IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-3, NO. 5, SEPTEMBER 1977

343

A Machine Description Facility for Compiler Testing

HANAN SAMET, MEMBER, 1EEE

Abstract—-Requirements for a machine description facﬂjty for com-
piler testing are discussed. ‘Tﬂg, compiler testing procedure consists of
proving that programs are coifébﬂy translated by the compiler at hand.
This is achieved by use of a common intermediate representation for
both the source and object programs. The intermediate representation
for the pbject program is built by use of a process termed symbolic
interpretation. This process interprets a set of procedures which de-
scribe the effects of machine language instructions corresponding to
the target machine on a suitable computation model in a manner con-
sistent with an execution level definition of the high level language.
Some of the important factors which enter into such a definition are
discussed. These include architectural constraints posed by the target
machine, and a description facility for memory and data types. Once
such a definition is formulated, the actual instruction set of the target
machine can be described. The highlights and limitations of such a
definition facility are discussed in the context of a specific Lisp imple-
mentation on a PDP-10 computer.

Index Terms—Compilers, compilei' testing, correctness, data types,
LISP, machine description languages, program testing, program
verification.

I. INTRODUCTION

IVEN A computer, one of the first questions that comes
Gto mind is what are its capabilities. This question is often
answered by describing its instruction set. This description
process is generally geared towards a specific application.
These applications include very low level wiring diagrams at
the electronic gate level, microprograms [8], and higher level
register transfer languages [1]. In this paper we present a for-
malism for describing a computer for compiler testing.

In order to motivate our ideas we define the concept of com-
piler testing and discuss its relationship to other work. Once
this is done we present a machine description facility that is
suited to compiler testing. The facility is decomposed into
two parts—instructions and memory. The presentation draws
heavily on examples from an existing compiler testing system
[19].

II. CoMPILER TESTING

Compiler testing is a_terrﬁ we use to describe a means of
proving that given a compiler (or any program translation pro-
cedure) and a program to be compiled, the translation has been
correctly performed. This concept is useful when the transla-
tor exhibits a considerable amount of optimization since it is
not unusual for optimizations to result in erroneous program
behavior. Some possible approaches to tackling this issue in-

Manuscript received April 23, 1976; revised September 20, 1976.
This research was supported in part by the Advanced Research Projects
Agency of the Department of Defense under Contract DAHC 15-73-C-
0435. The views expressed are those of the author.

The author is with the Department of Computer Science, University
of Maryland, College Park, MD 20742,

clude program proving [14], program testing [7], and decom-
pilation techniques [6].

Program proving methods have traditionally been character-
ized by the specification of assertions ([5], [10]) about the
intent of the program and then proving that they do indeed
hold. Such techniques have two drawbacks. First, the process
of specifying assertions as to what constitutes coirect program
behavior is not easy ([2], [22]), and even when a program has
been found to satisfy the supplied assertions there is no guar-
antee that the assertions are sufficiently precise to account for
all contingencies. The assertions generally deal with what will
be termed the intent or “high level” behavior of the program,
whereas we are interested in “low level” behavior. Some nota-
ble work using assertions in verifying low level behavior is
reported in [12] and [13]. Second, proofs using assertions
rely on the existence of a theorem prover, and a correctness
proof for a compiler can be characterized as proving that there
does not exist a program that is incorrectly compiled. This is
in contrast to an alternative program testing approach which
would prove that specific programs are correctly translated on
a case by case basis.

Decompilation methods could conceivably be used to verify
the equivalence of a source program and an object program,
This would require a priori knowledge of how the various con-
structs in the source language have been encoded in the object
language. However, such an approach sets a limit on the varia-
tion in the object code that can be presented to such a system.
A more serious flaw is the fact that compilation is a many-to-
many process. Namely, the object program corresponding to
a program written in a high level language can be encoded in
many equivalent ways. Similarly, to an object program there
corresponds more than one equivalent source program.

Our notion of compiler testing is a variation on the concept
of program testing. We feel that in the case of a compiler there
exists a willingness to settle for proofs that specific programs
are correctly translated from a high level language to the object
language. Thus a proof system is embedded in the compiler
which proves the correctness of the translation for each pro-
gram input to the compiler. This sidesteps the issue of proving
that there does not exist a program that is incorrectly com-
piled; but this issue is now moot since essentially we are only
interested in the correctness of translations of the programs
input to the compiler. In other words we are not concerned
with the correctness of translation of programs that have not
been input to the compiler. Thus our variation enables us to
bootstrap ourselves to a state where we can attribute an effec-
tive correctness to the compiler.

Our test criterion for compiler testing is a proof of equiva-
lence betweer a program input to the compiler and the corre-
sponding translated object program. The manner in which we
proceed is to find an intermediate representation which is com-

344
high level
language
program

syntactic
transformatione

low level
language
program

machine
* description

execution level
definition

_, memory
definition

intermediate 1

representation

‘
&

symbolic

interpretation

intermediate
representation|

p;;qf of
equivalence

Fig. 1. Compiler testing system diagram.

mon to both the original and object programs and then check
for equivalence. This relies on the existence of such a repre-
sentation. In addition, we must be more precise in our defini-
tion of equivalence. By equivalence, we mean that the two
programs must be capable of being proved to be structurally
equivalent [11]—i.e., they have identical execution sequences
except for certain valid rearrangements of computations. No
use is made of the purpose of the program in the process of
proving equivalence. Thus, for example, we can not prove that
a high level sorting program using insertion sort is equivalent
to a low level sorting program using quicksort since the notion
of sorting is an input/output pair characterization of an
algorithm.

The actual testing procedure consists of three steps (see
Fig. 1). First, the high level language program must be con-
verted to the intermediate representation. Second, the low
level language program must be converted to the intermediate
representation. Third, a check must be performed of the
equivalence of the two representations. This check takes the
form of a procedure which applies valid equivalence
preserving transformations to the results of the first two steps
in attempting to reduce them to a common representation.

The heart of the testing procedure is an intermediate repre-
sentation common to both the source and object programs.
Such a representation must be chosen with care if the problems
alluded to in the discussion of decompilation techniques are to
be avoided. Recall that we indicated that due to the many-to-
many nature of the translation mapping in the case of optimi-
zation, we are hard pressed in obtaining the original represen-
tation of the program unless we give an a priori formulation of
how all the constructs of the high level language are encoded in
the low level language. Alternatively, if the intermediate rep-
resentation were the object language itself, and the transforma-
tion process from the high level language to the object language
were the process of compilation, then the process of proving
equivalence would be trivial.

Clearly the intermediate representation and the process of
obtaining it are very dependent on the high and low level lan-
guages. For example, in the case of LisP [15] such an inter-

IEFE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-3, NO. 5, SEPTEMBER 1977

mediate representation has been shown to exist [20]. This
representation is in the form of a tree with each nonterminal
node denoting a predicate. In this case the representation is
obtained by applying a valid set of syntactic transformations
to the original source program. In general, the intermediate
representation and the process of ohtaining it must be capable
of being proved correct, or believable, with greater ease than
the compilation itself.

The intermediate representation in the second step of the
testing procedure is built by a process termed symbolic inter-
pretation. This process consists of activating a set of proce-
dures corresponding to instructions in the low level program
consistent with an execution level definition of the high level
language (similar to interpretation). These procedures specify
how each instruction effects an entity known as the com-
putation model (e.g., procedural embedding [23]). This
model reflects the contents of the various data structures rele-
vant to the execution of the program, as well as the values of
the conditions tested. Note that the validity of the process of
converting the low level program to the intermediate represen-
tation is shown by proving that the instruction descriptions
correctly update the computation model.

The symbolic interpretation procedure begins at the starting
address of the low level program and updates the computation
model according to the instruction’s procedural description.
Note that we are assuming that self-modifying code is prohib-
ited. If an instruction corresponds to a test, then an attempt
is made to determine if the value of the condition is already
known. In the affirmative case, symbolic interpretation re-
sumes at the next logical instruction. In the negative case,
both alternatives of the condition are symbolically interpreted.
In case the instruction corresponds to recursion or a call on an
external function, then the function being called is not sym-
bolically interpreted and control resumes at the next instruc-
tion which is to be executed upon the termination of the func-
tion call. In addition, when processing an instruction that has
been previously encountered along the path being symbolically
interpreted, recursion is assumed to have taken place, and the
symbolic interpretation procedure attempts to prove that if
recursion had indeed taken place, then the said instruction
would have been reached with the same state of the computa-
tion model by virtue of known values for all of the conditions
along some path to the said instruction. The manner in which
external function calls and recursion are treated, as well as the
prohibition of self-modifying code, guarantees the termination
of the symbolic interpretation procedure.

We refer to the computation model and to the procedures
corresponding to the instructions collectively as a machine de-
scription facility. In the following sections we describe the
techniques necessary to provide a machine description facility
for symbolic interpretation. These include a means of describ-
ing memory (i.e., the environment in which the program is
being symbolically interpreted), a mechanism for keeping
track of the data types associated with the various locations,
and an operational definition of the various instructions of the
object language. However, in order to have some framework
for the discussion, we must assume the existence of a suitable
programming language and an execution level definition

SAMET: MACHINE DESCRIPTION FACILITY

for the language. Our high level language is a subset of LISP 1.6
[18], a variant of LISP, which has been shown to have a suit-
able intermediate representation [20]. The low level language
is LAP [18] (a variant of the PDP-10 [3] assembly language).
An actual proof system employing the ideas discussed here is
described in [19].

Section III contains a discussion of what constitutes an exe-
cution level definition. Section IV uses some of the ideas of
Section III to give an example of compiler testing. The exam-
ple consists of a high level language program, a low level lan-
guage program, the corresponding intermediate representations,
and a brief discussion of how their equivalence is demon-
strated. Sections V and VI present the formalism used in the
symbolic interpretation procedure to describe a computer
instruction set and record its effect on a computation model.

III. EXEcuTiON LEVEL DEFINITION

The execution level definition of a high level language must
take several factors into account. A primary factor is the set
of architectural constraints that are posed by the target com-
puter. A second, and equally important factor, concerns con-
ventions to which object level programs must adhere with re-
spect to control structures of the high level language.

Architectural constraints involve inherent properties of the
target computer and have a direct effect on the execution level
definition. These constraints include word size, instruction
format, type of arithmetic (two’s complement or one’s com-
plement), addressing structure, existence of a hardware stack,
memory management, overflow and underflow detection, etc.
They have a direct effect on the low level representation of
primitive entities of the high level language. For example, the
execution level definition at hand has the following properties.

1) Aword size sufficiently wide to enable the representation
of a Lisp cell by one computer word where one half denotes
CAR and the other denotes CDR (we assume that the left half
represents CAR and the right half cpr).

2) The existence of general-purpose accumulators and an ad-
dressing structure that assigns accumulators low core addresses
thereby enabling the representation of NIL by zero.

3) A hardware stack manipulation capability.

4) Two’s complement arithmetic.

Every high level language has associated with it a set of con-
trol structures. Part of the execution level definition is a speci-
fication of conventions as to the implementation of these con-
trol structures. For example, in Algol [16] there is a great
concern with respect to procedures and the display mechanism
for establishing proper variable bindings. In LisP the primary
control structure is the function call mechanism which acts as a
conduit for information between program segments. This re-
quires the establishment of conventions with respect to where
such information is to be found. For example, in the execu-
tion level definition at hand, functions are called with argu-
ments in accumulators 1 through N where N denotes the
number of arguments. Results of functions are returned in
accumulator 1. Each word containing an argument or a result
has a format consisting of a zero in its left half and a LIsP
pointer in its right half. The stack is used to pass control in-
formation between functioris—i.e., whenever a function call

345

(DEFPROP NEXT (LAMBDA (L X)
(COND ((OR (NULL L) (NULL (CDR L))) NIL)
((EQ (CAR L) X) (CAR (CDR L)))
(T (NEXT (CDR L) X)))) EXPR)

NEXT(L,X) = if NULL(L) or NULL(CDR(L)) then NIL

else 1f CAR(L) EQ X then CAR(CDR(L))
else NEXT(CDR(L),X)

Fig. 2. Lisp and MLISP encodings of NEXT.

NEXT (JUMPE 1 TAG1) Jump to TAGl if L is NIL
PC2 (MOVE 3 1) load accumulator 3 with L
(HRRZ 1 0 1) load accumulator 1 with CDR(L)
(JUMPE 1 TAGl) Jump to TAGL if CDR(L) is NIL
(HLRZ 4 0 3) load accumulator 4 with CAR(L)
(CAME 4 2) skip if CAR(L) is EQ to X
(JRST 0 PC2) compute NEXT(CDR(L),X)
(HLRZ 1 0 1) load accumulator 1 with CAR(CDR(L))
TAGL (POPJ 12) return

Fig. 3. LAP encoding of NEXT.

occurs, the return address is pushed on the stack. This implies
the existence of a stack pointer which must be known to reside
in a specified location (accumulator 12 in our case). Other
LISP implementations often use the stack for passing argu-
ments and control as well as returning results.

1V. EXAMPLE

In order to demonstrate the usefulness of compiler testing
and the necessary machine description facilities, we give an ex-
ample of the type of results that can be expected from such a
system. However, we first present a brief definition of our
subset of Lisp.

Briefly, we are dealing with a subset of LISP which allows
side effects and global variables. There are two restrictions.
First, a function may only access the values of global variables
or the values of its own local variables—it may not access
another function’s local variables. Second, the target label of a
GO in a PROG must not have occurred physically prior to the
occurrence of the GO to the label. The first restriction is
motivated by the manner in which nonglobal variables are
treated in compiled LisP—namely, they serve as placeholders
for computations. The second restriction is due to the imple-
mentation at hand. It could be lifted if Go’s were handled as
function calls rather than branches. For more details see [19].

As an example, consider the function NEXT whose LISP 1.6
and MLISP [21] (a parentheses-free LISP also known as meta-
Lisp which is used throughout the paper) definitions are given
in Fig. 2. The function takes as its arguments a list L and an
element X. It searches L for an occurrence of x. If such an
occurrence is found, and if it is not the last element of the list,
then the next element in the list is returned as the result of the
function. Otherwise, NIL is returned. For example, applica-
tion of the function to the list (A B ¢ D E) in search of D would
result in E, while a search for E or ¥ would result in NIL.

Fig. 3 contains a LAP encoding, obtained by a hand coding
process, for the function given in Fig. 2. The format of a LaP
instruction is (OPCODE AC ADDR INDEX) where INDEX and
ADDR are optional. OPCODE is a PDP-10 instruction option-
ally suffixed by @ which denotes indirect addressing. The Ac
and INDEX fields contain numbers between 0 and decimal 15.

346

(EQ L NIL)
NIL (EQ (CDR L) NIL)
NIL (EQ (CAR L) X)

(CAR (CDR L)) (NEXT (CDR L) X)

Fig. 4. Intermediate representation of Fig. 2.

ADDR denotes the address field. The meaning of the instruc-
tiont used in the example LAP encoding should be clear from
the adjoining comments.

Figs. 4 and 5 give the symbolic intermediate representations
of the functions encoded by Figs. 2 and 3, respectively. Notice
that the representation is in the form of a tree with a predicate
at the root and the left and right subtrees correspond to the
true and false values, respectively, of the predicate. Briefly, a
proof of equivalence must show that the two representations
can be transformed into each other. There are two discrepan-
cies which involve the conclusion when the predicates
(EQ L NiL) and (EQ (CDR L) NIL) are true. In both cases the
results are valid since when these predicates are true, equality
allows the interchanging of the arguments of such predicates
in all subsequent use of these arguments. In addition, the
proof procedure must demonstrate that (CDR L) need only be
computed once, as in Fig. 3, rather than at three separate
instances, as in Fig. 2. This is accomplished by use of an addi-
tional intermediate representation which reflects the instance
at which each computation was performed.

V. MACHINE DESCRIPTION

The machine instructions are described via the use of proce-
dures in a programming language quite similar in appearance to
the class of register transfer languages [1] common in hard-
ware descriptions. In the following discussion we present the
description facility and show how it is used by means of exam-
ples. In the course of the presentation much use is made of
LISP, the PDP-10, and the system reported in [19]. The dis-
cussion culminates with a demonstration of how the descrip-
tion facility coped with some unorthodox uses of instructions
which were not included in that original system.

A. Description Facility

At the heart of the description process is the set of primitives
which are provided for describing such basic operations as the
operand fetch cycle, data transfer, control, predicate testing,
and sense of tests. These primitives are encoded in a manner
which binds the high level language in question to its execution
level definition. The most important property of the primi-
tives is that they are independent of the instructions that in-
voke them. Thus if another computer instruction set were to
be described we would only need to make sure that architec-
tural constraints were satisfied. If the latter were false, then
some of the effected primitives would need to be recoded, e.g.,
a computer with a different effective address calculation
method. ’

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-3, NO. 5, SEPTEMBER 1977

(EQ L NIL)

L (EQ (CDR L) NIL)

(CDR L) (EQ (CAR L) X)

(CAR (CDR L)) (NEXT (CDR L) X)

Fig. 5. Intermediate representation of Fig. 3.

Our descriptive language is a subset of MLISP. We have
chosen it largely because of the ease with which symbolic data
can be manipulated and data structures defined. Also, MLISP
being a subset of LISP enables the symbolic interpretation
procedure to take advantage of the property of indistinguish-
ability of program and data and use the EVAL mechanism of
LISP to directly evaluate the low level language program. If
we were dealing with low level languages of the type used in
microprograms, then register transfer languages might be more
appropriate (see [13] where a combination of VDL [17] and
APL [9] are used).

The descriptive language is very much like Algol with the
exception that the underlying data structure is the set of s-
expressions. Variables are declared in a routine via the con-
struct NEW and are local to the declaring procedure. There
exists a global variable PcG which is used to keep track of the
program counter. The symbolic interpretation system is aware
of this variable and ensures that it is incremented as well as
kept up to date when executing various branches of condition
testing instructions. Predeclared constants are also available.
These include x11 which is a word containing a data pointer of
value 1 in each halfword, and ZEROCNST which is a word con-
taining a data pointer of value 0 in each halfword.

An instruction is described by a one argument procedure of
type FEXPR which has the same name as the instruction. The
argument represents a list bound to the CDR of the LAP
“word” containing the instruction. In other words the param-
eter to each procedure is a list comprising the accumulator,
address, and index fields of the LAP word. Hence there is one
procedure with indirect addressing and one without. The value
of the accumulator field is accessed by the function ACFIELD,
and the combined value of the address field modified by the
contents of the accumulator denoted by the index field (if
nonzero) is accessed by the function EFFECTADDRESS.

B. Examples

In order to demonstrate the instruction description process,
we show how the instruction MOVE, HRRZ, PUSHJ, JUMPE,
SKIPE, and TDZN are handled. The presentation also indicates
how the symbolic interpretation system understands certain
applications of the instructions given only the description seen
here. Let Ac denote the name of the accumulator specified by
the accumulator field of the instruction.

MOVE is a simple instruction which is analogous to a load
operation. It moves the contents of the effective address into
accumulator Ac. Fig. 6 shows its procedural description. Note

' SAMET: MACHINE DESCRIPTION FACILITY

FEXPR MOVE(ARGS) ;
LOADSTORE (ACFLELD (ARGS) , CONTENTS (EFFECTADDRES S (ARGS))) ;

Fig. 6. MOVE instruction,

FEXPR HRRZ(ARGS);
LOADSTORE(ACFIELD (ARGS),
EXTENDZERO (RIGHTCONTENTS (EFFECTADDRESS (ARGS)))) 5

Fig. 7. HRRz instruction.

FEXPR PUSHJ(ARGS);

BEGIN
NEW ADDRESS;
ADDRESS«EFFECTADDRESS (ARGS) ;
ALLOCATESTACKENTRY (ACFIELD(ARGS)) ;
ADDX(<ACFIELD(ARGS),X11>);
LOADSTORER:GHT (RIGHTCONTENTS (ACFIELD(ARGS)),

FORMRETURNADDRESS (PCG)) ;

LOADSTORELEFT(RIGHTCONTENTS (ACFIELD(ARGS)) , FLAGSPOINTER()) ;
UNCONDITIONALJUMP (ADDRESS) ;

END;

Fig. 8. pusns instruction,

the use of the primitive LOADSTORE(A,B) whose effect is to
store B in location A.

A slightly more complicated instruction is HRRZ. It is used
to load the right half of accumulator Ac with the right half of
the contents of the effective address, and to clear the left half
(see Fig. 7). When a LISP pointer resides in an accumulator,
say B, then indexing via accumulator B results in the computa-
tion of CDR since if the effective address results in a LISP
pointer, then its right half contains cDR. Note the use of the
primitive EXTENDZERO which has a halfword as its argument
and returns a word containing zero in its left half and the said
argument in its right half. Detection of CAR and CDR opera-
tions is done by primitives such as CONTENTS, LEFTCONTENTS,
and RIGHTCONTENTS, and a mechanism for keeping track of
types associated with various locations (see Section VI for
further details).

Some instructions may require a sequence of statements to
describe their effect. For example, the PusHI instruction de-
scribed in Fig. 8. Briefly, this instruction saves the incre-
mented value of the program counter PcG on the stack which
is pointed at by accumulator Ac and continues execution at
the location denoted by the effective address (i.e., a function
call). Notice the procedural nature of the description. A more
informal description is as follows. Allocate a stack entry, in-
crement both halves of the stack pointer (the construct <. ..>
denotes the LISP function LIST which has an arbitrary number
of arguments), store the return address and a half word con-
taining the processor flags on the stack, and continue execu-
tion at the location denoted by the effective address.

Notice the use of the primitive UNCONDITIONALIUMP
to specify unconditional flow of control to the address
specified by the argument. UNCONDITIONALSKIP and
NEXTINSTRUCTION accomplish similar functions. These prim-
itives are also responsible for detecting the occurrence of ex-
ternal function calls and recursion. Recall that in this case the
function being called is not symbolically interpreted; instead,

347

predfcate

conclusion alternative

Fig. 9. Tree representation of a test.

FEXPR JUMPE(ARGS);
BEGIN
NEW TST;
TST+CHECKTEST(CONTENTS (ACFIELD(ARGS)) , ZEROCNST) 3
IF TST THEN RETURN(
IF CDR TST THEN UNCONDITIONALJUMP(EFFECTADDRESS (ARGS))
ELSE NEXTINSTRUCTION());
TRUEPREDICATE();
CONDITIONALJUMP (ARGS,FUNCTION JUMPETRUE);
JUMPALTERNATIVE (ARGS, FUNCTION JUMPEFALSE);
END;

(FEXPR JUMPETRUE (ARGS) ;
UNCONDITIONALJUMP (EFFECTADDRESS (ARGS)) ;

FEXPR JUMPEFALSE(ARGS);
NEXTINSTRUCTION();

Fig. 10. yumeE instruction.

control resumes at the next instruction which is to be executed
at the termination of the function call. »

Condition testing instructions entail more complicated de-
scriptions. In such cases we must first determine if the value
of the condition is already known. This is accomplished by
the primitive CHECKTEST which returns a value of NiL if the
value of the condition is unknown, and the dotted pair (1.T)
or (T.NIL) if the condition is known to be true or false, respec-
tively. In the affirmative case, the appropriate path is taken
and symbolic interpretation continues. If the value of the
condition is unknown, then the sense of the test per-
formed is recorded by the primitives TRUEPREDICATE and
FALSEPREDICATE, the actual test is recorded, and the two al-
ternate paths are symbolically interpreted in order and the
result returned is a tree as shown in Fig. 9.

As examples of condition testing instructions we examine
the instructions JUMPE, SKIPE, and TDzN. In all three
cases we see either the pair of primitives CONDITIONALJUMP
and JUMPALTERNATIVE, Or CONDITIONALSKIP and
SKIPALTERNATIVE. They are used to invoke the symbolic
interpretation process for the true and false cases of a condi-
tion whose value is unknown. The arguments indicate the
original parameter to the procedure corresponding to the in-
struction and the name of the routine used to execute the re-
mainder of the condition. The routine is necessary for the
purpose of indicating flow of control as well as any further
properties of the instruction that depend on the result of the
test. The JUMPE instruction (see Fig. 10) is used to condition-
ally jump to the effective address if the contents of accumula-
tor AC is zero.

In an execution level definition where NiL is represented by
zero, the JUMPE instruction provides a fast way of testing
against NIL. For example, after symbolic interpretation of
the (JUMPE 1 TAG1) instruction at label NEXT in Fig. 3,
and before activation of CONDITIONALIUMP and
JUMPALTERNATIVE, we have the partial tree given in Fig. 11,

348
(EQ L NIL)
UNKNOWN-CONCLUSION UNKNOWN-ALTERNATIVE
Fig. 11. Result of symbolic interpretation of first qumpe 1 TAG) in Fig. 3.

:

FEXPR SKIPE(ARGS);

BEGIN
NEW MEMG, TST;
MEMG+CONTENTS (EFFECTADDRESS (ARGS)) 5
IF ACFIELD(ARGS) NEQ O THEN LOADSTORE(ACFIELD(ARGS),MEMG);
TST+CHECKTEST (MEMG, ZEROCNST) ;
IF TST THEN RETURN(IF CDR TST THEN UNCONDITIONALSKIP()

ELSE NEXTINSTRUCTION());

TRUEPREDICATE();
CONDITIONALSKIP(ARGS, FUNCTION SKIPETRUE);
SKIPALTERNATIVE(ARGS,FUNCTION SKIPEFALSE);

END;

FEXPR SKIPETRUE(ARGS);
UNCONDITIONALSKIP();

FEXPR SKIPEFALSE(ARGS);
NEXTINSTRUCTION();

Fig. 12. sKIPE instruction.

FEXPR TDZN(ARGS);

BEGIN
NEW ACG,MEMG,TST;
MEMG+CONTENTS (EFFECTADDRESS (ARGS)) ;
ACG+CONTENTS (ACFIELD (ARGS)) ;
LOADSTORE (ACFIELD (ARGS) , SETMASKEDBITS (ACG,MEMG,0)) ;
TST+CHECKTEST (ACG ,MAKEMASK (MEMG)) ;
IF TST THEN RETURN(IF CDR TST THEN NEXTINSTRUCTION()

ELSE UNCONDITIONALSKIP());

FALSEPREDICATE() ;
CONDITIONALSKIP (ARGS, TDZNTRUE) ;
SK1PALTERNATIVE (ARGS, TDZNFALSE) ;

END;

FEXPR TDZNTRUE (ARGS) ;
UNCONDITIONALSKIP();

FEXPR TDZNFALSE (ARGS) ;
NEXTINSTRUCTION();

Fig. 13. TDzN instruction.

ie., (EQ L NIL). Note the use of UNKNOWN-CONCLUSION and
UNKNOWN-ALTERNATIVE to indicate that the true and false
cases of the condition have not 'yet been symbolically
interpreted.

The skIPE instruction (see Fig. 12) skips the next instruction
if the contents of the effective address is zero. If the accumu-
lator name specified by the accumulator field is nonzero, then
the said accumulator is loaded with the contents of the effec-
tive address. Note the use of a conditional statement in the
description of the instruction to determine if the accumulator
field is zero.

The TDZN instruction (see Fig. 13) results in zeroing the bits
in accumulator Ac corresponding to bits that are 1 in the mask
word contained in the effective address. In addition, the next
instruction is skipped if any of the bits selected by the mask
word in AC were 1.

TD2ZN is an interesting instruction since it makes use of bit
masks. The primitive SETMASKEDBITS interprets its second
argument as a mask and sets the corresponding bits in its first
argument to the bit value denoted by its third argument.
MAKEMASK is a primitive which converts its argument to a bit

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-3, NO. 5, SEPTEMBER 1977

FEXFR JRA(ARGS);

BEGIN)
LOADSTORE (ACFIELD (ARGS) , CONTENTS (LEFTCONTENTS (ACFIELD(ARGS)))) ;
UNCONDITIONALJUMP (EFFECTADDRESS (ARGS));

END;

Fig. 14. JRA instruction.

mask. The CHECKTEST primitive is sufficiently clever (by use
of data types, as shown in Section VI) to perform the appro-
priate comparison operation. Namely, in the case of a bit test,
the mask specifies which bits are to be zero and thus the test is
one of selective equality. Thus in some sense, the primitive
MAKEMASK serves to indicate to the CHECKTEST primitive
that the predicate will involve a bit comparison.

The TDzN instruction can be used to implement a NOT func-
tion with two instructions in an execution level definition
where NIL is represented by zero. When used with a mask
containing a 1 in every bit position (i.e., a value of -1), TD2N
will set the tested accumulator to zero as well as skip the next
instruction if the former contents of the tested accumulator
were nonzero. This is equivalent to setting a location to NIL
and branching if it was previously non-NiL. If the former con-
tents were indeed NIL, then the next instruction can load the
accumulator with the atom corresponding to true (i.e., T).

C. Extension

When the compiler testing system in [19] was originally de-
signed, only the machine instructions which were thought to
be useful in handling Lisp were described. Subsequently, as a
means of testing the adequacy of the description facility, ques-
tions were posed of the nature “suppose a certain instruction
was used in a particular manner to achieve a desired effect.”
In this section we demonstrate how the description facility
coped with some unorthodox uses of two instructions, JRA
and TLNN, which were not in the original system. Two items
are worthy of note here. First, nowhere in the descriptions of
the instructions do we make any provisions for their use in the
said manner to achieve the desired effect. Second, no new
primitives are needed to handie these examples although we
suspect that in other cases there may be a need for some addi-
tional primitives or modifications to existing ones.

The JRA instruction (see Fig. 14) results in placing the con-
tents of the location addressed by the left half of accumulator
AC into the same accumulator. Execution.continues at the ef-
fective address.

Now, suppose the instruction (JRA AC LABEL) has been seen,
where LABEL is the immediately following instruction and ac-
cumulator AC contains the contents of a LISP cell, say A. In
other words, accumulator AC contains pointers to CAR(A) and
cDR(A) in its left and right halves, respectively. The effect of
this particular instance of the instruction is to load the left
and right halves of accumulator Ac with CAR(CAR(A)) and
cpR(CAR(A)), respectively, and continue execution at the
following instruction. This effect is detected automatically
as a result of the symbolic interpretation of JRA, since
LEFTCONTENTS of A is CAR(A) and CONTENTS of a LISP cell
pointed at by CAR(A) is a word containing CAR(CAR(A))
and cDR(CAR(A)) in its left and right halves, respectively.
LOADSTORE will ensure that accumulator AC now contains

v . v

SAMET: MACHINE DESCRIPTION FACILITY

FEXPR TLNN(ARGS);

BEGIN
NEW TST;
TST+CHECKTEST (LEFTCONTENTS (ACFIELD(ARGS)) ;

MAKEMASKHALF (EFFECTADDRESS (ARGS))) 5
IF TST THEN RETURN(IF CDR TST THEN NEXTINSTRUCTION()
ELSE UNCONDITIONALSKIP());

FALSEPREDICATE() ;
CONDITIONALSKIP (ARGS, TLNNTRUE) ;
SKIPALTERNATIVE(ARGS, TLNNFALSE) ;

END;

FEXPR TLNNTRUE(ARGS);
UNCONDITIONALSKIP();

FEXPR TLNNFALSE(ARGS):
NEXTINSTRUCTION() :

Fig. 15. TLNN instruction.

these values. The immediately following instruction is the
next instruction to be executed by virtue of the primitive
UNCONDITIONALJUMP.

The TLNN instruction (see Fig. 15) results in a skip of the
next instruction in sequence if the bits in the left half of accu-
mulator AC corresponding to the bits that are 1 in the mask
formed by the effective address are not all equal to zero. Oth-
erwise, the next instruction in sequence is processed. '

Now, suppose the instruction (TLNN AC -1) has been seen
where accumulator AC contains the contents of a LISP cell,
say A. In other words AC contains pointers to CAR(A) and
cDR(A) in its left and right halves, respectively. The effect of
this particular instruction is to test if CAR(A) is EQ to NIL
and skip the next instruction if false. This effect is detected
automatically as a result of the symbolic interpretation of
TLNN, since LEFTCONTENTS of a LISP cell, say A, is CAR(A)
and a test of equality against a bit mask containing all 1's is
identical to checking if all of the bits in CAR(A) are zero, or
equivalently if CAR(A) is NIL in an execution level definition
where NIL is represented by zero. It should be noted that we
have already seen a similar line of reasoning applied with re-
spect to an application of the TDZN instruction.

VI. MEMORY

In the previous section we saw a description facility for ma-
chine instructions. We also hinted at an understanding process.
This was evidenced by such examples as TDZN, TLNN, and JRA
which showed how instructions were used to accomplish
results not at all obvious from the instruction descriptions.
The real work in building the intermediate representation is
done by primitives such as EFFECTADDRESS, CONTENTS,
UNCONDITIONALJUMP, etc. These primitives are used to en-
code the effects of the instruction on a computation model.
This computation model reflects the contents of memory at
all times and is directly dependent on the execution level defi-
nition of the high level language. In this section we describe
what we loosely term the memory. This description consists
of the actual data structures constituting the memory, the vari-
ous data types that can be stored in the memory, and the
mechanism by which we keep track of the contents of the
memory.

Assuming a separation of data and program, data memory
can be further partitioned into internal and environmental data
structures. The former correspond to machine related con-

349

structs such as the accumulators and the stack, while the latter
reflect the constructs which owe their existence to the high
level language. In the case of LISP, the environmental data
structures include the List Structure and the cells containing
the values of the global variables.

An alternative view of memory is one consisting of two parts,
locations that can be overwritten and those that cannot. The
latter part consists of the area containing the program to be
executed. Clearly, overwriting should be forbidden since in
our proofs we assume that a program remains the same. Other-
wise an equivalence proof is somewhat meaningless due to the
possible recursive nature of the functions with which we are
dealing. Thus we do not allow self-modifying code. Note that
the contents of all locations in memory may be read. The lo-
cations that can be overwritten include the accumulators, the
stack, and the environmental data structures. The restriction
on overwriting some of the environmental data structures is
that they may only be overwritten with data of the high level
language. In the case of LISP this means that elements in the
List Structure may only be overwritten with LISP pointers.

The stack and some of the accumulators are useful as tempo-
rary data areas. This dictates a need for a mechanism for keep-
ing track of the contents of various locations. This is of ut-
most importance for the primitives which are used to describe
the various instructions of the target computer since their ac-
tions depend to a large degree on the data types associated
with their operands. Specifically, when compositions of oper-
ations are performed, we must have a meaningful way of ex-
pressing the intermediate results. This is accomplished by as-
sociating with each half word a data type as well as a value.
These types enable us to describe the contents of the various
locations in a manner that renders subsequent operations
meaningful when using them as data.

Environmental and internal data types are related in a man-
ner analogous to environmental and internal data structures.
The environmental data types typically refer to values which
have a corresponding interpretation in the high level language
in question, In a language such as Pascal [24] these would
include structure pointers and array pointers, among others.
In the case of LIsP (which is typeless) we only have one envi-
ronmental data type, namely the LISP pointer. Initially, the
only locations containing data of type LISP pointer are the ac-
cumulators containing the parameters to the function being
symbolically interpreted and the cells containing the global
variables. As the LAP program is symbolically interpreted all
Lisp functions of LISP pointers result in LISP pointers. In
addition, each cell pointed at by a LISP pointer, say A, con-
tains CAR(A) in the left half and cpR(A) in the right half.
Thus whenever the left half of a cell pointed at by a Lisp
pointer is accessed, CAR of the LISP pointer is computed, and
similarly for the right half and the CDR operation.

Internal data types refer to constructs which owe their exis-
tence to the particular target machine and not to the high level
language. In the case of the PDP-10, they include such items
as stack pointers, bits, labels, address constants, half words
(the index, accumulator, opcode, and indirect addressing fields
in an instruction), numbers, and unknown (locations about
whose contents nothing is known). The concept of internal

350

data types is important because it provides a capability to de-
tect illegal operations by virtue of a mismatch of types of
operands. In the following paragraphs we describe briefly
some of these types as they relate to LAP as well as some
properties common to groups of types.

A stack pointer is a data structure having two fields—one
denoting a count and the other an address. Therefore, the
stack pointer data type has two subtypes. One for the count
which originally appears in the left half and one for the address
which appears in the right half. When symbolic interpretation
of a function begins, the values of both the stack count and
stack address are (relative) zero. This enables the detection of
illegal accesses to locations belonging to the caller (i.e., nega-
tive stack address), locations not yet allocated (i.e., keep track
of maximum number of stack entries allocated), and ensures
that the stack depth is the same at function exit as it was at
function entry. Furthermore, computations involving stack
addresses can be performea. This is particularly useful when a
stack is deallocated via use of arithmetic operations rather than
the customary POP operation, since resulting illegal stack
pointers (i.e., negative values) can be detected.

Non-LIsP numbers and symbolic addresses of instructions
are represented by the same data type. Numbers and symbolic
addresses can be combined via addition and subtraction to
form new addresses, and symbolic addresses can be subtracted
from each other in which case a number results. There is spe-
cial treatment of the numeric constant -1 which corresponds
to all bits being 1 in a word and is useful in handling borrow
terms in subtraction. No confusion can arise between LISP
numbers and regular numbers because the former appear
QUOTEd in a LISP program as they correspond to atoms which
are not to be evaluated.

The bit type is useful for describing the contents of words
for bit testing operations. Bit tests using a mask, where the
mask stipulates which bits are to be zero, are basically no dif-
ferent than regular tests (i.e., a test for equality against Z€ro).
The only difference is that the effective address or its con-
tents indicates which bits are to be zero. With this in mind, an
operation making use of a mask containing 1’s in the positions
which are to be tested, is represented as a sequence of NIL and
0. The latter denotes that the bit is to be zero while the
former denotes a “don’t care” condition. Now, it is clear that
a bit testing operation is analogous to a test against 0 with the
selected bits tested rather than an entire word or half word.
Note that the two’s complement representation of numbers
implies added significance for -1, since -1 corresponds to a
mask with all bits being 1 and if used in a masked test it results
in a test against zero (NIL in the execution level definition at
hand).

The various internal data types also have some properties in
common. In the case of stack pointers, labels, and unknown,
the data type information is particularly useful since it pro-
vides a mechanism for keeping track of arithmetic operations.
Basically, in these cases the value associated with the item in
question acts as a relocation constant and the normal conven-
tions governing the behavior of assemblers with respect to re-
location arithmetic also hold. In the case of bits, half words,
and instructions the value associated with a specific data type

{EEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-3, NO. §, SEPTEMBER 1977

merely acts as a different representation of a number with an
allowance for conversion between the synonyms. Address
constants are somewhat dual to unknown since they represent
a location whose address is unknown while at the same time its
contents are known,

VII. CONCLUSION

The procedural nature of our description facility for a com-
puter instruction set and the use of primitives are the key dis-
tinguishing factors between our method for compiler testing
and those employing decompilation methods. This is evidenced
by the absence in the instruction descriptions of any informa-
tion as to how particular constructs in the high level language
are encoded. We saw that the instruction description simply
indicates the effect that the particular instruction has on the
computation model.

At present, a system [19] exists that proves the correctness
of translations of LISP 1.6 programs on a PDP-10. Future work
would include the extension of the ideas presented here to a
LISP implementation on an architecturally different computer.
For example, a PDP-11 [4] which has a considerably smaller
word size thereby forcing a LISP implementation where two
words are necessary to contain a LisP cell. This would mean
that a LISP cell would most likely be represented by a block of
two contiguous words. Other interesting properties of a
PDP-11 implementation include a different addressing struc-
ture, condition codes, and separate function control and pa-
rameter stacks to enable a more efficient use of the limited
address space. This would make use of memory management
by keeping programs and data in separate address spaces. Also
NIL would not be represented by zero since low core addresses
do not serve as accumulators.

An equally interesting extension, although conceivably more
difficult, is the adaptation of the ideas presented here to a dif-
ferent high level language. For example, in an algebraic lan-
guage such as Pascal, we would have to model other data types
such as arrays and structures. In such a case we would need to
formulate an execution level definition which would indicate
the representation taken by these constructs (e.g., array head-
ers, etc.).

Regardless of the direction that such extensions take, they
will undoubtedly provide insights into any deficiencies in the
primitives used for machine description in addition to aiding in
the identification of missing ones.

ACKNOWLEDGMENT

Special thanks go to Prof. V. G. Cerf for his constant advice
and encouragement during a period in which some of this re-
search was pursued.

REFERENCES

{1] G.Belland A. Newell, Computer Structures: Readings and Exam-
ples. New York: McGraw-Hill, 1971.

[2] L. P. Deutsch, “An interactive program verifier,” Ph.D. disserta-
tion, Dep. Comput. Sci., Univ. California, Berkeley, CA, May
1973.

(3] PDP-10 System Reference Manual, Digital Equipment Corp.,
Maynard, MA, Dec. 1969.

[4] PDP-11 Reference Manual, Digital Equipment Corp., Maynard,
MA, Dec. 1973.

;EPSE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-3, NO. §, SEPTEMBER 1977

[5] R. W. Floyd, “‘Assigning meanings to programs,” in Proc. Symp.
Applied Mathematics, J. T. Schwartz, Ed,, vol. 19, American
Mathematical Society, 1967, pp. 19-32.

{6] C. R. Hollander, “Decompilation of object programs,” Ph.D. dis-
sertation, Dep. Elec. Eng., Stanford University, Stanford, CA,
Digital Syst. Lab. Tech. Rep. 54, 1973.

[7) 1.C.Huang,“An approach to program testing,” Comput. Surveys,
vol. 7, pp. 113-128, Sept. 1975. -

[8} S. S. Husson, Microprogramming: Principles and Practices.
Englewood Cliffs, NJ: Prentice-Hall, 1970.

(9] K. E. Iverson, A Programming Language. New York: Wiley,
1962.

[10] J. King, “A program verifier,” Ph.D. dissertation, Dep. Comput.
Sci., Carnegie-Mellon Univ., Pittsburgh, PA, 1969.

J. A. N. Lee, Computer Semantics. New York: Van Nostrand
Reinhold, 1972, pp. 346-347.

G. B. Leeman Jr., W. C. Carter, and A. Birman, “‘Some techniques
for microprogram validation,” in Proc. 1974 IFIP Cong., pp.
76-80.

G. B. Leeman Jr., “Some problems in certifying microprograms,”
IEEE Trans. Comput., vol. C-24, pp. 545-553, May 1975.

R. L. London, “The current state of proving programs correct,”
in Proc. Ass. Comput. Mach. 25th Annu. Conf., 1972, pp. 39-46.
J. McCarthy, “Recursive functions of symbolic expressions and
their computation by machine,” Commun. Ass. Comput. Mach.,
vol. 3, pp. 184-195, Apr. 1960.

P. Naur, Ed., “Revised report on the algorithmic language ALGOL
60,” Commun. Ass. Comput. Mach., vol. 3, pp. 299-314, May

1960.

F. J. Neuhold, “The formal description of programming lan-
guages,” IBM Syst. J., vol. 10, pp. 86-113, 1971.

L. H. Quam and W. Diffie, “‘Stanford LISP 1.6 manual,” Dep.
Comput. Sci., Stanford Univ., Stanford, CA, Stanford Artificial
Intelligence Project Operating Note 28.7, 1972.

H. Samet, “Automatically proving the correctness of translations
involving optimized code,” Ph.D. dissertation, Dep. Comput. Sci.,

(11]
(12]

[13]
(14]
(15]

(16]

[17]
[18]

[19]

351

Stanford Univ., Stanford, CA, Stanford Artificial Intelligence
Project Memo AIM-259, 1975.

——, “A normal form for LISP programs,” Dep. Comput. Sci.,
Univ. Maryland, College Park, MD, TR-443, 1976.

D. C. Smith, “MLISP,” Dep. Comput. Sci., Stanford Univ., Stan-
ford, CA, Stanford Artificial Intelligence Project Memo AIM-135,
Oct. 1970.

N. Suzuki, “Verifying programs by algebraic and logical reduc-
tions,” in Proc. 1975 Int. Conf. Reliable Software, Apr. 1975,
pp.473-481.

T. Winograd, “Procedures as a representation for data in a com-
puter program for understanding natural language,” Massachusetts
Inst. Tech., Cambridge, MA, MAC TR-84, Feb. 1971.

N. Wirth, “The programming language PASCAL,” Acta Informa-
tica, vol. 1, pp. 35-63,1971.

(20]
(21]

(22]

(23]

[24]

Hanan Samet (8'70-M’75) received the B.S.
degree in engineering from the University of
California, Los Angeles, and the M.S. degree in
operations research and the M.S. and Ph.D. de-
grees in computer science from Stanford Uni-
versity, Stanford, CA.

Since 1975 he has been an Assistant Professor
of Computer Science at the University of Mary-
land, College Park. His research interests are
data structures, programming languages, code
optimization, and data base management

A

systems.
Dr. Samet is a member of the Association for Computing Machinery,
SIGPLAN, Phi Beta Kappa, and Tau Beta Pi.

Deletions That Preserve Randomness

DONALD E. KNUTH

Abstract—This paper discusses dynamic properties of data structures
under insertions and deletions. It is shown that, in certain circum-
stances, the result of n random insertions and m random deletions will
be equivalent to n-m random insertions, under various interpretations
of the world “random” and under various constraints on the order of
insertions and deletions.

Index Terms— Analysis of algorithms, binary search trees, data organi-
zation, deletions, priority queues.

Manuscript received December 10, 1976; revised March 18, 1977.
This research was supported in part by the National Science Founda-
tion under Grant MCS 72-03752 A03, by the Office of Naval Research
under Contract N00014-76-C-0330, and by the IBM Corporation. Re-
production in whole or in part is permitted for any purpose of the
United States Government.

The author is with the Department of Computer Science, Stanford
University, Stanford, CA 94305.

I. INTRODUCTION

HEN we try to analyze the average behavior of algo-
rithms that operate on dynamically varying data struc-
tures, it has proved to be much easier to deal with structures
that merely grow in size than to deal with structures that can
both grow and shrink. In other words, the study of insertions
into data structures has proved to be much simpler than the
study of insertions mixed with deletions. One instance of this
phenomenon is described in [5], where what looks like an es-
pecially simple problem turns out to require manipulations
with Bessel functions, although the data structure being con-
sidered never contains more than three elements at a time.
Occasionally an analysis of mixed insertions and deletions
turns out to be workable because it is possible to prove some
sort of invariance property; if we can show that deletions pre-

