IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-8, NO. 2, MARCH 1982 107

Code Optimization Considerations in List
Processing Systems

HANAN §AMET, MEMBER, IEEE

Abstract—Code optimization is characterized as a time versus space
tradeoff. Space optimizations are further decomposed into static and
dynamic categories. Using this characterization, the optimization re-
quirements of a list processing language such as LISP are examined.
Scrutiny of the structure of programs written in such a language reveals
that traditional code optimization techniques have little benefit. In-
stead, a collection of low-level time and static space optimizations is
seen to lead to a potential decrease in space and execution time. Dy-
namic space optimization is also examined in the context of reducing
the frequency of occurrence of garbage collection. Alternatively, some
language extensions are proposed which reduce the amount of storage
that needs to be allocated, and hence may result in a decrease in the
frequency of garbage collection.

Index Terms—Code optimization, compilers, garbage collection,
LISP, list processing, programming language design.

I. INTRODUCTION

ITH the growing interest in the field of artificial intel-

ligence has come an increase in computing involving
symbolic expressions. This interest has been coupled with the
development of a variety of programming languages (e.g., [4],
[19]). Many of these languages are interpreter-driven and are
characterized by a small set of basic primitives. The use of an
interpreter has been tolerated by most users by virtue of the
smallness of their application. Today, the increasing use of
these languages in knowledge-based systems (e.g., MYCIN
[23]) has led to the resurfacing of the efficiency problem.
The most obvious solution to this problem is to use a com-
piler. However, the nature of the programs written in such
languages (e.g., the use of EVAL in LISP [16]) has not tradi-
tionally lent itself to very efficient code. But see MDL [10],
[15] where type declarations are used to generate improved
code.

Work in code optimization can be characterized, in part, as
a space versus time tradeoff. At one extreme is loop unrolling
[1], where loops are eliminated in favor of code repetition.
At another extreme are techniques such as [11] which are
aimed at finding subroutines. This is a logical extension of
work done in common subexpression elimination. Another
example of the space versus time tradeoff is strength reduction
[2].

Optimizations in space can be further broken down into

Manuscript received December 22, 1978; revised November 10, 1980.
A preliminary version of this paper was presented in part at the Fifth
International Conference on the Implementation and Design of Algo-
rithmic Languages, Rennes, I'rance, 1977.

The author is with the Department of Computer Science, University
of Maryland, College Park, MD 20742.

static and dynamic categories. In conventional algebraic lan-
guages most of the attention has been focused on static space
optimizations. In such cases reducing the size of the final ob-
ject program (i.e., the space occupied by it) has been the prime
consideration. Dynamic space optimization is more concerned
with the run-time behavior of a program. Thus, it is the true
analog of traditional time optimization since they both share
the common goal of affecting execution time behavior. An
example of a dynamic space optimization is a reduction in the
amount of stack space required by the object program. As
another example, consider parallel blocks in an ALGOL 60
[17] program which use the same local storage.

In this paper we do not describe a specific implementation;
instead we use the above characterizations of optimization to
examine some of the considerations that must be taken into
account when attempting to obtain a code optimizer for a
list processing language. Our presentation consists of two
parts. First, we discuss some time and static space optimiza-
tions. These are low-level optimization techniques which are
seen to have a direct effect on the amount of space occupied
by the program and on the execution time of the program.
Next, we explore dynamic space optimizations whose effect
is not directly discernible. In the domain of list processing,
these optimizations deal with reducing the frequency of
garbage collection.

In order to illustrate our ideas we use LISP1.6 [18] (a vari-
ant of LISP) as the high-level list processing language and LAP
[18] (a variant of the PDP-10 [8] assembly language) as the
object language. The format of a LAP instruction is (OPCODE
AC ADDR INDEX) where INDEX and ADDR are optional.
OPCODE is a PDP-10 instruction. The AC and INDEX fields
contain numbers between 0 and 15 and denote accumulators.
ADDR denotes the address field. A list of the form (C 0 0 numl
num?2) appearing in the address field of an instruction is inter-
preted as an address of a word containing numl and num2 in
its left and right halves, respectively (assuming that num1 and
num?2 are less than or equal to 15). Our implementation
assumes that NIL is represented by zero and that a LISP cell
occupies one full word where the left half contains CAR and
the right half contains CDR. The stack is used for passing
control between functions. A function of n variables expects
to find its parameters in accumulators 1 - n. Accumulator 1
is used to return the result of the function. Accumulator 12
contains a stack pointer. The meanings of the instructions
should be clear from the adjoining text; nevertheless, the
Appendix contains descriptions of all instructions used in the
text.

0098-5589/82/0300-0107$00.75 © 1982 IEEE

108

II. TIME AND STATIC SPACE OPTIMIZATIONS

Traditional approaches to code optimization work [6] are
primarily oriented towards making use of flow analysis to
yield common subexpression elimination and reduction in
strength of operators. In most list processing systems such
considerations are not as important. Examination of the struc-
ture of typical programs reveals that they consist of a large
number of small, often recursive, modules. Analysis of the
actual programs shows that most of the execution time is
spent in setting up the linkages between functions as well as
for recursion (e.g., an INTERLISP [26] function call may take
up to 350 us in some cases). Thus, it seems that a substantial
payoff can result from optimizing the linkages and making the
recursive step as fast as possible. The latter means that the
execution path which corresponds to an occurrence of a re-
cursive call is optimized at the possible expense of other
execution paths.

Significant reductions in execution time can be obtained by
making use of an adaptive calling sequence. For example, con-
sider a calling sequence convention which requires that all argu-
ments to a function are found in the accumulators. Clearly,
this convention must be adhered to when there is communica-
tion between two different functions. However, in the case of
recursion, this is unnecessary. Observation of a large number
of programs reveals that while preparing for a function call, a
stack is often used for saving values of arguments that have
already been computed. Once all of the arguments have been
computed, the accumulators are loaded with the appropriate
values and the function call occurs. However, in most in-
stances the first task performed by the function is to save its
arguments on the stack. The amount of extraneous data
shuffling should be obvious.

A calling sequence which uses the stack exclusively has its
own share of problems. There is a need for more memory to
hold the stack and extra memory operations are necessary
when items are accessed from the stack. Data shuffling re-
mains a problem when functions invoke other functions with
many of the same variables in the same argument positions.
The difficulty is that room must be made for the return ad-
dress. One solution is to have two stacks—a parameter stack
and a control stack [12]. However, this solution has the dis-
advantage that much space must be used (i.e., two stacks
rather than one) as well as requiring that the parameters be
on the stack, whereas in a calling sequence which makes use of
accumulators, only the parameters required for future refer-
ence need to be saved on the stack. The reason a calling se-
quence which makes use of accumulators appears so poor is
that only rarely is there compliance with the previous criterion.
Most compilers fail to make the distinction between what
should and should not be saved on the stack.

We propose that for an internal recursive call a mixed calling
sequence might be appropriate. In this case some of the param-
eters are found on the stack and others are found in the ac-
cumulators. In such a case, if there is more computing to be
done within the function after the recursive call, then it is
necessary to place the return address on the stack prior to the
placement of the arguments on the stack. For example, con-
sider the function START of four arguments in Fig. 1. On the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-8, NO. 2, MARCH 1982

‘ START (PUSH 12 1) W START (PUSH 12 4)
! (Pusk 12 2) (PUSH 12 3)
l (PUSH 12 3) (PUSH 12 2)
: (PUSK 12 &) NEWSTRT (PUSH 12 1)

‘; = save arguments on stack = save arquments on stack

(PUSH 12 (C 0 O RESUME))

Compute argument for acc.

i {PUSH 12 1) = save the return address
| Compute argument for acc.2 Compute argument for acc.4
i (PUSH 12 1) (PUSH 12 1)

Compute argument for acc.3 Compute argument for acc.3

(PUSH 12 1) (PUSH 12 1)

Compute arqument for acc.4 Compute argument for acc.?
! (MOVE 4 1) (PUSH 12 1)

(MOVE 1 -2 12) Compute argument for acc.l

(MOVE 2 -1 12} {JRST 0 NEWSTRT)

EMOVE 3012) = jump to NEWSTRT

SUB 12 {(C 0 0 3 3}) RESUME Continue with rest of

\

i

i = set up calling sequence computation
| by restoring arguments .

: from the stack
(PUSKJ 12 START)
= perform the recursion END
Continue with rest of

! (SUB 12 (C0 0 4 4))
i 2
\‘ computation

(POPJ 12)

END (SUB 12 (C 0 0 4 4))
(POPJ 12)

Fig. 1. Comparison of accumulator and mixed calling sequences.

left, the normal LAP encoding is given, while on the right an
encoding is given which makes use of a mixed calling sequence.
Note that the order of computing arguments was rearranged.
Such rearranging must be capable of being proved to yield
equivalent results with the original encoding (see, e.g., [22]).
Also observe a shift in the location of the parameters to the
function at function entry. In the case of entry from outside
of the function, accumulators 1-4 will contain the parameters;
whereas if the entry was from within the function, then only
accumulator 1 contains a parameter. This again requires a
proof that accumulators 2-4 are never referenced past the
label NEWSTRT with the assumption that they contain the
parameters to the function.

Another variation of calling sequence rearrangement can be
seen in Fig. 2 (note the use of MLISP [24]—an ALGOL-like
version of LISP), where the function, REVERSE of [22], to
reverse the links of a list is encoded with the aid of an auxil-
iary function REVERS]. However, instead of the customary
formulation of the auxiliary function, we have interchanged
the first and second arguments. Thus, the accumulating vari-
able is the first argument rather than the second. The LAP
encoding, obtained by a hand coding process, demonstrates
an internal calling sequence where L is in accumulator 3
and RL is in accumulator 1. This is useful because XCONS,
an equivalent of CONS with the arguments reversed, i.e.,
XCONS(B,A)=CONS(A,B), is known to leave all accumula-
tors but 1 and 2 unchanged. Thus, there is no need to save L
or CDR(L) while computing CONS(CAR(L),RL). Note that
to all external functions, REVERSI still appears to require
two arguments in accumulators 1 and 2.

The LAP encoding in Fig. 3 corresponds to the one given in
[22] and serves to illustrate the notions expressed earlier with
respect to optimizing the execution path corresponding to
recursion.

1) Use is made of known values of predicates in order to en-
able bypassing the start of the program when recursion occurs.

2) Instructions are used which accomplish two tasks at once.
(SKIPN 3 2) results in a test of the nullness of L as well as a

SAMET: CONSIDERATIONS IN LIST PROCESSING SYSTEMS

REVERSE(L) = REVERST(NIL,L)
REVERST(RL,L) = if NULL(L) then RL
else REVERST(CONS(CAR(L),RL),CDR(L))

Fig. 2. MLISP definition of REVERSE,

(LAP REVERS! SUBR}

{SKIPN 3 2) load accumulator 3 with L and
skip if not NIL s
{POPJ 12) return NIL
REV (HLRZ 2 0 3} load accumulator 2 with CAR(L)
(CALL 2(E XCONS)) compute CONS{CAR(L),RL)
(HRRZ 3 0 3) load accumutator 3 with CDR(L)
(JUMPN 3 REV) if COR(L} is not NIL then compute
REVERST{CONS(CAR(L),RL},COR{L))
TAG] {POPJ 12) return

Fig. 3. LAP encoding corresponding to Fig. 2.

load of accumulator 3. (JUMPN 3 REV) results in the test of
the nullness of L as well as recursion. Note that in this case
the execution path corresponding to recursion is optimized in
the sense that (JUMPN 3 REV) is used instead of the sequence
(JUMPE 3 TAG1) followed by an unconditional branch to
REV.

3) Flow analysis is seen to play an important role in the
placement of parameters. In the program at hand, knowledge
that XCONS leaves accumulators 1 and 2 unchanged enables a
shift of a parameter to accumulator 3, thereby avoiding the
data shuffling which would have been inevitable had accumula-
tor 2 been used.

Static space optimizations are also important. One of the
principal complaints about INTERLISP, an otherwise excel-
lent LISP system, is that the compiled code is extremely bulky.
As an example of a technique useful in static space optimiza-
tion, recall Fig. 1 where the return address was pushed on the
stack prior to the computation of the parameters to the func-
tion call. The same technique can be used in the following
situation. Suppose that a function tests a number of condi-
tions, and that based on the values of these conditions, other
functions are executed (similar to a CASE statement in ALGOL).
Upon termination, all of these functions must return to a com-
mon point and execute a segment of code. For example, con-
sider Fig. 4 where a function epilogue is illustrated. This can
be implemented by executing a branch to the desired loca-
tion of the common code sequence after each of the function
calls, However, a spacewise more efficient approach is to push
the address of the common code sequence on the stack prior
to testing the first condition, and then to invoke the functions
in the various cases via simple branch (nonstack) instructions.
When the invoked functions terminate, they will return via
the stack. Thus, the size of the program has been reduced by a
number of instructions equal to one less than the number of
conditions, with virtually no increase in execution time. The
difference in execution time is the difference between the time
required to execute a PUSH plus an unconditional jump and
the time required to execute a recursive jump (PUSHJ) plus an
unconditional jump.

III. DyNaMIC SPACE OPTIMIZATIONS
Dynamic space optimization is particularly important in
the case of LISP, since unlike most conventional programming
languages it does not have an explicit storage allocation me-
chanism. Storage is allocated whenever a CONS operation is
performed, in which case a cell is allocated from a heap (i.e.,

109

/condi tion\
conditiog\ /condition
function function function function

function epilogue

Fig. 4. Function epilogue.

the free storage list). More importantly, there is no mechanism
for releasing storage. Thus, once the free storage list is ex-
hausted, there are two possible alternatives. One choice is to
quit and emit a message to the effect that storage is exhausted.
The second choice entails determining which of the cells that
have been previously allocated are no longer accessible. This
procedure is known as garbage collection [13] and it is rather
time consuming. This is especially true if most of the cells are
in use, in which case very little storage is reclaimed and the
garbage collection procedure will have to be reinvoked shortly.
Such a situation tends to negate any effect of time optimiza-
tions (however, savings resulting from static space optimiza-
tions are still valid).

The need to do garbage collection is one of the primary de-
ficiencies of LISP and similar list processing languages. This is
because when garbage collection takes place, execution of
the program is suspended until a sufficient amount of storage
is reclaimed. The suspension of execution is extremely unde-
sirable in real-time applications. A number of alternatives -
exist, one of which is to possibly have a second processor
whose sole task is to perform garbage collection. Thus, it is
seen that in the ideal situation garbage collection is always
occurring in parallel with the main process (for an interesting
exposition on the problems associated with parallel garbage
collection see [25]). Another alternative has been proposed
in [3] which is termed “on the fly” garbage collection. In
such a case each time a CONS operation occurs a small seg-
ment of the space is garbage collected. The advantage of such
a method is that the garbage collection process is distributed
over time and requires a constant amount of time per node.
The disadvantage is that it requires twice the space that is
being garbage collected.

In Section II we discussed a number of low-level time and
static space optimizations. Individually, they are not earth-
shattering. However, when viewed collectively, significant
reductions in total space and time can be observed. Some of
these optimizations have additional benefits. Specifically,
those optimizations which also have the effect of reducing
the size of the stack should reduce the number of active links
that will need to be pursued during the marking phase of
garbage collection. This means that the number of cells that
will be marked has a high probability of decreasing with the
result that a greater fraction of the space will be garbage,
hence leading to more space being reclaimed. We have no
data with respect to the effect of our optimizations on garbage
collection. However, one rather complex program HIER [21],
which was optimized using the techniques presented in Section
I, occupied 72 percent of the space needed by the original

110

function, was 40 percent faster in execution time, and required
50 percent of the stack space needed by the original function.
The last reduction has an immediate benefit in the sense that
the amount of stack space necessary can be reduced, thereby
decreasing the likelihood of stack overflow. Similar results
were also obtained for numerous other functions (see [20]
and [22]). p
Another approach to reducing the need to do garbage col-
lection at run-time is termed “compile-time garbage collec-
tion” [7]. In this method algorithms which use CONS cells
are converted by the compiler to “equivalent” algorithms
which do not perform CONS operations. This is achieved by
changing links in the list structure rather than working on a
new copy of the data structure. For example, the algorithm
given in Fig. 2 to reverse the links of a list can be encoded
using compile-time garbage collection in the following manner:

REVERSE(L) = REVERS2(L,NIL);
REVERS2(L,RL) = if NULL L then RL
else REVERS2(CDR L,RPLACD(L,RL));

However, such techniques do not preserve equivalence since
if node-sharing is likely to occur, then all lists in which the
argument to REVERSE appears, will be effected—an unde-
sirable result.

Until now we have seen how dynamic space optimization
can be effected by code optimization. In the case of garbage
collection, an alternative method of reducing its frequency is
to change the mechanism which is used to obtain storage. A
CONS operation is often performed unnecessarily, i.e., a cell
containing the appropriate elements of the pair has already
been allocated. For example, suppose CONS(A,B) has been
performed. Subsequently, it is determined that A is EQ to C.
Now, if it is desired to perform CONS(C,B), then there is in
fact no need to do so since such a cell already exists. This can
be recognized by using a hashing [14] scheme for CONS where
the hashing function has as its arguments the addresses corre-
sponding to the arguments of the CONS. Of course, such an
implementation means that prior to the allocation of a cell
from the free storage list, we must determine if a cell has al-
ready been allocated with the same components. Also note
that when CONS is hashed, the determination of whether a
CONS cell with the same components has already been used
is done at run-time and is unrelated to common subexpression
elimination—a process performed at compile-time.

There are several factors which must be taken into account
when evaluating the hashed CONS method of storage allocation.

1) If side effect operations such as RPLACA and RPLACD
are allowed, then there is a potential for disastrous results due
to node-sharing. '

2) There is a constant need to check if a cell has already
been allocated with the said components. This may prove to
be time consuming. However, as mentioned earlier, in a real-
time application we are more concerned with predictability
of length (i.e., in time) of operations. Nevertheless, the fact
that the amount of time spent to check if a cell has already
been allocated greatly exceeds the average time per cell spent
ina garbage collection process must be taken into consideration.

3) There is a need for hash tables and pointers to keep track

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-8, NO. 2, MARCH 1982

of the various cells in use. Therefore, unless there is a high
factor of duplication (i.e., there are many instances of CONS
cells with the same components) we may find that our avail-
able storage has been cut down significantly. However, these
tables need not be part of the free storage list. This has a
significant meaning in a computer with a limited directly
addressable address space. For example, on certain versions
of a minicomputer such as the PDP-11 [9] which support seg-
ments, it is advantageous to keep the tables in a separate seg-
ment. In such a case we maximize the amount of space that
is capable of being directly addressed with respect to contain-
ing LISP free storage while the bookkeeping is done by making
use of other segments. This can be understood by noting, for
example, that the PDP-11 which has an I (instruction) and (D)
data space capability as well as segmentation; however, a pro-
gram can only directly address 64K bytes of storage. Thus,
we use as much of this space as is possible for the free storage
list. Hashing is one way of maximizing its use since two LISP
cells which have the same CAR and CDR pointers will be
represented by the same word in memory. The actual book-
keeping is done using storage in a separate segment.

Dynamic space optimization may also be achieved by aug-
menting the expressive power of a programming language. In
the case of LISP, a CONS operation is often performed in
order to circumvent the inability to return more than one
result from a LISP function. In such a case a list is formed
whose elements are the results of the function rather than
by use of a special construct as is available in the POP2 [5]
language.

In a LISP system which uses an accumulator to return the
value of the function and a stack for the purpose of program
control, a return of more than one result can be implemented
as follows. Return the first result in an accumulator, and re-
turn the remaining results in a contiguous block of storage
immediately above the top of the stack (which contains the
return address). The only remaining task is to indicate how a
multiple result is to be specified in LISP. In our view the most
natural way is to add the special form RLAMBDA [20] which
we define to be identical to an internal LAMBDA of as many
arguments as there are results being returned and only one
binding, i.e., the function which has more than one result.

For example, consider Fig. 5 where the function G calls the
function H which returns as its result three values. In this
case the variables B, C, and D in function G are bound to
(H1 A), (H2 A), and (H3 A), respectively.

The only distinction with LAMBDA is that the values of
all but the first argument are found on top of the stack. Thus,
if any other function is to be called, then the stack must be
adjusted to save these values below the stack pointer which
points to the top of the stack. A typical solution is to store
the value that was returned in the result accumulator (i.e.,
accumulator 1) in the location pointed at by the stack pointer
(i.e., the stack location which contained the previous return
address), and then increase the stack pointer by a number
equal to the number of values that were returned.

We must also provide a syntactic mechanism for denoting
that more than one result is to be returned. The easiest way
to achieve this is to have, in addition to the property associ-

SAMET: CONSIDERATIONS IN LIST PROCESSING SYSTEMS

(DEFPROP G (LAMBDA EA)
(RLAMBDA (B C D)
@ o)) M BC D))
EXPR 1)

(DEFPROP H (LAMBDA (A)

Hi A
H2 A
H3 A))
EXPR 3)

(DEFPROP SUMDIV (LAMBDA E END DIVISOR

DIVID!)
(RLAMBDA EQUOTIENT REMAINDER)
#*PLUS QUOTLIENT REMAINDER))
(DIVISION DIVIDEND DIVISOR)))
EXPR 1) »

Fig. 5. Examples of functions that return more than one result.

ated with each function denoting its type (e.g., EXPR when
the arguments have been evaluated prior to the function call
and FEXPR if not), a property that indicates the number of
results returned by the function. For example, the function
H in Fig. 5 is an EXPR which returns three results. The actual
act of returning more than one result, say n, is accomplished
by returning the last n values that have been computed. For
example, given a LISP function that returns two results,
the conditional form [COND (pl ell el12) (p2 e21 e22 e23)
(T e31 €32 e33)] would be interpreted to return as its value
ell and el2 if pl is true, 21 and €22 if p2 is true, and €32
and e33 otherwise. We also make the added stipulation that
a function returns the same number of results in all cases.

As an additional example, consider the function DIVISION
which returns as its result the QUOTIENT and the
REMAINDER when integer division is performed on its two
arguments, i.e., the first argument is integer-divided by the
second argument. Fig. 5 shows the use of DIVISION in the
definition of the function SUMDIV of two arguments whose
value is the sum of the quotient and the remainder when
DIVIDEND is integer-divided by DIVISOR.

The above examples lead us to conclude that a list process-
ing language (e.g., LISP) should provide a capability for user
control of the deallocation of cells. The example of LISP’s
current handling of multiple results (e.g., by the construction
of a list) demonstrates a need for deallocation to be performed
by the function to which multiple results are returned. There
is also a potential need for deallocation at function exit as is
done in ALGOL 60. This could be accomplished by use of
specialized CONS operations which leave messages as to the
lifetime of the cell that has been allocated. We feel that the
determination of cells that can be deallocated in such a man-
ner would be best achieved by a comprehensive flow analysis
package.

IV. CoNcLUSION

We have discussed several views of optimization in the con-
text of a list processing system. The main focus of the presen-
tation has been to point out the considerations that should be
taken into account in obtaining an efficient compiler-based
system. However, several of the optimizations proposed in
Section HI could also be used in an interpreter-based system.

The majority of the optimizations proposed in Section II
have a heuristic flavor associated with them. Many are a result
of a trial and error code generation procedure. In such a case
there may be several attempts at obtaining an optimal encod-
ing; some of which might be incorrect. The correctness of the
translation can be demonstrated by use of a proof system such
as [22], which has as its input a high-level language encoding

111

of an algorithm and a low-level language encoding of the same
algorithm. Such a proof system is embedded in the translator
and is intended to be the final step in the code generation
procedure.

Some of the dynamic space optimizations of Section III are
more of a language design nature. They must be evaluated in
light of their effects on programming style. Clearly, a hashed
CONS mechanism implies node-sharing and therefore its use
deprives the programmer of the ability to use RPLACA and
RPLACD. However, the introduction of a multiple result
feature does not seem to have any drawbacks. Another factor
to consider is the size of the available directly addressable
memory, i.e., a small amount may lead to the desirability of
the adoption of a hashed CONS mechanism.

APPENDIX
PDP-10 OPERATIONS

CALL A special LAP instruction which is analogous to a
PUSHJ. The difference is that it is used to invoke
LISP functions via the property list. This is useful
when a trace of the arguments to a function is de-
sired, or when the actual binding of a function
changes. (CALL num (E fname)) denotes a CALL to
fname where num is the number of arguments.

HLRZ Load the right half of accumulator AC with the left
half of the contents of the effective address and clear
the left half of AC.

HRRZ Load the right half of accumulator AC with the right
half of the contents of the effective address and clear
the left half of AC.

JRST Unconditional jump to the effective address.

JUMPE Jump to the effective address if the contents of
accumulator AC is zero; otherwise continue execu-
tion at the next instruction.

JUMPN Jump to the effective address if the contents of ac-
cumulator AC is unequal to zero; otherwise continue
execution at the next instruction.

MOVE Load accumulator AC with the contents of the effec-
tive address.

POPJ Subtract octal 1 000 001 from accumulator AC to
decrement both halves by one. If subtraction causes
the count in the left half of AC toreach -1, then set
the Pushdown Overflow flag. The next instruction is
taken from the location addressed by the right half
of the location that was addressed by AC prior to
decrementing.

PUSH Add octal 1000 001 to accumulator AC to incre-
ment both halves by one and then move the contents
of the effective address to the location now addressed
by the right half of AC. If the addition causes the
count in the left half of AC to reach zero, then set
the Pushdown Overflow flag.

112

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-8, NO. 2, MARCH 1982

PUSHJ Add octal 1000001 to accumulator AC to incre-

ment both halves by one. If addition causes the
count in the left half of AC to reach zero, then set
the Pushdown Overflow flag. Store the contents of
the program counter and the processor flags in the
right and left halves, respectively, of the location
now addressed by the right half of AC, and continue
execution at the effective address.

SKIPN Skip the next instruction if the contents of the effec-
tive address is not equal to zero. If the AC field
specification is nonzero, then load accumulator AC
with the contents of the effective address.

SUB The contents of the effective address is subtracted

from the contents of accumulator AC, and the result
is left in AC.

ACKNOWLEDGMENT

Special thanks go to R. L. Kirby for his comments.

{1]
[2]
{3]
(4]

(5]
(6]

(71

18]
(91
(10]
{11]

(12]

REFERENCES

A. V. Aho and J. D. Ullman, Principles of Compiler Design.
Reading, MA: Addison-Wesley, 1977.

F. E. Allen, “Program optimization,” Annu. Rev. Automat. Pro-
gramming, vol. 5, pp. 239-307, 1969.

H. G. Baker, Jr., “List processing in real time on a serial com-
puter,” Commun. Ass. Comput. Mach., pp. 280~294, Apr. 1978.
D. G. Bobrow and B. Raphael, “New programming languages for
artificial intelligence,” ACM Comput. Surveys, pp. 153-174,
Sept. 1974,

R. M. Burstall, J. S. Collins, and R. J. Popplestone, Programming
in POP2. Edinburgh, Scotland: University Press, 1971.

J. Cocke and J. T. Schwartz, Programming Languages and their
Compilers. New York: New York Univ. Courant Inst., Apr.
1970. .

J. Darlington and R. M. Burstall, “A system which automatically
improves programs,” in Proc. 3rd Int. Joint Conf. on Artificial
Intell., 1973, pp. 479-485. .

PDP-10 System Reference Manual. Maynard, MA: Digital Equip-
ment Corp., 1969.

PDP-11 Reference Manual. Maynard, MA: Digital Equipment
Corp., 1973. .

S. W. Galley and G. Pfister, “The MDL programming language,”
Massachusetts Inst. of Technol. Lab. for Comput. Sci., 1979.

C. M. Geschke, “Global program optimizations,” Ph.D. disserta-
tion, Dep. Comput. Sci., Carnegie-Mellon Univ., Pittsburgh, PA,
1972.

R. L. Kirby, “ULISP for PDP-11s with memory management,”
Comput.” Sci. Cen., Univ. of Maryland, College Park, TR 546,
1977.

[13]

(14]
[15]
[16]

[17]
(18]

[19]

[20]

[21]

[22]
(23]

(24]
[25])

[26]

D. E. Knuth, The Art of Computer Programming, Fundamental
Algorithms, vol. 1, 2nd ed. Reading, MA: Addison-Wesley,
1973.

——, The Art of Computer Programming, Sorting and Searching,
vol. 3. Reading, MA: Addison-Wesley, 1973.

P. D. Lebling, “The MDL programming environment,” Massa-
chusetts Inst. of Technol. Lab. for Comput. Sci., 1980.

J. McCarthy, “Recursive functions of symbolic expressions and
their computation by machine,” Commun. Ass. Comput. Mach.,
pp. 184-195, Apr. 1960.

P. Naur, Ed., ““Revised report on the algorithmic language ALGOL
60,” Commun. Ass. Comput. Mach., pp. 299-314, May 1960.

L. H. Quam and W. Diffie, “Stanford LISP 1.6 manual,” Dep.
Comput. Sci., Stanford Univ., Stanford Artificial Intell. Project
Operating Note 28.7,1972.

C. J. Rieger, J. Rosenberg, and H. Samet, “Artificial intelligence
programming languages for computer aided manufacturing,”
IEEE Trans. Syst., Man, Cybern., pp. 205-226, Apr. 1978.

H. Samet, ““‘Automatically proving the correctness of translations
involving optimized code,” Ph.D. dissertation, Dep. Comput. Sci.,
Stanford Univ., Stanford Artificial Intell. Project Memo. AIM-259,
197s.

—, “A study in automatic debugging of compilers,”” Dep. Com-
put. Sci., Univ. of Maryland, College Park, TR 545, 1977.

—, “Proving the correctness of heuristically optimized code,”
Commun. Ass. Comput. Mach., pp. 570-582, July 1978.

E. H. Shortliffe, “MYCIN—A rule-based computer program for
advising physicians regarding antimicrobial therapy selection,”
Dep. Comput. Sci., Stanford Univ., Artificial Intell. Project
Memo. AIM-251, Oct. 1974.

D. C. Smith, “MLISP,” Dep. Comput. Sci., Stanford Univ., Stan-
ford Artificial Intell. Project Memo. AIM-135, Oct. 1970.

G. L. Steele, Jr., “Multiprocessing compactifying garbage collec-
tion,” Commun. Ass. Comput. Mach., pp. 495-508, Sept. 1975.
W. Teitelman, INTERLISP Reference Manual. Palo Alto, CA:
Xerox Palo Alto Res. Cen., 1975.

Hanan Samet (S°70-M’75) received the B.S.
degree in engineering from the University of
California, Los Angeles, and the M.S. degree
in operations research and the M.S. and Ph.D.
degrees in computer science from Stanford
University, Stanford, CA.

In 1975 he joined the University of Maryland,
College Park, as an Assistant Professor of Com-
puter Science. In 1980 he became an Associate
Professor. His research interests are data struc-
tures, image processing, programming languages,

artificial intelligence, and database management systems.
Dr. Samet is a member of the Association for Computing Machinery,
SIGPLAN, Phi Beta Kappa, and Tau Beta Pi.

