
A Coroutine Approach to Parsing

HANAN SAMET
University of Maryland

A method is presented for parsing syntactic constructs that are permitted to appear independently
anywhere in a program. Some examples include comments, macros, and constructs for conditional
compilation. Each such construct is defined by its own grammar and parsed by a separate coroutine.
The coroutine model of parsing allows the program text to be parsed in one pass despite the syntactic
inconsistencies among the program text and the additional constructs. The usefulness of the model is
demonstrated by showing how a production language parsing method is extended to handle multiple
syntax specifications. The implementation of conditional compilation by carrying along two parses in
a coroutine manner is also given. The utility of the model is further demonstrated by showing its
adaptation to a recursive descent parser.

Key Words and Phrases: parsing, coroutines, compilers, production language, conditional compilation,
extensible languages, macros
CR Categories: 4.12, 4.20, 4.32, 5.23

1. INTRODUCTION

P r o g r a m m i n g l a n g u a g e s y n t a x is u s u a l l y spec i f i ed b y s o m e f o r m of a c o n t e x t - f r e e
g r a m m a r w h i c h can b e p a r s e d b y a n y one o f a n u m b e r o f t e c h n i q u e s [10].
H o w e v e r , in a d d i t i o n to t h e p r i m a r y syn tax , a p r o g r a m t e x t can o f t en i n c l u d e
o t h e r c o n s t r u c t s w h i c h c a n b e p l a c e d b e t w e e n a n y two tokens . I n o t h e r words , we
s a y t h a t " t h e y a r e p e r m i t t e d to o c c u r a n y w h e r e in t h e p r o g r a m . " A l t h o u g h t h e
g r a m m a r s for t h e s e c o n s t r u c t s a r e r e l a t i v e l y s imp le , t h e s p o n t a n e o u s n a t u r e o f
t h e c o n s t r u c t s m a k e s i t d i f f icu l t to e m b e d t h e i r p r o d u c t i o n s in p a r s e r s o f m o s t
p r o g r a m m i n g l anguages . E x a m p l e s o f such c o n s t r u c t s a r e c o m m e n t s , ma c ros , a n d
c o n s t r u c t s for c o n d i t i o n a l c o m p i l a t i o n . I n t h e l a t t e r two cases , e v a l u a t i o n o f t h e
c o n s t r u c t s y i e l d s c o m p o n e n t s o f t h e p r i m a r y syn tax .

I n [5] C o n w a y d e s c r i b e s t h e o r g a n i z a t i o n o f a c o m p i l e r t h a t m a k e s use o f a
n u m b e r o f s t a g e s w h i c h i n t e r a c t in a c o r o u t i n e fash ion . T h e s e s t a g e s i n c l u d e a
l ex ica l ana lyze r , a p a r s e r (" d i a g r a m m e r " a c c o r d i n g to [5]), a code g e n e r a t o r , etc.
I n t h i s p a p e r we use a s i m i l a r c o r o u t i n e o r g a n i z a t i o n to f a c i l i t a t e t h e o n e - p a s s
p a r s i n g o f p r o g r a m t e x t c o n t a i n i n g a m i x t u r e o f p r i m a r y s y n t a x a n d e x t r a l a n g u a g e
cons t ruc t s .

T h i s p a p e r was m o t i v a t e d b y a des i r e to i m p l e m e n t c o n d i t i o n a l c o m p i l a t i o n in

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
Author's address: Department of Computer Science, University of Maryland, College Park, MD
20742.
© 1980 ACM 0164-0925/80/0700-0290 $00.75

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980, Pages 290-306.

Fig. 1.

A Coroutine Approach to Parsing

const TEST = false;
!

if TEST then {somecode)

Program segment illustrating conditional compilation.

291

Fig. 2.

begin

IFC INTEGER_ARITHMETIC THENC integer
ELSEC real
ENDC
SALARY, COMMISSION;

end

Another program segment illustrating conditional compilation.

a high-level language. Section 2 contains a discussion of this and similar features
and the merits of a number of al ternative implementations. Sect ion 3 elaborates
on the coroutine model of parsing. Sect ion 4 demonstra tes the utility of the model
by showing how it can be incorporated in a product ion language system [10, 11].
In fact, this is how conditional compilation was implemented in SAIL [16].
Although other parsing methods have been t rea ted similarly by the au thor (e.g.,
recursive descent [11] as shown in the appendix), product ion language is used
because of its compact represen ta t ion) We conclude our presentat ion with a
sample implementa t ion of conditional compilation.

In the discussion tha t follows we refer to the syntax of the programming
language as the p r i m a r y s y n t a x .

2. MOTIVATION

Conditional compilation, the high-level analog of conditional assembly, is a
facility whereby the compile-t ime evaluation of a Boolean expression determines
whether an associated port ion of program text is t ranslated by the compiler.

The effect of conditional compilation can be achieved using an optimizing
compiler which evaluates all expressions comprised only of compile-t ime con-
stants and eliminates unreachable code. Such a compiler would, for example,
produce no code for the program fragment in Figure 1.

However, if conditional compilation is achieved in this way, then it can only be
obtained for the conditional constructs of the programming language. For in-
stance, conditional declarations would normally not be possible (e.g., Algol 60
[14]). In addition, the optimization capability m ay cause considerable compiler
overhead.

Another way to achieve conditional compilation is to introduce a separate
syntax for this purpose. For example, Figure 2 uses compile-time directives
IFC, T H E N C , E L S E C , and E N D C and the compile-t ime variable

1 Production language is less commonly used today for compiler construction. However, it is the
subject of much research in artificial intelligence as a basis for rule-driven inference systems
(e.g., [6]).

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

292 Hanan Samet

I teo at" : I oen"l
Fig. 3. Coroutine state diagrams.

INTEGER__ARITHMETIC. Here we are declaring variables SALARY and
COMMISSION to be of type in t ege r or rea l depending on whether the compile-
time variable INTEGER__ARITHMETIC is true or false.

One can introduce compile-time variables as macros. Alternatively, one can
have a compiler which always evaluates expressions comprised of constants. Even
greater generality is possible when the compiler permits a combination of the
previous two methods. Typically, conditional compilation units can be nested,
provided that they are well bracketed.

Another common approach, as exhibited in PL/ I [15], is to implement condi-
tional compilation as a preprocessing phase. This approach, although general, is
inferior to a one-pass approach because all decisions are made purely on the basis
of syntactic information. In contrast, the one-pass approach enables decisions to
be made on the basis of semantic information previously accumulated by the
compiler. For example, the conditional compilation condition may involve que-
rying the symbol table as to the type of a variable, whether or not a variable has
been declared, etc.

Our solution to the apparently conflicting goals of (1) allowing certain con-
structs to appear "anywhere in the program" and yet (2) making use of semantic
information in parsing these constructs is to employ a coroutine-like mechanism
to parse different languages each having a different and independent grammar. A
multipass algorithm fulfills the first goal; however, only a one-pass algorithm
fulfills the second goal. Knuth mentions that it is often possible to transform a
multipass algorithm to a one-pass algorithm using coroutines and cites space and
time advantages of the one-pass solution [12]. Thus the coroutine solution allows
us to meet both of our goals. This is a stronger solution than a subroutine-like
interaction which is all that is necessary to handle comments or macro definitions
(see [9] for a discussion of related ideas). Note that parse tokens of one syntax
may be embedded within those of another syntax. For example, the conditional
compilation syntax c~ll.~ for a conditional expression which is a sequence of parse
tokens generated by the programming language grammar. In such a case, the
conditional expression is a recursive instance of the primary syntax. Also observe
that if the conditional expression contains conditional compilation statements,
then there is a further recursive instance of the conditional compilation syntax as
w e l l .

3. MODEL

We view the parse of each syntax as a coroutine. At any point in time, each
coroutine can be in one of three states: active, suspended, or terminated. The
transitions between the states are primarily determined by the definition of the
programming language. Figure 3 contains a state diagram illustrating the possible
transitions.

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

A Coroutine Approach to Parsing 293

begin

IFC A > IFC B > C THENC D
ELSEC E
ENDC...

THENC...
ELSEC...
ENDC

e n d

Fig. 4. Example program.

Assume tha t there exist n different syntax specifications corresponding to the
pr imary syntax and n - 1 extralanguage constructs. At any instant, only one of
the syntaxes can have its associated coroutine in an active state. Th e coroutines
associated with the remaining n - 1 syntaxes are in the suspended state. Actually
associated with each syntax is a stack of suspended coroutines. Th e potential
need for a stack arises whenever a coroutine is initiated whose corresponding
syntax already has a coroutine in an active or suspended state. Th e stack is
required should the newly initiated coroutine make a transit ion to a suspended
state. A coroutine is said to be in a te rminated state when it can no longer make
fur ther transit ions to o ther states (e.g., its corresponding code segment is exited).

Whenever a new syntax is added to a programming language, a set of reserved
tokens te rmed initiators and resumers is designated. Init iators signal tha t a parse
of the corresponding syntax is to start. Resumers signal tha t a suspended
coroutine of the associated syntax is to be made active (i.e., resumed) while the
current ly active coroutine makes a transit ion to a suspended state. As an example,
IFC is an init iator for conditional compilation and T H E N C is a resumer.

A coroutine can be initiated in two ways. One way is implicit and occurs when
an init iator symbol of a syntax is encountered. Alternatively, a coroutine may be
initiated explicitly by an active coroutine. For example, the grammar of the
language ma y dictate tha t the pr imary syntax coroutine is invoked by the
coroutine for conditional compilation to obtain a constant Boolean expression
following an IFC symbol. The previously active coroutine enters a suspended
state.

A coroutine can be resumed in two ways. Th e first is implicit and arises when
a resumer symbol of a syntax whose coroutine is in a suspended state is encoun-
tered while a coroutine associated with another syntax is active. Second, a
coroutine ma y be resumed explicitly by an active coroutine. For example, the
grammar of the language may specify tha t the coroutine for the pr imary syntax
be resumed following the processing of an ELSEC. In both cases, the previously
active coroutine enters a suspended state. Note tha t since coroutine-like inter-
action is only defined between different syntaxes, we do not permit an active
coroutine to resume a suspended instance of itself.

As an example of the coroutine control mechanism, consider the program
fragment in Figure 4 which contains a pair of embedded conditional compilation
s tatements . Table I contains snapshots of the status of the various coroutines as
the program is being parsed. Suspended S T A C K 1 and coroutines J, K, and L are

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

294 Hanan Samet

Table I. Snapshots of the Parse of the Program of Figure 4

Suspended Suspended
Step Token Active stack 1 stack 2 Terminated

1 ° ' ' J

2 IFC X J
3 A > K J
4 IFC Y K,J
5 B > C L K,J
6 THENC Y K,J
7 assume B > C true K J
8 ELSEC Y K,J
9 ENDC K J

10 THENC X J
11 assume A > D true J X
12 E L S E C . . . X J
13 E N D C . . . J

X
X
Y,X
X
Y,X
X
X

L

Y
K

x

associated with the primary syntax. Suspended STACK 2 and coroutines X and
Y are associated with the conditional compilation syntax. Initially, coroutine J is
in the active state, and no coroutines are in the suspended states. For example,
entry 6 denotes the status of the parse immediately after parsing the first THENC
symbol. In this case we have the following situation:

(1) coroutine Y of the conditional compilation syntax is the active coroutine,
(2) coroutines K and J of the primary syntax are in the suspended state with

coroutine K on top of the suspended stack;
(3) coroutine X of the conditional compilation syntax is in the suspended state;
(4) coroutine L of the primary syntax has just entered the terminated state.

4. EXAMPLE

To illustrate the usefulness of our model, we demonstrate how a production
language parsing system can be extended to handle multiple syntaxes correctly
with a minimal amount of effort. Production language has been chosen because
it lends itself easily to a compact description of a programming language and the
actions to be taken upon successful reductions. We first present a brief overview
of production language. Next we describe the necessary extension to enable
multiple syntaxes to be parsed in a coroutine manner. Finally we show how
conditional compilation is implemented using these extensions.

4.1 Production Language and Its Implementation

Production language is primarily a means of describing the syntax of a program-
ming language and the actions to be taken upon successful reductions. The
principles of one such system (used in the implementation of SAIL) are illustrated
by the following production. We use a variant of production language that also
enables the specification of semantic action [8].

aa: b b c c ~ d d
EXEC ROUTINE1 ROUTINE2
SCAN 2
CALL ee RETURN GO ff ERROR gg

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

A Coroutine Approach to Parsing 295

aa is the label of the production, bb and cc are the parse tokens that must be
on top of the parse stack for the reduction to be made. If a match does occur,
then bb and cc are replaced by dd and the remaining part of the production is
executed in sequence. If the ~ symbol is absent, then the occurrence of a match
means that the parse stack is unchanged (equivalent to lhs ~ lhs). bb and cc
may also be specific constants such as 0, 1, true, false, or even reserved words.

ROUTINE1 and ROUTINE2 are subroutines (usually referred to as EXEC
routines) which are executed upon a successful match. They are typically used
for semantic action such as code generation as well as parser state changing.

SCAN (number) indicates how many parse tokens must be returned by the
scanner prior to executing the next production.

CALL, RETURN, and GO denote actions to be taken upon a successful match.
CALL ee indicates that production ee is to be invoked recursively. It is useful
when the next syntactic construct is known, and it is desired to resume the
current parse once the desired construct has been obtained. RETURN is the dual
of CALL and signals that the current production exits recursively upon success.
GO ff indicates the next production to be executed. ERROR gg denotes the next
production to be at tempted upon failure {i.e., bb and cc do not match the top two
entries on the parse stack). If ERROR is not used, then the immediately following
production is at tempted next.

To completely specify a language, all the symbols used in the reductions must
be declared. There are four types of symbols: terminal symbols, reserved words,
nonterminal symbols, and classes. Of these, the first three have their customary
meaning and classes are sets of symbols. Each class identifier is prefixed with the
@ character. When a match is at tempted and a class name is seen, then any
member of the class will match it.

4.2 Extension to Production Language to Handle Multiple Syntaxes

Recall from Section 3 that the coroutines associated with the syntaxes can be
initiated and resumed either implicitly or explicitly. Implicit initiation and re-
sumption are achieved by adding two more types of symbols, initiators and
resumers. Initiators are specified along with the name of their corresponding
syntax and the label of the production at which the initiated coroutine is to start.
Both initiators and resumers are treated as reserved words and the symbol table
is initialized to contain them as well as type bits indicating whether the symbols
are initiators or resumers. In addition, the symbol table entry of an initiator
includes the name of the syntax and the label of the associated production.

Explicit coroutine initiation is achieved by the construct INIT followed by the
name of the corresponding syntax and the label of the production at which the
coroutine is to start. This mechanism is analogous to a CALL with the additional
task of starting a coroutine. Explicit coroutine resumption is achieved by the
introduction of the RESUME construct followed by the name of a syntax.
RESUME appears in a production in the same place where SCAN appears and
has the meaning that the currently active coroutine is placed in a suspended state
and a coroutine associated with the designated syntax makes a transition from
the suspended state to an active state. In addition, the scanner is invoked to

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

296 Hanan Samet

IF0: IFC ~ IFC (1)
IFI: TRUE ~ TRUE1
IF2: FALSE ~ FALSE1 EXEC SWPOFF

IF3: @CTRUE ENDC
TRUE1 ELSEC ~ FALSE2 EXEC SWPOFF

IF4: IFC ~ NOCOND
NOCOND ENDC
FALSE1 ELSEC ~ TRUE2 EXEC SWPON

@CFALSE ENDC ~ EXEC SWPON
SG

CBI: IFC
CB2: IFC E THENC ~ E (2)
OUT:

Fig. 5.

INIT 1 CB1 GO IF1 ERROR OUT
RESUME 1 GO IF3
SCAN GO IF4 ERROR OUT

ADIEU 1
SCAN GO IF4 ERROR OUT
SCAN GO IF4
SCAN GO IF4
RESUME 1 GO IF3

ADIEU 1
SCAN GO IF4
SCAN CALL CONBEX GO CB2 ERROR OUT

ADIEU 2 ERROR OUT

Conditional compilation productions.

furnish as many parse tokens as the resumed coroutine had yet to furnish upon
its most recent transition to the suspended state.

Coroutine termination is achieved by the construct ADIEU 2 followed by the
name of a syntax. The effect of this construct is similar to a combination of
RESUME and RETURN. The result is that the currently active coroutine is
terminated, and a coroutine associated with the designated syntax makes a
transition to the active state. Once again, the scanner must be prompted to
furnish as many parse tokens as the resumed coroutine had yet to furnish upon
its most recent transition to the suspended state.

Clearly, each instance of a coroutine that is associated with a syntax will have
its own parse stack. At times it may be useful for one coroutine to examine, as
well as manipulate, the parse stack of a coroutine associated with another syntax
(e.g., the result of parsing the constant Boolean expression in conditional compi-
lation; see Figure 5). This is achieved by optionally appending to each parse token
in a production a number corresponding to the syntax (and hence the parse stack}
to which it belongs. We assume that, when scanning a left-hand side of a
production to the left, starting with the ~ symbol, the elements are encountered
in the same order in which they appear on the top of the corresponding parse
stacks. For example, execution of the production

A (I) B ~ C (1)

results in an at tempt to match B with the top of the parse stack corresponding to
the currently active coroutine. Next, an at tempt is made to match A with the top
of the parse stack associated with syntax 1. A successful match results in A (1)
and B being removed from their corresponding parse stacks, and C is placed on
the parse stack associated with the coroutine corresponding to syntax 1.

Finally, a capability is needed for selectively disabling and enabling implicit
coroutine initiation and resumption for certain syntaxes (e.g., between the ELSEC
and matching ENDC symbols of a conditional compilation statement whose
constant Boolean expression has the value true). This is accomplished by use of
EXEC routines named SWPOFF and SWPON whose arguments indicate the
names of the syntaxes for which implicit coroutine initiation and resumption are
to be disabled and enabled, respectively. If no arguments are specified, then

2 This term was first used in CONNIVER [13] .

A C M T r a n s a c t i o n s on P r o g r a m m i n g L a n g u a g e s and Sys tems , Vol. 2, No. 3, J u l y 1980.

A Coroutine Approach to Parsing 297

implicit coroutine initiation and resumption are disabled and enabled, respec-
tively, for all syntaxes.

4.3 Conditional Compilation

Conditional compilation has been described in Section 2. The necessary produc-
tions and symbol declarations for conditional compilation are shown in
Figures 5 and 6. We label the conditional compilation syntax as syntax 2 and the
primary syntax as syntax 1. The following is a scenario of the workings of the
system when an IFC is encountered while in the midst of parsing the primary
syntax.

Conditional compilation starts with production IF0 in control having been
initiated in an implicit manner. Its primary role is to initiate another coroutine
corresponding to syntax 1 to obtain a constant Boolean expression. Once such an
expression has been obtained, a return is made to production IF1. Note that the
IFC has been placed on the parse stack of the coroutine of syntax 1.

The actual constant Boolean expression is obtained by productions CB1 and
CB2. CB1 serves to invoke the set of productions associated with parsing a
constant Boolean expression. The IFC, which has been placed on the parse stack
by the suspended coroutine, serves as a left context for the expression while the
SCAN prior to the call to CONBEX provides a one-symbol lookahead to delimit
the constant Boolean expression from the right so that the end of the expression
can be detected. Note that once the constant Boolean expression has been
obtained, the parse token corresponding to the expression is moved to the parse
stack of the conditional compilation syntax. Also observe that the coroutine
associated with obtaining the constant Boolean expression is terminated in
production CB2 and the currently suspended conditional compilation coroutine
is made the active coroutine.

Production IF1 corresponds to the constant Boolean expression being true.

Therefore, the suspended coroutine (i.e., corresponding to syntax 1) is resumed,

(INITIATORS)
IFC 2 IFO

(RESUMERS)
ENDC 2
ELSEC 2

(RESERVED WORDS)
THENC

(CONSTANTS)
TRUE FALSE

(NON-TERMINAL SYMBOLS)
TRUE1 TRUE2 FALSE1 FALSE2 NOCOND

(CLASSES)
@CTRUE TRUE1 TRUE2
@CFALSE FALSE1 FALSE2

Fig. 6. Conditional compilation symbol declarations.
ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

298 • Hanan Samet

whereas the conditional compilation coroutine is placed in a suspended state to
be resumed at production IF3.

Production IF2 corresponds to the constant Boolean expression being false. In
this case, the suspended coroutine (corresponding to syntax 1) remains in a
suspended state and the productions starting at IF4 are invoked to scan successive
parse tokens until a matching ENDC or ELSEC is obtained at the same nesting
level as the IFC. This step is aided by the nonterminal symbol NOCOND. EXEC
routine SWPOFF results in disabling implicit coroutine initiation and resumption,
i.e., when the constant Boolean expression is false, coroutines cannot be initiated
or resumed via the scanner in the program segment between THENC and ELSEC
or THENC and ENDC.

When the top two elements of the parse stack are FALSE1 and ELSEC, the
suspended coroutine is resumed, and the conditional compilation coroutine is
placed in a suspended state to be resumed at production IF3. When the top
element of the parse stack is ENDC and the next to the top element is a member
of class CFALSE, then the current conditional compilation coroutine is termi-
nated (ADIEU) and the suspended coroutine associated with the primary syntax
is resumed. Both of the previous cases result in the execution of EXEC routine
SWPON, which has the opposite effect of SWPOFF. It enables implicit coroutine
initiation or resumption and thus coroutines can once again be initiated or
resumed via the scanner. SG is a symbol that matches all parse tokens.

The two productions starting at IF3 ensure that proper action is taken once
the program segment corresponding to the value of the constant Boolean expres-
sion has been parsed. When the top element of the parse stack is ENDC, and the
next to the top element is a member of class CTRUE, then the current active
conditional compilation coroutine is terminated (ADIEU) and the suspended
coroutine associated with the primary syntax is resumed. When the top two
elements of the parse stack are TRUE1 and ELSEC, SWPOFF is executed. Then
the set of productions at IF4 causes tokens to be skipped until a matching ENDC
is encountered at the same nesting level.

The suffixes 1 and 2 on TRUE and FALSE aid in identifying the component of
the conditional compilation statement that is currently being parsed, namely, 1
corresponds to the program segment between THENC and ELSEC or THENC
and ENDC, whereas 2 corresponds to the program segment between ELSEC and
ENDC. In particular, the suffixes are useful in determining proper action to be
taken when an ELSEC is encountered.

5. C O N C L U D I N G R E M A R K S

Similar techniques to those discussed herein have been successfully used to
implement a conditional compilation facility in the SAIL compiler. In that
application, use of such methods enabled the construction of a more powerful
compile-time facility, namely, macros whose definitions could appear anywhere
in the program text. Other features which were implemented include the compile-
time equivalents of the following constructs: FOR loops, WHILE statements,
CASE statements, and FOR loops based on a list of variable bindings rather than
on an iterative numeric variable. In addition, the concept of two syntaxes enables
SAIL macros to have recursive definitions.
ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

A Coroutine Approach to Parsing • 299

Conditional compilation and macros as described here have been used to
extend SAIL [3] to serve as the data manipulation language in conjunction with
DBMS-10 [7], a CODASYL-based [4] database management system. The DBMS-
10 database operations {termed verbs) are implemented by use of macros. The
close interaction between the compiler and the compile-time facility (i.e., the one-
pass characteristic rather than a preprocessor) enables the expression of the
database operations in SAIL to be quite general. For example, the SAIL imple-
mentation of the verbs provides for their invocation with parameters of different
type (e.g., string, integer, etc.). The macros corresponding to the verbs perform
compile-time type checking and generate procedure calls to the actual DBMS-10
routines with the appropriate parameters. Thus the programmer is provided with
a greater degree of flexibility than is attainable with conventional data manipu-
lation languages such as Cobol [1] or Fortran [2].

The extension to production language described in Section 4.2 forces the
specification, for each state transition, of the syntax that is being resumed. A
more general scheme is one that would also permit a syntax to interact with more
than one other syntax. Such a scheme can be achieved by letting the special
symbol R denote the syntax that was most recently suspended. Given syntaxes A
and B, this is equivalent to saying that once syntax B has been initiated by syntax
A, all subsequent references to R by productions of syntax B refer to syntax A
(e.g., INIT R, R E S U M E R, ADIEU R, and (parse token) (R)). Using such a
method, for example, permits the conditional compilation syntax to be embedded
in more than one syntax.

The concept of multiple syntaxes could also be applied to render scanner
implementations more comprehensible. In particular, concepts such as lines,
buffers, and even source file switching a could be implemented as separate syntaxes
with the appropriate initiators and resumers. For example, in SAIL, source file
switching is achieved by the command:

REQUIRE "FILENAME" SOURCE ! FILE;

Upon encountering the above command, the scanner obtains all subsequent parse
tokens from file FILENAME. When the special "end of file" character is seen,
the scanner once again obtains parse tokens from the original file. In SAIL, this
feature is currently restricted to statement level. However, viewing the REQUIRE
symbol as an initiator for the source file switching syntax permits source file
switching to occur anywhere in the program text. The special "end of file"
character serves as a resumer symbol for implicitly resuming the coroutine
associated with the source file switching syntax.

Our method for parsing multiple syntaxes can be applied to other bottom-up
parsing methods by employing techniques similar to those used in our adaptation
of production language. To implement our method for a top-down parsing
technique, such as recursive descent, requires that the parsing technique have a
coroutine control structure. For an example of an implementation using a recur-
sive descent parser, see the appendix where the productions given in Figure 5 are

a Source file switching is a feature which allows the programmer to specify tha t parse tokens are to be
obtained from another file.

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

300 Hanan Samet

encoded using SAIL's multiprocessing capabilities (thereby enabling the imple-
mentation of coroutines).

APPENDIX. RECURSIVE DESCENT PARSER

In this section we present an implementation of conditional compilation for an
environment employipg a recursive descent parser. Once again, we only use two
syntax specifications, the primary syntax and the conditional compilation syntax.
The procedures are encoded in a liberal variant of SAIL. The effect of a coroutine
is achieved by making use of SAIL's process constructs (e.g., s p r o u t and r e sume)
since the coroutine construct is not explicitly present in SAIL.

It is assumed that there exists a procedure named Parser that encodes the
remaining productions of the language in which the following conditional com-
pilation productions are embedded. CONBEX is a procedure that corresponds to
a set of productions that parse a constant Boolean expression. Expression is a
predicate that indicates whether or not its parse token argument is an expression.
GetParseToken is a standard routine that reads characters from the input buffer.
In general, the names of the procedures are identical to the labels of the
productions and the names of the EXEC routines in Figure 5.

The program makes use of CoroutineTable, a two-dimensional array of type
Coroutine, to store identifying names 4 for the various coroutine instances that
may be in the active or suspended states. There is one row per syntax where each
row is viewed as a stack. CurrentCoroutine is an array that indicates for each
syntax the index of the CoroutineTable entry corresponding to the instance of
the coroutine currently in the active or most recently suspended state (i.e., the
column number}. ParseStacks is an array of parse token stacks consisting of one
stack for each syntax. It is accessed by function ParseStack relative to its top;
e.g., ParseStack(0) and ParseStack(-1) correspond to the topmost and next to
the topmost elements, respectively. ParseStackTop is an array of pointers to the
tops of the parse stacks of the various syntaxes.

Note that rather than having one parse stack per instance of a coroutine (recall
that there may be active and suspended coroutines associated with each syntax},
we have one parse stack per syntax. This can be justified by observing that once
a coroutine, say P, corresponding to syntax S is initiated, the parse stack of any
suspended coroutine associated with syntax S will not be accessed until coroutine
P has terminated.

Coroutines are initiated, resumed, and terminated by use of procedures
SuspendMeAndInitiate, SuspendMeAndResume, and KillMeAndResume which
correspond to INIT, RESUME, and ADIEU, respectively, of Figure 5.
SuspendMeAndInitiate is invoked with parameters NewSyntax and Pname, sets
CurrentSyntax to NewSyntax, and makes use of SAIL's s p r o u t command to
start procedure Pname in a coroutine manner. SuspendMeAndResume is invoked
with parameter ResumedSyntax, which corresponds to the syntax that is to be
resumed. It sets CurrentSyntax to ResumedSyntax and makes use of SAIL's

4 The names are actually of type item. item in a SAIL data type that is analogous to a pointer. In this
case, each coroutine (implemented as a SAIL process) has a unique identifying item associated with
it. i t e m v a r s are SAIL variables whose value is of type i t e m .

ACM Transac t ions on Programming Languages and Systems, Vol. 2, No. 3, Ju ly 1980.

A Coroutine Approach to Parsing • 301

r e s u m e command to resume the corresponding coroutine. Ki l lMeAndResume is
invoked with paramete r ResumedSyntax and terminates the active coroutine,
sets Cur ren tSyntax to ResumedSyntax, and resumes the appropriate coroutine.

Note tha t procedures PushParseStack, PopParseStack, and ParseStack are
act ivated with an optional parameter , as signified by the parentheses following
the paramete r declaration. The value enclosed by the parentheses denotes a
default value when the paramete r is absent. If the optional parameter is present,
then it denotes the syntax whose parse stack is to be manipulated or referenced,
while if absent, then the parse stack associated with syntax Curren tSyntax is
manipula ted or referenced.

begin
/* type definitions*/

define ParseToken -- "string";
define Syntax = "integer";
define Coroutine = "i temvar";
define CoroutineName = "procedure";

/* constant definitions*/
define MaxNumOfCoroutines = 100;
define MaxParseStackSize = 50;
define NumOfSyntaxes -- 2;

/* storage declarations*/
Coroutine a r r ay CoroutineTable [l:NumOfSyntaxes, 0:MaxNumOfCoroutines];
ParseToken a r r ay ParseStacks [l:NumOfSyntaxes, 0:MaxParseStackSize];
p re load ! with rNumOfSyntaxes] 0; /*initialize ParseStackTop to 0"/
in teger a r r a y ParseStackTop [1: NumOfSyntaxes];
in teger a r r a y CurrentCoroutine [1: NumOfSyntaxes];
SyntaxCurrent Syntax;
in teger I, J ; /*loop variables*/
Boolean SwappingOk;

/* procedure definitions*/
recurs ive p rocedure IF0;
begin

if ParseStack (0) = IFC then
begin

PopParseStack;
PushParseStack (IFC, 1);
SuspendMeAndInitiate (1, CB1);
IF1;

end
else OUT;

end;

recurs ive p rocedure IF1;
begin

if ParseStack (0) -- TRUE then
begin

PopParseStack;
PnshParseStack (TRUED;
SuspendMeAndResume (1);
IF3;

end
else i f ParseStack (0) = FALSE then

begin
ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

302 • Hanan Samet

PopParseStack;
PushParseStack (FALSE1);
SWPOFF;
Scan (1);
IF4;

end
else OUT;

end;

r eeu r s ive p r o c e d u r e IF3;
beg in

ff MemberCtrue (ParseStack (-1)) a n d ParseStack (0) -- ENDC t h e n
beg in

PopParseStack;
PopParseStack;
KillMeAndResume (1);

end
else i f ParseStack (-1) ffi TRUE1 a n d ParseStack (0) -- ELSEC t h e n

beg in
PopParseStack;
PopParseStack;
PushParseStack (FALSE2);
SWPOFF;
Scan (1);
IF4;

end
else OUT;

end;

r e c u r s i v e p r o c e d u r e IF4;
beg in

if ParseStack (0) -- IFC t h e n
beg in

PopParseStack;
PushParseStack (NOCOND);
Scan (1);
IF4;

end
else ff ParseStack (-1) = NOCOND a nd ParseStack (0) -- ENDC t h e n

beg in
PopParseStack;
PopParseStack;
Scan (1);
IF4;

end
else i f ParseStack (-1) = FALSE1 a nd ParseStack (0) = ELSEC t h e n

beg in
PopParseStack;
PopParseStack;
PushParseStack (TRUE2);
SWPON;
SuspendMeAndResume (1);
IF3;

end
else i f MemberCfalse (ParseStack (-1)) a nd ParseStack (0) ffi ENDC t h e n

beg in
PopParseStack;

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

A Coroutine Approach to Parsing 303

PopParseStack;
SWPON;
KillMeAndResume (1);

end
else

begin
PopParseStack;
Scan (1);
IF4;

end;
end;

r ecurs ive p rocedure CB1;
begin

if ParseStack (0) ffi IFC then
begin

Scan (1);
CONBEX;/*get a constant Boolean expression*/
CB2;

end
else OUT;

end;

r ecurs ive p rocedure CB2;
begin

ParseToken Pt;
i f ParseStack (0) ffi THENC and Expression (ParseStack (-1)) and

ParseStack (- 2) ffi IFC then
begin

Pt := ParseStack (-1);
PopParseStack;
PopParseStack;
PopParseStack;
PushParseStack (Pt, 2);
KiUMeAndResume (2);

end
else OUT;

end;

p rocedure OUT;
PRINT ("invalid parse token");

p rocedu re SWPOFF;
SwappingOk := FALSE;

p rocedure SWPON;
SwappingOk :ffi TRUE;

reeurs ive p rocedu re Scan (integer ScanCount);
beg in

ParseToken Result;
while ScanCount > 0 do

begin
Result :-- GetParseToken;
if SwappingOk then

begin
f f Result -- IFC then

begin

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

304 Hanan Samet

PushParseStack (IFC, 2);
SuspendMeAndInitiate (2, IF0);

end
else if Result = ELSEC or Result -- ENDC then

begin
PushParseStack (Result, 2);
SuspendMeAndResume (2);

end
else

begin
PushParseStack (Result);
ScanCount :-- ScanCount -1;

end;
end

else
begin

PushParseStack (Result);
ScanCount := ScanCount -1;

end;
end;

end;

Boolean p rocedure MemberCtrue (ParseToken Token);
r e t u r n (Token = TRUE1 or Token -- TRUE2);

Boolean p rocedure MemberCfalse (ParseToken Token);
r e t u r n (Token = FALSE1 or Token = FALSE2);

p rocedure PushParseStack (ParseToken Token; Syntax DestSyntax (Current Syntax));
begin

ParseStackTop [DestSyntax] :-- ParseStackTop [DestSyntax] + 1;
ParseStacks [DestSyntax, ParseStackTop [DestSyntax]] := Token;

end;

procedure PopParseStack (Syntax SourceSyntax (CurrentSyntax));
ParseStackTop [SourceSyntax] :-- ParseStackTop [SourceSyntax] - 1;

ParseToken p rocedure ParseStack (integer Offset;
Syntax TokenSyntax (Current Syntax));

r e t u r n (ParseStacks [TokenSyntax, ParseStackTop [TokenSyntax] + Offset]);

recurs ive p rocedure SuspendMeAndInitiate (Syntax NewSyntax;
CoroutineName Pname);

begin
CurrentSyntax :-- NewSyntax;
CurrentCoroutine [NewSyntax] := CurrentCoroutine [New Syntax] + 1;
/*run the new coroutine and suspend the currently active coroutine*/
sprout (CoroutineTable [NewSyntax, CurrentCoroutine [NewSyntax]], Pname,

suspme);
end;

recurs ive p rocedure SuspendMeAndResume (Syntax ResumedSyntax);
begin

CurrentSyntax := ResumedSyntax;
/*resume the suspended coroutine and suspend the active coroutine*/
resume (CoroutineTable [ResumedSyntax, CurrentCoroutine [ResumedSyntax]],

any);
end;
ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

A Coroutine Approach to Parsing 305

recursive procedure Kil lMeAndResume (Syntax ResumedSyntax);
b e g i n

Current Coroutine [CurrentSyntax] := CurrentCoroutine [CurrentSyntax] - 1;
CurrentSyntax := ResumedSyntax;
/* terminate the active coroutine and run the suspended coroutine*/
r e s u m e (CoroutineTable [ResumedSyntax, CurrentCoroutine [ResumedSyntax]] , any ,

killme);
end;
/*main body star ts here*/

for I := 1 s t e p 1 u n t i l NumOfSyntaxes do
/*al locate the CoroutineTable ar ray*/

b e g i n
for J :-- 0 s t e p i until MaxNumOfCoroutines do CoroutineTable [I, J] :-- new;
CurrentCoroutine [I] :-- O;

end;
SwappingOk := TRUE;
CurrentSyntax :-- 1;
SuspendMeAndIni t ia te (1, Parser);

end;

ACKNOWLEDGMENTS

I a m g ra t e fu l to t h e S t a n f o r d Ar t i f i c i a l I n t e l l i ge nc e L a b o r a t o r y for fu rn i sh ing
t h e n e c e s s a r y c o m p u t e r t ime . I h a v e b e n e f i t e d g r e a t l y f r o m d i scuss ions w i t h J e r r y
F e l d m a n , J i m Low, R o b e r t N o o n a n , J o h n Re i se r , D a n S w i n e h a r t , R u s s T a y l o r ,
a n d R a n d y Tr igg . I a l so t h a n k S u e G r a h a m for h e r e d i t i ng he lp .

REFERENCES
1. American National Standard Programming Language COBOL X3.23-1974. American National

Standards Institute, Inc., New York, 1974.
2. American National Standard FORTRAN. American National Standards Institute, New York,

1966.
3. BUCHANAN, J., FENNELL, R.D., AND SAMET, H. A data base management system for the federal

courts. Harvard Graduate School of Business Administration, Harvard University, Cambridge,
Mass. Submitted for publication.

4. CODASYL Database Task Group. CODASYL Database Task Group Report, April 1971 (available
from ACM, New York).

5. CONWAY, M.E. Design of a separable transition-diagram compiler. Commun. ACM 6, 7 (July
1963), 396-408.

6. DAvIs, R., AND KING, J. An overview of production systems. Stanford Computer Science Dep.,
Stanford Univ., Stanford, Calif., Artificial Intelligence Project Memo AIM-271, 1975.

7. DEC system 10, data base management system programmer's procedures manual. Digital Equip-
ment Corp., Maynard, Mass., Doc. DEC-10-APPMA-B-D.

8. FELDMAN, J.A. A formal semantics for computer languages and its application in a compiler-
compiler. Commun. ACM 9, 1 (Jan. 1966), 3-9.

9. FmHER, D.A. Control structures for programming languages. Ph.D. dissertation, Computer
Science Dep., Carnegie-Mellon Univ., Pittsburgh, Pa., 1970, p. 163.

10. FLOYD, R.W. A descriptive language for symbol manipulation. J. ACM 8, 4 (Oct. 1961), 579-584.
11. GRIES, D. Compiler Construction for Digital Computers. Wiley, New York, 1971.
12. KNUTH, D.E. The Art of Computer Programming. Fundamental Algorithms, Vol. 1. Addison-

Wesley, Reading, Mass., 1973, p. 195.
13. MCDERMOTT, D.V., AND SUSSMAN, G.J. The Conniver reference manual. AI Memo 259, M.I.T.

Project MAC, M.I.T., Cambridge, Mass. May 1972.

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

306 Hanan Samet

14. NAUR, P. (Ed.) Revised report on the algorithmic language ALGOL 60. Commun. A C M 3, 5
(May 1960), 299-314.

15. IBM. PL/I language specifications. Order No. GY33-6033, IBM Corp., New York, 1971.
16. REISER, J.F. (Ed.) SAIL. Stanford Artificial Intelligence Project Memo AIM-289, Computer

Science Dep., Stanford Univ., Stanford, Calif., 1976.

Received April 1979; revised November 1979 and February 1980; accepted February 1980

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.

