
COMPILER TESTING VIA SYMBOLIC INTERPRETATION* 

by 

Hanan Samet 
Computer Science Department 

University of Maryland 
College Park, Maryland 20742 

Abstract 

A method for compiler testing using symbolic interpretation is presented. This method is a 
cross between program proving and program testing. It is useful in demonstrating that programs 
are correctly translated from a hzgh level language to a low level language thereby improving 
the reliability of the compiler. The term symbolic interpretation is used to describe the 
process of obtaining an intermediate form of the low level language program that is suitable for 
further processing by a proof system. Symbolic interpretation is the heart of the system and 
enables the recordlng of a transcript of all computations in the program. This process 
interprets a set of procedures which describe the effects of machine language instructions 
corresponding to the target machine on a suitable computation model. The highlights and 
limitations of the process as well as future work are discussed in a framework of a specific 
LISP implementation on a PDP-IO computer. 
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I. INTRODUCTION 

Given a compiler, or for that matter any program 
translation procedure, a question that often comes 
to mind is how accurate are the resulting 
translations. We are interested in a testing tool 
for proving the correctness of translations 
performed by translators which do a considerable 
amount of code optimization. Some possible 
approaches to this problem include program 
proving[10], program testing[6], and 
decompilation[5]. 

Most of the work in correctness from the program 
proving approach has dealt with specifying 
assertlons[~] about the intent of a program and 
then proving that they do indeed hold. The 
assertions correspond to a detailed formal 
specification of what constitutes correct program 
behavior. The process of_specifying assertzons is 
a rather difficult one (L3],[16]), and even if a. 
program is found to satisfy the stated assertions 
there is no guarantee that the assertions were 
sufficiently precise to account for all 
contingencies (i.e. there is considerable 
difficulty in specifying machine dependent details 
such as overflow, precision, etc.). This 
difficulty is compounded when the programs are of 
such a complexity that they defy formal analysis 
(e.g. the exact meaning of the program is not even 
well understood). Proofs using assertions 
~ enerally require the aid of a theorem prover and 
n the case of a compiler they may be characterized 

as proving that there does not exist a program that 
is incorrectly translated by the compiler. We feel 
that such an approach is unworkable for an 
optimizing compiler, although it has been done for 
a simple LISP[Ill compiler[9]. 

Program testing is a concept which has been gaining 
an increasing amount of attention in recent years. 
This is in part due to a realization that formal 

~ rogram proving methods rely on a very powerful 
heorem proving capability which is unlikely to 

appear in the near future. Program testing in its 
current state can be used to discover the presence 
of errors but not their absence. Nevertheless, 
program testing has several advantages over program 
proving. These include a capability for 
scrutinizing machine dependent details, and greater 

*This work was supported in part by a General 
Research Board Faculhy Award of the University of 
Maryland. 

ease in specifying program correctness - at least 
on a conceptual level. Namely, we need only 
consider matching input output pairs. However, 
this may lead to having to test the program a very 
large number of times. This leads us to a need to 
develop test criteria. The first criterion that 
comes to mind is that every code unit should be 
executed at least once. This test is inadequate 
for two reasons. First, programs with inaccessible 
code segments fail to pass this test. Secondly, 
and more importantly, a program may be constructed 
in such a way that a test may exercise every code 
unit, yet not every path in the program will be 
tested. This leads to a stronger criterion which 
s~ases tha~ every orancn in the flowcnar~ must be 
traversed at least once. Given that a suitable 
test criteria has been found we are still faced 
with a realization that test case generation is a 
considerable problem in its own right. 

Decompilation methods could conceivably be used to 
verify the equivalence of a source program and an 
oojec5 program. ~uch methods are designed to 
return a representation of the object program in a 
format identical to the source program.~ These 
methods operate by searching for a syntax in the 
assembly language program. This is much akin to 
pattern recognition. The trouble with such methods 
is that they imply that the decompiling program 
must know how the various constructs of the high 
level language are encoded in the low level 
language. This sets a limit on the variation in 
the object code that can be presented to such a 
system. A more serious flaw is the fact that 
compilation is a many to many process. ~ Namely, the 
object program corresponding to a program written 
in a high level language can be encoded in many 
differen~ equivalent ways. ~imilarly, to an obJec~ 
program there corresponds more than one equivalent 
source program. This is because most high level 
programming languages have built in redundancies 
that allow duplication or non-unlque program 
specification (e.g. internal lambda construct in 
LISP). 

2. PROGRAM TESTING WITH RESPECT TO COMPILERS 

We feel that in the case of a compiler there exists 
a willingness to settle for proofs that specific 
programs are correctly translated from a high level 
language to the object language. This willingness 
enables us to make use of the notion of program 
testing to achieve our goal. Note that we will be 
testing the compiler and not the translations. 
Thus there is no need tn test the translated 
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~ rogram by applying all possible inputs. Instead, 
he test case generation problem reduces to testing 

the compiler by applying all possible inputs to it 
(i.e. all possible programs in the high level 
language of issue). At first this seems an 
insurmountable task. However, closer scrutiny 
reveals that the proof procedure can be embedded in 
the compiler as part of the translation process. 
In such a case the issue of whether or not all 
possible inputs have been tested disappears since 
in fact we are only interested in the correctness 
of the translation process with respect to the set 
of programs being translated. In brief we have 
bootstrapped ourselves to a state where an 
"effective correctness" can be attributed to the 
compiler by virtue of the correct translation of 
programs input to it. 

At this point it is appropriate to define our 
notion of program testing for a compiler or, more 
generally, any translation process be it 
mechanical or manual. The test consists of 
demonstrating a correspondence or equivalence 
between a program input to the compiler and the 
corresponding translated program. The manner in 
which we proceed is to find an intermediate 
representation which is common to both the original 
and translated programs and then demonstrate their 
equivalence. This relies on the existence of such 
a representation. Before proceeding any further, 
let us be more precise in our definition of 
equivalence. Byequivalence we mean that the two 
programs must be capable of being proved to be 
structurally equivalent[8], that is they have 
identical execution sequences except for certain 
valid rearrangements of computations. Note that 
this is a more stringent requirement than that 
posed by the more conventional definition which 
holds that two programs are equivalent if they have 
a common domain and range and both produce the same 
output for any given input in their common domain. 
In the process of demonstrating equivalence no use 
is made of the purpose of the program. Thus, for 
example, having the knowledge that a high level 
program uses insertion sort and a low level program 
uses quicksort to achieve sorting of the input is 
of no use in proving equivalence of the two 
programs. Recall that the notion of sorting is an 
input output pair characterization of an algorithm. 

The actual testing procedure consists of three 
steps. First, the high level language program must 
be converted to the intermediate representation. 
Second, the low level language program must be 
converted to the intermediate representation. 
Third, a check must be performed of the equivalence 
of the two representations. This check may take 
the form of a procedure which applies valid 
equivalence preserving transformations to the 
results of the first two steps in attempting to 
reduce them to a common representation. 

In the remaining discussion we expand on the second 
step of the testing procedure. This step is termed 
"symbolic interpretation" and denotes a technique 
for obtaining a symbolic representation of the low 
level program which reflects all of the 
computatlons performed on all possible program 
execution paths rather than just one as in symbolic 
execution[7]. The technique differs from 
decompilation methods since their use in 
establishing equivalence yields a syntactic 
equivalence between the decompiled version of the 
low level program and the original version of the 
high level program. However, symbolic 
interpretation is based on the run-time equivalence 
of computation sequences. The representation 
obtained by symbolic interpretation is compatible 
with the result of the first step of the testing 
procedure and combines with it to form an input to 
the third step. Thus we see that the test criteria 
~ roblem alluded to in the discussion of program 
estin~ is solved by the use of the notion of 

s~mbollc interpretation coupled with our definition 
of equivalence. In addition, the absence of errors 
will mean that the program has been correctly 
translated thereby removing the objection raised 
earlier to program testing that it is only good for 
detecting errors. 

3. SYMBOLIC INTERPRETATION 

The symbolic interpretation process builds an 
intermediate rePr@sentation for the low level 

program Dy activating a set of procedures 
corresponding to the instructions in the low level 
program in a manner consistent with the execution 
level definition of the highLlevel language (quite 
similar to interpretation). These procedures 
specify how each instruction effects an entity 
known as the computation model (e.g. procedural 
embedding[17]). This model reflects the contents 
of the various data structures relevant to the 
execution of the program as well as the values of 
the conditions tested. Thus there is a need for a 
capability to describe a computer instruction set. 
Thls description must provide for data types as 
well as a control structure for the symbolic 
interpretation process. By control structure we 
mean the ability to invoke various parts of the 
assembly language program, as is the case when 
processing a condition, a branch, or a function 
call. 

In the following three sections we describe the 
:type of information that comprises the computation 
model, a control structure for the symbolic 
interpretation process, and an example. However, 
in order to have some framework for the discussion, 
we must assume the existence of a suitable 
,programming language and an execution level 
:~eflnition for The language. Our high level 
language is a subset of LISP[12] which has been 
'shown to have a suitable intermediate 
representation[14] in the form of a tree. The low 
leyel language is LAP[12] (a variant of the PDP- 
1012] assembly language}. An actual proof system 
@mploying the ideas discussed here is described in 
L13]. 

Briefly, we are dealing with a subset of LISP which 
allows side effects and global variables. There 
are two restrictions. First, a function may only 
access the values of global variables or the 
values of its own local variables - it may not 
access another functions local variables. Second, 
the target label of a GO in a PROG must not have 
occurred physically prior to the occurrence of the 
GO to the label. 

3.1 COMPUTATION MODEL 

In order to be able to symbolically interpret a low 
level language program we need both an execution 
level definition of the high level language as well 
as a set of data structures to record the effects 
of the various operations. As the symbolic 
interpretation process proceeds along a given 
execution path. it must maintain a record of the 
various assumptions it has made @s to the results 
of condition testing instructions so that 
subsequent tests of related conditions can be 
recognized. This is accomplished with the aid of 
an equality data base. We must also maintain an 
uptodate model of the contents of all directly 
accessible memory locations as well as a record of 
all computations that have been performed so that 
true equivalence can be determined. 

The equality data base is a set of equivalence 
classes for all values computed in the program 
(e.g. for LISP this includes functions as well as 
atoms) where transitivity and functional 
application are fully propogated. In addition, 
built into this data base is knowledge of the full 
implication of basic constructs of 5he high level 
language. For example, in the case of LISP this 
includes the basic predicates EQ, EQUAL, ATOM and 
their interrelationships; commutativity of 
arithmetic operations such as PLUS and TIMES; 
antisymmetry of operations such as CONS and XCONS 
and LESS and GREAT (e.g. A<B is equivalent to B>A). 
The actual test for equality or inequality of two 
operands consists of parsing them and checking if 
they are members of the same equivalence class; if 
not, then the two operands are assumed to be equal 
and if a contradiction is obtained during the 
process of propogating the equality through the 
data base, then the two operands are known to be 
unequal. 

In the example LISP execution level definition, 
memory consists of all of the accumulators, a 
stack, the consecutive block of words containing 
the object code corresponding to the function being 
symbollcally interpreted, and cells containing the 
values of the global variables. Each cell in 
memory has two halves - left and right. A LISP 
cell is said to occupy one full word where the left 
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half contains CAR and the right halt" contains CDR. 
Thus it should be clear that the act of accessing 
the left half of a LISP cell corresponds to 
computing CAR and similarly for the right half of a 
LISP cell and CDR. We use a wide set of data types 
to describe the contents of memory cells. These 
types include LISP pointers (all oP the locations 
containing the parameters to the function being 
symbolically interpreted are initialized to the 
symbolic names of their corresponding parameters), 
stack pointers, data (non-LISP numbers and symbolic 
addresses), and others. 

In order to be able to demonstrate equivalence 
between the high and low level programs we must be 
able to show that all computations performed in the 
high level program have also been performed in the 
low level program. Thus all computations in the 
low level program that involve LISP constructs are 
recorded. This is relatively straightforward since 
the LISP computations can. be distinguished from 
overhead comoutations (e.g. stack pointer 
manipulation, etc.). The only possible stumbling 
block is in distinguishing between calculations of 
addresses and calculation of data. However. 
numbers have a distinct representation in LISP 
which is not the raw number (i.e. an atom since 
otherwise it would be difficult to differentiate 
between numbers and pointers) and appear in the 
program as (QUOTE number). Thus ~nere is a 
separation between program and data which differs 
from the Von Neumann concept[l] of 
indistinguishability between the two. The task of 
recording the LISP computations is performed by the 
memory as well as by a list known as UNREFERENCED. 
As a program path is symbolically interpreted, 
UNREFERENCED contains a record of all computations 
that have been performed but do not occur as a 
subexpression of the contents of at least one 
memory location (i.e. their result or functions of 
their result are no longer accessible to future 
operations along the path). This is primarily for 
recording computations performed solely for their 
slde-effect. 

3.2 CONTROL STRUCTURES 

The symbolic interpretation process must be able to 
cope with the basic control structures of a 
language. Some of the effects of these control 
structures are described explicitly in the 
procedures corresponding to the instructions in the 
low level program and others are implicit in the 
sense that when certain events are recognized by 
the symbolic interpretation .process as having 
occurred, then corresponding actions are effected 
on the computation model. In this section we 
discuss what happens in case of a condition test, a 
branch, a function call, and encountering an 
instruction which has occurred previously on the 
path being symbolically interpreted. 

As mentioned earlier, the symbolic interpretation 
process corresponds to interpreting a procedure for 
each instruction. For most instructions this 
consists of simply updating the computation model 
to reflect the interpretation of the instruction. 
For example, a HLRZ instruction is defined to load 
the right half of an accumulator with the left half 
of the contents of the effective address, and to 
clear the left half. This instruction is described 
in fig. I using MLISP[15], a variant of LISP, as 
the procedural language. 

FEXPR HLRZ: 
LOADSTORE(ACFIELD(ARGS), 

EXT~DZERO( 
LEFTCONTENTS( 

EFFECTADDRESS(ARGS)))); 

Fig. I - HLRZ instruction 

Some instructions may require more than one 
statement to describe their effect. For example, 
the POPJ instruction which is used to encode a 
return from a recursive call has a considerably 
longer desdription (see fig. 2). In brief, this 
fnstruction deallocates the stack entry which was 
used to store the return address, decrements the 
stack pointer, and returns control to the address 
stored in the address pointed at by the stack 
pointer prior to decrementing it. 

FEXPR POPJ(ARGS); 
BEGIN 

NEW LAB; 
LAB~RIGHTCONTENTS(RIGHTCONTENTS(ACFIELD(ARGS))); 
DEALLOCATESTACKENTRY(ACFIELD(ARGS)); 
SUBX(<ACFIELD(ARG$),X11>); 
UNCONDITIONALJUMP(LAB); 

END; 

Fig. 2 - POPJ instruction 

Until now the instructions that we have encountered 
describe explicitly how the computation model is to 
be updated. There are also instructions whose 
effects on the computation model are invisible 
insofar as their procedural definition. These are 
operations that result in function calls. In such 
a case the effect on the computation model is 
determined by the function being called and also by 
the assumed execution level definition of the 
language. In our case, upon a function call all 
accumulators but those that are known to have their 
contents unchanged by the execution of the said 
function are considered to have been overwritten 
with some unknown value. This causes their 
contents (if not previously referenced) to be added 
to a llst of computations known as UNREFERENCED. 
Recall that this is how we represent computations 
executed primarily for their side-effect rather 
than their resulting value. When a function call 
occurs, the function being called is not 
symbolically interpreted (hence our finite tree 
representatlon); instead, the location which has 
been defined by the execution level definition of 
the language to contain the result is updated to 
indicate that it now contains the result of the 
said function applied to its arguments which are to 
be found in the a set of locations defined by the 
execution level definition of the language. The 
computation model is also updated to reflect any 
possible changes in the bindings of global 
variables and also to include any new equalities or 
inequalities that are implied by the execution of 
the function. For example, a (RPLACA A B) 
operation in LISP implies that subsequent to the 
Snstance of performance of the operation, B and 
(CAR A) poznt to the same list structure. 

Some instructions oerform control ooerations such 
as conditional branching as well as modify the 
computation model. Prior to explaining the role of 
symbolic interpretation in evaluating conditional 
branch instructions we must digress for a moment 
and define a predicate and the notion of a valid 
test. The basic type of non-arithmetic test that 
can be performed by a computer is a check for 
equality. All other non-arithmetic tests are 
modifications of this primitive using certain data 
structures. This equality test is a comparison 
against another value or zero. In LISP such tests 
translate into the predicate EQ having two 
operands. By valid test we mean that the two 
operands of the EQ predicate represent valid data 
items of the high level language. If not, then the 
value of the test must be known - e.g. address 
computation, etc. This means that there must be a 
suitable mechanism for converting the data 
structures used in the ~est to a corresponding 
meaningful test in the sense of the high level 
language. For example, instructions, that 
manipulate bits (e.g. TLNN) by checking if any bits 
(denoted by a suitable mask) in a word are one. 
must be capable of being converted, with the aid of 
knowledge about the execution level definition of 
the language, to a suitable test in the high level 
language. In this example, in an execution level 
definition of LISP which represents NIL by zero, 
the test would correspond to a check against NIL. 

When conditional branching instructions are 
encountered, the symbolic interpretation process 
attempts to form a valid test and then determines 
if its value is known. In the affirmative case 
the appropriate path is taken and the next 
instruction along the path is symbolically 
interpreted. Such situations arise when either the 
operands of the test do not involve data items of 
the high level language, or the condition 
represents a test whose value has been determined 
earlier in the computation path. The latter is 
aided by the equality data base component of the 
computation model. If the condition is a valid 
test whose value is unknown, then the two alternate 
paths are evaluated in order and the result 
returned is a tree as shown in fig. 3. 
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PREDICATE 
/\ 

/ \ 
/ \ 

/ \ 
/ \ 

CONCLUSION ALTERNATIVE 

Fig. 3 - tree representation of a test 

Prior to the evaluation of each path, the 
computation model is updated to reflect the assumed 
value of the condition. This includes modification 
of relevant memory locations as well as propogating 
equalities and inequalities, as the case may be, 
through the equality data base. This latter steep 
zs crucial to having the capability to recognize 
the occurrence of ~ubstitution of equals for 
equals. 

An example of a conditional branch instruction is 
JUMPE (see fig. 4) which is used to branch to a 
specified location if the value of a specified 
accumulator is equal to zero. The description 
makes use of several control functions. CHECKTEST 
examines the operands and forms a valid test if 
possible. Next, if the value of the condition is 
already known, then appropriate action is taken. 
TRUEPREDICATE marks the sense of the test (an 
instruction branching on inequality with zero in 
this case would use FALSEPREDICATE). 
CONDITIONALJUMP and JUMPALTERNATIVE simply serve to 
recursively invoke the symbolic interpretation of 
the paths corresponding to the true and false cases 
of the condition. One of the parameters to these 
routines is the name of another routine which 
specifies any further processing that might be 
required prior to executing the path. Note that 
the actual construction of the tree corresponding 
to the result of the symbolic interpretation 
process occurs in JUMPALTERNATIVE. 

FEXPR JUMPE; 
BEGIN 

NEW TST ; 
TST~CHECKTEST( CONTENTS (ACFIELD(ARGS)), ZEROCNST) ; 
IF TST THEN RETURN( 

IF CDR TST THEN 
UNCONDI TIONALJUMP ( EFFECTADDRESS (ARGS)) 

ELSE NEXTINSTRUCTION( ) ) ; 
TRUEPREDICATE( ) ; 
CONDITIONALJUMP(ARGS,FUNCTION JUMPETRUE) ; 
JUMPALTERNATIVE(ARGS,FUNCTION JUMPEFALSE) ; 

END ; 

FEXPR JUMPETRUE(ARGS) ; 
UNCONDITIONALJUMP( EFFECTADDRESS (ARGS)) ; 

FEXPR JUMPEFALSE(ARGS) ; 
NEXTINSTRUCTION ( ) ; 

Fig. 4 - JUMPE instruction 

Whenever the symbolic interpretation process is 
about to interpret another instruction which has 
been previously encountered along the ~ath being 
symbolically interpreted, then recursion zs assumed 
to have taken place. In such a case, the symbolic 
interpretation process will attempt to show that if 
a branch had indeed been made to the start of the 
program, then the said instruction would have been 
reached with the same state of the computation 
model by virtue of known values for all of the 
conditions along some path to the instruction in 
question. This means that the condition values 
along the path need not be tested since their 
values are known. If such a path from the start of 
the program exists, then it is unique since a 
condition cannot be both true and false. 

3.3 EXAMPLE 

The previous two sections served to highlight 
various aspects of the symbolic interpretation 
process. At this point it is appropriate to show 
how the symbolic interpretation process builds an 
intermediate representation. 

Consider the function NEXT whose LISPI.6112] and 
MLISP[15] definitions are given in fig. 5. The 
function takes as its arguments a list L and an 
element X. It searches L for an occurrence of X. 
If such an occurrence is found, and if it is not 
the last element of the list, then the next element 
in the llst is returned as the result of the 
function. Otherwise. NIL is returned. For 
example, application of the function to the list (A 
B C D E) in search of D would result in E, while a 
search for E or F would result in NIL. FiR. 6 
contains the LAP encoding for the function w~ich 
was obtained by hand coding. Notice that the 
encoding is extremely compact - the inner loop is 
only four instructions long. This is minimal when 
we consider the fact that the inner loop consists 
of four operations - CAR, CDR, EQ test, and 
recurslon. 

(DEFPROP NEXT (LAMBDA (L X) 
(COND ((NULL L) NIL) 

((EQ (CAR L) X) 
(COND {(NULL (CDR L)) NIL) 

(T (CADR L)))) 
(T (NEXT (CDR L) X)))) EXPR) 

NEXT(L,X) = if NULL(X) then NIL 
else if CAR(L) EQ X then 

if NULL(CDR(L)) then NIL 
else C ADR(L) . 

else NEXT{CDR~L),X) 

Fig. 5 - LISP and MLISP encodings of NEXT 

When symbolically interpreting the example program, 
the first instruction that we encounter is JUMPE 
which is used to jump to label DONE if accumulator 
I contains a zero. The result is shown in fig. 7. 
Notice that the test ~orresDonds to checking if the 
list L is NIL - i.e. (EQ L NIL). Since neither of 
the paths corresponding to the true and false cases 
of the test have yet been symbolically interpreted. 
we denote the two subtrees as UNKNOWN-CONCLUSION 
and UNKNOWN-ALTERNATIVE. 

(EQ L NIL) 
/\ 

/ \ 
/ \ 

UNKNOWN-CONCLUSION UNKNOWN-ADTERNATIVE 

Fig. 7 - result of symbolic interpretation 
of (JUMPE I DONE) 

The definition of JUMPE in fig. 4 calls for the 
path corresponding to the true case of the 
condition to be symbolically interpreted. This 
corresponds to updating the equality data base to 
reflec~ the equality of L and NIL followed by a 
branch to the instruction POPJ. At this pozn~ ~ne 
current execution path is considered to be 
terminated since there is no return address on the 
stack corresponding to the current invocation of 
the recursive call. Thus in this case the control 
structure implicit in the symbolic interpretation 

~ rocess results in a mopup operation. This 
ncludes returnin~ a value - L or NIL {they are 

equivalent at thzs point and the proof procedure 
which processes the intermediate forms 
corresponding to the high and low level programs 
will recognize this fact since.built into it is the 

LABEL PROGRAM COUNTER INSTRUCTION 
NEXT I (JUMPE I DONE) 
LOOP 2 (HLRZ 3 0 I) 

3 (HRRZ I 0 I) 
4 (CAIE 3 0 2) L 
5 (JUMPN I LOOP) 
6 {JUMPE I DONE) 
7 (HLRZ I 0 I) 

DONE 8 (POPJ 12) 

COMMENT 
~ ump to DONE if L is NIL 
cad register 3 with CAR{L) 

load register I with CDR(L) 
skip if CAR(L) is EQ to X 
if CDR(L) is not NIL then compute NEXT(CDR(L),X) 
~ ump to DONE if CDR(L) is NIL 
cad register I with CaR(CDR(L)) 

return 

Fig. 6 - LAP encoding corresponding to NEXT 
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same equality data base mechanism as in the 
symbolic interpretation process). In addition, we 
must return a list of all of the computations that 
were performed but not referenced (i.e. 
UNREFERENCED). However, no such computations were 
performed. Fig. 8 shows the state of the 
intermediate representation after symbolic 
interpretation of POPJ. Note that only the true 
case of the test (EQ L NIL) has been resolved so 
far. 

(EQ L NIL) 
IX 

/ \ 
/ \ 

NIL UNKNOWN-ALTERNATIVE 

Fig. 8 - result of symbolic interpretation 
of (POPJ 12) 

When symbolic interpretation is resumed we are in 
the false case of the condition (EQ L NIL) and the 
computation model is updated to reflect the fact 
that L is not NIL. The next two instructions, HLRZ 
and HRRZ. result in the updating of the contents of 
accumulators 3 and I to contain (CAR L) and (CDR L) 
respectively. In this example HLRZ loads the right 
half of accumulator 3 with the left half of the 
contents of the effective address (indexing via 
accumulator I) and clears the right half of 
accumulator 3. HRRZ is similar to HLRZ except that 
the right half of the contents of the effective 
address is fetched instead of the left half. Note 
that nowhere in the procedural definition of HLRZ 
is there any indication that CAR is being computed. 
We are able to detect the computation of CAR by 
virtue of the act of fetching the left half of the 
contents of a LISP pointer. 

CAIE is a condition testing instruction which 
compares the right half of the specified 
accumulator with the effective address and skips 
the next instruction if the condition is s~tisfied. 
It is described procedurally in a manner similar to 
JUMPE except for the addition of suitable 
primitives for effecting a skip rather than a 
jump. In our case this test corresponds to 
checking if (CDR L) is NIL and returning values of 
NIL and (CAR (CDR L)) for the true and false cases 
respectively. The intermediate representation 
prior to symbolically interpreting the false case 
of the (EQ (CAR L) X) condition is shown in fig. 9. 

(EQ L NIL) 
/\ 

/ \ 
/ \ 

/ \ 
/ \ 

NIL (EQ (CAR L) X) 
/\ 

/ \ 
/ \ 

/ \ 
/ \ 

(EQ (CDR L) NIL) UNKNOWN-ALTERNATIVE 
/\ 

/ \ 
/ \ 

/ \ 
/ \ 

NIL (CAR (CDR L)) 

Fig. 9 - result of symbolic interpretation 
of true case of (CAIE 3 0 2) 

The false case of the CAIE condition is interesting 
in several respects. The immediately following 
instruction is a conditional jump which in the true 
case proceeds to branch to an instruction that has 
been previously encountered, while in the false 
case we exit from the function. However, this exit 
takes advantage of the structure of the program to 
enable a tight encoding. This is accomplished by 
recognizing that the next instruction performs a 
test which is a no operation for the said execution 

~ th (i.e. a test of register I containing a 0). 
e no operation is easily detected by virtue of 

the equality data base mechanism which we recall 
keeps track of the values of the various tests 
encountered along the execution path. The branch 
to LOOP, a label previously encountered along the 
execution path, is interpreted as recursion in 

accordance wztn our eariler expianatlon oi tnzs 
concept. 

The resulting intermediate representation is shown 
in fig. 10. Actually, there is an additional 
intermediate representation which indicates a 
relative ordering of computing the various 
functions. This is shown in fig. 11. Notice that 
the number corresponding to the CDR function in 
(CDR L) is less than that of EQ in (EQ (CAR L) NIL) 
despite its appearance in the tree below the said 
predicate. This ordering is necessary for the 
proof procedure to be able to adequately handle 
cases where the rearranging of the order of 
computing functions might lead to errors due to 
side-effect considerations. The relative 
magnitudes of the numbers only serve to indicate a 
partial ordering. The actual values of the numbers 
are used as indices into a table which indicates at 
what instruction and along which execution path 
each function was computed. This proves to be very 
handy in detecting where in an object program 
certain classes of errors occur. 

(EQ L NIL) 
/\ 

/ \ 
/ \ 

/ \ 
/ \ 

NIL (EQ (CAR L) X) 
/\ 

/ \ 
/ \ 

/ \ 
/ \ 

(EQ (CDR L) NIL) (EQ (CDR L) NIL) 
IX IX 

I \ I \ 
I \ I \ 

I \ I \ 
I \ I \ 

NIL (CAR (CDR L)) NIL (NEXT (CDR L) X) 

Fig. 10 - symbolic representation 

(58 5 0) 
IX 

I \ 
I \ 

I \ 
I \ 

(74 (70 5) 6) 
IX 

I \ 
I \ 

I \ 
I \ 

(96 (72 5) O) (144 (72 5) O) 
IX IX 

/ \ / \ 
I \ I \ 

I \ I \ 
/ \ / \ 
0 (108 (72 5)) 0 (154 (72 5) 6) 

Fig. 11 - numeric representation 

4. CONCLUSIONS 

The use of symbolic interpretation as a means of 
obtaining the intermediate representation in the 
second step of the program testing procedure is the 
distinsuishing factor between our system and 
decompzlation[5] methods. We have seen that in our 
system, there was no need to specify how a 
particular construct is encoded since the internal 
representation is simply a record of computations 
performed. In other words, the system is built on 
the semantics of the various assembly language 
instructions in terms of their effect on a 
computation model (recall how the CAR and CDR 
operations were recognized). 

A system[13] has been implemented which uses the 
ideas reported here to prove the correctness of 
translation of programs written in LISPI.6 to LAP. 
It was successfully used in proving the correctness 
of translation of a large number of programs many 
of which were hand coded for efficiency. This was 
possible because the system is independent of the 
actual translator. It only relies upon the 
execution level definition of the source high level 
language. In Particular, the system was able to 
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locate errors in the translatlons as well as 
pinpoint in the object code the location where the 
error was made. This was accomplished with the aid 
of a numeric representation of the symbolic 
intermediate representation which recorded the 
value of the program counter and the Dath for each 
computation. These results suggest that the system 
would be particularly useful as a compiler debugger 
which is a resident part of the compiler. Proofs 
would be enabled when there is a reasonable belier 
that erroneous code is being generated. During 
this time compilation would proceed at a slower 
pace due to the additional burden of generating a 
proof; however, this is a small price to pay for 
the correctness assurance. 

Some future extensions to the symbolic 
interpretation process i~clude the following. 
Incorporate a more complete equality checking 
mechanism which would be able to cope with 
assoclativity as well as equalities in the 
arithmetic domain - i.e. at the present we can not 
detect the equivalence of x=1 and x-1=O. 
Currently, the system tries all possible paths. 
There is no way for the user to control the paths 
to be symbollcally interpreted. Such a feature 
would be useful in a situation where certain 
execution paths are known to be erroneous and 
therefore are to be i~nored. This is in contrast 
with the method of [7] which gives the user full 
control over the selection of paths to be explored. 
Another useful addition is a state save restore 
capability under the control of the user. This 
would mean that when errors occur, the symbolic 
interpretation process need not be started all over 
again. 
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