3

Proving Compiler Correctness
In a Mechanized Logic

R. Milner and R. Weyhrauch

Computer Science Department
Stanford University

Abstract

We discuss the task of machine-checking the proof of a simple compiling
algorithm. The proof-checking program is LCF, an implementation of a logic
for computable functions due to Dana Scott, in which the abstract syntax
and extensional semantics of programming languages can be naturally
expressed. The source language in our example is a simple ALGoOL-like
language with assignments, conditionals, whiles and compound statements.
The target language is an assembly language for a machine with a pushdown
store. Algebraic methods are used to give structure to the proof, which is
presented only in outline. However, we present in full the expression-compiling
part of the algorithm. More than half of the complete proof has been machine
checked, and we anticipate no difficulty with the remainder. We discuss our
experience in conducting the proof, which indicates that a large part of it
may be automated to reduce the human contribution.

INTRODUCTION
In this paper we describe our experiences in trying to use a mechanized
version of a logic for computable functions, LcF (Milner 1972a,b; Weyhrauch
and Milner 1972), to express and formally prove the correctness of a compiler.
This logic is based on the theory of the typed lambda calculus, augmented by
a powerful induction rule, suggested in private communications with Dana
Scott. More particularly: (1) We show how to define in L.CF an extensional
semantics for our target language T which contains an unrestricted jump
instruction. This definition provides, in a direct manner, a single recursive
definition MT for the semantics of a program. This contrasts with the
approach of McCarthy (1963) where each program is assigned a set of
mutually recursive function definitions as its semantics. (2) We give a
description, using algebraic methods, of the proof of the correctness of a

E 51

PROGRAM PROOF AND MANIPULATION

compiling algorithm for a simple ALGoOL-like source language S. (3) We
present in its entirety a machine-checked proof of the correctness of an
algorithm for compiling expressions. We call this the McCarthy-Painter
lemma, as it is essentially the algorithm proved correct by them (McCarthy
and Painter 1967). _

The question of rigorous verification of compilers has already been the
subject of considerable research. As we mentioned, McCarthy and Painter
have given a proof for an expression-compiling algorithm. Kaplan (1967)
and Painter (1967) have verified compiling algorithms for source languages
of about the same complexity as ours; in both cases the source language
contains jump instructions, whereas our source language with conditional
and while statements is in the spirit of the ‘goto-less’ programming advocated
by Djikstra (1968) and others. Burstall and Landin (1969) first explored the
power of algebraic methods in verifying a compiler for expressions, and in
pursuing this exploration with a more powerful language we have been helped
by discussions with Lockwood Morris, whose forthcoming doctoral thesis
(1972) is concerned with this topic. London (1971, 1972) has given a
rigorous proof of two compilers for a Lisp subset. All these authors have
looked forward to the possibility of machine-checked compiler proofs, and
Diffie (1972) has successfully carried out such a proof for the expression
compiler of McCarthy and Painter, using a proof-checking program for the
First Order Predicate Calculus written by him. We believe that LCF has
advantages over First Order Predicate Calculus for the expression and proof
of compiler correctness, and our current paper is in part an attempt to justify
this belief. Briefly, the advantages of LCF consist in its orientation towards
partial computable functions, and functions of higher type. For example,
we consider that the meaning of a program is a partial computable function
from states to states, where a state is conveniently represented (at least for
the simple source language which we consider) as a function from names to
values.

THE SOURCE LANGUAGE S
Expressions in S are built up from names by the application of binary
operators. The collection of such operators is an entirely arbitrary but fixed
set. Thus expressions are defined in LCF by the equations
iswfse=of. wsefun(f),
wfsefun=Af e. type(e)=_N-TT,
type(e) = _E—isop(opof(e)) Aflarglof(e)) Af(arg2of(e)),
Uv,
that is, well-formed source expressions are just those individuals on which
iswfse (which is meant to abbreviate ‘is well-formed source expression’) takes
the value T T. Here ‘af. F(f)’ denotes the least fixed point of the functional F,
and ‘T'T’, ‘UU’ denote the truth-values true and undefined respectively.
The ‘-’ denotes the McCarthy conditional operator; (p—g,) means if p

52

MILNER AND WEYHRAUCH

and g, else 7, and in LCF is undefined if p is undefined. A more detailed
description of the terms of LCF can be found in Milner (1972a). The ‘type’
of an object is determined axiomatically, for example type(e)=_N is true
just in case e is a name.

There are assignment, conditional, and while statements as well as com-
pound statements formed by pairing any two statements. A well-formed
source program is just any statement, that is,

iswfs=of. wisfun(f),

wisfun=Afp.type(p)=_A—type(lhsof(p)) = _N Aiswfse(rhsof (p)),
type(p) = _C—iswfse(ifof (p)) A f(thenof (p)) Af(elseof(p)),
type(p) = - W—iswfse(testof(p)) Af(bodyof(p)),
type(p)=_CM—f(firstof (p)) A f(secondof(p)),
UvU.

Of course in LCF programs are expressed by means of an abstract syntax
for S, using appropriate constructors and selectors, some of which appear
in the equation above. A complete list of the axioms for the abstract syntax
is found below in Appendix 1.

We consider that the meaning of a program in S is a statefunction, that is,
a function that maps states on to states, where a state is a function from the
set of names to the set of values. Thus the meaning function MSE for
expressions is a function which ‘evaluates’ an expression in a state.

MSE=oM. Je sv.
type(e)=_N-sv(e),

type(e)=_E—
(M OP(opof(e)))(M(arglofie), sv), M(arg2of(e), sv)),
UvU.

That is, to give the meaning of an expression e in a state sv, we compute as
follows: if e is a name, look up e in the state, that is, evaluate sv(e); if e is a
compound expression, opof(e) is the selector which computes from e its
operator symbol, and MOP is a function which maps an operator symbol
onto a binary function, which is then applied to the meanings of the sub-
expressions of e.
The following combinators are used in defining the semantics MS of S
ID=/x. x,
WHILE=ag. Aq f. COND(q, f®g(q,f), ID),
COND=2qfgs.(q(s)=1(s),9(s)),
®=4fg x. g(f(x)).
SCMPND=lfg.f®g,
SCOND=lefg. COND(MSE(e)Qtrue, f,g).
SWHILE=)ef WHILE(MSE(e)®true,f).
M S is now defined as
MS=aM. Ap.
type(p)=_A—[Asv m. m=Ihsof (p)— M S E(rhsof (p), sv), sv(m)],
type(p)=_C—>SCON D(ifof (p)) (M (thenof (p)), M(elseof(p))),

53

PROGRAM PROOF AND MANIPULATION

type(p)=_W—SW HILE(testof (p))(M (bodyof(p))),
type(p)=_CM—SCMPN D(M(firstof (p)), M (secondof(p))),
UvU.

Several things should be noted about this definition. First of all there are
no boolean expressions per se. Their place is taken by the function ‘frue’
which yields ‘T T’ just on those values which we wish to let represent true.
This corresponds to the L1sP convention, for example, where NIL is false
and any other expression is considered true. Secondly, if the program p is
an assignment (that is, type(p)=_4) it has been treated asymmetrically
from the others. The reason for this will appear below.

THE TARGET LANGUAGE T

Our target language T is an elementary assembly language which contains
unrestricted jumps and manipulates a stack. We consider the meaning of a
program p in T to be a storefunction, that is, a function from stores to stores.
A store sp is a pair consisting of a state sv and a list pd called the pushdown.
We use ‘|’ as the constructor for pairing a state and a pushdown, and ‘svof”,
‘pdof” as the respective selectors. The following axioms hold:

Vsv pd. svof(sv|pd)=sv,

Vsv pd. pdof(sv|pd)=pd,

svof(UU)=UU,

pdof(UU)=UU,

uujuu=UvU.

In T an instruction is a pair, whose head is the type of the instruction and

whose tail is either a name m, an operator symbol o, or a natural number i.
We assume that the set of operator symbols of T contains that of S. The

instructions are:

Instruction Meaning
(head) (tail)
JF i If head of pd is false, jump to label i, otherwise

proceed to next instruction. In either case
delete head of pd.

J] Jump to label i.

FETCH m Look up value of m in sv, and place it on top
of pd.

STORE m Assign head of pd to m in sv, and delete head
of pd.

LABEL i Serves only to label next instruction.

Do) Apply M OP(0) — that is the binary function

denoted by o — to the top two elements of pd,
and replace them by the result.

54

MILNER AND WEYHRAUCH

We use ‘&’ for the pairing operation and ‘4d’, ‘tI’ as the selectors for pairs.
These, together with null, NIL and @ (append) are the conventional list-
processing operations. Thus the pair whose members are JF and i is formally
written (JF&1). We give the axioms for lists in Appendix 1.

By a program we mean a list of instructions. Unfortunately the existence
of labels in 7" allows the meaning of such a program to be undetermined;
for example, there might be two instructions (LA BEL &6) in the list.
To which one is (JF&6) to go? Although there are many alternatives we
have chosen the following. A program p is well-formed if (i) the set L of
numbers appearing in label statements forms an initial segment of the
natural numbers; (ii) for each ne L, (LABEL &n) occurs only once in 2,
and (iii) the set of numbers occurring in J and JF instructions is a subset of
L, that is, there is no instruction which tries to jump to a non-existent label.
These properties are guaranteed by the following definition of iswft:

iswft=Ap. iswft1(count(p), p),

iswftl=aw. An p. n=0-TT, occursl(n—1, p)—w(n—1, p), FF,

count=oc. Ap. null(p)—0,

(hd(hd(p))=J) v (hd(hd(p))=JF)v (hd(hd(p))=LABEL)~
max (#(hd(p))+1, c(tl(p))), c(tl(p)),
occurs=aoc. An p. (count(p)<n)—FF,
hd(hd(p))=LABEL—tl(hd(p))=n—TT, oc(n, tl(p)), oc(n, t(p)),
occursl=aocl. An p. count(p)<n—FF,
hd(hd(p))=LABEL—tl(hd(p))=n—
=1(occurs(n, tl(p))), ocl(n, tl(p)), ocl (n, tI(p)).
count(p) computes the least natural number not appearing in a program D.
occurs(n, p) yield true if n occurs in p, false otherwise, and occursl (n, p)
checks that a label occurs exactly once. iswft1(n, p) checks that for every
natural number m, O<m<n, the instruction (L4 BEL &m) occurs exactly
once. Thus iswft(p) is as described above.
We can now define M T.
MT=lp. MT1(p, p),
MT1=[of. [Ap q. null (q)—[Asp. svof (sp)| pdof(sp)],
hd(hd(q))=JF—[Asp. (true(hd(pdof(sp)))—f(p, 11(g)),

S, find(p, tl(hd(q))))) (svof (sp) | (pdof(sp)))],
hd(hd(q)) =J—-f(p, find(p, tI(hd(q)))),
hd(hd(q))=FETCH~[sp. svof (sp)|(svof(sp) (tl(hd(q))) &

pdof(sp))1®f(p, 11(g)),
hd(hd(q))=STO RE~[Asp.[Am.m=1tI(hd(q))—hd(pdof(sp)),

svof (sp) (m)]|t1(pdof(sp))1®f(p, tl(q)),
hd(hd(q))=D O—[Asp. svof(sp)|

(M OP(1l(hd(q)) (hd(tl(pdof(sp))), hd(pdof(sp)))

& tl(tl(pdof (sp))N1RS (P, t1(9)), :
hd(hd(q))=LABEL-f(p, 11(q)),

uul],

55

PROGRAM PROOF AND MANIPULATION

find=[of. [Ap n. null(p)—UU, hd(hd(p))=LABEL~
tl(hd(p)) =n—tl(p), f(1(p), n), f(¢l(p), n)]].

The auxiliary function find has as arguments a program p and a label » and if
(LABEL&n) occurs in p it yields that terminal sublist of p immediately
following (L 4 BEL &n), otherwise it yields undefined. One should note that
the definition of M T'1 could be parameterized by a variable in place of find
thus allowing any computable method of ‘finding’ the appropriate instruction
to jump to. This corresponds to choosing different notions of the semantics of
a program. For example, if one allowed jumps to nonexistent labels find’
might simply compute the program NIL when such a jump was attempted.
This amounts to choosing the convention that a jump to a nonexistent label
terminates the program. Many such conventions can be mimicked by an
appropriate find function. For the other instructions the definition of MT'1
follows their informal description quite closely.

THE COMPILER
Strictly speaking we do not prove the correctness of a compiler in this paper.
What we prove is the correctness of a compiling algorithm, which we call
‘comp’. That is, a compiler is a syntactic object written in some programming
language; we have not started with such an object and shown that its mean-
ing (semantics) is ‘comp’, but rather we have assumed that ‘comp’ is indeed
the meaning of some suitably chosen compiler.
Expressions are compiled by
compe=qaf. compefun(f),
compefun=Afe.
type(e)=_N—-(FETCH&e)&NIL,
type(e)=_E—f(arglof(e)) @f(arg20f(e)) @
((DO &opof(e))&NIL),
UU.
In order to define comp we use the following auxiliary functions:
shift =osh. An p. count(p)=0-p,
(hd(hd(p))=J) v (hd(hd(p))=JF)v (hd(hd (p))=LABEL)—
(hd(hd(p)) &(¢1(hd(p))+n))&sh(n, l(p)),
hd(p) &sh(n, tl(p)),
mktcmpnd=J2p q. p @ shift(count(p), q)),
mktcond=le.\p q. compe(e) @
((JF&count(p))&NIL) @
r@
((J &(count(p)+1))&NIL) @
((LABEL &count(p)) &NIL) @
shift (count(p)+2,q) @
((LABEL &(count(p)+1))&NIL,
mktwhile=Je.\p. (LABEL & count(p))&NIL) @
compe(e) @
56

MILNER AND WEYHRAUCH

((JF&(count(p)+1))&NIL) @
r@
((J&count(p))&NIL) @
((LABEL &(count(p)+1))&NIL).
shift(n, p) adds n to the integer in each label and jump instruction occurring
in p. Using shift in the definitions of the other combinators then guarantees
that when applied to well-formed objects, mktcmpnd, mktcond and mktwhile
generate well-formed target programs. Comp is defined as
comp=af. compfun(f),
compfun=JAf p.
type(p)= _A—compe(rhsof (p)) @((STORE &lhsof (p)) & NIL),
type(p) = - C—mktcond(ifof(p))(f(thenof (p)), f(elseof (p))),
type(p) = - W—mktwhile(testof (p)) (f(bodyof (p))),

type(p) = - CM—mikicmpnd(f(firstof (p)), f(secondof(p))),
Uv.

For well-formed source programs p the correctness of this compiler can be
expressed as
(M S(p))(sv)=svof (MT(comp(p)))(sv| NIL)).
This equation simply states that the result of executing a source program 4
on a state sv is the same as the state component of the store resulting from
the execution of the compiled program comp(p) on the store sv|NIL.

OUTLINE OF THE PROOF
Once we had defined the source and target languages and the compiling
algorithm, and formulated the statement of compiler correctness, we pro-
ceeded to tackle the proof with the help of our proof-checking program L CF.
The natural approach is to use structural induction on source programis.
However, it was soon clear that the proof would be long and uninformative,
and we became concerned not merely with carrying it out but also with
giving it enough structure to make it intelligible. Observe that if we define
SIMUL: storefunctions— statefunctions
by
SIMUL=/g. Asv. svof(g(sv| NIL))
then the compiler correctness is equivalently stated by
MS=compQMTRSIMUL (cl)
where it is understood that both sides are restricted to the domain of well-
formed source programs. Now this equation is equivalent to the com-

mutativity of the diagram
comp

Y

5 N
R
~

MS

Wy &

N

SIMUL -

57

o L = T e e o T

I — R e

PROGRAM PROOF AND MANIPULATION

where S and T are the sets of statefunctions and storefunctions respectively.
This diagram suggests an algebraic approach; in fact, by defining appropriate
operations on the sets S, S, T, T we will show that with respect to these
operations the mappings in the diagram are actually homomorphisms.
Then our result will follow as an instance of a fundamental theorem of
universal algebra, as we shall explain below. This algebraic approach gives
our proof the desired structure; it is an open question whether a similar
approach will extend to more complex languages.

We now introduce those few concepts of universal algebra that we need.
These may be found in Cohn (1965); we take the liberty of giving somewhat
less formal definitions than his, since our needs are simple. For a clear
exposition of some of the concepts of universal algebra written for computer
scientists, see also Lloyd (1972).

An operator domain Q is a set of operator symbols each with an associated
integer n>0, called its arity, which is the number of arguments taken by the
operation that the symbol will denote in an algebra.

An Q-algebra A is a set A, called the carrier of A, together with an n-ary
operation for each member of Q with arity n. An Q-algebra B is a subalgebra
of A if its carrier B is a subset of A, its operations are the restrictions to B of
A’s operations, and B is closed under these operations.

Given any set of terms X, the Q-word algebra Wqo(X) has as carrier the

smallest set of terms containing X and such that if @ € Q and g has arity n,
and if wl, w2, ..., wn are in Wqo(X), then the term a(wl, w2, ..., wn) is in
Wa(X). This term-building operation is the operation corresponding to a
in Wa(X). The members of X are called the generators of Wao(X).
. We are concerned only with algebras for a certain fixed Q. We need not
trouble to name the members of Q; Q is only a device for defining a 1-1
correspondence between the operations of different algebras, and this
correspondence will be clear from the way we define our algebras.

The fundamental theorem that we need — see Cohn (1965), p. 120, Theorem
2.6 — states that if W is a word algebra, then any mapping from the generators
of W into the carrier of an algebra A extends in only one way to a homo-
morphism from W to A. In our case the word algebra W is the algebra S of
well-formed source programs, whose generators are the assignment state-
ments and whose denumerably many operations are as follows:

(i) The binary operation mkscmpnd

(ii) For each well-formed source expression e, the bmary operation
mkscond(e)

(iii) For each such e, the unary operation mkswhile(e).

The second algebra A is the algebra 8 of statefunctions, with operations as

follows:
(i) The binary operation SCMPND
(ii) For each well formed source expression e, the binary operation
SCOND(e)
58

MILNER AND WEYHRAUCH

(iii) For each such e, the unary operation SWHILE(e).

Our main goal is (G1). We proceed to set up a tree of subgoals to attain
this goal, and we will first state each of the subgoals in algebraic terms and
then later list the formal statements of the subgoals as sentences of the logic
LCF.

Our first level of subgoaling is justified by the fundamental theorem; to
achieve (Gl1) it is sufficient to prove that

MS:S—8 is a homomorphism (cl.1)
comp@MTQRSIMUL:S—8 is a homomorphism (6l1.2)
and that
MS=comp@MTRSIMUL,
when both sides are restricted to the generators of S. (Gl.3)

Before going further, we must mention that in proving the formal statement
of (G1) from the formal statements of (G1.1), (G1.2) and (G1.3) we do not
rely on a formal statement in LCF of this fundamental theorem (though we
believe that a restricted version of the theorem is indeed expressible and
provable in LCF); rather we prove in LCF the relevant instance of that
theorem. Thus we are using algebra as a guide to structuring our proof, not
as a formal basis for the proof.

Now (G1.1) is a ready consequence of the definitions of M S, as the reader
might suspect if he considers the operators of the algebras S and S. To
achieve (G1.3), remember that the generators of S are the assignment
statements, so we need a lemma which states that expressions — in particular,
the right hand sides of assignments — compile correctly. This is expressed by:

MT(compe(e))=Asp. (svof(sp)| (M SE(e, sp) &pdof(sp))),
whenever e is a well-formed
source expression. (Ggl.3.1)
This says that the target program for an expression places the value of the
expression on top of the stack and leaves the store otherwise unchanged.

In order to prove (G1.2), it is helpful to introduce some further algebras.
First, the algebra T of well-formed target programs whose operations are as
follows:

(1) The binary operation mktcmpnd

(ii)) For each well formed source expression e, the binary operation
mktcond(e)

(iii) For each such e, the unary operation mktwhile(e).

We have defined mktempnd, mktcond and mktwhile in the previous section.
Second, we need the algebra T of storefunctions whose operations are as
follows:

(i) The binary operation TCMPN D

(ii)) For each well-formed source expression e, the binary operation
TCOND(e) '

(iii) For each such e, the unary operation TWHILE(e),

where we define

59

PROGRAM PROOF AND MANIPULATION

TCMPND=Q®,
TCOND=lelfg. MT(compe(e))® COND(GET, POP®f,POPR®g),

TWHILE=e.Af. 0g.MT(compe(e))@ COND(GET, POPQf®g, POP),
which in turn require the definitions
GET=pdof@®hd® true,
POP=Asp. (svof (sp)|tl(pdof(sp))).
Consider these definitions for a moment. POP is a storefunction which just
deletes the top stack element. G ET(sp) yields the truth-value represented by
the top stack element in the store sp. M T(compe(e)) is a storefunction which
simply places the value of the expression e on top of the stack. CON D(GET,
POPRS, POPR®g) is a storefunction which examines the top stack element
and then, after deleting this element, performs either the storefunction f or
the storefunction g, according to the truth-value represented by it.
To achieve (G1.2) it is sufficient to prove
comp:S—T is a homomorphism (cl.2.1)
MT:T-T is a homomorphism (61.2.2)
SIMUL:T'-8 is a homomorphism (G1.2.3)
where T is the subalgebra of T induced by the homomorphism comp®
MT:S—T. (61.2.1) is an immediate consequence of the definition of comp,
provided that comp does indeed generate well-formed target programs from
well-formed source programs. This is a consequence of the following two

subgoals
comp takes the generators of S onto well-formed

target programs
The operations of T preserve well-formedness of
target programs (Gl.2.1.2)
(G1.2.2) uses following general lemma about target programs, which we call
the context-free lemma for M T, since it states that under certain conditions
the execution of a sub-program is independent of its environment:
MT1(p@q @r,q @r=MT(9)QMT1(p@q @r, 1),
provided that g is well-formed, ¢’ =
shift(n, q) for some n, and p @q' @r
is also well-formed. (6l1.2.2.1)
(G1.2.3) depends critically on the property of storefunctions g in T’ that
svof (g (sv| pd)) =svof(g (sv| NIL)),
that is, the left hand side is independent of pd. This of course is not true for
an arbitrary storefunction. Stated algebraically,
For all g in T, g®svof=svof @ SIMUL(g). (6l1.2.3.1)
This concludes our attempt to structure the proof of the correctness of the
compiler using algebraic methods. We have given eleven subgoals, most of
which have a simple algebraic interpretation and therefore contribute signifi-

cantly to the understanding of the proof as a whole.

(61.2.1.1)

We now list the goals as they are represented formally by sentences of LCF.
60

MILNER AND WEYHRAUCH

We have abbreviated compQ@MT®SIM UL by H throughout.
(6l) (Compiler correctness)
iswfs(p)=TTHMS(p)=SIMUL(MT(comp(p)))

(cl.1) (MS is a homomorphism)
iswfse(e)=TT, iswfs(p)=TT,iswfs(q)=TTt+
M S(mksempnd(p, q))=SCMPND(MS(p), MS(q)),
M S(mkscond(e)(p,q))=SCOND(e)(MS(p), MS(q)),
M S (mkswhile(e)(p))=SWHILE(e)(MS(p))

(Gl.2) (H is a homomorphism)
iswfse(e)=TT, iswfs(p)=TT, iswfs(q)=TTF
H(mkscmpnd(p,q))=SCMPND(H(p), H(q)),
H(mkscond(e)(p,q))=SCOND(e)(H(p), H(g),
H(mkswhile(e)(p))=SWHILE(e)(H(p))

(Gl.3) (MS and H agree on the generators of S)
isname(n)=T T, iswfse(e)=TTF
M S(mkassn(n, e))=H(mkassn(n, e))

(Gl.2.1) (comp is a homomorphism)
iswfse(e)=TT, iswfs(p)=TT, iswfs(q)=TTt+
comp (mkscompnd(p, q)) =mktcmpnd(comp(p), comp(q)),
comp(mkscond(e)(p, q))=mktcond(e)(comp(p), comp(q)),
comp (mkswhile(e)(p))=mktwhile(e)(comp(p))

(Gl1.2.2) (MT is a homomorphism)
iswfse(e)=TT, iswft(p)=TT,iswft(q) =TTt
MT(mktempnd(p, q))=sTCMPND(MT(p), MT(q)),
MT(mktcond(e)(p,q))=TCOND(e)(MT(p), MT(q)),
MT(mktwhile(e)(p))=TWHILE(e)(MT(p))

(6l.2.3) (SIMUL is a homomorphism)
iswfse(e)=TT, iswfs(p)=TT, iswfs(q) =TT+

SIMUL(TCMPND(MT(comp(p)), MT(comp(q))))=
SCMPND(SIMUL(MT(comp(p))), SIMUL(MT{(comp(q)))).

SIMUL(TCOND(e)(MT(comp(p)), MT(comp(q))))=
SCOND(e)(SIMUL(MT (comp(p))), SIMUL(MT(comp(q)))),

SIMUL(TWHILE(e)(MT(comp(p))))=
SWHILE(e)(SIMUL(MT(comp(p))))

(Gl.3.1) (well-formed expressions compile correctly)
iswfse(e)=TTt
MT(compe(e))=Asp.(svof (sp) | (M SE(e) &pdof(sp)))

61

PROGRAM PROOF AND MANIPULATION

(G1.2.1.1) (assignment statements compile into well-formed target programs)
isname(n)=T T, iswfse(e)=T T+
iswft(comp(mkassn(n, e)))=TT

(G1.2.1.2) (the operations of T preserve well-formedness)
iswfse(e)=T T, iswft(p)=T T, iswft(q)=T T+
iswft(mktempnd(p, q))=T T,
iswft (mktcond(e)(p, q))=T1T,
iswft(mktwhile(e)(p))=TT

(cl1.2.2.1) (Context-free lemma for MT)
iswft(Q)=TT, isnat(n)=TT, q' =shift(n, q),
iswft(p@q @r)=TTkFH
MT1(p@q @r,qd @r)=MT(Q)@MT1(p@q @r, r)

(G1.2.3.1) (ForgeT, svof(g(sv|pd)) is independent of pd)
iswfs(p) =TTt
MT(comp(p))Rsvof=svof SIM UL(MT(comp(p)))

In Appendix 1 we give, in a form acceptable to the proof-checker, those
axioms and definitions required for the proof which do not appear above.
The only omission is the axioms for natural numbers. In Appendix 3 we
give in full the machine printout of the proof of (G1.3.1), the McCarthy-
Painter lemma, together with some notes as an aid to understanding it.
This theorem has a somewhat independent status, as it states the correctness
of that part of our compiler, compe, which compiles expressions. Our
machine-checked proof therefore parallels the informal proof of essentially
the same theorem given by McCarthy and Painter (1967). In Appendix 2
we give the sequence of commands typed by the user in generating the proof
of the McCarthy-Painter lemma. We do not explain these commands; we
give them merely to indicate that although the proof generated is quite long,

the user does not have very much to type.

DISCUSSION OF THE PROOF
In this section we discuss the machine proof, and what we have learnt from
carrying it out.

As is apparent from the details we have presented, the proof is lengthy but
not profound. We have in fact not checked the whole proof on the machine -
(G61.2.2), (61.2.2.1) and parts of (G1.2.3) and (G1.2.1.2) remain to be done -
so at present we cannot claim to have completely proved the correctness of
a compiler on the machine. However, the aims were rather (i) to demonstrate
that the proof is feasible, (ii) to explore the use of algebraic methods to give
structure to the proof, and (iii) to obtain a case study which, in conjunction
with those in our previous work (Milner 1972b, Weyhrauch and Milner 1972),

62

MILNER AND WEYHRAUCH

give us a feeling for how to enhance our implementation to diminish the
human contribution to a proof. We have no significant doubt that the
remainder of the proof can be done on the machine.

We have already discussed the value of algebraic methods, at least for this
example of a simple compiler. It remains to be seen whether more complex
compilers and semantics will fall naturally into the algebraic framework, or
whether they may be coerced into the framework — and if so whether the
advantages will justify the effort of coercion. But what is certain is that for
machine-checked compiler proofs some way of structuring the proof is
desirable.

Concerning feasibility; one measure of this is the number of proof steps
required. The part of the proof that we have executed took about 600 steps,
and we estimate that this is more than half of the total, although (G1.2.2) is
not a trivial task. This measure does not take into account the considerable
human effort in planning the proof, but — at least if the algebraic method can
be applied in more complex cases — some part of this effort will be common
to many compiler proofs.

This case study and the others referenced above have convinced us that the
formal proofs were indeed feasible, but would not have been so without two
features of our proof-checker, namely its subgoaling facility and its simplifica-
tion mechanism. Usually the most creative contribution that the human
makes is the decision as to what instance of the induction rule to apply (we
do not discuss the induction rule, but many forms of structural induction are
instances of it; for example the goal (G1), once the other goals have been
proved, merely requires an induction on the structure of well-formed source
programs). Once this decision is made, the remainder of the proof, if it
requires no further inductions, follows a pattern which is sufficiently pro-
nounced to give us hope for automation.

Acknowledgements

This research was supported in part by the Advanced Research Projects Agency of the
Office of the Secretary of Defence Under Contract sp-183 and in part by the National
Acronautics and Space Administration under Contract NsrR 05-020-500.

The views and conclusions contained in this document are those of the authors and
should not be interpreted as necessarily representing the official policies, either expressed
or implied, of the Advanced Research Projects Agency, the National Aeronautics and
Space Administration, or the U.S. Government,

We would like to thank Malcolm Newey for his work on the implementation of LCF,
Lockwood Morris for valuable discussions concerning algebraic methods, and Henri
Ajenstat for carrying out most of the proof of (G1.2.1.2) on the machine.

REFERENCES
Burstall, R.M. & Landin, P.J. (1969) Programs and their proofs: an algebraic approach.
Machine Intelligence 4, pp. 17-43 (eds Meltzer, B. & Michie, D.). Edinburgh:
Edinburgh University Press.
Cohn, P.M. (1965) Universal Algebra. New York: Harper and Row.

63

PROGRAM PROOF AND MANIPULATION

Diffie, W. (1972) Mechanical verification of a compiler correctness proof. Forthcoming

A.I, Memo, Stanford University.
Dijkstra, E.W. (1968) Goto statement considered harmful. Letter to Editor, Comm.

Ass. Comp. Mach., 11, 147-8,
Kaplan, D.M. (1967) Correctness of a comniler for ALGoL-like programs. 4. I. Memo

48. Stanford University.

Lloyd, C. (1972) Some concepts of universal algebra and their application to computer
science. cswp-1, Computing Centre, University of Essex.

London, R.L. (1971) Correctness of two compilers for a Lise subset. 4. I. Memo 151.
Stanford University.

London, R.L. (1972) Correctness of a compiler for a L1sp subset. Proc. Conf. on
Proving Assertions about Programs. New Mexico State University.

McCarthy, J. (1963) Towards a mathematical science of computation. Information
processing; Proc. IFIP Congress 62, pp. 21-8 (ed. Popplewell, C.M.). Amsterdam:
North Holland.

McCarthy, J. & Painter, J.A. (1967) Correctness of a compiler for arithmetic expressions.
Proceedings of a Symposium in Applied Mathematics, 19, Mathematical Aspects of
Computer Science, pp. 33—41 (ed. Schwartz, J,T.). Providence, Rhode Island:
American Mathematical Society.

Milner, R. (1972a) Logic for computable functions; description of a machine
implementation. A.I. Memo 169. Stanford University.

Milner, R. (1972b) Implementation and applications of Scott’s logic for computable
functions. Proc. Conf. on Proving Assertions about Programs. New Mexico State
University.

Morris, L. (1972) Forthcoming Ph.D. Thesis, Stanford University.

Painter, J.A. (1967) Semantic correctness of a compiler for an ALGoL-like language.
A.I. Memo 44. Stanford University; also Ph.D. Thesis. Stanford University.

Weyhrauch, R.W. and Milner, R. (1972) Program semantics and correctness in a
mechanized logic. Proc. USA-Japan Computer Conference, Tokyo.

64

MILNER AND WEYHRAUCH

APPENDIX 1: Some of the axioms

- AXTOM LOGAX!
ta B LXP Q ,=(a(P)v=(Q))],
EAP ,PVTT 5 [AP ,TT, AP

AXIOM EQUAX]

3 5 Cxx ,xmx), ¥x y ,(x3y)tt x E ¥,

¥Yx ¥y (8 x)A(0 y) = (x=y)v~(x'y)l
AXIOM LISAX!?

Yx ¥y hdixdy) 3 xi Yx yo tlix8y) E vy Yx ¥ nulitix8y) 5 FFy
nult NiL. 8 TT, ¥xo null x i1 x & N[L, null W 2 W,

hd W 3 WU, 81 YU B UU, vxe Sfnull x) 1 (hd x)&(E] x) E x)
AXIOM LISFN3

102 df, Alomyonull | = om Chd FXSPCKL-1,m))

AXIOM SYNAXS!

=~ 3 [AP ,(R=FF,TT)J, . [NP Q@ ,Pv@] & [N\P Q@ ,GQVPI,
WPYFF] & CAP P}

Yo 01 82, type {mkse o el 82) % _E, -NR_N T
vo o1 02, opoef (mkge o el 02) 3 0 , <E5_N 3 FF,
Yo o1 o2, nrqiof(mks. o o1 e2) § e}, NE_E FF,
vo e1 e2, arg2of(mkse o o1 e2) 5 02, En_E

¥Yn 8, type(mksassn n o) 3 _A, AR_A

R SRR
o H i
-
-
-

yn 8, |hsof(mkesesan n e} £ n , -C8_A § FF,
¥yn o, rhaef(mksassn n e) 5 o TWsZA 3 FF,

_CM:.A 2 FF,
ve pl p2, type (mkscond e pi p2) = .Cu A mC 2FF,
Ye pl p2, |fof (mkaoond e pl p2) E oC "0 B 1T
Ye pl p2, thenof(mkagend e pi p2) 8 pl. N m.C 2 FF,
Yo pl p2, e|seof(mkagond & ni p2) .8 p2, _Cus.C B FF,

- A A W B FF,

Yo p, type{mkawh!le e p) 5 _Ws oC ®.W B FF,
Yo P, testof (mkswhlle 8 p)E e HEW 2T
Ye p, bodyof (mkewhl|e @ p}) 3 p, «CMP W 5 FF,

oA R_CM 3 FF,
¥Ypl p2, typa(mksompnd pl p2) £ _CM, .C 3. CHM 5 FFy
Vol p2, flratef(mksompnd pl p2) 5 pi; M8 CH 2 FF,
Yol p2,8gg0ngof{mksamong pi p2) 5 p2, «CMa_CM 8 1T,
AXIOM SYNAXT:
JF EJF 7T, JF ad EFFy JF sFETCH 2 FF,
J aJF s FF, J o.osd 3 J sFETCH 2 FF,
FETCHeJF s FF, FETCHsJ EFFy FETCHRFETCH = TT,
STORE=JF £ FF,. ' STORE=J :FF, STOREaFETCH & FF, .
no =JF g FF, Do a) 5 FF, Do =FETCH 2 FF,
LABEL®JF g FF, LABEL=J :FF, LABEL3FETCH = FF,
JF ESTQRE & FF, JF aD0 g FF, JF =sLABEL £ FF,
J ®STORE & FF, J L]ols] EFF, J 2LABEL & FF)
FETCH=STORE 3 FF, FETCH=DO EFF, FETCHaLABEL £ FF,
STOBE®STORE & TT, STORE=DO E FFy STOREsLABEL 2 FF,
0o *STORE £ FF, 0o 00 ETT, Do aLABEL 2 FF,
LABEL®STORE E FF, LABEL=DO g FF, LABELSLAREL & TT,

65

PROGRAM PROOF AND MANIPULATION

APPENDIX 2: command sequence for McCarthy-Painter lemma

GOAL Ve ap lewfse e11MT(ocompe e,ap)Ssvof(ap) | ((MSECe,avof mp))dpdotisp)),
‘Yo, lswfae eltlgwft{compe @)3TT,
Yo, |swfna elifoount{oompe 0)}30)STT}

TRY & INDUCT 56)

TRY 1 SIMPL}
LABEL INDHYP)
o e L)
RY 1 CASES wWeagtunitigl}
LABEL TT) Sl P et
TRY 1 CASES type es_N}
TRY 4 SIMPL BY ,FMTi, ,FMSE; ,FCOMPE,,FISHFT1,,FCOUNT)
TRY 2)8S=,TT)SINPL,TTJQED}
TRY 3 CASES typy o3.f)
_TRY i SUBST ,EcdMBE)
BSe, TTISIMFL,TTJUSE BOTHI =}S5+,TT}
INCL=/11SS#e) INCLn=;2}554a) [NCL===,3}SS¢a}
TRY 4 CONJ)
TRY 1 SIMPL}
TRY 1 USE COUNTYL)
TRY 1)
APPL , INDRYP+2,gr0l0f o}
LABEL CARGL}
SIMPL=}QED}
TRY 2 USE COUNTL}
TRY 1)
APPL ,INDHYR+2,arg20¢ ¢
LABEL CARG2!
SIMPL=JQED)
LABEL- CDO}
TRY 2 SIMPL.BY ,FCOUNT}
TRY 2 SIMPL BY ,FISHFTL,==}
SIMPL lswit(oompg(argios o)) BY FISWFTL,,CARGL)
SIMPL Tguft(compe(nprg2,t o)) BY ,FISWFTYL,,CARG2;
USE THM3 =,,CB0)SS+e}
USE COUNTY ,CARG2,,CDO;
USE THM3 wewmm,=)854u}
APPL ,INDHYP,ppolof e)SIMPL=)SS=}
APPL ,INDHYP,arg20f 8)SIMPL=)SS¢=}
TRY 3 SUBST ,FMSE 0CC 1)
SS=168)
TRY 1 SIMPL)
SS+1@281 . -
TRY 1 SIMPL BY FMT4i).
TRY 235S=,TTJSIMPL,TTIQED)
TRY 3555=,TTISIMPL,TT}QED}
TBY 2 SIMPL} . ’
TRY 3 SIMPL}

66

MILNER AND WEYHRAUCH

.~0)0QUWOd)34ME| 11 (BINN ¢ op ¢ (L(de)jopp((aa)joasre)3SH) | (dB)j0A8) § (der{e)edwca)il 1y (8)Nn * de oA tatl |

. lllﬂllllllllll!tllld q — _
‘867 L6 A6 §ST IdHIS === {gST 6T} 1L = AN 65Tl | 1|
. '3WNSSYS === (g&T) NN 2 (N"=(s)e0A3) ggT| | N

J NN = (N"E(e)edA%) 3INNSSVS ¢ IL = (0"((®)0dUOD)3UAD0) 1f (@7)Ufj08)M ¢ LL = ((®)eduod)dsms| f1 ¢
~814)UnjeB M ¢ (((a8))OPAR((AS) OABIE)GSH) | (IR))0A8) = (AR/(w)oduos) K P! (01})Unje0 M ZaTaTa2aTa AML] | [
R enms | ““

smeee axa |

'9<T 59T 64T LvT 99T 20T BT eST 22T £2T 9TT 2IT ItT 62

- TOT 28 LL-TL.£9 ST TT BT 6 S A8 1dHIS =e= (96T 6ST) LL = (@x((9)eduoo)suncs) Iy (efj)unjeB m ¢ 1 = ((e)eduod
SIFIMS| 10 (ef)unjesyn ¢ (((a8)40pap((as) joasa)agn) [{dB)40AB) = (dsi(e)aduot)ily 11 (e un o8 u 6t | b
© 'JuNSSYS maw (94T) 1L T (N"ule)edAdy 9gr] || | |
13

x L . L ‘20T 9bT LbT BET @bl
(N"2(0)8dA%) -3dNSSYS | LL £ (@=((©)8AW00)UAOS) 11 {Bfsjunzeesm ¢ L) £ ((9)pdwos)3 M| 1) (

mu..junwnﬁn.v;n>...,mmzv_Ana,.o>n, 2 (9S1(0)oduod) Il 1 (ee)ungesm TATHTHZHTS ANL] |

|>m4mz_m hh
~0fpyungesymM ¢ (¢

'INNSSYS =~ lggTd UL 2 (0fs)unjeem gglf

.) '
@u((o)odwos)Iunod) i (ofjjufgassm ¢ L1 S ((e)edwodyy,

~810dA3) B3SYD . LL.x (@f;)unjesun 3JWASEYS 1 1L 3 (@m([
2 AS) & (as'(ejeduod) i V! (eij)unjesM TeTazaTs AL

L erjjunjesym ¢ A.“nnv~munu.An-v~@>n..vumzv_nnnv>m

*{8f))unses M sIsY) Al E (pe((e)ddWo0d)aufod) 1| (el ;junzesim ¢ 1j = ((9)oquo2)iy
~ME| LI (et yunjesm ¢ (((d8)40pap({de))aA?o)ISNH) | (US)40AS) 5 (A81L0)0dWOO) N tF (8) Unjes Th2ZHTH AL ¢
'INNSSY === (HST) Ll £ (ge((9)®0w0%§3uncd) §1 (s * 8a peil
. ‘ANNSSY === (£6F) - LL = ((0)0aWadygams| 11 ()} * o, g5t
*IHNSSY === (257) (((d8) JoPdR((dE)}OAS) 3gH) | (dB)J0AR) = (dat(d)eauad) iy 11 n-.h.mn- o, hum““ (
. yisav. 1l = (o=
~(®)eduoo)junco) 14 (e)) * ea ¢ [1 ((®)oduoo)a ma| t1 (e)y * oA ¢ ({(de),0pdp{(G8))0AE/0)ASH) | (dR) j6A8) 5 ¢de !
-8)9CUCO)LIN 11 ()} * ds @A ANNSSY § LL = (ge((e)sdudo)sunoe) Iy (ef)un e m oA ¢ 11 5 ((e duood)gme| 11 (e
!

~THIUN)OENM T TBA 1 {((08)40PER((US) 40AB 0)ISH) | (U8} 40A6) = taB/{e)edwoo) i 11 (87)uUnee m * dg

A 2aTw-AlLl

wde

- mmdw

*IGHLS v 1Lz (pai((e sdwedyaunoo) 1 (e)nn * ea ¢ 1l = (¢

~09)3 M| 1 tejan * 04 ¢ (((98)40p0p((av)}0ABTe)ISH) | (dB), 0A0) = (defceyeaiodyin 1} (ojnn ' ds sp Tate avi] “
: cacsacstscunds

* 96 LOonaNI Ll 2 (@%((e)edwoo)junco) 1 ..v“n*z._ ‘oA * Ll = ((9)edwoo)a
W

~4ME| 11 (e)eByME| ¢ @A ¢ (((d8)40paF((a8)0AGTe)I5N) | (8)40AR) = (ds¢(a)oaue0) (0)oE Ma| ' da oA Ty AML|

LT T EL T T T YT Y) Jogny e

* "dW1s Ll & (2%((e)oauoa)3unco) 11 (0)AN ¥ ep ¢ LI = (to)edu

Bwwa} Jaluled-Ayliedon ayi o yooud g XIANIddY

67

PROGRAM PROOF AND MANIPULATION

VLT 9PT A8 VWIS, UL -E ((ofeducojunjedico)dgus| P! (e¢jyunjet,m ZataTeafeiezate AL _ _ m _ _ m
‘ lllll.lllll.l.ldllll‘ —__ _ _ _
. . =) .)) e '19% 09% 55t
@27 AB £4T VdNIS <= (19T 09T 6T ¢6T) AL B (gw((e‘sduwoajunjeduoojjuncey ! gelyjufsesiu 'n« _ “ “ “ “ “
'3LT 69t ah,aou.u.n -ed (19
~F 09T GST bST) LL & (B={C((TINP((®)40d0P00))8 ({8),4028.u)oduoc)el(e) 0TBJu)aduco))zunce) nnﬂ“ “ ” “ “ ”
stesaga --

) L L5) T T T R : T 8471

JLNNOD 350 === (19T 09T 6T ¥&T) Ll E .n.ﬁ..4~znﬁ..,‘onoeonvug...,.ouaL-,.nsooyvuczoov Nhﬂ" _ | “ [
'PST 2T £AT 6L €L ST TT 0% 6.6 AH GdHIS :e== 11 & Aa..64_2¢“..,.onouoo,,,»caoo, 17210 | |
‘29T AB TdWlsS L = (BeCCIINS((@)4000900)))3UN0Y)Y . ZASHTHTATHTHCATHTHZATS AYL] | |
. R - " _ W — "
‘99T Ag 69T dWIS =ma (T9T 89T €ST bsT) L £ Nn.w-.w.°~wL¢UWQEoo,p==oo. /5 2 T T I O Y A
) '(0) 02848 pGT Tddy dee ¢
ZpsT) n...*ouuhnvn.aa Pp...,... .Au z .A..Fomuh.,nﬁaa.“au...U-aeoo_acsoo,'....v. gyl . ooﬂ_ 1 |
1L £ (B9(((0)4020doyeauod)juncoy) T#SxTATH#THTHSATHTHZATA ANl " m
.) o , T , C o e e o T . tTin
-N03 3sn 1l 2 (@u{(¢IINP((9)40d0500))0((0)4020dR)00WOD))ZUNCDY) Z#THTHTATHCATHTHERT S >¢h_ ﬁ * i
- ".II". - -
) ietessecsasecscac=ess= | |
‘GPT A £9T 1dHIS -wma (T9T P9T S6T baT) Ll (Be(((9))0TB4u)8aW00)3UN0D) g9%! | | | (|
: . '{0) 407848 HGT Tddy ===
- (baT) l(e)sorsdw)iinn? Fh.no,.p. OXT £ ((0),01BIw)I(NN! (ga({ojogquoajsuncie{oidi® ox1 29t | {0
il {ome((o)joTBIe)0dwosyaunco) TATATAT#TASHTATRZRT ANL| “ “ “ “
lllll‘lllll'llllllll ol
o .) . . . “TINNGO 3Sn 1l
<3 (@n(CCLINBL(8)40d0200))0((0))02BIW)0dLO2)@((a)0TBIR)BAUO0)I3UNDOY THTHTATHSATHTRZATH AUL] | | m “ “
- 3 B .. @cspesuuasssaastncan
' dWis L4 B (p=((e'sduodyun eduod)junon) 1! (er iunjes M TaTeTeEATITHSHTH ANL “ “ _
_PFNOD Aoz {@u({®0dWOC)UN,;PAWOO)IUACD) 11 (B7,5UnyoB)M ¢ LL 5 ((0'0dUOB)UNySdWO0)3 ME| 11 (0)un o8 sim 2 g
~06)}opdy((0R) JOABIB)ISK)| (dB) JOAB) = (AE! (U 8dUOO UN OTWOB)LN LI ;84 UnyeB N THTeonTaT#SHTE ANL| _ 1 [
= memammasE=acam=s _ _
‘29T TONT === (T9T 097 g6T) Ll = ((8)4028dw); 993 ||
‘R9T_TONT == (197 @97 g4T) AL E ((®)joTBle)y cot| [| |
*9T VINI wee (79T 897 SST) LL = ((0)40d0)do8| (224 (.
‘297 £Hi08 3SN ===~ (T9T B9T GGT) LL = ((9)402B4w)4 ! L1 = ({0)40TBJu)} ' LL = ((b)j000)doB| £9%| Il
'79% 89T 45 A8 56T TdWIS =we (19T @97 66T) LL = (010)ozBdv) U C((9)40T8d8) v (o) odosdosyyy zoT| [[[| |
SYIUNSSYS wes (T9T) Ll 3"cle)edAd) 19T | | | W
. . . o . . Ly
.lsdns 11z .u 8)edA3) IWASSYS J Ll = (pu({e)edwos)juncd) 1§ (ef)URoa M ¢ LL = ((B)OdWOS)YLME| L1 ¢91))
SUNjes M ¢ (((dB) 0 ﬁﬁnu.;o>n.o,um:v_“a., OAB) £ (357(0)sdwod) LW b1 (efyyungesskh TacaTHTHZHTH AUL] “ [
. o sscossssssscisccsese _. _
*3WNSSYS waw (P9Y) Jd4 = (N"=(®)0dA3) potl | [1)

R) , R (3~ z¢e)od
~A3) 8§38VD 34 = (N"3(w)eak3) JWNSSYS ¢ LL = (B5((@)edwo0)4uUnod) 1} (e’ ungesym ¢ LL = {(0)8dWoo)ysMe| 1 (
~00J)UNJeB M ¢ (((1B)4OopdR((dE)}RASIR)ISH)|(US)JOAB) I (OB (0)0dWEd) LI L1 (B4 UneSsm CHTaTHZHTE AML] | [| |

| I

68

MILNER AND WEYHRAUCH

e S - - e p— —_—y

.

‘B6T B9T LG A8 SST dWIS -=ae {@6T @91 mmﬂ, 1L £ Nn ﬁo«_ _

'3WNSSYS === {G6T) NN = (3"a{0)0dAY) g6t |
gu{(e)eduooyjunoo) 1} (ol yungemym ¢ 1] 8 {(0)oauoayy M|
m.no.ﬁ.v.neoo,»z......,cayan.zN*naﬁgﬂamaﬂu >¢k_ m
ﬁ
H
_

——,

N1} ‘_g.._—v,.g —— _...._..._..-.u—-q.. —_———
s

h :
ﬁ

(37a(0)0dA3}) 3IWASSYS | Ll =
Unjesm ¢ o

{€6)}0PUY((dS) jOARTR)ISH) | {C5) 4OAS

.. LPT ONISN et pmm:m === (797 091 ST ¥ST 26%) Ll = (pa((0)edwoo)3unco) §1 (8¢)unsesum ¢ gy
~Ms| B (et yunjesm e ...nnvsonnu.An-v.o>-..vumz._.n-v~o>nv E (def(e)equodyly ¢! (oryunjesin omﬂ_

»

__mo_”__m._m_u_

‘48T GLT ena
|

m.A....nEou,c:..nEoov».x
tofyjunsoeim ggy(| |

- (T9T 89T SST 8T 2sT) . Ll 3 (@g=l(e 9duoO)UNjedWOO)IUNGO) 11 (efy)Unses,m ¢ L]
~dIUNJOE M ¢ A.Ane,.ounw..nnv.n>u..“um:,_.nnvbo>-. 2 ,n-.ﬁ...neoo.:z..nEouv»z 1

i
pesuccsumacasamacan |
. . . 'T 230 et INISN 98T 1SgNS == _ﬂoﬂ
~PST 26T) (((9B)}oPAP((ds) 0ARTB)IGH) [{U6)0AE) £ Anu.ﬂo..neooucs..nsoo,kz 18 qetyyungengm z83([| 1
mEumssanesssssstanae | | | |
'dot 0.7 $9% 09T ST @S £9 A
~K1S .=am (T9T 09T c6T 5T 257) FA.n-v.ounu.,n.,.o>n...n..::.*.n..o.;ouu;.,umz.A..n...oﬂuh-.u H'(a)iodo)d
~0)00A3)) 1 (0)Sw(N"H(D)0CA3))" © ©X1)|(d8)40A8) = (ds?(0foduoo)unjeduod)lit {1 fev junjes m ﬂ_ _ _ _ _

lllllillllllllllllll

W

——) ——— —— -;—,_ i e e e

v9T 28T @41 93T 23T 11T nsﬂ 6 T6 &

=£9 ST TT BT 6 A8 TdHWIS === (T9T 097 ST 25T) nnnnn,»ounuﬁA.n.v.o>n.ﬂ..‘ouuﬁavumz...anv;o>n.,.,.nﬂakuvum !
~0)dON) | (dB) ;0A8) = ..Ann..ﬁ-v.oﬂu.-v.nsoovpz..“.“~omokuv.nsoovpz.ﬁ4~zwnnev.naoqoo.vvkz 83 | [|

"0pT A8 1dWIS ...nu,.ovnuhﬁ.nu.‘o>..ﬁ.,¥ounL-,umz.,~n.vyo>n.A.,.oﬂuh..um:.ﬁ.,.onovmoz__hn

-.nn.A..v~gﬂuL.v.nEoovpz....,;omu;..oagoo.hz\.dnzq.A..monouoo..,» TRTACKIATACATATAZNTN AL “ *.

Eosaslas

' qdils ..ﬁn»v>ounuﬁ.nnv¥o>-..vn.g::...u.a.,.owuh.,umz..-...,.oﬂahuvmwz...,;onovmozqﬂu "ste)8dA
00A3)) " § 8X]1)[(08)0A8) = (dR!(8’0dWOO)UN,EAWOS)LH 11 (004)UN S M TROATHTWEATHTHZATE AYL| _

Ly L e

m
W
| h |
8) OAg
(1
Py
Yile)s
{1
I i _
L . . *T 000 g£% LSENS
~OPAP((08)40AB10)3GH) | (U8)40AR) 3 (U8 (e’0dWOS)UR aduOB)LY 1 (B14IUNLOB M DUTHTHSHTHTHEATE ANL| _ %
llll'llll'.'l'lllll.
80T A8 £8T TdWIS === (197 QOﬁ nmﬂ Nm
v 4028dw)eaduoo)TiN * nu» m m
. : o . . (9)4028"8 26T ddV -e==- (26T) .,.oma] .::..
-OPaR((98)40AB1®) 35) (G) 40AB) e tO))t ds O3 & ({%)40zBdwiE(nnt(dse(® VMQEouvpz.. y#)+ ds » cosf [0 0 |
. '$9T. 80T AB TBT AdHIS mes Aﬂoﬂ 297 64T 267)
unuv~ounqnAnnvwo>-...v~oﬂu;-vumz._.nu.‘o>-. H .n-....-;oau.¢vonsoo.ﬁ.o“;oaugsw.nsoovﬂpz dBA . zat] i1
. . . 1(9))0TBdw 26T -UddY men (2GT) - (+8)407B4w) .3:..*.n.
-ououﬁ.nmv.o>n..vumz,_Ann.,o>a....,uv. g8 8X1 & ({8)4OT649)E(NNY (B (8)0dWOd) e (8)4)* 68 oX1 1ot

. ‘64T 9LT SWHL 3SN === (75T 09T g4t »ST) A..ﬁquzunAouyonouoovu..ﬁovyomuh
~Wod))LWe(((e)joT8du)0duwoo) Ln) E Aﬁnﬁqnzeaa.v;onoeonuvsa.o-yomngnvoneoove.A.vuoﬂogdv-nsoouvhz eevt-| (11

__:__,u PR

R ' 997
-nuvypunun.nnv_o)n...vuouu;-vumz._.nnv.o>1. s .nn..a.vmauu;uv.nsoo

~ BLT TLNNOD 3SN wa=. (19T 093 .65 peT) Ll .Z (Bu(({TINP((0)40d0500))a{ (o) 020d050dua0))3unod) 27| |

i 1]
: . . : 'TLT LT gWHL 3SN =we (19T 09T g%
=) CCEUNL(9)40d0900)) LWe(((9) 0zBw)0auo0 i LN} & (((T1INg{(®)40d900))0l (9)s02648)8duas))Ln AT I]
i

<9¥T L2T AB (((0))02BIv)jeduon)djus| TdNIS s== (T9T B9T 44T #4T) LL = (o) jozodv)eduocis muey. el i
-9 L2T AB (1(0)}0T0I%)00u00)I N8| VWIS W=~ (T9T B9T 54T $ST) LL = (((9))0T0UN)eduon s nE] “ou |
. I

- 9YT OLT (2T A8 TdWIS === (10T 29T 6T ¥GT) L4 & ((o'ediioo)un edudo)ame| 4t (e’ iunsengm g2T(| |

69

19T ‘091 ‘SST “pST sdeis uo spuadop /[aul| ‘ojdwexs 10j ‘sesayyuared ul sepuspuadap JO ISI] S} £Q pamo[jo] st dais yoeq “BUUUI] 31f) JO Jood
[ewI10] ¥ Se peal oq ued nojulid oy} Jo sdais parsquinu oy], 'uorssardxs punoduioo e SI 2 JI U} pue SWERU ® SI 2 JI Is1Y (2)add] U0 sased Aq Aem
pIemionysrens g ul spacooid usy) yooid 2yl ‘ondy sI (2) unfosfm Sumunssy HST ‘€ST “ZST sda1s 3e pajels ale sesayodAy uononput oy L (2112 D<V)
=(01N ‘d<¥) 10] uojBIA2IqqQE UE SI JI A[[ENIOY "D =g U} [[=} JI SulueswW se pajordiojul oq Ued D =g ::}/ WIOJ 97} JO S9OUUIS UL i, YL,
‘THIH L Y.L 1e parels st uohjonpur sy) Jo dols urewr 9y, “sexoq Suisn £q Aem JRINIBU IS} UL PSISOU AIB s[e0Iqns 9A1S$290ns 9y} Jooid ® Jo yno-jurid
suryoew! ay} uy [+ T4 X ¥.L ¥ UONONpUI Y] JO aseD 3sBQ Y1 pue ‘[H f Y.L 18 PaleIs sI [eoF urews oy, ‘stweldold 90Inos psuriof-fjomM wo uoijonpul
[eINIONI)S B £Q A[SNOSUB)MWIS PIAOId oIk §19B] 9211] 953Y], “weidold jo51e] PSWIO]-[[oM B SI 2 TOISSIdX 20IN0S PSULIOJ-[[am & JO (2)adwioo sni) pue
@ St moIssaxdxs pa[Idwiod B JO 74102 Y] Jeyl SMOUS OS[e)] “eWwd] Iaured-AqlIe)dJA 93 1snl uey) orour saaold A[jenior 10y pajussard jooid ayj,

‘Tp2 TST LONOND es= 1L = (@a{{6)0dwo®)3uned) 3| (ejesMa[* o4 ¢ ;) & {(e}sauoc

JO)AIMBL 11 (0)BBNE| ' OA f (({U8),OPAR((OB)JOASIE)ISH) | (dB)JQAB) 3 (dS7(0)eduoo) W 11 (0)8s mB| * dB oA uam“
CL LI T F P e YT T

'@92- HLS8Y mes (g7 26T) Ll = (0 .RA. SCUODIRURGOY Ty (B 04)UR BN ¥ Bp ¢ QL E {(e)sduesjy mua|

1P (erjyunjesgm ¢ ex ¢ ({(0B))0Pdp((QU8)40ABe)ISH) | (dE)j0AR) 5 .n..g.,.nsoovhz R,cs..u.z * ds ea 3p2|

ooa L6T S6T (81))UNjus;M S3SYD -==e (§ST 267) AL £ {@m{(®)eduosysuncol iy (914)unsenn
LOWOD)RME] 11 (84)unjeR M ¢ ({(d8)40paR((G5)jOABTO)YISK) | (AB)40AB) = (98¢ (6)80wod lK st (0!)unjes M eew
.) 1967, AG “TdHIS === 106T) L1 E (2n(tejscwondaunos) it _terydunjesm ¢ L1 = ((o
L0034 4ME| 11 (00))unyes M ¢ (((de),0pdp((08)0AB¢8)}3ISH)[(de);0A8) £ (de/(0)0diod) Iy 31 (e’ Junes M 66T

) YIUASSYS === (86F) 44 T lef)unjesym st
* JduWIS 44 = :c_.:.n_.z IWASSYS | LL S (@s{(s)eduog)junos) 1t ...:S esgM ¢ LL'E ((e)oauod)y
S0 (1))unjasym ¢ (((98))0PAR({TB)JOAETR)ISH) [(OB)JOAE) 2 (AR (6)0dWOL)LW 1 (B¢} UN eEM SATHZATA ANLI

‘96% A8 VdHIS wes .ooﬂu 112 (g« .aov.asoovpc:oov [B A..yvcayonyz L -]
8)40A

|
|
m
_
M
LO0)AJMSL 11 (B! Un o8 M ¢ C((OB),0PAP((da) JOASI8)ISH) [{aB)40A8) = (dat(ejodloo)ll 15 (0')ufeem L6T] m
w

-

|

¢

{

|

,

i

|

|

I

—_— n——————— n——v———

“IHNSSYS -e=n- {96T) NN £ tOfsIUN 084N 94T
((e)eduoo)junod) 11 (efsunzesm * 1L = ((8)edwod)
mﬁnu::.nsoo:z::..::33_:__. ma:u:g >E._

b dUIS NN S (@4)unyes,m IWNSSYS | Li £ (g
1) (8f)UnjeB M ¢ (((dB)40pAR((dS)j0ASIR)ISH) | (TUB) jOAS)

'P6T 6ST LGT (N”u(0)0dA3) S3SY) === {5gT H&T 2ST) Ll = hunhﬁ-.-neoo-»c:oav 1e (0fj)UnjesSm ¢ §L 3 ((v
L00)3 M8 | 1t (ef yunses M ¢ (((ds), opdpl(ds)joABre)ISH) | (ds)0n8) = (d8 ¢ (8)8QWOSY LW t1 (0¢3)unesm 131
.o.onsooupcnoov 11 (efj)unjeB M ¢ 1) 3 (

*£6T T6T 68T (3"e(8)0dA3) S3SV) === (29T 6T bET 25T) Ll = (um(
0AS) £ (Os’(e)edwod)ly ! (e¢y)ufjesym o1

SYRAME| L (S0)Un e M ¢ (((08)40paR((d5),0AB8)ISH) | (d8) 0A

- . m *INASSYS -m=m (26T) 44 = (3° x{e)edht) zetl
(37=(®)8dA3) 3UASSYS 1 4L Z (Pa({e)eqwe0)3UR0d) 11 (8! uNjeeyM ¢ L] E ((9)0dWEI) NS
)4OPAR((AE) jOABIB)ISH) | (UB)JOAB) ‘= (AST(8)oduos) i 1 (¢))UN O8N SHENTHTHZATA AMLI

S PSR |

|

e |

*26T 09T LS AD 66T NdWIS =e= (26T 29T mmag 1.2 Nn 671! “

1 hh —
(¢

unjes;mM ¢ nwn

l
|
(o
[
|
|
|
!
|
|

PROGRAM PROOF AND MANIPULATION

70

