with the last entry in eqtable.  

The algorithm terminates since parsing (steps 1-3) is a process that is limited 
by the length of the input string and by the number of productions.  Step 4 is 
a merge of two equivalence classes and the time it takes is bounded by the 
number of productions.  Step 5 is used to determine if a merge of two equivalence 
classes is to occur when a previous merge has caused two equivalence classes 
to have an element in common.  If this is the case, then the two equivalence 
classes are merged and the resulting class has only one occurrence of the 
previously 
duplicate entry.  In order to perform the merge the algorithm is reapplied.  
However, when the algorithm is reapplied we have one less equivalence class and 
thus by the well ordering principle termination is guaranteed.  If no two distinct 
equivalence classes have elements in common, then mods is exhausted and we are 
through.  Note that if an equivalence class is found to contain a duplicate 
occurrence of an element after a merge, then the duplicate occurrence is deleted 
from the class.  This insures that our grammar will always have the property that 
no two productions have the same right hand side.  

The motivation behind step 4 is the propagation of transitivity between equivalence 
classes while step 5 propagates transitivity via function application.  In other 
words functions of equal arguments are equal and thus their equivalence classes are 
merged.  Steps 4c and 4d insert in mods all entries that are affected by the merge 
of equivalence classes – i.e., only these sentences refer directly to the two items 
whose equivalence classes have been merged.  Similarly, step 5 is only applied to 
entries in mods because only these entries can possibly generate new equivalences. 
This takes advantage of the fact that prior to the application of the algorithm the 
equivalence classes are disjoint, and thus implied equality between equivalence 
classes can only occur via elements pointing to the merged equivalence classes 
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(this is an inductive argument).  The reason step 5, for each element of mods,    
only checks subsequent entries of mods for its duplicate occurrence is that by the 
nature of the parsing algorithm each equivalence class can only be referred to by 
higher numbered equivalence classes.  

Equality can be determined quite easily.  We simply parse the two items in question 
in the following manner:  

1.  Parse one item with the existing set of productions modifying it whenever a 
reduction is encountered which has no corresponding nonterminal (i.e. the sentence 
is not a member of any equivalence class).  

2.  Parse the second item with the modified grammar from part 1.  If the two items 
are equal, then no modifications to the grammar will be necessary at this stage.  
In fact, if any modifications were made, then the items are not equal.  

3.  If the resulting equivalence class names from the parses are identical, then 
the two items are equal.  Otherwise, they are not known to be equal.  

At this point we must prove that statement 3 is true.  This is equivalent to the 
following theorem:  

Theorem:  The algorithm for determining equality is complete.  

Proof:  The theorem is a direct consequence of the following two lemmas:  

Lemma 1:  If the algorithm indicates that two items are equal, then they are equal. 

Proof:  This statement is true since the equality updating algorithm insures that 
all elements in an equivalence class are equal.  

Lemma 2:  If two items are equal, then the algorithm will so indicate.  

Proof:  The proof of this statement reduces to showing that if two items are equal, 
then they will appear in the same equivalence class.  This is proved by considering 
the two ways in which two items can be equal.  

a.  The items were explicitly equal.  In this case they will appear in the same 
equivalence class by virtue of step 4 of the updating algorithm and hence are 
always referred to by the new equivalence class name.  

b.  The items became equal via transitivity and or functional application.  In this 
case the items, say A and B, are equal to some third item C and now:  

i.   Either C must be in neither equivalence class which is impossible by step 5 of 
the updating algorithm which takes advantage of all transitivities and function 
application of equals.  

ii.  Or C must be an element of both equivalence classes.  This is impossible since 
this means that there exist two leftmost derivations of C thereby contradicting the 
unambiguousness of GE which is true by virtue of GE being simple precedence.  
Therefore if two items are equal, then they will be in the same equivalence class. 

Thus the above algorithm for determining equality is complete.  

From a computational complexity standpoint, the equality determination algorithm 
is quite simple.  Specifically, in parsing a sentence there are exactly as many 
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reductions to be made as there are atoms and function names in the sentence.  
Moreover, the constant of proportionality is directly related to the size of the 
data base since the latter must be searched for the appropriate reduction.  Of 
course, the search can be speeded up by keeping the data base sorted via a 
hashing function.  

V.  EXAMPLES 

The updating algorithm can be described as incorporating one of the approaches 
mentioned earlier as a solution to the problem.  Parsing is the same as the 
process of substituting class names for all subexpressions known to be members of 
equivalence classes while step 5 is similar to substituting the newly derived 
equality everywhere it appears as a subexpression.  

As an example of the updating algorithm, we will show how the data base is 
created and how an equality is determined for example 4.  

1.  f(b) yields A0: b A0 returns A1 
A1:   f(A0) A1 

2.  a yields A2: a A2 returns A2 

3.  f(b)= a yields A0: b A0 
A1:   f(A0) A1 
A2: a A1 

4.  f(a) yields A3:   f(A1) A3 returns A3 

5.  a yields no change returns A1 

6.  f(a) = a yields A0: b A0 
A1:   f(A0) A1 
A2: a A1 
A3:   f(A1) A1 

7.  f(f(a)) yields no change returns A1 

8.  c yields A4: c A4 returns A4 

9.  c = f(f(a)) yields A0: b A0 
A1:   f(A0) A1 
A2: a A1 
A3:   f(A1) A1 
A4: c A1 

At this point we wish to determine if f(f(b)) = c 

f(f(b)) gets parsed successively as:  
1.  f(f(A0)) 
2.  f(A1) 
3.  A1 

and c gets parsed as A1 and thus  f(f(b)) = c .  

As a more complicated example we now examine example 2.  
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1.  g(b) yields A0: b A0 returns A1 
A1:   g(A0) A1 

2.  f(a) yields A2: a A2 returns A3 
A3:   f(A2) A3 

3.  g(b) = f(a) yields A0: b A0 
A1:   g(A0) A1 
A2: a A2 
A3:   f(A2) A1 

4.  g(c) yields A4: c A4 returns A5 
A5:   g(A4) A5 

5.  f(b) yields A6:   f(A0) A6 returns A6 

6.  g(c) = f(b) yields A0: b A0 
A1:   g(A0) A1 
A2: a A2 
A3:   f(A2) A1 
A4: c A4 
A5:   g(A4) A5 
A6:   f(A0) A5 

7.  a yields no change returns A2 

8.  b yields no change returns A0 

9.  a = b yields A0: b A0 
A1:   g(A0) A1 
A2: a A0 
A3:   f(A0) A1 
A4: c A4 
A5:   g(A4) A5 
A6:   f(A0) A5 

followed by A0: b A0 
A1:   g(A0) A1 
A2: a A0 
A3:   f(A0) A1 
A4: c A4 
A5:   g(A4) A1 
A6:   f(A0) NIL 

10. c yields no change returns A4 

11. d yields A7: d A7 returns A7 

12. c = d yields A0: b A0 
A1:   g(A0) A1 
A2: a A0 
A3:   f(A0) A1 
A4: c A4 
A5:   g(A4) A1 
A6:   f(A0) NIL 
A7: d A4 
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At this point we wish to determine if g(a) = g(d) 

g(a) gets parsed successively as:  
1.  g(A0) 
2.  A1 

and g(d) gets parsed successively as: 
1.  g(A4) 
2.  A1 

and thus g(a) = g(d) .  

VI.  INEQUALITY DETERMINATION 

Until now we have shown how the question of whether two items are known to be equal 
is answered.  However, the question of equality has two additional possible 
answers.  
Namely, the items may be unequal or no information as to their equality is known.  
Determination of the answer to these two questions is more complicated.  In order 
to facilitate such work we also keep track of equivalence classes which are known 
to be unequal.  This is done via a table of equivalence classes, ineqtable, which 
are known to be unequal.  Therefore, whenever a merge of two equivalence classes 
occurs, this table must also be updated.  This means that between steps 4b and 4c 
of 
the equality determination algorithm an update is made of the inequivalent classes. 

Two items may be shown to be unequal explicitly or implicitly wheras two items are 
equal only explicitly.  The process of parsing allows the bypassing of special 
handling for implied equalities since if a sentence is not in the data base, then 
it is added to it while being parsed.  This is what enables the recognition of 
f(a) = f(b)  given a = b .  Implied inequalities are also quite easy to detect.  
In this case two sentences are not explicitly known to be unequal (i.e. the 
equivalence classes containing them are not known to be unequal); however, when 
they are assumed to be equal, and thereby added to the data base, then a 
contradiction will occur.  This contradiction is manifested at the occurrence of a 
merge of two equivalence classes which are known to be unequal.  Thus it is seen 
that the only modification needed to the equality determination algorithm is to 
check if the two about to be merged eqquivalence classes are known to be unequal.  
Moreover, if at any time during the implicit inequality phase any entries must be 
added to the data base, then the sentences in question can not be implicitly equal. 

The revised algorithm for the addition of any equality to the data base as well as 
determining implicit inequalities is given below.  Note the use of maxneq to 
indicate the number of entries in ineqtable.  The proof of the completeness of the 
inequality determination algorithm remains the same while the proof of the 
completeness of the inequality determination algorithm is similar to the former, 
and thus it will not be repeated.  

1.  classl← result of parsing left half
2.  classr← result of parsing right half 
3.  mods← nil 
4.  a.  m← min(classl,classr) 
    b.  n← max(classl,classr) 
    c.  for j← 1 step 1 until maxneq do begin 

    if left(ineqtable(j)) = n then left(ineqtable(j))← m 
    else if right(ineqtable(j)) = n then right(ineqtable(j))← m ; 
    if left(ineqtable(j)) = right(ineqtable(j)) then "contradiction" 
    else nil 
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    end 
    d.  for j← m+1 step 1 until maxclass do begin 

if null right(eqtable(j)) then nil 
else if atom left(eqtable(j)) then nil 
else if member(m,cdr left(eqtable(j))) then mods← merge(j,mods) 
else nil 
end 

    e.  for j← n step 1 until maxclass do begin 
if null right(eqtable(j)) then nil 
else begin 
    if right(eqtable(j)) = n then right(eqtable(j))← m ; 
    if atom left(eqtable(j)) then nil 
    else if member(n,cdr left(eqtable(j))) then begin 

subst(m,n,cdr left(eqtable(j))) ; 
mods← merge(j,mods) 
end 

    else nil 
    end 
end 

5.  while not null mods do begin 
for k← 2 step 1 until length(mods) do begin 
    if left(eqtable(mods(1))) = left(eqtable(mods(k))) then begin 

temp← right(eqtable(mods(k))) ; 
mods← delete(k,mods) ; 
right(eqtable(mods(k)))← nil ; 
if right(eqtable(mods(1))) ≠ temp then begin 
    classl← temp ; 
    classr← right(eqtable(mods(1))) ; 
    go to 4 
    end 
end 

    end ; 
mods← cdr mods 
end 

VII.  CONCLUSION AND FUTURE WORK 

At this point we mention that we have succeeded in answering the original set of 
questions posed in the introduction.  Moreover, the order in which equality pairs 
are added to the data base has no bearing on the actual process of checking 
equality 
since each computation is in an equivalence class and at each point all possible 
equivalences are taken advantage of as shown in the algorithms and their proofs.  

Some directions for future work include the ability to handle commutative and 
associative functions, transitvity of functions, and certain relations of equality 
for functions.  This includes such examples as  CONS(A,B)=XCONS(B,A) , 
LESSP(A,B)=GREATERP(B,A) , CAR(CONS(A,B))=A , etc.  These relations would be 
handled on an instance basis and not on a general variable basis.  This means 
that when certain functions are encountered, equalities are added to the data base. 
Such a scheme could adequately deal with quite a large number of known 
relationships 
between functions.  However, we would still not be able to cope with examples such 
as f(x)=x where x is a free variable (i.e. not an instance).  
In fact such a system will only treat equality between 
functions, and not equality between functions and variables.  When these extensions 
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are made, the proof of the algorithm will have to be modified to read "equality of 
two items will be determined subject to its being derivable from the known set of 
equalities".  

VIII.  PRECEDENCE 

Precedence relations for a grammar G=(V,T,P,S) are defined as follows:  
(x, y, and z are arbitrary strings of length zero or more over the vocabulary 
and Bi represents element i of the vocabulary)  

Bi = Bj  iff  k  such that  Bk →→ x Bi Bj y ∃

Bi ≤ Bj  iff  k  such that  Bi = Bk  and  Bk *→→ Bj x ∃

Bi ≥ Bj  iff  k  such that  Bk *→→ x Bi  and  Bk = Bj  ∃
 or  m,n such that  Bm = Bn  and  Bm *→→ y Bi  and  Bn *→→ Bj z ∃

A grammar is said to be simple precedence if:  

1.  No two productions have the same right hand part.  

2.  At most one of the three precedence relations =, ≤, and ≥ hold between any two 
symbols of the vocabulary 

Theorem:  GE is always simple precedence 

Proof: We first show that at most one precedence relation may hold between any 
two symbols of the vocabulary.  

1.  a ≤ b  implies that b is a leftmost symbol of some production.  
Therefore b is an atom or "(".  
a = b  implies that b appears adjacent to the right of a.  
However, b is an atom or "(" neither of which can ever appear adjacent to the 
right of any symbol.  
Therefore  a ≤ b  and  a = b  is impossible.  

2.  a ≥ b  implies that a is a rightmost symbol of some production.  
Therefore a is an atom or ")".  
a = b  implies that a appears adjacent to the left of b.  
However, a is an atom or ")" neither of which can ever appear adjacent to the 
left of any symbol.  
Therefore  a ≥ b  and  a = b  is impossible.  

3.  a ≥ b implies that a is a rightmost symbol of some production.  
Therefore a is an atom or ")".  
a ≤ b  implies   a nonterminal C such that  a = C .  ∃
However, this is impossible since no symbol can ever appear adjacent to the 
right of an atom or "(".  
Therefore  a ≥ b  and  a ≤ b  is impossible.  

Thus we have shown that our grammar, GE, always satisfies the criteria that 
at most one precedence relation ever holds between any two symbols of the 
vocabulary.  Moreover, the updating algorithm preserves the uniqueness of 
right hand sides of productions, and therefore regardless of the additional 
equality pairs the equality grammar, GE, is always simple precedence.  

http://www.SailDart.org/


FileName: EQULTY.WRU[L,HJS] -  www.SailDart.org                                     FileDate: 1974-04-16

10.  REFERENCES 

[1] McCarthy, J., LISP 1.5 Programmer's manual
[2] Allen, J., Interactive Theorem Prover
[3] Martin, D., Algorithms for Generation of Boolean Matrices for Computing 
Precedence Relations

http://www.SailDart.org/

