
COMPILER TESTING VIA SYMBOLIC INTERPRETATION*

by

Hanan Samet
Computer Science Department

University of Maryland
College Park, Maryland 20742

Abstract

A method for compiler testing using symbolic interpretation is presented. This method is a
cross between program proving and program testing. It is useful in demonstrating that programs
are correctly translated from a hzgh level language to a low level language thereby improving
the reliability of the compiler. The term symbolic interpretation is used to describe the
process of obtaining an intermediate form of the low level language program that is suitable for
further processing by a proof system. Symbolic interpretation is the heart of the system and
enables the recordlng of a transcript of all computations in the program. This process
interprets a set of procedures which describe the effects of machine language instructions
corresponding to the target machine on a suitable computation model. The highlights and
limitations of the process as well as future work are discussed in a framework of a specific
LISP implementation on a PDP-IO computer.

Keywords and Phrases: compilers, program proving, program testing, correctness, symbolic
interpretation, machine description languages, program verification, LISP

I. INTRODUCTION

Given a compiler, or for that matter any program
translation procedure, a question that often comes
to mind is how accurate are the resulting
translations. We are interested in a testing tool
for proving the correctness of translations
performed by translators which do a considerable
amount of code optimization. Some possible
approaches to this problem include program
proving[10], program testing[6], and
decompilation[5].

Most of the work in correctness from the program
proving approach has dealt with specifying
assertlons[~] about the intent of a program and
then proving that they do indeed hold. The
assertions correspond to a detailed formal
specification of what constitutes correct program
behavior. The process of_specifying assertzons is
a rather difficult one (L3],[16]), and even if a.
program is found to satisfy the stated assertions
there is no guarantee that the assertions were
sufficiently precise to account for all
contingencies (i.e. there is considerable
difficulty in specifying machine dependent details
such as overflow, precision, etc.). This
difficulty is compounded when the programs are of
such a complexity that they defy formal analysis
(e.g. the exact meaning of the program is not even
well understood). Proofs using assertions
~ enerally require the aid of a theorem prover and
n the case of a compiler they may be characterized

as proving that there does not exist a program that
is incorrectly translated by the compiler. We feel
that such an approach is unworkable for an
optimizing compiler, although it has been done for
a simple LISP[Ill compiler[9].

Program testing is a concept which has been gaining
an increasing amount of attention in recent years.
This is in part due to a realization that formal

~ rogram proving methods rely on a very powerful
heorem proving capability which is unlikely to

appear in the near future. Program testing in its
current state can be used to discover the presence
of errors but not their absence. Nevertheless,
program testing has several advantages over program
proving. These include a capability for
scrutinizing machine dependent details, and greater

*This work was supported in part by a General
Research Board Faculhy Award of the University of
Maryland.

ease in specifying program correctness - at least
on a conceptual level. Namely, we need only
consider matching input output pairs. However,
this may lead to having to test the program a very
large number of times. This leads us to a need to
develop test criteria. The first criterion that
comes to mind is that every code unit should be
executed at least once. This test is inadequate
for two reasons. First, programs with inaccessible
code segments fail to pass this test. Secondly,
and more importantly, a program may be constructed
in such a way that a test may exercise every code
unit, yet not every path in the program will be
tested. This leads to a stronger criterion which
s~ases tha~ every orancn in the flowcnar~ must be
traversed at least once. Given that a suitable
test criteria has been found we are still faced
with a realization that test case generation is a
considerable problem in its own right.

Decompilation methods could conceivably be used to
verify the equivalence of a source program and an
oojec5 program. ~uch methods are designed to
return a representation of the object program in a
format identical to the source program.~ These
methods operate by searching for a syntax in the
assembly language program. This is much akin to
pattern recognition. The trouble with such methods
is that they imply that the decompiling program
must know how the various constructs of the high
level language are encoded in the low level
language. This sets a limit on the variation in
the object code that can be presented to such a
system. A more serious flaw is the fact that
compilation is a many to many process. ~ Namely, the
object program corresponding to a program written
in a high level language can be encoded in many
differen~ equivalent ways. ~imilarly, to an obJec~
program there corresponds more than one equivalent
source program. This is because most high level
programming languages have built in redundancies
that allow duplication or non-unlque program
specification (e.g. internal lambda construct in
LISP).

2. PROGRAM TESTING WITH RESPECT TO COMPILERS

We feel that in the case of a compiler there exists
a willingness to settle for proofs that specific
programs are correctly translated from a high level
language to the object language. This willingness
enables us to make use of the notion of program
testing to achieve our goal. Note that we will be
testing the compiler and not the translations.
Thus there is no need tn test the translated

492

~ rogram by applying all possible inputs. Instead,
he test case generation problem reduces to testing

the compiler by applying all possible inputs to it
(i.e. all possible programs in the high level
language of issue). At first this seems an
insurmountable task. However, closer scrutiny
reveals that the proof procedure can be embedded in
the compiler as part of the translation process.
In such a case the issue of whether or not all
possible inputs have been tested disappears since
in fact we are only interested in the correctness
of the translation process with respect to the set
of programs being translated. In brief we have
bootstrapped ourselves to a state where an
"effective correctness" can be attributed to the
compiler by virtue of the correct translation of
programs input to it.

At this point it is appropriate to define our
notion of program testing for a compiler or, more
generally, any translation process be it
mechanical or manual. The test consists of
demonstrating a correspondence or equivalence
between a program input to the compiler and the
corresponding translated program. The manner in
which we proceed is to find an intermediate
representation which is common to both the original
and translated programs and then demonstrate their
equivalence. This relies on the existence of such
a representation. Before proceeding any further,
let us be more precise in our definition of
equivalence. Byequivalence we mean that the two
programs must be capable of being proved to be
structurally equivalent[8], that is they have
identical execution sequences except for certain
valid rearrangements of computations. Note that
this is a more stringent requirement than that
posed by the more conventional definition which
holds that two programs are equivalent if they have
a common domain and range and both produce the same
output for any given input in their common domain.
In the process of demonstrating equivalence no use
is made of the purpose of the program. Thus, for
example, having the knowledge that a high level
program uses insertion sort and a low level program
uses quicksort to achieve sorting of the input is
of no use in proving equivalence of the two
programs. Recall that the notion of sorting is an
input output pair characterization of an algorithm.

The actual testing procedure consists of three
steps. First, the high level language program must
be converted to the intermediate representation.
Second, the low level language program must be
converted to the intermediate representation.
Third, a check must be performed of the equivalence
of the two representations. This check may take
the form of a procedure which applies valid
equivalence preserving transformations to the
results of the first two steps in attempting to
reduce them to a common representation.

In the remaining discussion we expand on the second
step of the testing procedure. This step is termed
"symbolic interpretation" and denotes a technique
for obtaining a symbolic representation of the low
level program which reflects all of the
computatlons performed on all possible program
execution paths rather than just one as in symbolic
execution[7]. The technique differs from
decompilation methods since their use in
establishing equivalence yields a syntactic
equivalence between the decompiled version of the
low level program and the original version of the
high level program. However, symbolic
interpretation is based on the run-time equivalence
of computation sequences. The representation
obtained by symbolic interpretation is compatible
with the result of the first step of the testing
procedure and combines with it to form an input to
the third step. Thus we see that the test criteria
~ roblem alluded to in the discussion of program
estin~ is solved by the use of the notion of

s~mbollc interpretation coupled with our definition
of equivalence. In addition, the absence of errors
will mean that the program has been correctly
translated thereby removing the objection raised
earlier to program testing that it is only good for
detecting errors.

3. SYMBOLIC INTERPRETATION

The symbolic interpretation process builds an
intermediate rePr@sentation for the low level

program Dy activating a set of procedures
corresponding to the instructions in the low level
program in a manner consistent with the execution
level definition of the highLlevel language (quite
similar to interpretation). These procedures
specify how each instruction effects an entity
known as the computation model (e.g. procedural
embedding[17]). This model reflects the contents
of the various data structures relevant to the
execution of the program as well as the values of
the conditions tested. Thus there is a need for a
capability to describe a computer instruction set.
Thls description must provide for data types as
well as a control structure for the symbolic
interpretation process. By control structure we
mean the ability to invoke various parts of the
assembly language program, as is the case when
processing a condition, a branch, or a function
call.

In the following three sections we describe the
:type of information that comprises the computation
model, a control structure for the symbolic
interpretation process, and an example. However,
in order to have some framework for the discussion,
we must assume the existence of a suitable
,programming language and an execution level
:~eflnition for The language. Our high level
language is a subset of LISP[12] which has been
'shown to have a suitable intermediate
representation[14] in the form of a tree. The low
leyel language is LAP[12] (a variant of the PDP-
1012] assembly language}. An actual proof system
@mploying the ideas discussed here is described in
L13].

Briefly, we are dealing with a subset of LISP which
allows side effects and global variables. There
are two restrictions. First, a function may only
access the values of global variables or the
values of its own local variables - it may not
access another functions local variables. Second,
the target label of a GO in a PROG must not have
occurred physically prior to the occurrence of the
GO to the label.

3.1 COMPUTATION MODEL

In order to be able to symbolically interpret a low
level language program we need both an execution
level definition of the high level language as well
as a set of data structures to record the effects
of the various operations. As the symbolic
interpretation process proceeds along a given
execution path. it must maintain a record of the
various assumptions it has made @s to the results
of condition testing instructions so that
subsequent tests of related conditions can be
recognized. This is accomplished with the aid of
an equality data base. We must also maintain an
uptodate model of the contents of all directly
accessible memory locations as well as a record of
all computations that have been performed so that
true equivalence can be determined.

The equality data base is a set of equivalence
classes for all values computed in the program
(e.g. for LISP this includes functions as well as
atoms) where transitivity and functional
application are fully propogated. In addition,
built into this data base is knowledge of the full
implication of basic constructs of 5he high level
language. For example, in the case of LISP this
includes the basic predicates EQ, EQUAL, ATOM and
their interrelationships; commutativity of
arithmetic operations such as PLUS and TIMES;
antisymmetry of operations such as CONS and XCONS
and LESS and GREAT (e.g. A<B is equivalent to B>A).
The actual test for equality or inequality of two
operands consists of parsing them and checking if
they are members of the same equivalence class; if
not, then the two operands are assumed to be equal
and if a contradiction is obtained during the
process of propogating the equality through the
data base, then the two operands are known to be
unequal.

In the example LISP execution level definition,
memory consists of all of the accumulators, a
stack, the consecutive block of words containing
the object code corresponding to the function being
symbollcally interpreted, and cells containing the
values of the global variables. Each cell in
memory has two halves - left and right. A LISP
cell is said to occupy one full word where the left

493

half contains CAR and the right halt" contains CDR.
Thus it should be clear that the act of accessing
the left half of a LISP cell corresponds to
computing CAR and similarly for the right half of a
LISP cell and CDR. We use a wide set of data types
to describe the contents of memory cells. These
types include LISP pointers (all oP the locations
containing the parameters to the function being
symbolically interpreted are initialized to the
symbolic names of their corresponding parameters),
stack pointers, data (non-LISP numbers and symbolic
addresses), and others.

In order to be able to demonstrate equivalence
between the high and low level programs we must be
able to show that all computations performed in the
high level program have also been performed in the
low level program. Thus all computations in the
low level program that involve LISP constructs are
recorded. This is relatively straightforward since
the LISP computations can. be distinguished from
overhead comoutations (e.g. stack pointer
manipulation, etc.). The only possible stumbling
block is in distinguishing between calculations of
addresses and calculation of data. However.
numbers have a distinct representation in LISP
which is not the raw number (i.e. an atom since
otherwise it would be difficult to differentiate
between numbers and pointers) and appear in the
program as (QUOTE number). Thus ~nere is a
separation between program and data which differs
from the Von Neumann concept[l] of
indistinguishability between the two. The task of
recording the LISP computations is performed by the
memory as well as by a list known as UNREFERENCED.
As a program path is symbolically interpreted,
UNREFERENCED contains a record of all computations
that have been performed but do not occur as a
subexpression of the contents of at least one
memory location (i.e. their result or functions of
their result are no longer accessible to future
operations along the path). This is primarily for
recording computations performed solely for their
slde-effect.

3.2 CONTROL STRUCTURES

The symbolic interpretation process must be able to
cope with the basic control structures of a
language. Some of the effects of these control
structures are described explicitly in the
procedures corresponding to the instructions in the
low level program and others are implicit in the
sense that when certain events are recognized by
the symbolic interpretation .process as having
occurred, then corresponding actions are effected
on the computation model. In this section we
discuss what happens in case of a condition test, a
branch, a function call, and encountering an
instruction which has occurred previously on the
path being symbolically interpreted.

As mentioned earlier, the symbolic interpretation
process corresponds to interpreting a procedure for
each instruction. For most instructions this
consists of simply updating the computation model
to reflect the interpretation of the instruction.
For example, a HLRZ instruction is defined to load
the right half of an accumulator with the left half
of the contents of the effective address, and to
clear the left half. This instruction is described
in fig. I using MLISP[15], a variant of LISP, as
the procedural language.

FEXPR HLRZ:
LOADSTORE(ACFIELD(ARGS),

EXT~DZERO(
LEFTCONTENTS(

EFFECTADDRESS(ARGS))));

Fig. I - HLRZ instruction

Some instructions may require more than one
statement to describe their effect. For example,
the POPJ instruction which is used to encode a
return from a recursive call has a considerably
longer desdription (see fig. 2). In brief, this
fnstruction deallocates the stack entry which was
used to store the return address, decrements the
stack pointer, and returns control to the address
stored in the address pointed at by the stack
pointer prior to decrementing it.

FEXPR POPJ(ARGS);
BEGIN

NEW LAB;
LAB~RIGHTCONTENTS(RIGHTCONTENTS(ACFIELD(ARGS)));
DEALLOCATESTACKENTRY(ACFIELD(ARGS));
SUBX(<ACFIELD(ARG$),X11>);
UNCONDITIONALJUMP(LAB);

END;

Fig. 2 - POPJ instruction

Until now the instructions that we have encountered
describe explicitly how the computation model is to
be updated. There are also instructions whose
effects on the computation model are invisible
insofar as their procedural definition. These are
operations that result in function calls. In such
a case the effect on the computation model is
determined by the function being called and also by
the assumed execution level definition of the
language. In our case, upon a function call all
accumulators but those that are known to have their
contents unchanged by the execution of the said
function are considered to have been overwritten
with some unknown value. This causes their
contents (if not previously referenced) to be added
to a llst of computations known as UNREFERENCED.
Recall that this is how we represent computations
executed primarily for their side-effect rather
than their resulting value. When a function call
occurs, the function being called is not
symbolically interpreted (hence our finite tree
representatlon); instead, the location which has
been defined by the execution level definition of
the language to contain the result is updated to
indicate that it now contains the result of the
said function applied to its arguments which are to
be found in the a set of locations defined by the
execution level definition of the language. The
computation model is also updated to reflect any
possible changes in the bindings of global
variables and also to include any new equalities or
inequalities that are implied by the execution of
the function. For example, a (RPLACA A B)
operation in LISP implies that subsequent to the
Snstance of performance of the operation, B and
(CAR A) poznt to the same list structure.

Some instructions oerform control ooerations such
as conditional branching as well as modify the
computation model. Prior to explaining the role of
symbolic interpretation in evaluating conditional
branch instructions we must digress for a moment
and define a predicate and the notion of a valid
test. The basic type of non-arithmetic test that
can be performed by a computer is a check for
equality. All other non-arithmetic tests are
modifications of this primitive using certain data
structures. This equality test is a comparison
against another value or zero. In LISP such tests
translate into the predicate EQ having two
operands. By valid test we mean that the two
operands of the EQ predicate represent valid data
items of the high level language. If not, then the
value of the test must be known - e.g. address
computation, etc. This means that there must be a
suitable mechanism for converting the data
structures used in the ~est to a corresponding
meaningful test in the sense of the high level
language. For example, instructions, that
manipulate bits (e.g. TLNN) by checking if any bits
(denoted by a suitable mask) in a word are one.
must be capable of being converted, with the aid of
knowledge about the execution level definition of
the language, to a suitable test in the high level
language. In this example, in an execution level
definition of LISP which represents NIL by zero,
the test would correspond to a check against NIL.

When conditional branching instructions are
encountered, the symbolic interpretation process
attempts to form a valid test and then determines
if its value is known. In the affirmative case
the appropriate path is taken and the next
instruction along the path is symbolically
interpreted. Such situations arise when either the
operands of the test do not involve data items of
the high level language, or the condition
represents a test whose value has been determined
earlier in the computation path. The latter is
aided by the equality data base component of the
computation model. If the condition is a valid
test whose value is unknown, then the two alternate
paths are evaluated in order and the result
returned is a tree as shown in fig. 3.

494

PREDICATE
/\

/ \
/ \

/ \
/ \

CONCLUSION ALTERNATIVE

Fig. 3 - tree representation of a test

Prior to the evaluation of each path, the
computation model is updated to reflect the assumed
value of the condition. This includes modification
of relevant memory locations as well as propogating
equalities and inequalities, as the case may be,
through the equality data base. This latter steep
zs crucial to having the capability to recognize
the occurrence of ~ubstitution of equals for
equals.

An example of a conditional branch instruction is
JUMPE (see fig. 4) which is used to branch to a
specified location if the value of a specified
accumulator is equal to zero. The description
makes use of several control functions. CHECKTEST
examines the operands and forms a valid test if
possible. Next, if the value of the condition is
already known, then appropriate action is taken.
TRUEPREDICATE marks the sense of the test (an
instruction branching on inequality with zero in
this case would use FALSEPREDICATE).
CONDITIONALJUMP and JUMPALTERNATIVE simply serve to
recursively invoke the symbolic interpretation of
the paths corresponding to the true and false cases
of the condition. One of the parameters to these
routines is the name of another routine which
specifies any further processing that might be
required prior to executing the path. Note that
the actual construction of the tree corresponding
to the result of the symbolic interpretation
process occurs in JUMPALTERNATIVE.

FEXPR JUMPE;
BEGIN

NEW TST ;
TST~CHECKTEST(CONTENTS (ACFIELD(ARGS)), ZEROCNST) ;
IF TST THEN RETURN(

IF CDR TST THEN
UNCONDI TIONALJUMP (EFFECTADDRESS (ARGS))

ELSE NEXTINSTRUCTION()) ;
TRUEPREDICATE() ;
CONDITIONALJUMP(ARGS,FUNCTION JUMPETRUE) ;
JUMPALTERNATIVE(ARGS,FUNCTION JUMPEFALSE) ;

END ;

FEXPR JUMPETRUE(ARGS) ;
UNCONDITIONALJUMP(EFFECTADDRESS (ARGS)) ;

FEXPR JUMPEFALSE(ARGS) ;
NEXTINSTRUCTION () ;

Fig. 4 - JUMPE instruction

Whenever the symbolic interpretation process is
about to interpret another instruction which has
been previously encountered along the ~ath being
symbolically interpreted, then recursion zs assumed
to have taken place. In such a case, the symbolic
interpretation process will attempt to show that if
a branch had indeed been made to the start of the
program, then the said instruction would have been
reached with the same state of the computation
model by virtue of known values for all of the
conditions along some path to the instruction in
question. This means that the condition values
along the path need not be tested since their
values are known. If such a path from the start of
the program exists, then it is unique since a
condition cannot be both true and false.

3.3 EXAMPLE

The previous two sections served to highlight
various aspects of the symbolic interpretation
process. At this point it is appropriate to show
how the symbolic interpretation process builds an
intermediate representation.

Consider the function NEXT whose LISPI.6112] and
MLISP[15] definitions are given in fig. 5. The
function takes as its arguments a list L and an
element X. It searches L for an occurrence of X.
If such an occurrence is found, and if it is not
the last element of the list, then the next element
in the llst is returned as the result of the
function. Otherwise. NIL is returned. For
example, application of the function to the list (A
B C D E) in search of D would result in E, while a
search for E or F would result in NIL. FiR. 6
contains the LAP encoding for the function w~ich
was obtained by hand coding. Notice that the
encoding is extremely compact - the inner loop is
only four instructions long. This is minimal when
we consider the fact that the inner loop consists
of four operations - CAR, CDR, EQ test, and
recurslon.

(DEFPROP NEXT (LAMBDA (L X)
(COND ((NULL L) NIL)

((EQ (CAR L) X)
(COND {(NULL (CDR L)) NIL)

(T (CADR L))))
(T (NEXT (CDR L) X)))) EXPR)

NEXT(L,X) = if NULL(X) then NIL
else if CAR(L) EQ X then

if NULL(CDR(L)) then NIL
else C ADR(L) .

else NEXT{CDR~L),X)

Fig. 5 - LISP and MLISP encodings of NEXT

When symbolically interpreting the example program,
the first instruction that we encounter is JUMPE
which is used to jump to label DONE if accumulator
I contains a zero. The result is shown in fig. 7.
Notice that the test ~orresDonds to checking if the
list L is NIL - i.e. (EQ L NIL). Since neither of
the paths corresponding to the true and false cases
of the test have yet been symbolically interpreted.
we denote the two subtrees as UNKNOWN-CONCLUSION
and UNKNOWN-ALTERNATIVE.

(EQ L NIL)
/\

/ \
/ \

UNKNOWN-CONCLUSION UNKNOWN-ADTERNATIVE

Fig. 7 - result of symbolic interpretation
of (JUMPE I DONE)

The definition of JUMPE in fig. 4 calls for the
path corresponding to the true case of the
condition to be symbolically interpreted. This
corresponds to updating the equality data base to
reflec~ the equality of L and NIL followed by a
branch to the instruction POPJ. At this pozn~ ~ne
current execution path is considered to be
terminated since there is no return address on the
stack corresponding to the current invocation of
the recursive call. Thus in this case the control
structure implicit in the symbolic interpretation

~ rocess results in a mopup operation. This
ncludes returnin~ a value - L or NIL {they are

equivalent at thzs point and the proof procedure
which processes the intermediate forms
corresponding to the high and low level programs
will recognize this fact since.built into it is the

LABEL PROGRAM COUNTER INSTRUCTION
NEXT I (JUMPE I DONE)
LOOP 2 (HLRZ 3 0 I)

3 (HRRZ I 0 I)
4 (CAIE 3 0 2) L
5 (JUMPN I LOOP)
6 {JUMPE I DONE)
7 (HLRZ I 0 I)

DONE 8 (POPJ 12)

COMMENT
~ ump to DONE if L is NIL
cad register 3 with CAR{L)

load register I with CDR(L)
skip if CAR(L) is EQ to X
if CDR(L) is not NIL then compute NEXT(CDR(L),X)
~ ump to DONE if CDR(L) is NIL
cad register I with CaR(CDR(L))

return

Fig. 6 - LAP encoding corresponding to NEXT

495

same equality data base mechanism as in the
symbolic interpretation process). In addition, we
must return a list of all of the computations that
were performed but not referenced (i.e.
UNREFERENCED). However, no such computations were
performed. Fig. 8 shows the state of the
intermediate representation after symbolic
interpretation of POPJ. Note that only the true
case of the test (EQ L NIL) has been resolved so
far.

(EQ L NIL)
IX

/ \
/ \

NIL UNKNOWN-ALTERNATIVE

Fig. 8 - result of symbolic interpretation
of (POPJ 12)

When symbolic interpretation is resumed we are in
the false case of the condition (EQ L NIL) and the
computation model is updated to reflect the fact
that L is not NIL. The next two instructions, HLRZ
and HRRZ. result in the updating of the contents of
accumulators 3 and I to contain (CAR L) and (CDR L)
respectively. In this example HLRZ loads the right
half of accumulator 3 with the left half of the
contents of the effective address (indexing via
accumulator I) and clears the right half of
accumulator 3. HRRZ is similar to HLRZ except that
the right half of the contents of the effective
address is fetched instead of the left half. Note
that nowhere in the procedural definition of HLRZ
is there any indication that CAR is being computed.
We are able to detect the computation of CAR by
virtue of the act of fetching the left half of the
contents of a LISP pointer.

CAIE is a condition testing instruction which
compares the right half of the specified
accumulator with the effective address and skips
the next instruction if the condition is s~tisfied.
It is described procedurally in a manner similar to
JUMPE except for the addition of suitable
primitives for effecting a skip rather than a
jump. In our case this test corresponds to
checking if (CDR L) is NIL and returning values of
NIL and (CAR (CDR L)) for the true and false cases
respectively. The intermediate representation
prior to symbolically interpreting the false case
of the (EQ (CAR L) X) condition is shown in fig. 9.

(EQ L NIL)
/\

/ \
/ \

/ \
/ \

NIL (EQ (CAR L) X)
/\

/ \
/ \

/ \
/ \

(EQ (CDR L) NIL) UNKNOWN-ALTERNATIVE
/\

/ \
/ \

/ \
/ \

NIL (CAR (CDR L))

Fig. 9 - result of symbolic interpretation
of true case of (CAIE 3 0 2)

The false case of the CAIE condition is interesting
in several respects. The immediately following
instruction is a conditional jump which in the true
case proceeds to branch to an instruction that has
been previously encountered, while in the false
case we exit from the function. However, this exit
takes advantage of the structure of the program to
enable a tight encoding. This is accomplished by
recognizing that the next instruction performs a
test which is a no operation for the said execution

~ th (i.e. a test of register I containing a 0).
e no operation is easily detected by virtue of

the equality data base mechanism which we recall
keeps track of the values of the various tests
encountered along the execution path. The branch
to LOOP, a label previously encountered along the
execution path, is interpreted as recursion in

accordance wztn our eariler expianatlon oi tnzs
concept.

The resulting intermediate representation is shown
in fig. 10. Actually, there is an additional
intermediate representation which indicates a
relative ordering of computing the various
functions. This is shown in fig. 11. Notice that
the number corresponding to the CDR function in
(CDR L) is less than that of EQ in (EQ (CAR L) NIL)
despite its appearance in the tree below the said
predicate. This ordering is necessary for the
proof procedure to be able to adequately handle
cases where the rearranging of the order of
computing functions might lead to errors due to
side-effect considerations. The relative
magnitudes of the numbers only serve to indicate a
partial ordering. The actual values of the numbers
are used as indices into a table which indicates at
what instruction and along which execution path
each function was computed. This proves to be very
handy in detecting where in an object program
certain classes of errors occur.

(EQ L NIL)
/\

/ \
/ \

/ \
/ \

NIL (EQ (CAR L) X)
/\

/ \
/ \

/ \
/ \

(EQ (CDR L) NIL) (EQ (CDR L) NIL)
IX IX

I \ I \
I \ I \

I \ I \
I \ I \

NIL (CAR (CDR L)) NIL (NEXT (CDR L) X)

Fig. 10 - symbolic representation

(58 5 0)
IX

I \
I \

I \
I \

(74 (70 5) 6)
IX

I \
I \

I \
I \

(96 (72 5) O) (144 (72 5) O)
IX IX

/ \ / \
I \ I \

I \ I \
/ \ / \
0 (108 (72 5)) 0 (154 (72 5) 6)

Fig. 11 - numeric representation

4. CONCLUSIONS

The use of symbolic interpretation as a means of
obtaining the intermediate representation in the
second step of the program testing procedure is the
distinsuishing factor between our system and
decompzlation[5] methods. We have seen that in our
system, there was no need to specify how a
particular construct is encoded since the internal
representation is simply a record of computations
performed. In other words, the system is built on
the semantics of the various assembly language
instructions in terms of their effect on a
computation model (recall how the CAR and CDR
operations were recognized).

A system[13] has been implemented which uses the
ideas reported here to prove the correctness of
translation of programs written in LISPI.6 to LAP.
It was successfully used in proving the correctness
of translation of a large number of programs many
of which were hand coded for efficiency. This was
possible because the system is independent of the
actual translator. It only relies upon the
execution level definition of the source high level
language. In Particular, the system was able to

496

locate errors in the translatlons as well as
pinpoint in the object code the location where the
error was made. This was accomplished with the aid
of a numeric representation of the symbolic
intermediate representation which recorded the
value of the program counter and the Dath for each
computation. These results suggest that the system
would be particularly useful as a compiler debugger
which is a resident part of the compiler. Proofs
would be enabled when there is a reasonable belier
that erroneous code is being generated. During
this time compilation would proceed at a slower
pace due to the additional burden of generating a
proof; however, this is a small price to pay for
the correctness assurance.

Some future extensions to the symbolic
interpretation process i~clude the following.
Incorporate a more complete equality checking
mechanism which would be able to cope with
assoclativity as well as equalities in the
arithmetic domain - i.e. at the present we can not
detect the equivalence of x=1 and x-1=O.
Currently, the system tries all possible paths.
There is no way for the user to control the paths
to be symbollcally interpreted. Such a feature
would be useful in a situation where certain
execution paths are known to be erroneous and
therefore are to be i~nored. This is in contrast
with the method of [7] which gives the user full
control over the selection of paths to be explored.
Another useful addition is a state save restore
capability under the control of the user. This
would mean that when errors occur, the symbolic
interpretation process need not be started all over
again.

ACKNOWLEDGEMENT

Special thanks go to Robert E. Noonan for
in improving the presentation of the
forth in this paper.

his help
ideas set

REFERENCES

[I] - Burks, A.W., Goldstine, H.H., and yon
Neumann, J., "Preliminary Discussion of the Logical
Design of an Electronic Computing Instrument" in
Computer Structures: Readings and Examoles by
Gordon Bell and Allen Newell, ~[c'~raw----~, New
York, 1971, pp. 92-119.

[2] - "PDP-10 System Reference Manual", Digital
Equipment Corporation, Maynard, ~assachusetts,
1969.

[3] - Deutsch. L.P., "An Interactive Program
Verifier," Ph.D Thesis, Department of Computer
Science, University of California at Berkeley, May
1973.

[4] - Floyd, R.W., "Assigning Meanings to
Programs." Proceedings of a Symposium in Applied
Mat~ematlcs, Volume 19~-- M~th~matlcal ~-~pec~
Science, (Schwartz, J.T. ed.), American Math
Society, 1967, pp. 19-32.

[5] - Hollander, C.R., "Decompilation of Object
Programs." Ph.D. Thesis, Digital Systems Laboratory
wechnical Report No. 54~ Department of Electrical
Engineering, Stanford Unlversity, 1973.

~6] - Huang, J.C. "An Approach to. Program
esting," ACH Computing ~urveys, ~epcemoer 1975,

pp. 113-12 .BT-'-

~ K n g 7] - J., "A New Approach to Program
Testlng,JI M Research Report RC 5037, Yorktown
Heights, New York, September 1974.

[8] - Lee, J.A.N., Computer Semantics, Van Nostrand
Reinhold, New York, 1972, pp. 3qO-3q7.

[9] - London, R., "Correctness of Two Compilers for
a LISP Subset," Stanford Artificial Intelligence
Project Memo AIM-151, Computer Science Department,
Stanford University, October 1971.

[I0] - London, R.L.~ "The Current State of Proving
Programs Correct," in Proceedings of the ACM 2~t5
Annual Conference, 1972, pp. 39-~0.

~ 11) - McCarthy t J., "Reoursive _ Functions of
ymoollc ~xpresslons and their uompu~atlon Dy

Hachine," Communications o f t h e ACH, Ap r i l 1960,
pp.184-195. " ~

~ 12] - Quam, L . H . , and D t f f i e W., "Stanford LISP
.6 Manual," Stanford Artificial Intelligence

Project Operating Note 28.7, Computer Science
Department, Stanford University, 1972.

[13] - Samet. H., "Automatically Proving the
Correctness of Translations Involving Optimized
Code," Ph.D. Thesis, Stanford Artificial
Intelligence Project Memo AIM-259, Computer Science
uepartment, Stanford Unlversity, 1975.

[14] - Samet, H., "A Normal Form for LISP
Programs." TR-443, Computer Science Department,
University of Maryland, College Park, Maryland,
February 1976.

~ 15] - Smith. D.C., "MLISP." Stanford Artificial
ntelllgence Project Memo AIM-135__Computer Science

Department, Stanford University, October 1970.

[16] - Suzuki. N, "Verifying Programs by Algebraic
and Logical Reductions," Proceedings of tSe 1975
Ancernational ~ on' Hellaoi~--So-~w~re,
April 1975, pp. q73-~ --

~ 17] - Winograd, T., "Procedures as a
epresentation for Data in a Computer Program for

Understanding Natural Language," MAC TR-84,
Massachusetts Institute of Technology, February
1971.

497

