IR

SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 11, 1053-1069 (1981)

Experience with Software Conversion

HANAN SAMET
Computer Science Department, University of Maryland, College Park, Maryland 20742, U.S.A.

SUMMARY

Experience with a program to convert from LISP 1.6 to INTERLISP is described. The
conversion program was designed with two goals in mind. First, it had to be capable of being
executed in either of the languages’s environments and it had to yield identical results.
Second, the speed of the converted program was to be approximately the same as the original
program. This meant that the conversion process must be completed prior to execution of the
converted program. The various constraints and considerations imposed by these goals are
examined. In addition, aside from problems in finding INTERLISP analogs for various LISP
1.6 constructs, careful consideration must also be paid to input/output functions, escape
characters, global variables, representation of numbers and different string
implementations.

KEY WORDS Software conversion Bootstrapping LISP INTERLISP Portable software
" Program transformation

1. INTRODUCTION

The tendency to do as much programming in a high level language as possible has
been influenced to a high degree by the desire to avoid having to reinvent the wheel. In
particular, a goal is to have portable software. This has led to standardization efforts
such as Reference 1. Nevertheless, with the proliferation of programming languages
and computers rare is the language whose programs are really transportable. A
common problem is that although there is a general adherence to the kernel of the
language, successive implementations rarely resist the temptation to enhance the
previous version. The result is that although the various implementations of the
language are structurally the same; enough incompatibilities have been introduced so
that often programs written in one implementation will not run in the other. This is
taken for granted when one implementation is a superset of the other—i.e. programs
written in the superset will not run in the subset. However, more often than not,
programs written in the subset will also not run in the superset.

Some of the main reasons for incompatibility are changes in the input/output
structure, data structure definitions, and also in the degree of run-time support. Most
often, initial implementations are lacking in sophisticated input/output capabilities.
Subsequently, the language is enhanced. This is frequently achieved by adding built-
in functions which make the programmer’s task easier. Since input/output is often not
defined for a language (e.g. ALGOLG60,2 LISP?), compatibility in these cases has not
been a burning issue. Nevertheless, a program is generally worthless if it cannot do
input or output. Thus there is compatibility as long as no meaningful work needs to be
done. This is unfortunate because, for most programming languages, input/output is

0038-0644/81/101053-17$01.70 Received 19 March 1979
© 1981 by John Wiley & Sons, Ltd.

1054 HANAN SAMET

one of the most difficult concepts to grasp (it is also often the last concept that is
mastered and, in fact, most programmers have little mastery above the basic
rudiments). Therefore, the programmer is confronted with the burden of incom-
patibility in the part of the language with which he is the least familiar.

This paper arose out of an effort to convert a complex program used in a compiler
testing system* written in LISP 1.6° to INTERLISP.6 INTERLISP and LISP 1.6
are both implementations of LLISP and neither can be termed a subset or superset of
the other. Nevertheless, it is generally acknowledged that, in an inexact manner of
speaking, LISP 1.6 is more of a subset of INTERLISP than vice versa.*

INTERLISP is an enhancement of LISP which supports a full complement of
debugging aids and input/output facilities. The documentation also claims the
existence. of an INTERLISP program named TRANSOR which contains, among
others, transformations to convert from LISP 1.6 to INTERLISP. Unfortunately,
attempts to use this set of functions were unsuccessful because only relatively
primitive patterns were included, and no capabilities for transforming the
input/output functions were provided. Thus we were compelled to undertake this
study.

In the remainder of this paper we discuss some of the important considerations
which we needed to take into account in order to convert the existing programs. In
particular, one of the primary goals was that the conversion program be capable of
being executed in either a LISP 1.6 or an INTERLISP environment. Thus the
conversion program had to be able to convert itself (i.e. bootstrapping). A second goal
was that the conversion process be completed prior to executing the converted
program. These considerations forced changes in the original source programs by
specifying some restrictions on program structure although they did not hamper the
flexibility of the original program. Instead, they appear to be common to convertible
software and thus are worthy of discussion. Once this is done, the encoding of the
conversion program is presented using an ALGOL-like variant of LISP.}

2. CONVERSION CONSIDERATIONS

As mentioned in Section 1, many of our design decisions were motivated by the
requirement that the conversion be capable of taking place in either language
environment without any user intervention. This will be seen to heavily influence
many of our design decisions. We also take advantage of a common feature of many
LISP implementations which allows functions to be redefined. In essence, if a
definition of a previously defined function is encountered when loading a set of
function definitions, then the old definition is overwritten. We make heavy use of this
property by appending to every translated program a number of INTERLISP
function definitions for certain primitive constructs useful in input/output operations.
In the remainder of this section we discuss the conversion of standard functions and
file input/output, escape character, strings, unique name generation, numbers, and
global variables.

* A more precise term to describe the relationship between the two implementations is that one is a sideset of the
other.”

+This is commonly referred to as meta-lisp or blackboard LISP and is very similar to MLISP.#

EXPERIENCE WITH SOFTWARE CONVERSION 1055

2.1. Standard functions

Most LISP 1.6 built-in functions have analogs in INTERLISP which are either
identical in structure (i.e. in the number and relative position of the arguments) or are
very similar so that a simple rearrangement of arguments and renaming are all that is
necessary for conversion. Nevertheless, a number of LISP 1.6 functions are defined
differently in INTERLISP.* For example, PRINT(X) in LISP 1.6 prints a carriage
return followed by x while in INTERLISP x is printed before the carriage return. As
another example, the sUBST function is different. In LISP 1.6, SUBST(NEW,0LD,SEXPR)
results in an attempt to substitute NEW for OLD in SEXPR and recursively in CAR and CDR
of SExPR, whereas in INTERLISP substitution only takes place when OLD is EQUAL to
CAR of some subexpression of sSexPR. Therefore, in INTERLISP sussT(a, (B ¢),((BC) D
B C)) is equal to (A D B C) instead of (a.(D.A)) as in LISP 1.6.

There are two possible methods of coping with the differences in the definitions of
the built-in functions. The first is to redefine the INTERLISP function to correspond
to the LISP 1.6 definition. The problem with such an approach is that this changes the
definition of the function in so far as the runtime system of INTERLISP is
concerned. The second solution, which we adopt, is to change the names of these
functions to names that do not have an analog in INTERLISP (e.g. PRINT to PRINT1)
and append definitions for these functions to the converted program. We also append
definitions for LISP 1.6 functions which have no INTERLISP analogs at all (e.g.
XCONS, NCONS, ROUND, etc.).

A basic principle underlying our conversion system is that all conversion be
completed prior to executing the converted program. Thus the conversion program is
not present at runtime. This results in a number of restrictions. First, no functions
may be defined ‘on the fly’—i.e. at runtime and thus, also, they may not be redefined.
Second, functional arguments must be used with caution. They will most likely
require special handling at runtime since often they are used under the assumption
that they will be evaluated in a LISP 1.6 environment. We have taken the step to
convert all arguments to a FUNCTION construct (e.g. (FUNCTION fname)) to their
INTERLISP analogs at conversion time. Such a treatment coupled with the fact that
function redefinitions have been appended to the converted programs will have the
desired effect in most cases. Nevertheless, problems may arise. This is especially true
when functional forms appear as arguments to QUOTE. In such a case, we perform no
conversion since we have no means of distinguishing between the prevention of
evaluation for output (e.g. ’BLUE) and delayed evaluation (e.g. ’(PLUS A B)). Of course,
there are two alternatives. One is to perform conversion at runtime. However, this is
too slow to be acceptable. A second possibility is to change EvaL of INTERLISP to
correspond to that of LISP 1.6. However, this has the effect of precluding the use of
many of INTERLISP’s desirable features which are often encoded using the more
basic functions.

Once the program has been converted, it is ready for execution. At this point the
user must bear in mind that he is communicating with INTERLISP’s evaL. This
means that any sexpressions which are typed are interpreted in the context of
INTERLISP. For example, PRINT(X) will result in X being output followed by a
carriage return rather than vice versa. However, in general, if the sexpression does not

* All LISP 1.6 constructs are handled with the exception of LEXPR, macros, and arrays. The only LISP 1.6
functions that have not been converted are BOOLE, *FUNCTION, TIME, *RSET, BAKGAG, INITFN,
ARRAY, EXARRAY,STORE, EXAMINE, DEPOSIT, DDTIN and MAKNUM.

1056 HANAN SAMET

have a meaning in INTERLISP, then its LISP 1.6 definition will be invoked
provided it exists (e.g. XCONS, NCONS, ROUND, etc.). Similarly, the fact that one is
communicating with INTERLISP also means that in case of errors, different results
may occur. For example, in INTERLISP, caR of an atom is NIL whereas in LISP 1.6
two successive CAR operations applied to an atom result in an error message of the

form ‘ILLEGAL MEMORY REFERENCE FROM CAR’.

2.2. Input/Output

LISP 1.6 input/output is based on the concept of a channel while INTERLISP
input/output is based on files. Prior to any LISP 1.6 input or output operations with
respect to a file, the file must be associated with a channel (commonly termed
initiating or opening a channel). The conversion program transforms the channel
names into variables whose values are the file names. This is accomplished by
generating global variable declarations for the channel names as well as initializing
them to NIL. Thus the act of associating a channel with a file is transformed to
an assignment of the file name as the value of the channel name. This insures
that subsequent input/output operations that refer to the channel will access the
appropriate file. In addition, we stipulate that the actual association of a channel
with a file be done by use of the functions INITIALIZECHANNELFORINPUT and
INITIALIZECHANNELFOROUTPUT which are analogous to the LISP 1.6 iNPUT and
ouTPUT functions.* These two routines have the following responsibilities:

1. Create a valid file name.

2. Open the file for input or output.

3. If the selected channel was previously open for input or output, then release (i.e.
close) the file previously associated with it.

4. Store the name of the file as the value of the channel.

The LISP 1.6 definitions of these functions must be supplied by the programmer in
his LISP 1.6 program while the conversion program appends the following
INTERLISP equivalents (and the auxiliary functions MAKEFILENAME and INITCHAN)
to the converted program. This has the effect of overrriding the earlier LISP 1.6
definitions of these functions. Also observe that these conventions only apply to file
input/output since teletype input/output does not require initialization of channels.

(DEFINEQ (MAKEFILENAME (* if a non-atomic name, then convert to)
(LAMBDA (NAME) (* an atom comprising the name followed by)
(coND ((ATOM NAME) NAME) (* a dot followed by the extension)
(T (PACK (APPEND (UNPACK (CAR NAME))
(APPEND (LIST (FCHARACTER 46))
(UNPACK (CDR NAME))))))))

(DEFINEQ (INITIALIZECHANNELFORINPUT
(LAMBDA (CHANNEL FILE)
(INITCHAN CHANNEL FILE (QUOTE T)))))

* We also require that the arguments to INITIALIZECHANNELFORINPUT and INITIALIZECHANNELFOROUTPUT be quoted
names and not formal parameter names.

EXPERIENCE WITH SOFTWARE CONVERSION 1057

(DEFINEQ (INITIALIZECHANNELFOROUTPUT
(LAMBDA (CHANNEL FILE)
(INITCHAN CHANNEL FILE NIL))))

(DEFINEQ (INITCHAN
(LAMBDA (CHANNEL FILE INPT)
(PROG (EVCHAN)
(SETQ FILE (MAKEFILENAME FILE))
(COND INPT (INFILE FILE)) (* open file)
(T (OUTFILE FILE)))
(SETQ EVCHAN (EVAL CHANNEL)) (* file associated with channel)

(conND ((NULL EVCHAN) NIL) (* close file if one is)
((OPENP EVCHAN) CLOSEF EVCHAN)) (* already open on)
(T NIL)) (* the channel)

(SET CHANNEL FILE))))) (* assign file to channel)

Once a file has been opened, LISP 1.6 requires that all subsequent input and output
operations to and from the file must be preceded by an INc and ouTC respectively to
select the file. The same operation is also used to close a file currently selected for
input or output while simultaneously selecting another file for subsequent input or
output. In such a case, the second argument to INC or OUTC is non-NIL and thus the
conversion program must also generate a call to a function, CLOSEF, which closes the
currently selected file.

In the case of input, frequently an end of file needs to be examined. This is a
system-dependent construct and we stipulate that it be done by use of the following
function call or equivalent:

(ENDOFFILECHECK (ERRSET (READ)))

Note the use of (ERRSET (READ)) as an argument. 'The ENDOFFILECHECK function must
be supplied by the user in his LISP 1.6 program. The conversion program appends
the following INTERLISP definition to the converted program:

(DEFINEQ (ENDOFFILECHECK)
(LAMBDA (ITEM)
(NULL ITEM))))

2.3. Escape character

In most programming languages certain symbols or sequences of symbols have
predefined meanings. For example, in ALGOL ‘begin’ is a reserved word. Similarly,
the doublequote symbol is used in many programming languages to delimit strings. In
such a case, in order to allow a string to contain the doublequote symbol, the
convention is adopted that inside a string, two successive doublequote symbols are
interpreted as representing one doublequote symbol serving as a component of the
string rather than denoting its end. In LISP, there are several symbols with
predefined meanings in addition to doublequote. In particular, left and right
parentheses must be marked in a special manner when they do not have their
customary start and end of list meanings. The symbol used to achieve the marking is
known as an escape character and in LISP 1.6 the slash symbol has this meaning.
Thus whenever a slash symbol is encountered in a LISP 1.6 environment, the

1058 HANAN SAMET

immediately following character is taken as an ordinary character without its
predefined meaning. In order to be able to use the slash symbol with its conventional
meaning, it must be doubled. INTERLISP uses the percent symbol as its escape
character and thus there is a possible incompatibility with LISP 1.6.

Fortunately, INTERLISP has a builtin function called SETSYNTAX.
SETSYNTAX(CHARACTER, CLASS, TABLE) is a directive to the IN'TERLISP file input
routines to treat CHARACTER as a member of character class cLass when an input
- operation makes use of character table TABLE for character disposition. Our goal is to
enable the slash symbol as the escape character upon input and to disable the percent
symbol as the escape character upon input. This is achieved by the following two
commands:

(SETSYNTAX (FCHARACTER 37) (QUOTE OTHER) FILERDTBL)
(SETSYNTAX (FCHARACTER 47) (QUOTE ESCAPE) FILERDTBL)

Both commands make use of table FILERDTBL which is a system defined breaktable
for use upon file input/output. The first command disables the percent symbol (i.e.
ASCII 37) as the escape character upon input while the second command enables the
slash symbol (i.e. ASCII 47) for the same purpose. Note the use of the builtin function
FCHARACTER with a numeric argument equal to the ASCII code of the character. This
is preferable to using the character itself due to a possible special meaning within
LISP 1.6. For example, if the original conversion program was written in MLISP,
then the percent symbol serves to delimit comments and it is impossible to use it
otherwise in the program.*

When the conversion program is executed in LISP 1.6, every converted file must be
prefaced with the above pair of SETSYNTAX commands to enable and disable the slash
and percent symbols, respectively, as the escape characters. This is necessary for the
converted program to be loaded properly. If the converted program will be processing
input that has been generated by LISP 1.6 (this is a stronger requirement than that the
input be written in LISP 1.6), then once again the slash and percent symbols must be
enable and disabled, respectively, as the escape characters. Note that if the input will
not be written by LISP 1.6, then the percent and slash symbols should be enabled and
disabled, respectively, as the escape characters. This is achieved by the following
SETSYNTAX commands:

(SETSYNTAX (FCHARACTER 47) (QUOTE OTHER) FILERDTBL)
(SETSYNTAX (FCHARACTER 37) (QUOTE ESCAPE) FILERDTBL)

. The conversion program could also be written in such a way that the percent
symbol is always used as the escape character regardless of whether the conversion
takes place in a LISP 1.6 or INTERLISP environment. In other words, there is never
a need to preface the converted file with the SETSYNTAX commands that change the
escape character. However, this technique slows down the conversion process
considerably since it requires that output of the resulting INTERLISP program be
done on a character by character basis. This is necessary to insure that each slash
symbol is replaced by a percent symbol except when it is preceded by a slash.
Similarly, all uses of the percent symbol must be duplicated.

Since the escape character is different for the two LISPs, all references to it are via
the function PRINCESCAPECHARACTER() whose value is the current escape character. In

*The inability to disable this effect is clearly a design flaw of MLISP.

EXPERIENCE WITH SOFTWARE CONVERSION 1059

order for the INTERLISP version of the conversion program to function properly,
PRINCESCAPECHARACTER is redefined to yield the percent symbol by appending the
following definition to every converted program:

(DEFINEQ (PRINCESCAPECHARACTER
(LAMBDA NIL
(FCHARACTER 37))))

An alternative solution is to use a global variable, e.g. PRINCESCAPECHARACTERG.
Unfortunately, this solution does not work because it is difficult to override the
original assignment of the slash symbol to the variable when executing in LISP 1.6.
Note that use of a function causes such a problem to disappear since a function
redefinition is taking place when the inserted PRINCESCAPECHARACTER function
definition is encountered.

2.4. Strings

Strings are defined somewhat differently in INTERLISP than in LISP 1.6. First,
in INTERLISP a string is not an atom. This could prove troublesome for programs
which rely on the fact that AToM(X) returns true when x is an atom. One possible
remedy is to transform all tests of the form (ATOM A) to (OR (ATOM A) (STRINGP A)). The
only problem with such a transformation is that the computation corresponding to A
may have side-effects and thus should not be performed twice. Therefore, a preferable
transformation (and the one we use) changes all uses of AToM to ATom1 which has the
following definition:

(DEFINEQ (ATOM1 (I;AMBDA (x) (OR (ATOM X) (STRINGP X))})))

Second, the definition of the characters comprising a string is different in the two
implementations. In particular, LISP 1.6 does not treat the slash symbol as an escape
character within a string, preferring to use two doublequote symbols when the
doublequote symbol appears as part of a string. On the other hand, INTERLISP is
consistent in this respect and continues to treat the percent symbol as an escape
character.

The different definitions of the characters comprising a string present a number of
problems for the conversion procedure. First, the disabling of the slash symbol as an
escape character in LISP 1.6 strings means that conversions performed in a LISP 1.6
environment will not be identical to conversions in INTERLISP. A possible remedy
is to modify the LISP 1.6 conversion output routine to check every list element to
determine if it is a string. In the affirmative case, the individual characters of the string
must be checked for the presence of the slash symbol, and all such occurrences must
be converted to two consecutive slash symbols since the INTERLISP file input
routine has been primed to treat the slash symbol as an escape character. Similary, in
LISP 1.6, all occurrences of a pair of consecutive doublequote symbols within a non-
empty string must be replaced by a single slash symbol followed by a doublequote
symbol. However, this solution is only adequate as long as the conversion program is
not being executed in an INTERLISP environment. In the latter case, any occurrence
of the slash symbol will be viewed by the file input routine as an escape character for
the following character and thus will not be seen by the conversion program. In the
case of two consecutive occurrences of the doublequote symbol, the problems are
more serious. INTERLISP’s file input routine will treat the first doublequote symbol

1060 HANAN SAMET

as terminating the current string while the second doublequote symbol will be
interpreted as starting a new string.

Clearly, our goal of compatibility between the two systems is impossible to satisfy
for strings containing the doublequote or slash symbols. Therefore, we stipulate that
string constants, in order to be properly converted, must not contain the doublequote
or slash symbols.

2.5. Atom names

In LISP 1.6 all identifiers that are not created by the program (i.e. via a READ) are
hashed and placed on a list termed the oBLIST. This insures that there is only one atom
associated with each identifier. This is not true for identifiers generated by GENSYM or
MAKNAM.* If it is desired that such atoms be unique and therefore be present on the
OBLIST, then an INTERN operation is performed. Atoms are removed from the OBLIST
by use of the REMOB operation. In INTERLISP, all atoms are placed on the hash list
and thus there is no need for the INTERN or REMOB operations. Therefore, the
conversion program replaces all instances of INTERN and REMOB by their arguments.

Both LISP 1.6 and INTERLISP provide a capability for generating unique names
via the GENsyM function. In LISP 1.6, the function csym, whose argument is a
character sequence comprising one or more alphabetic symbols, say ABc, followed by a
sequence of one or more digits, is used to indicate the form of the uniquely generated
name. All subsequent names are obtained via the function GENsyM having zero
arguments. Each time GENsYM is called, a name is generated having a numeric
component one higher than the previously generated name. For example, a GENsYM
following csym(aBc002) results in the name aABc003.

INTERLISP does not have an analog to csym. Instead, there exists a global
variable called GENNUM whose value is the number associated with the most recently
generated identifier. GENSYM is defined with one argument which is a character, and
each call to GENSYM results in a name of the form Xnnnn where X is the character
argument to GENSYM and nnnn is a four digit number whose value is determined by
adding one to the previous value of GENNUM.

The conversion program decomposes the argument to each csyM into an alphabetic
component and a numeric component. We make the restriction that only the first
letter of the alphabetic component is used in the INTERLISP analog of the uniquely
generated identifier. We use a global variable GENSYMCHAR to keep track of the current
leading letter of uniquely generated identifiers.t All instances of (GENSYM) are
replaced by (GENSYM GENSYMCHAR). An assighment statement is also generated to set
GENNUM to the numeric component.

2.6. Numbers

In general, LISP 1.6 outputs all integer numbers in base-8. Therefore, when
attempting to convert a program that has been written by LLISP 1.6 (e.g. a LISP 1.6
program obtained by use of MLISP) then the output of the conversion must be a
base-10 number. In fact, the only time that LISP 1.6 leaves numbers alone is when
they appear within string constants. Therefore, numbers appearing within QUOTE and
EVAL must also be converted to base-10. Note that there is a distinction between

*MAKNAM takes a list of characters and forms an identifier from them.
T Therefore, internally generated sequences of names should use different first letters.

EXPERIENCE WITH SOFTWARE CONVERSION 1061

programs written in LISP 1.6 (i.e. by the user) and programs written by LISP 1.6. In
the former case, numbers are in base-10 and need no special handling. In the latter
case, conversion is a necessity. The actual conversion is performed while the
converted program is being output.

A LISP 1.6 program may override the default base of the output. This is achieved
by setting the global variable BASE to the desired base (it is 8 by default). We achieve
this by the following statement:

IF PRINCESCAPECHARACTER() EQ LISPI6ESCAPECHARACTER THEN BASE : = 7+ 3;

Two items are worthy of note, First, the escape character has been used to detect the
LISP environment in which the conversion program is being executed. Second, 7+ 3
is employed rather than 10 since it is a base-independent* method of obtaining the
number 10 in base 10.

There is also a difference between the LISP 1.6 and INTERLISP representation of
small integers. All integers having an absolute value of less than 2**16 are represented
uniquely in LISP 1.6 whereas for INTERLISP this is only true for integers ranging
between —1536 and + 1535. Thus tests for equality between numbers in LISP 1.6
which make use of EQ must use EQP (an INTERLISP predicate for checking equality
of numbers). Since LISP is typeless, we can’t, in general, recognize such cases.
Therefore, we change all instances of EQ to invoke EQl which has the following
definition:

(DEFINEQ (EQ1 (LAMBDA (A B) (OR (EQ A B)(AND (FIXP A) (FIXP B)) (EQP A B)))))

This has a further implication on builtin functions which make use of EQ. In
particular, uses of assoc in LISP 1.6 are transformed to sassoc in INTERLISP since
the latter makes use of the more general EQUAL predicate rather than EQ. Note that
similar problems may arise when using GeT and MEMQ in LISP 1.6 and their
corresponding INTERLISP analogs GeTLIs and MEMB. However, in this case we do
not provide any relief.

2.7. Global variables

In addition to the standardized input/output channel initialization, end of file
check, and escape character usage we also require that all global variables (SPECIAL in
the case of LISP 1.6) be declared prior to the set of functions which are being
converted. These declarations are processed to yield a list of the form:

(ADDTOVAR GLOBALVARS {rest of global variable names))

3. CONVERSION FUNCTION

The conversion functions are presented below in a variant of MLISP.T Briefly,
MLISP is an ALGOL-like variant of LISP whose biggest virtue is the ability to use
‘if then else’ and functional notation rather than coND and cambridge prefix notation.
The value of a block is the value of the last statement. The construct NEW is used to
allocate variables which are equivalent to PROG variables. A, B, c) denotes the list

*This is true for base greater than or equal to 8. True base independence would be achieved by writing
T+1+1+1+14+14+14+1 4141,
1 Note the use of vertical bars to indicate the nesting of the blocks.

1062 HANAN SAMET

consisting of the elements A, B and c. Brackets of the form A[2,1] correspond to a
sequence of CDR and CAR operations to extract list elements—e.g. A{2,1] is the first
element of the second sublist. We have attempted to present most of the LISP 1.6
builtin functions. Nevertheless, it should be clear from the following how to add any
functions that may have been omitted.

Procedure cONVERT is invoked with a LISP 1.6 function definition of the form:

(DEFPROP frname (LAMBDA parameterlist functionbody) Junctiontype)

functiontype is either EXPR or FEXPR corresponding, respectively, to the cases when the
arguments are evaluated and when they are not. The actual conversion is done by the
recursive procedure SUBSTITUTE which results in the transformation of functionbody
from LISP 1.6 to INTERLISP. suBsTITUTE makes use of the auxiliary function
SUBSTITUTELIST when lists of items are to be converted. Procedure CHECKCHANNEL
generates code to initialize a channel variable to NIL if it has not been encountered
before. Channel variables are detected by examining the arguments to
INITIALIZECHANNELFORINPUT and INITIALIZECHANNELFOROUTPUT. The global variable
SEENCHANNELS is used to keep track of all channel names so that each channel variable
1s only initialized once.

In the conversion process we make use of the following lists of function names.
INTERLISPANALOGS is a list of the following name pairs where the first element is the
LISP 1.6 function while the second element is the corresponding INTERLISP
function. Note that some of the INTERLISP functions have their definitions
appended to the converted program (see the appendix for these definitions) while
others are already present in INTERLISP.

* APPEND APPEND
*DIF *DIF
*GREAT GREATERP
*LESS LESSP
*PLUS PLUS
*Quo QUOTIENT
*TIMES TIMES
ASCII CHARACTER
ASSOC assocl
EXPLODEC UNPACK
FLATSIZEC NCHARS
GET GET]
GETL GETLIS
LAST FLAST
MAKNAM PACK
PRIN1 PRIN2
PRINC PRIN]
READLIST PACK

MAP MAP1
MAPC MAPcl
MAPLIST MAPLIST]
MAPCAR MAPCAR1
TERPRI TERPR11
PROG2 PROG3

EXPERIENCE WITH SOFTWARE CONVERSION 1063

SUBST suBsT]
PRINT PRINT]
ATOM aroml
EQ EQ1
GENSYM GENsYm1
PUTPROP PUTPROP]
ZEROP ZEROP1
READ READ1
SASSOC sassocl
MEMQ MEMB
LSH LLSH
READCH READC

IOFNS is a list of functions whose arguments are used to determine channel names. It
consists of INITIALIZECHANNELFORINPUT and INITIALIZECHANNELFOROUTPUT.
PREDICATES consists of the LISP 1.6 functions AND, NUMBERP, OR, REMPROP, MEMBER
and MEMQ which have the distinction that their INTERLISP analogs do not always
return a value of T when the result of their application is non-NIL as is required by
LISP 1.6. The conversion process assures that T is returned in the appropriate case by
appending a NULL test. Other functions which are singled out for special handling
include DIFFERENCE, QUOTIENT, GREATERP and LEssP all of which take an arbitrary
number of arguments and do not have a predefined INTERLISP analog.

expr CONVERTFN(FNDEF);
begin
new BODY,
BODY : = SUBSTITUTE(FNDEF[3,3]);
print({’DEFINEQ,{ FNDEF[2],
if FNDEF[4] eq 'EXPR then {’LAMBDA,FNDEF[3,2],B0DY)
else {’NLAMBDA,
if null FNDEF[3,2] then 'NIL
else (FNDEF[3,2,1]),
BODY))));

end;

expr SUBSTITUTELIST(SLIST);
mapcar(function(SUBSTITUTE), SLIST);

expr SUBSTITUTE(FORM);
begin
new FNAME,ANALOGS,ARGS;
if atom(FORM) then FORM
else if atom(ForM[1]) then
begin
! FNAME : = FORM[1];
| if FNAME eq 'COND then mapcar(function(SUBSTITUTELIST, cdr(FORM))
i else if FNAME eq ’PROG then
H *PROG cons FORM[2] cons mapcar(function(SUBSTITUTE), cddr(FORM))
| else if FNAME eq 'QUOTE then FORM
i else if FNAME eq ’FUNCTION then

1064 HANAN SAMET

ANALOGS : = assoc(FORM[2],INTERLISPANALOGS);
if ANALOGS then (’FUNCTION,cdr(ANALOGS))
else FORM;
end
else
begin
! ANALOGS : = assoc(FNAME, INTERLISPANALOGS);
ARGS : = mapcar(function(SUBSTITUTE), cdr(FORM));
if ANALOGS then cdr(ANALOGS) cons ARGS
else if member(FNAME,PREDICATES) then
{’NuLL,{’NULL,
(if FNAME eq "MEMQ then "MEMB
else FNAME)
CONs ARGS))
else if member(FNAME,IOFNS) then CHECKCHANNEL(FNAME,ARGS)
else if FNAME eq 'INC or FNAME eq 'OUTC then
{FNAME,
if atom(arGs[1]) or ArGs[1,1] neq ’QUOTE then ArGs[1]
else ARGS[1,2],
ARGS[2])
else if FNAME eq 'DIFFERENCE then
{’DIFFERENCE,ARGS[1],"PLUS cons cdr(ARGS))
else if FNAME eq 'QUOTIENT then
{’QUOTIENT, ARGS[1],’TIMES cons cdr(ARGS))
else if FNAME eq 'GREATERP then (GREATERP1, ARGS)
else if FNAME eq 'LESSP then (’GREATERP1, reverse(ARGS))
else NIL
end,

Ibegin
i
i

end

else if ForM[1,1] eq 'LAMBDA then
{’LAMBDA,FORM[1,2],sUBSTITUTE(FORM[1,3]))> cons
mapcar(function(SUBSTITUTE),cdr(FORM))

else print(’ ’ILLEGAL FORM’’)

end,

expr CHECKCHANNEL(FNAME, ARGS);

begin

! if not member(aRGs[1,2],SEENCHANNELS) then

i |begin

! ! SEENCHANNELS : = ARGS[1,2] cons SEENCHANNELS;
E 1 print({’SETQ,ARGS[1,2],NIL));

i end;

i FNAME cons ARGS;

;md;

In general, it is useful to distinguish between those conversions which deal with the
external form of the program (e.g. whether strings contain double quotes or escape
characters) and those that deal with the semantics of the basic constructs (e.g. different

EXPERIENCE WITH SOFTWARE CONVERSION 1065

functions for small integers, SUBST PRINT, etc.). It can be argued that the former could
be more conveniently handled by a text processor. Similarly, many of the latter could
be dealt with by a structure editor (e.g. permuting the arguments to Maprl). Our
system is an attempt to deal with the conversion problem in a unified manner without
sacrificing efficiency.

4. CONCLUSION

Clearly much of our discussion with respect to conversion problems has been heavily
dependent on LISP. Nevertheless , a number of useful ideas were presented which
should be applicable in other conversion tasks. For example, the escape character is a
useful device for detecting the system in which execution is occurring, function
redefinition is a powerful tool for overriding previous applicable function definitions,
and standardized input/output functions are desirable in all programming languages.
Moreover, INTERLISP’s SETSYNTAX capability is an essential mechanism for
resolving scanner problems* although we did discover some shortcomings. In
particular, there was no way to declare that certain characters or sequences of
characters are to be ignored upon input—i.e. omitted. This drawback surfaced when
the conversion program was confronted by the sequence control-z, carriage return,
and linefeed which was output by LLISP 1.6 whenever a line of output was too long
thereby requiring that an atom or string be output on more than one line. This
problem was resolved by ensuring that LISP 1.6 outputs only one atom or string per
line. . -

There were also a number of irreconcilable problems. This was exemplified by
different definitions of data types (e.g. STRING and small integers). Thus it is clear
that the issue of conversion is deeper than mere pattern matching. It also requires
careful scrutiny of type incompatibilities. Moreover, in the interest of efficiency we
deemed that all conversion must take place prior to executing the converted program.
'This means that certain features of LISP such as the ability to define and redefine
functions ‘on the fly’ had to be sacrificed. Finally, we observe that program conversion
also requires the imposition of a certain degree of discipline on programmers.
However, we generally do not find such requirements to be unduly burdensome since
they are often associated with good programming habits.

ACKNOWLEDGEMENTS

I have benefited greatly from discussions with Pete Alfvin , Steve Crocker, and Larry
Musinter.

APPENDIX—FUNCTION DEFINITIONS

(DEFINEQ (INC
(LAMBDA (A B)
((LAMBDA (X)
(coND ((NULL B) (INPUT X))
(T (CLOSEF (INPUT X)))))
(conp ((NULL A) T) (T A))))))

*SETSYNTAX uses a breaktable which is a consept that is also present in SAIL.®

1066 HANAN SAMET

(DEFINEQ (OUTC
(LAMBDA (A B)
((LamMBDA (X)
(conD ((NULL B) (OUTPUT X))
(T (CLOSEF (OUTPUT X)))))
(conp ((NULL A) T) (T A))))))

(PEFINEQ (MAP1
(LAMBDA (FN L)
(MAP L FN))))

(DEFINEQ (MAPC]
(LAMBDA (FN L)
(MAPC L FN))))

(DEFINEQ (MAPLIST]
(LAMBDA (FN L)
(MAPLIST L FN))))

(DEFINEQ (MAPCARI]
(LAMBDA (FN L)
(MAPCAR L FN))))

(DEFINEQ (DSKIN
(NLAMBDA X
(MAPC X (FUNCTION LOAD)))))

(DEFINEQ (ERRSET
(NLAMBDA X
(ERRORSET (CAR X)
(conND ((NULL (CDR X)) NIL)
(T (NULL (NULL (EVAL (CADR X)))))))))
(DEFINEQ (DEFPROP
(NLAMBDA (1 V P)
(PROGN (PUT 1 P V) 1))))

(DEFINEQ (TERPRI1
(LAMBDA X
(coND ((EQP X O) (TERPRI))
(T (TERPRI) (ARG X 1))))))

(DEFINEQ (GREATERP1
(LAMBDA (L)
(OR (NULL L)
(NULL (CDR L))
(AND (GREATERP (CAR L) (CADR L))
(GREATERP1 (CDR L)))))))

(DEFINEQ (PROG3
{(LAMBDA X
(ARG X 2))))

(DEFINEQ (DIVIDE
(LAMBDA (X Y)
(CONS (QUOTIENT X Y) (REMAINDER X Y)))))

EXPERIENCE WITH SOFTWARE CONVERSION

(DEFINEQ (RECIP
(LAMBDA (X)
(QuoTIENT 1 X))))

(DEFINEQ (SIGN
(LAMBDA (X)
(conD ((EQP X 0) 0)
((miNnusP x) —1)
G
(DEFINEQ (ROUND
(LAMBDA (X)
(TIMES (SIGN X) (FIx (PLUS (aBs Xx) 0.5))))))

(DEFINEQ (SUBST1
(LAMBDA (X Y S)
(conND ((EQUAL Y 8) X)
((aToMm1 s) s)
(T (cons (suBsTl X Y (CAR 8)) (sUBST! X Y (CDR 8))))))))
(DEFINEQ (PRINT1
(LAMBDA (X)
(PROGN (TERPRI)
(PRIN2 X)
(PRIN1 (CHARACTER 32))))))
(DEFINEQ (TYO
(LAMBDA (X)
(PROGN (PRIN1 (CHARACTER X))
X))))
(DEFINEQ (ATOM1
(LAMBDA (X)
(OR (ATOM X) (STRINGP X)))))

(DEFINEQ (EQ1
(LAMBDA (X Y)
(or (EQ X Y) (AND (FixP X) (FIXP Y)) (EQP X Y)))))

(DEFINEQ (ERR
(LAMBDA (X)
(RETFROM (QUOTE ERRORSET) X))))

(DEFINEQ (CHRCT
(LAMBDA NIL
(DIFFERENCE (LINELENGTH) (POSITION (OUTPUT))))))

(DEFINEQ (EXPLODE
(LAMBDA (X)
(UNPACK X T))))
(DEFINEQ (FLATSIZE
(LAMBDA (X)
(NCHARS X T))))

(DEFINEQ (INTERN
(LAMBDA (X)

X))

1067

1068 HANAN SAMET

(DEFINEQ (REMOB
(LAMBDA (X)

X))

(DEFINEQ (CSYM
(NLAMBDA (X)
(SETQ GENSYMCHAR (CAR (UNPACK X))))))

(DEFINEQ (GENsYM1
(LAMBDA NIL
(GENSYM GENSYMCHAR))))

(DEFINEQ (NCONS
(LAMBDA (X)
(CONS X NiL))))

(DEFINEQ (XCONS
(LAMBDA (X Y)
(CONSs Y X))))

(DEFINEQ (PUTPROP
(LAMBDA (X Y Z)
(PUT X Z Y))))

(DEFINEQ (TYI
(LAMBDA NIL
(cuconN1 (READC)))))

(DEFINEQ (ZEROP1
(LAMBDA (X)

(EQP X 0))))

(DEFINEQ (READ]
(LAMBDA NIL
(READ NIL FILERDTBL))))

(DEFINEQ (GET1
(LAMBDA (X Y)
((LAMBDA (a)
(COND ((NULL A) A)
(T (cADR A))))
(GETLI1s X (NCONS Y))))))

(DEFINEQ (assocl
(LAMBDA (X Y)
(coND ((NULL Y) NIL)
((EQ1 x (caAR Y))(CAR Y))
(T (assocl x (CDR Y)))))))
(DEFINEQ (sassocl
(LAMBDA (X Y FN)
((LamMBDA (V)
(conDp ((NULL V) (FN))
(T v)))
(assocl x Y)))))

LA

—

EXPERIENCE WITH SOFTWARE CONVERSION 1069

REFERENCES

. American Standards Association, American Standard FORTRAN, New York, 1966.
. P. Naur (Ed.), ‘Revised report on the algorithmic language ALGOL 60, Communications of the

ACM, May, 299-314 (1960). .

.]. McCarthy, ‘Recursive functions of symbolic expressions and their computation by machine’,

Communications of the ACM, April, 184-195 (1960).

. H. Samet, ‘Proving the correctness of heuristically optimized code’, Communications of the ACM,

July, 570-581 (1978).

. L. H. Quam and W. Diffie, Stanford LISP 1.6 Manual, Stanford Artificial Intelligence Project

Operating Note 28.7, Computer Science Department, Stanford University, Stanford, California,
1972.

. W. Teitelman, INTERLISP Reference Manual, Xerox Palo Alto Research Center, Palo Alto,

California, 1978.

. C. Wilcox, personal communication, 1976.
. D. C. Smith, MLISP, Stanford Artificial Intelligence Project Memo AIM-135, Computer Science

Department, Stanford University, Stanford, California, October 1970.

. J. F. Reiser (Ed.), SAIL, Stanford Artificial Intelligence Project Memo AIM-289, Computer Science

Department, Stanford University, Stanford, California, 1976.

