
TR-553 August 1977

EQUIVALENCE AND INEQUIVALENCE OF INSTANCES

OF FORMULAS

by

Hanan Samet
Computer Science Department

University of Maryland
College Park, Maryland 20742

Abstract

An algorithm is presented for determining whether or not two instances
of formulas are equal bas,ed on previous equality and inequality declarations.
The problem is. attacked using a formal grammar approach. TIle equality deter
mination algorithm is Sh01J1l to be almost linear, on the average, along with
a completeness proof. The maximum space requirement for the equality data
base is also discussed.

Keywords and phrases: equality, program verification, code optimization,
theorem proving, hashing

CR categories: 3.70,4.29,5.21,5.24

"

INTRODUCTION

We are interested in a system to handle equality operations based on known

equivalences and inequivalences of instances of formulas. Such applications arise

in the domains of program verification ([London72], [Samet78]), code optimization

(cockeSchwartz70], and theorem proving [ChangLee73]. Some of the requests to which

~e would like to be able to respond are:

(1) Are two items known to be equal?

(2) Are two items known to be unequal?

(3) Is it impossible to determine if two items are equal or not?

(4) Update the data base to include an additional equality.

(5) Update the data base to include an additional inequality.

(6) Does the inequality of two ite~s lead to a contradiction (i.e., an implied
equality) ?

(7) Does the equality of two items lead to a contradiction (i.e., an implied
inequality) ?

A few examples of the type of requests made to the system are given below:

Ex. 1: Given: a = b
c = d
b = c

Derive: g(a) = g(d)

Ex. 2: Given: ~~g~ = H~~ =
a = b
c d

Derive: g(a) = g(d)

Ex. 3: Given: c = d
f (a) = a

a = c
Derive: f (f(a» = d

Ex. 4: Given: f~b~ = a
f a = a

f(f(a) = c
Derive: f(f(b» = c

Ex. 5: Given: f(a,b) NEQ f(c,d)
a ... c

Derive: b NEQ d

Note that these examples, and all future examples, are written in a

functional notation using parentheses and commas although our algorithm will be for

formulas written in a prefix functional notation. In the remainder of the paper we

Shall present efficient algorithms to answer these questions using a formal grammar

approach. For another treatment to similar problems using dags see [DowneySethi77].

1

2. OTHER APPROACHES

One way of keeping

classes [GallerFisher641.

track of the equivalences is by means of equivalence

When a new equality is seen, the current list of

equivalences is updated to reflect all possible members based on the new equality.

One pitfall of such an approach is that all possible equalities can not be generated

since such a procedure will not terminate (e.g. f(a)=a will cause substitution to

go on forever). A variation of this approach is to have pointers to all equivalence

classes. When an equality is determined, all subexpressions of the equality pair

that appear in previous equivalence classes have their respective pointers

substituted. Next, the class name of the new equivalence class is substituted in

all equivalence classes where members of the new equivalence appear as a

subexpression. Another pitfall, which must be considered in all approaches, is the

case when two items are' known to be inequivalent, yet subsequent equality operations

could cause a contradiction.

The last pitfall can be illustrated by examining a variant of example S. In

this case we could not assume, in addition to the two given equalities, that b=d

since this would lead to a contradiction. Namely, a=c and b=d imply that

f(a,b)=f(c,d) which is known to be false. Thus the fact that f(a,b) is known to be

inequivalent to f(c,d) implies that (a NEQ c) or (b NEQ d) or both, but not equality

(i.e., a=c and b=d).

Closer examination of example 4 will reveal that in effect f(f(b» is being

reduced to a during the process of trying to prove f(f(b»=c. This suggests a

process of equivalence Py reduction which is analogous to parsing.

our problem can be specified in terms of grammars.

Thus, perhaps

Given a grammar G for our language of formulas we wish to determine if two

sentences of the language are equal based on a known set of equalities. The set of

equalities is a set of pairs of strings that are sentences of the language generated

by G (henceforth referred to as L(G». The set of equalities can be considered to

be a set of symmetric productions where each member of a production corresponds to a

formula in prefix functional notation. Each argument position in a formula contains

either another formula or a non terminal symbol which corresponds to an atom. For

example, consider fig. 1 where the representation of the equality f(a,b)=g(c) is

demonstrated. Note the use of lower case letters for terminal symbols and upper

case letters for nontermina1 symbols.

(f A B) ==>
(g C) ==>

A ==>
B ==>
C ==>

(g C)
(f A B)

a
b
c

Fig. 1 - Equality Grammar for f(a,b)=g(c)
2

Thus the problem can be formulated in terms of formal languages. Namely,

~~ere is a set of productions, G, containing two productions for each equality and

o~e production for each terminal symbol. The problem of equality determination can

~ow be reformulated as follows:

Given a pair of sentences of L(G), determine if
terminal symbol of the first sentence, say SI,
nonterminal symbol, the set of strings generated
nonterminals contains the second sentence, say S2.

after reducing each
to its corresponding
from this string of

However, G is a type 0 grammar whose decision problem is undecidable.

Therefore, the procedure of generating all sentences of a given length, inefficient

SS it might be, is impossible. The problem, formulated in such terms, is

undecidable for the general case. One of the basic troubles of this approach is

that it does not make use of either transitivity information or the syntax of L(G).

In other words, transitivity must be rederived each time it is desired to check if

tWO items are equal. Nevertheless, an advantage of such a method, if it were

feasible, is that when new equality relations are determined, updating the data base

consists of merely adding the symmetric productions.

3. SOLUTION

The procedure that we will use is based on some special properties of our

grammar, G, given in fig. 2. Note the use of <atom> to indicate a literal name.

Also there is one production for each function consisting of the function name, and

as many S symbols as there are arguments expected by the function.

S ==> <atom>
S ==> «fnamel> S S ••• S)
S ==> «fname2> S S ••• S)

.
S ==> «fnameN> S S ••• S)

Fig. 2 - Sample Equality Grammar

The basic problem to which we will address ourselves is that of creating and

Updating a data base for equalities so that a simple decision algorithm can be used

to determine if two sentences of L(G) are indeed equal. We will use the notion of

equivalence classes to keep track of all sentences known to be equal. An

equivalence class is constructed for each valid sentence of L(G) which has been

encountered while processing equalities of L(G). Moreover, the components of each

~alid sentence of L(G) are represented in terms of their equivalence classes. This

a crucial property of the system for it enables the representation to be

tecursive (i.e., the components of an equivalence class may refer to the class). In

3

fact it is this property which distinguishes the system from one of the typical

approaches mentioned earlier and enables us to represent such equalities as f(a)=a.

For example, if f(a)=f(b), then when this equality is processed an

equivalence class is created for a (say AO), for f(a) (say Al whose contents is

[(AO», for b (say A2), and fOT feb) (say A3 whose contents is f(A2». The equality

of f(a) and feb) is noted by meTging the two equivalence classes Al and A3, and all

subsequent references to f(a) or feb) are by use of the lowest numbered equivalence

class which was merged - i.e. Al in our case. As another example, suppose a=b,

then all subsequent references to a or b are via their class name (i.e., AO). Thus

if f(a) or feb) were to occur in other sentences, then they would be represented by

a unique equivalence class name whose contents is f(AO). A final example is the

'representat:'~n of f(a)=a • In this case a is identified by the equivalence class

AO, while f(a) is iden~ified by the equivalence class Al whose contents is f(AO).

The instance of equality is represented by the fact that all future references to a

and f (a) are by their equivalence class name - i. e., AO.

Thus we see that our data base must include the various equivalence classes

and their contents in terms of other equivalence classes. At this point it becomes

clear that we have constructed an equality grammar, G, whose nonterminal symbols are

the names of the equivalence classes and the productions are simply the equivalence

class names deriving each of their respective members.

(1)

(2)

The process of adding an equality to our data base consists of:

For each half of the equality determine the equivalence class in which it is
contained (and the creation of one if it is not contained in any equivalence
class).

Herge the two equivalence classes.

(3) Update all references to the merged equivalence classes to point to the new
equivalence class.

(4) Herge all equivalence classes whose equivalence is a direct consequence of 2.

As a clarification of (4) consider the case when a=b, and f(a) and feb)

appear in separate equivalence classes. Then (2) implies that f(a) and ~(b) are to

be uniquely represented as f«ecln» «ecln> is the name of the equivalence class

Containing a=b) , and thus the two classes containing f(a) and feb) are merged. In

Other words, all equivalence classes are checked against each other for elements in

cOmmon; and if yes, then a merge occurs and only one of the duplicate entries is

kept in the newly formed equivalence class.

4

...J ____ --.----------"".!

The process of determining the equivalence class containing a sentence of

~(G) is the same as parsing a sentence of of L(G). The only difference is that

instead of making a reduction to the nontermina1 symbol S (and also the start

symbol), we make a reduction to the appropriate equivalence class. If a reduction

can not be made, then the sentence is not a member of any of the known equivalence

classes, and a new equivalence class (containing only the sentence in question) is

created and parsing continues. Reductions, if they exist, are always unique since

any sentence is contained in only one equivalence class. In fact, the ability to

add equivalence classes while parsing is what enables us to prove that f(a)=f(b)

given that a=b.

Our algorithms take advantage of some special properties of G. The main

problem in parsing is ~:lat the sentence being parsed could possibly not be a member

of any equivalence class. This is equivalent to stating that there is a reduction

to be made, yet there is no non terminal symbol to which the handle is to be reduced.

In our case the problem is somewhat alleviated by the fact that G is always simple

precedence [Martin68] (see the proof in the appendix) and thus we always know when a

reduction is desired. We take advantage of this situation by examining the

equivalence classes and determining if a reduction exists. If yes, then the

reduction is made and processing continues in a normal manner. If not, then it is

known that the current handle (which is a sentence of L(G» is not a member of any

e.quivalence class, and thus a new class is created with the handle as its sole

member. This is a natural extension to the process of creating a class for each

atom not already in a class since atoms are also valid sentences of L(G). By atom

we mean literal names and not function names. Note that since equivalence classes

always contain valid sentences of L(G), the equivalence classes have the same

precedence relations as S (the start symbol). Also, two equivalence class names can

only have the precedence relation = between them, and in fact they always have this

relation. The remaining precedence relations are given in the precedence matrix in

fig. 3 (note the use of <ecln> to denote an equivalence class name).

<atom> <fname> <ecln> ()

<atom> > > > >
<fname> < <
<ecln> < < =

~ > > > >

Fig. 3 - Pr ecedence Matrix for Fig. 2

5

4. EQUALITY DETERMINATION ALGORITHM

The equality data base consists of a set of entries each of which is a

6entence of L(G). Each entry is uniquely numbered, referred to as index below, and

~as a left part, which is the sentence value, and a right part which is a pointer to

tbe sentence representing the equivalence class to which it belongs. A sentence

1alue is either an atom or a list consisting of a function name followed by pointers

to the equivalence classes containing the arguments of the function being

represented by the sentence. ThuS it is seen that each entry in the data base is a

produc tion:

index ==> left

The algorithm for adding an equality pair to the data base is given in fig.

4 using a combination of LISP [McCarthy60] and ALGOL [Naur60]. Note that all

references to a member of an equivalence class are in terms of its head (i.e., the

lowest numbered member of the equivalence class). The nature of adding entries to

the data base, and the fact that when a merge occurs the head of the new equivalence

class becomes the lowest numbered component of the merge insure that all sentence

values are in terms of lower numbered equivalence classes. Moreover, by step 5 of

the algorithm no sentence is included in more than one equivalence class, and each

sentence appears only once in an equivalence class.

To add an equality pair:

1.
2.
3.
4.

c1ass1:=resu1t of parsing left half;
c1assr:=resu1t of parsing right half;
mods :=ni1;
a. m:=min(c1ass1,c1assr);
b. n:=max(c1ass1,c1assr);
c. for j:=m+l ste~ 1 until maxc1ass do begin

comment: find candidates for imp11ed equivalence;
if nu11(right(eqtable[j]» then nil

comment: check if a deleted entry;
else if atom(left(eqtable[j]» then nil
else if member(m,cdr(left(eqtable[j]») then mods:=merge(j,mods)
else nil
end;

d. for j:=n step 1 until maxclass do begin
comment: replace all instances of the higher numbered

equivalence by the lower numbered one;
if null(right(eqtab1e[j)) then nil

comment: check if a deleted duplicate entry;
else begin

if right(eqtable[j) = n tben right(eqtable[j):=m;
comment: change index to point to new heaa of equivalence

class;
if atom(left(eqtable[j)) then nil
else if member(n,cdr(left(eqtable[j) ») then begin

comment: replace higher numbered equivalence class by lower
numbered onel' subst(m,n,cdr(left(eqtab e[j));

mods:=merge(j,mods);
comment: add to list of candidates for implied equivalence;

end
else nil;
end;

end;
6

5. while not null(mods) do begin
comment: step through the list of candidate nodes and look for

implied equivalences;
for k:~2 step 1 until length(mods) do begin

if left(eqtable[mods[l)J) = left(eqtable[mods[k))) then begin
comment: an entry appears more than once in the equalIty data

base;
temp: ,ight (egtablelmods [kJ);
mods:=deleteCK mods)'

comment: delete the higher numbered duplicate entry;
right(eqtable[mods[k)]):=nil;

comment: check if two entries are already in the same
eguivalence class'

if right(eqtaole[mods[111) NE4 temp then begin
comment: two equivalence classes must be merged;

classl:~temp;
classr:~right(eqtable[mods[l)]);
go to 4;
end;

end;
end;

mods:~cdr(mods);
end;

Fig. 4 - Algorithm to Add an Equality Pair

In the algorithm eqtable is an array. accessed by left and right. which

contains one entry for each formula. mods is a list sorted in ascending order

containing pointers to entries in eqtable which refer to any members of merged

equivalence classes. maxclass is the highest numbered equivalence class in eqtable.

Note that the algorithm's implementation is far more efficient than its

representation here since we have put the emphasis on clarity. For a more efficient

representation see fig. 5 and also the discussion in section 7 on time and space

r equ ir emen ts.

The algorithm terminates since parsing (steps 1 and 2) is a process that is

limited by the length of the input string and by the number of productions. Step 4

is a merge of two equivalence classes and the time it takes is bounded by the number

of productions. Step 5 is used to determine if a merge of two equivalence classes

is to occur when a previous merge has caused two equivalence classes to have an

element in common. If this is the case. then the two equivalence classes are merged

and the resulting class has only one occurrence of the previously duplicate entry.

tn order to perform the

algorithm is reapplied we

merge the algorithm is reapplied. However. when the

have one less equivalence class and thus by the well

ordering principle termination is guaranteed. If no two distinct equivalence

Classes have elements in common. then mods is exhausted and we are through. Note

that if an equivalence class is found to contain a duplicate occurrence of an

element after a merge. then the duplicate occurrence is deleted from the class (in

fig. 4 this is achieved by setting to NIL the right field of the eqtable entry to be

deleted). This insures that our grammar will always have the property that no two

Productions have the same right hand side (i.e •• an unambiguous grammar).
7

The motivation behind step 4 is the propagation of transitivity between

equivalence classes while step 5 propagates transitivity via function application.

In other words, functions of equal arguments are equal and thus their equivalence

classes are merged. Steps 4c and 4d insert in mods all entries that are affected by

the merge of equivalence classes - i.e., only these sentences refer directly to the

t~O items whose equivalence classes have been merged. Note that steps 4c and 4d

take advantage of the property that the head of an equivalence class is the lowest

numbered entry in the class. Similarly, step 5 is only applied to entries in mods

because only these entries can possibly generate new equivalences. This takes

advantage of the fact that prior to the application of the algorithm the equivalence

classes are disjoint, and thus implied equality between equivalence classes can only

occur via elements pointing to the merged equivalence classes (this is an inductive

argument) •

If mods would not be sorted, then step 5 would not be as simple since there

would be a question as to which of mods(l) or mods(k) should be deleted. The reason

mods(k) is always deleted is that the equivalence class to which it belongs can not

be both greater than mods(l) and also be the minimum of the classes containing

mods(l) and mods(k). This is because the number associated with the head of an

equivalence class is always less than the number associated with any of its

component classes. Thus even when mods(k) is deleted, the property of the data base

having all entries point to lower numbered entries is preserved.

Equality can be determined quite easily. We simply parse the two items in

question in the following manner:

(1)

(2)

(3)

Parse one item with the existing set of productions. This set is modified
whenever a reduction is encountered \~hich has no corresponding nontermina1
symbol (i.e., the sentence is not a member of any equivalence class).

Parse the second item with the modified grammar from part 1. If the two items
are equal, then no modifications to tne grammar will be necessary at this
stage. In fact, if any modifications were made, then the items are not equal
(i.e., it is impossible to determine if the two items are equal based on
equality information at hand).

If steps (1) and (2) yield identical equivalence class names, then
items are equal. Otherwise, they are not known to be equal.

the two

At this point we must prove that statement 3 is true. This is equivalent to

the following theorem:

~eorem: The algorithm for determining equality is complete.

ttoof: The theorem is a direct consequence of the following two lemmas:

8

~ma ~ If the algorithm indicates that two items are equal, then they are equal.

ftoof: This statement is true since by construction the equality updating algorithm
~
~osures that all elements in an equivalence class are equal.

~ma lL If two items are equal, then the algorithm will 80 indicate.

ytoof: The proof of this statement reduces to showing that if two items are equal,
~

rben they will appear in the same equivalence class. This is proved by considering

tbe two ways in which two items can be equal.

(a)

~)

The items were explicitly equal. In this case they will appear in the same
equivalence class by virtue of step 4 of the updating algorithm and hence are
aIways referred to by the new equivalence class name.

The items became equal via transitivity and or functional application.
case the items, say ,A and B, are equal to some third item C and now:

In this

Either C must be in neither equivalence class which is impossible by step 5 of
the updating algorithm which examines all transitivities and function
application of equals.

Or C must be an element of both equivalence classes. This is impossible since
this means that there exist two leftmost derivations of C thereby contradicting
the unambiguousness of G which is true by virtue of G a being a simple
precedence grammar. Therefore if two items are equal, then they will be in the
same equivalence class.

Q.E.D.

Thus the above algorithm for determining equality is complete.

Q.E.D.

A more efficient implementation of the equality updating algorithm is given

in fig. 5. It is different from the algorithm given in fig. 4 in that the number of

passes over the table is reduced. In addition, it is made more suitable to a LISP

like implementation where the number of copy operations is to be minimized. Note

that mods is now a sorted list in descending order, rather than ascending order,

Containing pointers to entries in eqtable which refer to any members of merged

equivalence classes. Also we have added a parameter, dels, which is a sorted list

in descending order containing the names of eqtable entries which are to be deleted.

the purpose of dels is shown by step 7 which removes from eqtable all entries that

Step 8 has found necessary to delete. Upon exiting step 7, dels is guaranteed to be

e~Pty because its minimum entry is greater than or equal to n (i.e.,

~x(classl,classr» since n is the head of the class containing the minimum entry of

dels (recall that step 8 proceeds from the last entry in eqtable towards the first

9

~~try). Step 9 is used to purge the class names in de1s from eqtab1e when mods is

e"hausted (i.e., we are through and thus we will not return to step 7).

At this point we see that the updating algorithm can be described as

~ncorporating one of the approaches mentioned earlier as a solution to the equality

9tob1em. Parsing is analogous to the process of substituting equivalence class

~8mes for all subexpressions known to be members of equivalence classes while steps

1 and 8 of fig. 5 are analogous to substituting the newly derived equality

~V"erywhere it appears as a subexpression.

To add an equality pair:

1.
2.
3.
4.
5.
6.
7.

8.

c1ass1:=resu1t of parsing left half;
c1assr:=resu1t of parsing right half;
mods:=ni1;
de1s:=ni1;
m:=min(c1assl,c1assr);
n:=max(c1ass1,c1assr);
for j:=maxc1ass step -1 until m+l do begin

comment: Rerform all deferred deletions and substitutions, and
aetermine candidates for implied equivalence;

if nu11(right(eqtab1e[j]» then nil
else if j = de1s[l] then begin

comment: delete entry j;
right(eqtab1e[j]):=ni1;
de1s:=cdr(de1s);
end

else begin
if right(eqtab1e[j]) = n then right(eqtab1e[j]):=ro;

comment: replace occurrence of higher numbered equivalence class
by lower numbered one"

if atom(left(eqtab1e[j]) then nii
else if memberln,cdr(left(eqtab1e[j]») then begin

comment: a candidate for implied equivalence;
subst(m,n,cdr(left(eqtab1e[j]»);
mods:=merge(j,mods);
end

else if member(m,cdr(left(eqtab1e[j]») then mods:=merge(j,mods);
comment: determine if a candidate for implied equivalence;

end;
end;

while no t nu11(mods) do begin
comment: s t ep through the list of candidate nodes and look for

implied equiv al ences;
1en : =l eng th(moQs);
f or k: =2 s tep 1 until l en do begi n

if 1eft(eqt ab1 e [mods [1]]) = 1eft(eqtab1e[mods[k]]) then begin
comment: an entry appears more than once in the equality data

base;
if right(eqtab1e[mods[1]]) NEQ right(eqtab1e[mods[k]]) then begin

comment: the two entries are not in the same equivalence
class and the two equivalence classes must be
merged;

c1ass1:=right~eqtab1e[mOdS[k]]);
c1assr:=right eqtab1e[mods[l]])i
de1s:=reverse mods[l] cons de1s};
mods:=cdr(mods);
go to 5;
end

else begin
comment:

k:-1en;
comment:

the two entries are in the same equivalence class;

add mods[l] to the deferred deletion list and cease
searching for entries matching mods[1] - i.e., exit
the for loop;

de1s:=mods[l] cons de1s;
end

10

else nil;
end;

end;
mods:=cdr(mods);
end'

9. purgetdels,eqtable);
comment: remove all entries in dels from eqtable when no more implied

equivalences;

Fig. 5 - A More Efficient Algorithm to Add an Equality Pair

,. EXAMPLES

In the following examples, each numbered line represents the result of

either parsing a sentence or updating the data base to include a new equality. In

the former case only the modifications to the data base, eqtable, are shown while in

the latter case the entire updated data base is shown. Also in the former case the

name of the equivalence class containing the sentence being parsed is returned.

As an example of the updating algorithm, consider example 4 of section 1.

sentence eg,table result

1. feb) yields AD: b AD returns Al
AI: f (AD) Al

2. a yields A2: a A2 returns A2

3. f(b)= a yields AD: b AO
AI: f(AD) Al
A2: a Al

4. f (a) yields A3: f (AI) A3 returns A3

5. a yields no change returns Al

6. f (a) = a yields AD: b AD
AI: f(AD) Al
A2: a Al
A3: f (AI) Al

7. f(f(a» yields no change returns Al

B. c yields A4: c A4 returns A4

9. c = f(f(a» yields AD: b AO
AI: f(AD) Al
A2: a Al
A3: f (AI) Al
A4: c Al

A.t this point we wish to determine if f(f(b» = c

f (f (b» gets parsed successively as:

1. f(f(AD»
2. If AI) 3.

and c gets parsed as AI. Therefore, f(f(b»=c.

~ a more complicated example, consider example 2.

sentence eg,table result

1. g(b) yields AD: b AD returns Al
AI: g(AD) Al

11

2. f (a) yields A2:
A3:

a A2 returns A3
f(A2) A3

3. g(b) = f(a) yields AO: b AO
A1: g(AO) A1
A2: a A2
A3: f(A2) A1

4. g(c) yields A4: c A4 returns AS
AS: g(A4) AS

5. feb) yields A6: f(AO) A6 returns A6
6. g(c) = feb) yields AO: b AO

A1: g(AO) A1
A2: a A2
A3: f(A2) A1
A4: c A4
AS: ~~A4) AS
A6: AO) AS

7. a yields no change returns A2

8. b yields no change returns AO
9. a = b yields AO: b AO

A1: g(AO) A1
A2: a AO
A3: f (AO) A1
A4: c A4
AS: ~(A4) AS
A6: (AO) AS

followed by AO: b AO
A1: g(AO) A1
A2: a AO
A3: f(AO) A1
A4: c A4
AS: f~!~~ A1
A6: NIL

10. c yields no change returns A4

11. d yields A7: d A7 returns A7
12. c = d yields AO: b AO

A1: g(AO) A1
A2: a AO
A3: f(AO) A1
A4: c A4
AS: f(A4) A1
A6: (AO) NIL
A7: d A4

At this point we wish to determine if g(a) = g(d)

Sea) gets parsed successively as:

1. liAO) 2.

and g(d) gets parsed successively as:

1. liA4) 2.

'therefore, g(a) = g(d) •

6. INEQUALITY DETERMINATION

The previous discussion indicates how the question of whether· two items are

12

~~o'W to

possible

equality

be equal is answered. However, the question of equality bas two additional

answers. Namely, the items may be unequal or no information as to their

is known. Determination of the answer to these two questions is more

complicated. In order to facilitate such work we also keep track of equivalence

classes which are known to be unequal by use of a table known as ineqtable. This

,able is again accessed by left and right. Therefore, whenever a merge of two

equivalence classes occurs, this table must also be updated. This means tha t

~etween steps 4b and 4c of the equality determination algorithm given in fig. 4 an

~pdate is made of the inequivalent classes.

Two items may be shown to be unequal explicitly or implicitly whereas two

items are equal only explicitly. The process of parsing allows the bypassing of

special handling for implied equalities since if a sentence is not in the data base,

then it is added to it while being parsed. This is what enables the recognition of

f(a) = f(b) given a = b. Implied inequalities are also quite easy to detect. In

this case two sentences are not explicitly known to be unequal (i. e., the
,

equivalence classes containing them are not known to be unequal); however, when they

are assumed to be equal, and thereby added to the data base, then a contradiction

lIill occur. This contradiction is detected at the occurrence of a merge of two

equivalence classes which are known to be unequal. Thus it is seen that the only

modification needed to the equality determination algorithm is to check if the two

about to be merged equivalence classes are known to be unequal. Moreover, if at any

time during the implicit inequality phase any entries must be added to the data

base, then the sentences in question can not be shown to be implicitly equal.

The revised algorithm for the addition of any equality to the data base as

Well as determining implicit inequalities is given in fig. 6. Note the use of

maxneq to indicate the number of entries in ineqtable. The proof of the

completeness of the inequality determination algorithm remains the same while the

Proof of the completeness of the inequality determination algorithm is similar to

the former, and thus will not be repeated. Similarly, the algorithm can be encoded

more efficiently in the style of fig. 5 or even as discussed in section 7.

To add an equality pair:

1.
2.
3.
4.

classl:=result of parsing left half;
classr:=result of parsing right half;
mods:=nil;
a. m:=min(classl,classr);
b. n:cmax(classl,classr);
c. for j:=1 step 1 until maxneq do begin

comment: update ineqtable and check for a contradiction;
if rightCineqtable[il> "" '('!. then right(ineqtable[i] l:=m
else If Iefttineqtao e[j)= n then left(1neqtaole[j):=m;
if left(ineqtable[j]) = right(ineqtable[j]) then "contradiction";
end; ' 13

5.

d. for j:=m+l step 1 until maxclass do begin
comment: find candidate for implied equivalence;

if null(right(eqtable[j]») then nil
comment: check if a de1eted duplicate entry;

else if atom(left(eqtable[j]» then nil
else if member(m,cdr(left(eqtable[j]») then mods:=merge(j,mods)
else nil
end;

e. for j:=n step 1 until maxclass do begin
comment: replace all instances of the higher numbered

equivalence class by the lower numbered one;
if Qull(rightteqtablefj]» then nil

comment: check if a deleted duplicate entry;
else begin

if right(eqtable[j]) = n then right(eqtable[j]):=m;
comment: change index to point to new heaa of equivalence

class'
if atom(left(eqta~le[j]» then nil
else if member{n,cdr(left(eqtable[j]») then begin

comment: replace higher numbered equivalence class by the
lower numbered one'

subst(m,n,cdr(left(eqtable[j])~);
mods:=merge(j,mods);

comment: add to list of candidates for implied equivalence;
end

elsE;\ nil;
end;

end;
while not null(mods) do begin

comment: step through the list of candidate nodes and look for
implied equivalences;

for k:=2 step 1 until length(mods) do begin
if left(eqtable[mods[1]J) = left(eqtable[mods[k]]) then begin

comment: an entry appears more than once in the equa11ty data
base;

temp:=right(eqtable[mods[k]]);
mods:=delete(k mods)'

comment: delete t~e higher numbered duplicate entry;
right(eqtable[mods[k]]):=nilj

comment: check if two entries are already in the same
equivalence class'

if right(eqtaole[mods[l]]) NE~ temp then begin
comment: two equivalence classes must be merged;

classl:=temp;
classr:=right(eqtable[mods[1]]);
go to 4;
end;

end;
end;

mods:=cdr(mods)j
end;

Fig. 6 - Algorithm to Add an Equality Pair with a Check for a Contradiction

7. TUIE AND STORAGE REQUIREMENTS

From a computational complexity standpoint, the equality determination

algorithm is quite simple. Specifically, in parsing a sentence there are exactly as

many reductions to be made as there are atoms and function names in the sentence.

Moreover, the constant of proportionality is directly related to the size of the

data base since the latter must be searched for the appropriate reduction. Of

course, the search can be speeded up by keeping the data base sorted via a hashing

function [Knuth73].

A more careful analysis enables us to obtain upper bounds for the storage

14

required for the equality data base as well as obtaining average execution times for

determining equality and updating the equality data base. Specifically, the maximum

~umber of equivalence classes possible is when all of the axioms use different

functions and atoms. In this case we would need at most one equivalence class per

function and atom. Thus the upper bound on the number of equivalence classes is the

total length of the axioms in the data base (say n). Each equivalence class

requires one pointer to the head of its class (the right field of eqtab1e). The

left field of each eqtable entry requires one location for the function name and one

pointer for each argument. The maximum number of pointers and locations necessary

for the left field of all entries in eqtab1e is 2n-1. This quantity is achieved

when all atomic arguments are unique and thus there are no common subexpressions as

well as no equality relations. In other words, this is the worst case for a single

formula comprised of other formulas meeting these conditions. The truth of this

claim is seen by noting that every atom requires two left field entries - one for

its equivalence class and one for its occurrence as an argument in another formula;

and every instance of a function name, but the outermost one, requires two left

field entries - one for its occurrence in a formula and one for its formula's

occurrence as an argument in another formula. For example, g(f(a» requires one

location for a, two locations for f(a), and two locations for g(f(a» - i.e., 2*3-

1=5 locations. Finally, since formulas are not of fixed length (i.e., they have a

varying number of arguments), we need one marker pointer per eqtab1e entry to denote

the length of its left field, or, depending on the method of implementation, to

denote the fact that there are no more arguments. In fact, we need one such pointer

per eqtab1e entry or at most n such pointers in total. Recalling that we need one

pointer for each right field means that our equality data structure requires at most

4n-1 pointers in order to be able to handle a set of axioms containing a total of n

atoms and function names. Actually, this upper bound is 4n-2m where m is the

number of axioms present. Note the indistinguishability of pointers and locations.

Both the equality determination and equality data base - updating algorithms

need to do table lookup type operations. This is a factor which slows down these

algorithms considerably. However, the problem can be alleviated by use of hash

table methods for the equality determination algorithm, and by use of linked lists

for the equality data base updating algorithm. For each equivalence class we will

keep a linked list whose elements are all the eqtable entries in whose left field

the equivalence class appears. Also a linked list is kept with each equivalence

class for all the eqtab1e entries which are in the equivalence class (i.e.,

identical right field entries). This will add at most n pointers for hashing, n

15

vointers for the left field links, n pointers for the right field links, and n

vointers for the heads of the left field links chains. There is no need for a

6pecia1 pointer for the head of a right field links chain since the equivalence

class is a member of the chain while in the case of the left field links chain the

equivalence class is not a member of the chain. Thus the new maximum number of

pointers is 8n-2m. However, it will generally be the case that two pointers can be

stored per computer word and thus the storage requirement is 4n-m words. Actually,

~e need slightly more storage since we must also account for the hash buckets.

gowever, this amount is rather inSignificant in light of the rest of the required

6torage, and thus we can increase the number of hash buckets to reduce the

probability of collisions in the table.

linked hash lists to facilitate updating.

It might also be desirable to have doubly

In order to clarify the proposed data structure we give a sample entry in

fig. 7. Note that all pointers always refer to the first word of the entry. This

data structure will reduce greatly the amount of work the updating algorithm must do

because each of the links enables the rapid execution of one of the steps. The

links between eqtab1e entries containing a certain equivalence class name as an

argument and the links connecting all entries in the same equivalence class enable

the rapid execution of steps 4d and 4e of fig. 6. While executing step 4e, wherever

a substitution in the left field is made, the entry must be rehashed

the new left field contents and entered in the appropriate hash chain.

according to

The latter

eliminates the need for step 5 since the act of entering the item in the new hash

chain also includes a check of its presence in the chain. In fact, we can now

slightly modify the updating algorithm to keep a list of items having identical

contents that have not yet been merged. Actually, this is the same as mods only now

We know exactly which entries are identical where previously this was ascertained by

means of step 5. No modifications are proposed to step 4c which checks if the

proposed merge of classes will result in a contradiction. Moreover, we use a count

pointer to indicate the number of arguments in the 1eft(eqtab1e) entry (atoms are

represented as functions of zero arguments). The count also acts as a filter when

collisions occur in the hash table since equality checks will only need to be

performed when both the hashed value and the number of arguments are identical.

Therefore, we have seen that our equality determination and updating

algorithms can be implemented in a manner which is largely dependent on the speed

~ith which items can be looked up in a hash table. Furthermore, the equality

determination algorithm is seen to be almost linear, on the average, in the sense

16

that the time necessary to decide if two strings are identical is proportional to

the length of the two strings. Moreover, we have devised a data structure which

sllows the updating of the data base without performing useless operations (this

includes the many passes over the data base that the algorithm in fig. 6 might

possibly make). As a final observation, note that previous stipulations that all

data base entries refer to lower numbered equivalence classes is no longer

necessary. The reason this requirement was made was to enable us to avoid searching

the entire table in steps 4d and 4e of the algorithm in fig. 6.

pointer to head of the pointer to next entry
equivalence.class _ having.~h~.~~~~.~~~h.v~~~~

first table entry i1aving the pointer to next table entry
equivale~ce.~~as~.na~~.~~.~~.~~g~~~~t ~~.~~~.s~~~.~q~i~~~e~~~~~a~~

function name or atom name number ~~ . ~~g~~~~~~ -. ~ ~ - . -

pointer to next equivalence
argument 1 class in which argument 1

occurs as an ~r g~~~~ ~ . _ - ..

pointer to next equivalence
argument 2 class in which argument 2

occurs as an argument - . . . - - . . · - - .-~ -- - -- - -- - . -- -

· · · · · · · - - - . - - - -

pointer to next equivalence
argument m class in which argument m

. _ · .. .?~~~~~.~~.~~.~~g~~~~~.-

Fig. 7 - Proposed Data Structure

8. CONCLUSION AND FUTURE WORK

We have succeeded in answering the original set of questions posed in

Section 1. Moreover, the order in which equality pairs are added to the data base

has no bearing on the actual process of checking equality since each computation is

in an equivalence class and at any time all possible equivalences are taken

advantage of as shown in the algorithms and their proofs.

Some directions for future work include the ability to handle commutative

and associative functions, transitivity of functions, and certain relations of

equality for functions. In a LISP domain, this would include such examples as

17

CONS (A,B)=XCONS (B,A) , LESSP(A,B)=GREATERP(B,A) , CAR(CONS(A,B»-A , etc. These

relations would be dealt with on an instance basis and not on a general variable

basis. This means that when certain functions are encountered, equalities are added

to the data base. Such a scheme could adequately deal with quite a large number of

~nown relationships between functions. However, we still would not be able to deal

~ith examples such as f(x)=x where x is a free variable (i.e., not an instance).

When these extensions are made, the proof of the algorithm will have to be modified

to read "equality of two items will be determined subject to its being derivable

from the known set of equalities."

9. APPENDIX

Precedence relations for a grammar G=(V,T,P,S) are defined as follows (x, y,

and z are arbitrary strings of length greater than or equal to zero over the

vocabulary and Bi represents element i of the vocabulary):

Bi = Bj iff there exists k such that Bk ==> x Bi Bj Y

Bi < Bj iff there exists k such that Bi = Bk and Bk *==> Bj x

Bi > Bj iff there exists k
m,n such that Bm = Bn and

such that Bk *==> x Bi and Bk = Bj
Bm *==> y Bi and Bn *==> Bj z

or there exists

A grammar is said to be simple precedence if:

(1) No two productions have the same right hand side.
t

(2) At most one of the three precedence relations =, <, and> hold between any two
symbols of the vocabulary.

Theorem: The grammar G of fig. 2 is always simple precedence.

Proof: We first show that at most one precedence relation may hold between any two

symbols of the vocabulary.

(1)

(2)

a < b implies that b is a leftmost symbol of some production. Therefore b is
an atom or "(". a = b implies that b appears adjacent to the right of a in
some production. However, b is an atom or "(" neitner of which can ever appear
adiacent to the right of any symbol in a production. Therefore a < b and a
- 0 is impossible.

a > b implies that a is a rightmost symbol of some production. Therefore a is
an atom or ")". a = b implies that a apr.ears adiacent to the left of b in
some production. However, a is an atom or ')" neitner of which can ever appear
adjacent to the left of any symbol in a production. Therefore a > b and a =
b is impossible.

18

(3) a > b implies that a is a rightmost symbol of some production. Therefore a is
an atom or ") ". a < b implies that there exists a nonterminal symbol C such
that a - C. However, this is im20ssible since no symbol can ever appear
adjacent to the right of an atom or "(" in a production. Therefore a > b and
a < b is impossible.

Thus we have shown that our grammar, G, always satisfies the criteria that

~t most one precedence relation ever holds between any two symbols of the

~ocabulary. Moreover, the updating algorithm preserves the uniqueness of right hand

sides of productions, and therefore regardless of the additional equality pairs the

equality grammar, G, is always simple precedence.

10. REFERENCES

[ChangLee73] - Chang, C., and Lee, R.C., Symbolic Logic and Mechanical Theorem

Proving, Academic Press, New York, 1973.

[CockeSchwartz70] - Cocke, J., and Schwartz, J.T., Programming Languages and their

Compilers, NYU Courant Institute, April 1970.

[DowneySethi 77) Downey, P. J. , and Sethi, R., "Variations on the Common

Subexpression Problem," Technical Report, Bell Laboratories, Murray Hill, New

Jersey, 1977.

[GallerFisher64] Galler, B. A. , and Fisher, M. J., "An Improved Equivalence

Algorithm, II Communications of the !9:!., May 1964, pp. 301-303.

[Knuth 73] Knuth, D.E., Sorting and Searching, Addison-Wesley, Reading,

14assachusetts, 1973.

[London72] London, R.L., "The Current State of Proving Programs Correct,"

Proceedings of the ~ ~ Annual Conference, 1972, pp. 39-46.

[Martin68] - Martin, D.F., "Boolean Matrix Methods for the Detection of Simple

Precedence Grammars," Cortununications ~ the ACM, October 1968, pp. 685-687.

[McCarthy60] - McCarthy, J., "Recursive Functions of Symbolic Expressions and their

Computation by Machine," Cortununications of the ~, April 1960, pp. 184-195.

[Naur60] - Naur, P., (Ed.), "Revised Report on the Algorithmic Language ALGOL 60, II

£onununications of ~ ACM, May 1960, pp. 299-314.

[Samet78] - Samet, H., "Proving the Correc tness of Heuristically Optimized Code," to

appear in CommunicationS of ~ACM (19781).

19

