
A Database Management System for the
Federal Courts

JACK R. BUCHANAN, RICHARD D. FENNELL

Federal Judicial Center

AND

HANAN SAMET

University of Maryland

A judicial systems laboratory has been established and several large-scale information management
systems projects have been undertaken within the Federal Judicial Center in Washington, D.C. The
newness of the court application area, together with the experimental nature of the initial prototypes,
required that the system building tools be as flexible and efficient as possible for effective software
design and development. The size of the databases, the expected transaction volumes, and the long-
term value of the court records required a data manipulation system capable of providing high
performance and integrity. The resulting design criteria, the programming capabilities developed,
and their use in system construction are described herein. This database programming facility has
been especially designed as a technical management tool for the database administrator, while
providing the applications programmer with a flexible database software interface for high productiv-
ity.

Specifically, a network-type database management system using SAIL as the data manipulation
host language is described. Generic data manipulation verb formats using SAIL’s macro facilities and
dynamic data structuring facilities allowing in-core database representations have been developed to
achieve a level of flexibility not usually attained in conventional database systems.

Categories and Subject Descriptors: H.4.2. [Information Systems Applications]: Types of Sys-
tems--decision support; H.2.3 [Database Management]: Languages--data manipulation languages;
J.l [Computer Applications]: Administrative Data Processing-gouernment

General Terms: Design

Additional Key Words and Phrases: SAIL, network model

1. INTRODUCTION

The administrative case-tracking activities of the federal courts have traditionally
been accomplished through primarily manual record-keeping techniques. How-
ever, in response to increasing case processing requirements within the federal
judiciary and as a result of the passage of the Speedy Trial Act of 1974 [23], the

Authors’ addresses: J. R. Buchanan, Decision Making Information Systems, Inc., McLean, VA 22101;
R. D. Fennell, Federal Judicial Center, Washington, D.C. 20005; H. Samet, Computer Science Dept.,
University of Maryland, College Park, MD 20742.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1984 ACM 0362-5915/84/0300-0072 $00.75

ACM Transactions on Database Systems, Vol. 9, No. 1, March 1984, Pages 72-88.

A Database Management System for the Federal Courts l 73

federal courts were given the mandate and necessary funding to develop large-
scale computing systems to provide automated support for court management. It
was a unique opportunity to manage the delivery of high technology to this
traditionally conservative institution [3, 41. Many major application areas were
identified [5, 11, 161, including management of criminal, civil, bankruptcy, and
appellate cases, scheduling and calendaring, jury management, document proc-
essing, archival record maintenance, and electronic mail. Databases were planned
that would eventually hold millions of records within both national and distrib-
uted data centers.

The newness of the application areas, together with the experimental nature
of the initial prototypes, meant that the system building tools had to be as
flexible and efficient as possible for effective software design and development.
The size of the databases, the expected transaction volumes, and the long-term
value of the court records required a data manipulation system capable of
providing high performance and integrity. The resulting design criteria, the
programming capabilities developed, and their use in system construction are
described herein. This database programming facility has been especially designed
as a technical management tool for the database administrator, while providing
the applications programmer with a flexible database software interface for high
productivity.

The database programming facility described here was developed at the Federal
Judicial Center (FJC) in Washington, D.C. The FJC serves as the research and
development agency of the federal judiciary.

The federal judicial process is based upon the interaction of various organiza-
tionally autonomous, though cooperating, agencies and organizations. There are
94 district (trial) courts and 12 appellate courts, plus the Supreme Court, each
with its own caseload to administer and adjudicate. The public at large also
participates in the court process as jurors, litigants, defendants, and witnesses.
Each of these organizations and individuals has a need for timely and correct
information. The Office of the Clerk within each court is the hub and nerve
center for this information exchange network and is the natural location for an
integrated database. The information systems under development at the FJC are
intended to streamline clerical processing, give the judges and other managers
greater management control, and provide data for research in judicial adminis-
tration.

Within each of the various application domains, the databases of each court
are disjoint and are physically maintained as separate database areas, although
the database structures are defined by a common schema. Currently, the various
databases are maintained on several DECsystem-10 computers located in Wash-
ington, D.C. Court access is provided through terminals and printers located in
the courts and connected to the data centers via a value-added telecommunica-
tions network.

The various information systems are designed to be “model directed” [3,4], in
that mathematical models of court procedure are embedded in the systems so as
to direct all system response to user input, and monitor the processing of cases
relative to correct procedures and regulatory statutes, such as the Speedy Trial
Act.

ACM Transactions on Database Systems, Vol. 9, No. 1, March 1984.

74 l J. R. Buchanan, R. D. Fennell, and H. Samet

The major software components necessary to implement these information
systems are the host language processor, the database management system
(DBMS), and the host language/DBMS interface. Our objectives were to develop
a comprehensive data manipulation facility that would be flexible and efficient
for information system construction, and in which the boundaries between system
components would be “natural” and even transparent to the system developer.

In particular, these components have been constructed or augmented to efti-
ciently utilize a network database and solve the problem of multiple record
currency by allowing extended “in-core” database representations, whose struc-
ture can be determined at execution time by the application program indepen-
dently of the main database.

The host language selected was SAIL [19]. A CODASYL network-type data-
base management system, DBMS-10 [lo, 201, was also chosen. The interface
between these two components was specially designed to enhance the capabilities
of both components.

In Section 2 the database for a particular application area, that involving the
management of criminal cases, is described. In Section 3, desirable implementa-
tion language features and programming management tools are discussed. The
DBMS is characterized in Section 4, along with a description of the host language/
DBMS interface.

2. THE CRIMINAL DOCKETING DATABASE

The maintenance of the official court docket for each case.is a major responsibility
of the Clerk’s office. Since the docket is the most fundamental reference document
used to determine case status and progress, its contents provide data that are
pertinent for case tracking and reporting. The line items in the docket are called
“events” and correspond one-to-one to legally significant court transactions (e.g.,
defendant arraigned, motion granted, etc.). A database containing a court’s
dockets provides an extremely useful source of information for case flow man-
agement.

The data inputs for entry onto the docket sheet are obtained from a variety of
sources, including open court proceedings as recorded by a judge’s Courtroom
Deputy, directly from a judge’s chambers, or from the Clerks office itself through
filings made by attorneys, court-related agencies such as the U.S. Marshal’s
Office, or the public. The associated documents are then given to a Docket Clerk
in the Clerk’s office, who enters the appropriate summary information on the
docket sheet. This activity is known as docketing. With an automated system,
interactiue docketing, or event posting, may be done using a computer terminal.

2.1 Database Contents and Structure

The information contained in the criminal docketing database includes, for each
case:

(1) parties to the case,
(2) offenses charged and to be adjudicated,
(3) docketed events, in chronological sequence for each case,
(4) judges assigned to the case,
(5) attorneys associated with the case,
ACM Transactions on Database Systems, Vol. 9, No. 1, March 1984.

A Database Management System for the Federal Courts l 75

; I I ! : I I : II II I I II

I I DOCKET DOCKET

1 1
I
I

I 1 I
I EVENTS

SPEEDY ,
TRIAL I

I I

L-____-----_----_____1

Fig. 1. Simplified criminal database.

(6) time interval and schedule constraints, and
(7) related cases.

The relationships that exist among these entities must be represented in a
form that allows for the efficient extraction of management information. The
information contained in each court’s database is to be used primarily for the
management and information needs of the court community dealing with that
particular court. The information will also prove useful in preparing various
required national statistical reports on case management and the administration
of justice, as well as being useful as a resource for doing research into better court
management methods.

A simplified database diagram (using the data structure diagram technique of
[11, where rectangles denote record types and arrows denote set relationships) is
shown in Figure 1. When a case is opened, a DOCKET record is established for
each defendant (DFT). Defense counsel (ATTY), prosecutors (U.S. ATTY), a
JUDGE, and alleged offenses (OFFENSE) are linked to the DOCKET, if they
are known at that time. A variety of different EVENT types may then be posted

ACM Transactions on Database Systems, Vol. 9, No. 1, March 1984.

76 l J. R. Buchanan, R. D. Fennel, and H. Samet

I I SHARED \

Fig. 2. Concurrent database update control algorithm.

as the case proceeds. Case monitoring relative to the Speedy Trial Act is carried
out and recorded (SPEEDY TRIAL). The actual database contains some 40
different record types related within about 50 different set types.

Database consistency is maintained over concurrent updates from multiple
users by defining subsets of the database to be resource classes and locking on
these logical entities [12, 151. The resource classes are defined by the regions of
the database enclosed within dotted lines, as shown in Figure 1. For each database
transaction, including docketing, a corresponding set of resource classes is defined
for locking during the update portion of that transaction.

The algorithm for controlling concurrent database updates using a state
diagram is shown in Figure 2. Each resource class is controlled independently. A
resource in the FREE state means that no user has a claim upon that resource
for reading or writing. The SHARED state for a resource may be shared by
multiple read-only users. The EXCLUSIVE state provides exclusive reading and
writing privileges for a resource and is a preparatory state for writing to the
database. The UPDATE state provides exclusive reading and writing privileges
for a resource. The DECsystem-10 operating system allows only one job at a time
to have a file open for writing. Therefore, only one user can be in the UPDATE
state at a time across all resources for a given database.

This control algorithm is enforced as a programming convention under which
the user’s program will evoke the commands given on the arcs of the diagram in
Figure 2 as procedure calls with the resource class name (ATTY, DFT, JUDGE,
U.S. ATTY, or DOCKET) as an argument. The DOCKET resource class is
further identified by docket number so as to permit concurrent event posting to
separate dockets.
ACM Transactions on Database Systems, Vol. 9, No. 1, March 1984.

A Database Management System for the Federal Courts l 77

In the next two sections, the database software facilities developed for project
management and programming are described.

3. SYSTEM IMPLEMENTATION LANGUAGES

The design and implementation of large software systems is very much influenced
by the programming environment available for supporting the development of
such systems. Choice of a suitable programming language in which to implement
software systems is critical in ensuring the timely success of the original imple-
mentation, and it is even more important in ensuring the long-term maintenance
and enhancement of the software throughout its life cycle. Of course, an appro-
priate programming language is not the only tool necessary in providing a
productive programming environment. Text editors, linkage editors, automated
validation and verification programs, and other software tools all contribute to
providing a suitable environment for systems building, not to mention the
influence of a friendly operating system, file organization, and so on.

3.1 Language Features

While all the above noted environmental factors affect the flexibility and ease
with which software systems may be designed and constructed, and many of the
widely discussed attributes of modern programming languages [13] are relevant
for our consideration, the following language features are especially helpful in
providing a language environment conducive to the design and implementation
of large-scale database management systems (see also [17]):

(1) Sufficient data types, data structures, and associated operators to permit
natural manipulation of database elements and records. Such data types might
include integer, real, Boolean, string, array, record, pointer, set, and list.

(2) Boolean expression evaluation, in conjunction with appropriate program
control constructs (e.g., conditional statements, repetitive control statements,
and compound statements).

(3) Procedures and functions, with call-by-value and call-by-reference param-
eters.

(4) Dynamic storage allocation, for use in the creation of dynamic data
structures (such as an in-core database representation, as described in Section
4.1) and for use in stack-oriented operations such as recursive procedures calls
and lexical nesting of the scopes of variable definitions (block structure).

(5) Macro definition facilities, including parameter passing.
(6) Conditional compilation and related compile-time control constructs and

operations (e.g., compile-time expressions and type-checking predicates, and
compile-time conditional statements).

(7) Program source libraries, elements of which can be copied into an appli-
cation program via a compile-time directive.

(8) Independent compilation capability, with appropriate environment decla-
ration and module interfacing facilities to allow the subsequent linking of
independently compiled program modules into an integrated software system.
Independent compilation is especially useful in the construction of large software
systems, particularly if some parts of the system must be written in different
programming languages.

ACM Transactions on Database Systems, Vol. 9, No. 1, March 1984.

78 l J. FL Buchanan, R. D. Fennell, and H. Samet

The SAIL programming language [19] provides all of these software develop-
ment facilities, and hence was deemed an appropriate implementation language
in which to program the criminal docketing database system for the federal
courts.

3.2 Example

As an example of the use of SAIL as a host language in a database management
system, consider the following program fragment. The task is to traverse a set
named ASSIGNED-CASES owned by a JUDGE record, extract an integer data
item called DOCKET-NUMBER from each DOCKET record which is a member
of the set, and save the list of DOCKET-NUMBERS for subsequent processing.
The exact instance of the set occurrence is identified by the owner record,
JUDGE, having the value “JONES” for the data item JUDGE-NAME. Since
SAIL has a data structuring facility (known as a RECORD-CLASS, similar to a
PL/I structure [2]), we define a data structure called LISTX and a procedure to
add items to the front of the list. The data structure LISTX has two fields:
ELEMENT, which is of type INTEGER, and NEXT, which is of type RECORD-
POINTER. NEXT points to another instance of the LISTX data structure. The
procedure ADDTOLIST has two arguments: a pointer to the head of an instance
of LISTX and the integer to be added to this instance. Storage for a record
structure may be dynamically allocated using the primitive NEW-REC-
ORD(record-type), which returns a pointer to the newly created storage. Fields
of a record are referenced as “record-type:field-name[record-pointer].”

record-class LISTX (integer ELEMENT;
record-pointer (LISTX) NEXT);

procedure ADDTOLIST (reference record-pointer (LISTX) HEAD;
integer VAL);

begin
record-pointer (LISTX) TEMP;

TEMP := new-record (LISTX);
LISTX : ELEMENT[TEMP] := VAL;
LISTX : NEXT[TEMP] := HEAD;
HEAD := TEMP;

end,

The COBOL/DML and SAIL encodings for the set traversal task are given in
Figure 3. The critical difference is the step “Add DOCKET-NUMBER in
DOCKET to result list”. It is not immediately obvious how the concept of a list
would be implemented in COBOL; since COBOL does not provide dynamic
storage allocation, one would have to decide how much storage should be allocated
statically for the list structure, and then be concerned with checking for overflow
conditions as elements are appended to this fixed-size list. Such problems do not
arise when using SAIL, owing to its data structuring facility and dynamic storage
allocation.

Note that a code sequence similar to that of Figure 3 could be used to build an
in-core representation of the ASSIGNED-CASES set of the database by retriev-
ACM Transactions on Database Systems, Vol. 9, No. 1, March 1984.

A Database Management System for the Federal Courts 79

COBOL Program:

move ‘JONES’ to JUDGE-NAME in JUDGE.
find JUDGE record.
if ASSIGNED-CASES set EMPTY goto NONE-SUPPLIED.

NEXT.
find next DOCKET record of ASSIGNED-CASES set.
if ERROR-STATUS = 0307 go to ALL-FOUND.
get DOCKET.
“Add DOCKET-NUMBER in DOCKET to result list”.
go to NEXT.

ALL-FOUND.

SAIL Program:

JUDGE-NAME := “JONES”;
finhcalc (JUDGE);
if EMPTY-SET (ASSIGNED-CASES) then go to NONE-SUPPLIED;
while true do

begin
finhnext (DOCKET, ASSIGNED-CASES);
if ERROR-STATUS = 0307 then DONE,
get (DOCKET);
addtolist (HEAD, DOCKET-NUMBER);

end,

Fig. 3. Sample DBMS-10 application.

ing and linking entire DOCKET records. This would be useful in situations
requiring repeated access to various records of the set, as might occur during
report generation, without having to reestablish database currency and making
repeated accesses to secondary storage.

4. THE DATA MANIPULATION SYSTEM

There are currently three different approaches to the design of database man-
agement systems [9, 141. These are the network approach as described in the
CODASYL report [7, 251; the hierarchical approach of the IBM IMS system
[26]; and the relational approach [8]. Despite their differences, each attempts to
separate the process of describing the data organization from the process of
manipulating the data. It is this separation that differentiates these systems from
conventional approaches to the design of application software. The actual data
manipulation process is carried out using a set of commands which create, access,
and modify entries in the database.

We have selected the network approach for our data manipulation environ-
ment. This rather general approach was designed by the CODASYL Committee
to be used in an environment supported by the COBOL [6] programming
language, as evidenced by the similarity between the CODASYL data description
facility (DDL) and the data division specifications of COBOL. Some implemen-
tations of the CODASYL report have used FORTRAN as a data manipulation
language [18, 241. This has required the use of a functional notation, as distin-
guished from the COBOL verb notation, to describe the basic data manipulation
language (DML) operations.

ACM Transactions on Database Systems, Vol. 9, No. 1, March 1984.

80 l J. R. Buchanan, R. D. Fennell, and H. Samet

The CODASYL report presents several languages to deal with various aspects
of data management, including a Schema Data Description Language (Schema
DDL), a Subschema Data Description Language (Subschema DDL), and a Data
Manipulation Language (DML). We have selected SAIL as the host language in
which to embed the DML, for the reasons outlined in Section 3.

This section describes the software interface that allows the SAIL program-
ming language to be extended to utilize and enhance the DBMS-10 network-type
database management system. SAIL is sufficiently rich in data types that in this
implementation the DDL is unaltered and no modification to the SAIL compiler
is necessary. We first describe the use of an in-core database consisting of SAIL
record structures. Next, we present the methods by which the application pro-
grammer may utilize the DML verbs in an extended data manipulation facility.
This was implemented using SAIL’s extensive compile-time system [21,22].

4.1 Overview and Enhancements

DBMS-10 provides a means for the user to arrange a database on secondary
storage only. Data is defined in terms of aggregates, called records, whose
subcomponents, of possibly varying type, are known as data items. All of the
data manipulation commands are oriented toward fetching, modifying, and
storing data in this database. DMBS-10 programs communicate with the database
through the use of a block of storage known as the User Work Area (UWA). In
this block, storage is allocated for a single instance of each data item of each
record type.

Allowing the user to build an in-core representation of his database is a
desirable capability in a database management system. This is best seen by
observing that, in a typical database implementation, when a user obtains one
instance of a record type from the database (i.e., he locates it via a FIND and
fetches it via a GET), he has no convenient way of keeping it in temporary
memory while obtaining another instance of this record type. Of course, he can
allocate temporary storage for the various fields; however, this becomes cumber-
some when it is desirable to keep track of more than two instances of a record
type. Alternatively, instances of certain record types can be refetched from the
database. In fact, this strategy is the one generally followed by programmers in
order to ensure correctness of operation and documentation clarity. However,
this process may be rather expensive in that currency may have to be reestab-
lished. Such a process involves backtracking, and unless the programmer is very
careful, he may not obtain the records he thinks he is obtaining. For an example
of the pitfalls of such a technique see [25]. Fortunately, SAIL, unlike COBOL or
FORTRAN, has a data structuring facility which lends itself to this application.
As mentioned earlier, this facility consists of record classes and a dynamic storage
allocation capability; together, they enable the formation of lists and sets at run-
time.

The implementation described here facilitates the use of lists and sets by
defining a SAIL record type for each DBMS-10 record type. A preprocessor
generates a SAIL RECORD-CLASS declaration for each DBMS-10 record type
defined in the DDL with subfield names identical to the DMBS-10 data item
names. For example, see Figure 4, where a DBMS-10 record definition is shown
ACM Transactions on Database Systems, Vol. 9, No. 1, March 1984.

A Database Management System for the Federal Courts l 81

DBMS-10 Record:

RECORD NAME IS JUDGE.
02 CIRCUIT TYPE FIXED BIN REAL.
02 DISTRICT TYPE FIXED BIN REAL.
02 JUDGE-NAME PIC X(40) USAGE IS DISPLAY-7.
02 YEARS TYPE FLOAT BIN REAL.

SAIL Record:

recorhclass JUDGE (integer !TYPE;
integer DBKEY;
integer CIRCUIT, DISTRICT,
string JUDGE-NAME;
real YEARS);

Fig. 4. Sample record definition.

along with the corresponding SAIL record. In addition, primitives are provided
for the user to create instances of these record classes and to load them from the
UWA in one statement. A similar provision has been made for storing an instance
of a SAIL record in the UWA with one statement. These statements are actually
calls to procedures which have been defined at the same time that storage for
the UWA was allocated.

As mentioned earlier, one of the principal advantages of the data structuring
capability is the avoidance of the need to reestablish currency. The actual cost
of reestablishing currency is dependent on several factors. These include the size
of the I/O buffers, the database accessing activity since the establishment of the
desired record as the current of RUN-UNIT, and the page replacement strategy
employed by the database control system (DBCS). For example, if the desired
record instance is still in the I/O buffers, then the cost of the actual access is
relatively low in comparison with the cost of searching the database on secondary
storage. The search may be direct (i.e., involve only one disk operation), or it
may be indirect, thereby causing several disk accesses by virtue of a need to chase
pointers. Contrast the uncertainty associated with this technique with the notion
of being able to refer to instances of the desired record in an in-core database.
The ability to create an in-core database representation provides a logical
capability for the user to temporarily store various instances of his data records
without sacrificing the organizational clarity imposed by the data definition
language (DDL).

One of the primary reasons for the introduction of database management
systems is a desire to separate the act of defining the structure of the database
from the process of accessing and manipulating it. However, we have just seen
that this is only true in theory. In practice, efficiency considerations play an
important criteria in evaluating programs. This means that the applications
programmer can substantially improve the performance of his program given a
knowledge of the internal structure of the database control system. For example,
knowledge of the buffer sizes and that a least-recently-used page replacement
scheme is employed by the database control system can be used to advantage by
the programmer. Costly disk accesses can be avoided by scheduling references to

ACM Transactions on Database Systems, Vol. 9, No. 1, March 1984.

82 l J. R. Buchanan, R. D. Fennell, and H. Samet

certain instances of records in such a way as to ensure that they are still in the
buffers. However, substantial programming cost might be expended to achieve
this improvement in application performance, and the resultant application code
will be dependent upon the implementation details of the database control system.
In contrast, the ability to create an in-core database fragment preserves a greater
degree of separation between the data description and data manipulation com-
ponents without sacrificing efficiency.

In order to facilitate the efficient use of an in-core database, with each record
in the database there exists a unique value, called a database key, which serves
to locate the record. Knowledge of the database key can greatly speed up the
accessing and modification of records in secondary storage, since the record can
thereafter be located with one disk operation. This is in contrast with the
possibility of several disk accesses by virtue of a need to traverse linked lists in
the process of locating a record. We provide this capability by adding to each
SAIL record type a field known as DBKEY which contains the database key of
the DBMS-10 record.

In order to be able to detect record types at run-time (SAIL records are
essentially compile-time structures with respect to type-checking), we also add
to each SAIL record type, corresponding to a DBMS-10 record type, a field,
called !TYPE, which is the integer representation of the first five characters
comprising the name of the record type. This feature is quite useful in defining
in-core database sets whose members are records of varying types.

The inclusion of a database key field in the SAIL record class for each DBMS-
10 record type can be combined to yield some efficiency in transactions that
involve the updating of entries in the database. When a user wishes to modify
an existing instance of a DBMS-10 record which occurs in his own in-core
database, the modification operation is interpreted by the system to do the
following:

(1) Update the UWA to reflect the contents of the SAIL record.
(2) Use the database key associated with the SAIL record to locate the corre-

sponding instance of the DBMS-10 record in the DBMS database. This is
done via a FIND-DIRECT command which suppresses all currency updates
except for the RUN-UNIT.

(3) Perform the database MODIFY operation.

Efficiency is increased as a result of step (2). The database key enables the
user to locate the instance of the record in the DBMS-10 database without having
to reestablish currency. Observe that we are trading processing on extended
storage for processing in primary memory. Another advantage of such a mecha-
nism is the possible freeing of the programmer from needing to know how the
database is organized. Even more important is the following extension, Suppose
queries and updates to the database are to be made by relatively unsophisticated
users. In such a case, these users could converse with an intermediate processor
which translates their queries and updates into a sequence of calls on the
database, where this command processor could make use of the in-core database
capability.

Most often, a database is organized with certain applications in mind. The goal
is to render the most frequent operations as efficient as possible. This goal is
ACM Transactions on Database Systems, Vol. 9, No. 1, March 1984.

A Database Management System for the Federal Courts 83

usually achieved by providing extra database access paths between various data
entities. The access paths are particularly evident in the definition of sets and
the relationships between members of the set, and between the members and the
owner of the set. The access relationships are defined using constructs such as
LINKED TO NEXT, LINKED TO PRIOR, and LINKED TO OWNER. With
the use of run-time structures, such as an in-core representation of the database,
the need for an a priori organization of the database with static links and their
associated overhead can be reduced. Subject to limitations of primary memory in
which to construct in-core database representations,. the database designer no
longer needs to provide set linkages merely to render infrequent operations
efficient.

4.2 The Data Manipulation Language

A SAIL program accesses the database primarily via the use of a set of DML
verbs. The verbs are implemented using the SAIL macro facility in which they
look like function calls. Use of verbs is facilitated by a compile-time symbol
table, which enables many of the verbs to be generic, unlike some COBOL and
FORTRAN implementations. Since the SAIL/DBMS interface provides generic
DML verbs, the user need not qualify record names, set names, and area names
by their respective qualifiers RECORD, SET, and AREA. Similarly, for several
of the built-in primitives, there is an interchangeability in the parameters allowed
between record names and record pointers, strings, character sequences, and
STRING variables, thereby facilitating the implementation of libraries of general
purpose database manipulation procedures.

Primitives to communicate between the UWA and in-core database. As men-
tioned earlier, for each record type defined in the database, we have a correspond-
ing SAIL record-class declaration. In order to transfer data between the in-core
database and the UWA, a set of three procedures is automatically generated for
each record type, denoted by (record-name). For example, for the JUDGE record
type, the procedures NEW _ JUDGE, FETCH-JUDGE, and STORE- JUDGE
will be automatically defined. The function of each of these procedures is as
follows:

(a) NEW _ (record-name)
(1) Allocate a SAIL record of type (record-name).
(2) Load the contents of the UWA corresponding to (record-name) into the

new SAIL record.
(3) Store the database key associated with the current instance of (record-

name) in the DBKEY field of the SAIL record.
(4) Store (record-name) in the !TYPE field of the SAIL record.
(5) Return the record-pointer to the newly allocated SAIL record.

(b) FETCH- (record-name) ((record-pointer))
Same an NEW-(record-name), except that an existing SAIL record
(i.e., the one pointed to by (record-pointer)) is reused.

(c) STORE-..(record-name) ((record-pointer))
Load the UWA locations corresponding to (record-name) from the SAIL
record pointed to by (record-pointer).

ACM Transactions on Database Systems, Vol. 9, No. 1, March 1984.

84 l J. R. Buchanan, R. D. Fennell, and Ii. Samet

One of the important capabilities of the system is the use of a compile-time
symbol table to enable a flexible set of DML verbs to function in a limited generic
way. In order for the DML verbs (e.g., GET, STORE, MODIFY, INSERT,
REMOVE, and DELETE) to be able to properly handle record pointers (in
addition to the usual record names), we provide a mechanism for declaring them.
For example, the following results in (record-pointer) being declared to be a
pointer to a record of type (record-name):

DBMS-RECORD-POINTER ((record-name), (record-pointer))

Area management. The concept of an area, which is analogous to a file, has
also been enhanced. In a given database, a record type may appear in more than
one area. In order to enable processing of a number of areas containing the same
record type, there exists a mechanism to indicate the area in which STORE
operations are to deposit the newly created instance of the record type. This is
accomplished by the use of a variable, called an (area-id), specified with each
record type definition. The contents of this (area-id) variable identify the name
of the area to be affected for all STORE operations involving this record type.
The following primitive is provided to enable assignments to this variable:

SET-AREA-FOR-STORE ((area-id), (area-name))

The (area-id) is an (area-id) variable, the name of a record type, or a STRING
variable whose value is a record type. In the latter two cases, the (area-id)
variable associated with the record type is loaded with the appropriate area name.
This is useful because the programmer does not have to remember the (area-id)
associated with a specific record type. The (area-name) is the name of an area,
a string, or a STRING variable containing a DDL area name.

In the definition of the DML verb STORE, we shall see the use of an optional
third argument, which is the name of an area. In this case, the (area-id) associated
with the target record name is set to the specified area name, but only for the
duration of the STORE operation. Once the STORE is completed, (area-id)
reverts to its previous value. This is especially attractive when the same variable
is declared to denote the area in which a record is to be stored for different record
types.

DML uerbs. In the calling sequences for DML verbs, SAIL record pointers
and string variables may be used instead of record names. When a SAIL record
pointer is used, the necessary action depends on the verb. For example, in the
case of a STORE operation, the record referenced by the record pointer is loaded
into the UWA and then stored in the DBMS-10 database. The use of a string
variable whose value is the name of the record (or the name of a set or area, as
appropriate) is practical because it enables the programmer to avoid the need for
separate DML verb calls for different record types (as well as sets and areas).
Such a capability is extremely useful in building libraries of general purpose
routines.

In order to demonstrate the adaptation of CODASYL DML to SAIL, we
illustrate how some of the DML verbs are used in SAIL. Our exposition stresses
the enhancements over the standard definition. A number of examples are also
given to contrast the use of SAIL and COBOL. In these examples, a command
is given in COBOL, followed by the SAIL encoding on the command.
ACM Transactions on Database Systems, Vol. 9, No. 1, March 1984.

A Database Management System for the Federal Courts l 85

The FIND verb is a complex command, having several variations, which results
in the evaluation of its arguments to yield an instance of a record which becomes
the current of RUN-UNIT. All variations of the FIND command may specify a
suppress option, which indicates what, if any, currency updates are to be sup-
pressed. In the following, the symbol (aggregate) denotes a (set-name) or an
(area-name). The symbol (item) denotes a record type, or the choice of ANY or
NULL, both meaning an arbitrary record type. The symbol (suppress) denotes
one of the values ALL, RECORD, AREA, SET, a list of set names, or NULL.
As an example, consider the FIND-NEXT verb.

FIND-NEXT ((aggregate), (item), (suppress))

This command locates the occurrence of record (item) with the next higher
database key relative to the current record of (area-name), or the next record
relative to the current record of (set-name) in the logical order of the set. For
example,

COBOL: FIND NEXT JUDGE RECORD OF CHICAGO AREA.
SAIL: FIND-NEXT (CHICAGO, JUDGE);

The GET verb results in the transfer of the contents of the data items of the
object record into the UWA. It is generally used to fetch a record for processing,
once the record has been located via a FIND command which established it as
the current of RUN-UNIT. The symbol (data-names) denotes a list of data item
names, or it may be NULL, indicating all fields of the current record are to be
retrieved.

GET ((record-name), (data-names))

The above command performs a GET of the current of RUN-UNIT, transferring
the contents of the selected data items of the object record into the user work
area.
record-pointer := GET-NEW ((record-name))
This command performs a GET ((record-name)), followed by the allocation of a
new SAIL record to hold the newly fetched record. The SAIL record is loaded
from the user work area, and a pointer to the newly allocated SAIL record is
returned as the value of this primitive. The actual implementation makes use of
the procedure NEW- (record-name).

GET ((record-pointer), (data-names})

This form of the GET command is the same as GET-NEW ((record-name)),
except that the SAIL record referenced by (record-pointer) (rather than a newly
allocated record) is loaded from the user work area (using the FETCH- (record-
name) procedure). If (data-names) is NULL, then the entire record is loaded.
Otherwise, only the individual fields specifically requested are loaded. One note
of caution is that if (data-names) is not NULL, then the DBKEY field of the
SAIL record pointed to by (record-pointer) will not be updated. For example,

COBOL: GET JUDGE.
SAIL: GET (JUDGE);

The STORE verb results in the acquisition of space and a database key for a
new occurrence of a record in the database. The new record occurrence contains

ACM Transactions on Database Systems, Vol. 9, No. 1, March 1984.

86 l J. FL Buchanan, FL D. Fennel, and H. Samet

the values of the appropriate data items in the UWA. The new object record is
inserted into all sets for which it is defined to be an AUTOMATIC member.
Also, new set occurrences are established for each set for which the object record
is defined to be an owner.

STORE ((record-name), (suppress), (area-name))

As for the FIND verb, the suppress option indicates what, if any, currency
updates are to be suppressed. As noted previously, (area-id) is a location that is
declared to contain the area information for (record-name). If (area-name) is
specified in a call to the STORE verb, then the current value of (area-id) is
saved, SET-AREA-FOR-STORE ((area-id), (area-name)) is performed, and
(area-id) is restored to its previous value upon completion of the STORE
operation. The (area-name) is either an area name, or a string or STRING
variable containing an area name. For example,

STORE (JUDGE, ALL, CHICAGO);

will have the effect of storing the current record of type JUDGE in area
CHICAGO while suppressing all currency updates.

STORE ((record-pointer), (suppress), (area-name))

In this form of the STORE verb, the data associated with the SAIL record
referenced by (record-pointer) is moved into the UWA and the appropriate
STORE operation is performed. The actual implementation makes use of the
procedure STORE- (record-name).

DELETE ((record-name), (option))

The DELETE verb results in the object record being made unavailable for further
processing by DML primitives. In addition to naming the record being deleted,
the user may specify the manner of disposition of sets in which the indicated
record participates as an owner. The symbol (option) denotes one of the values
ALL, SELECTIVE, ONLY, or NULL.

DELETE ((record-pointer), (option))

In this form of the DELETE verb, the database key associated with the DBKEY
field of the record referenced by (record-pointer) is made the current of RUN-
UNIT by use of a FIND-DIRECT command which suppresses all currency
updates. Once this is done, the record is deleted.

In addition to providing a complete set of DML verbs, predicates are also
provided for determining owner-member relationships between the current of
RUN-UNIT and various sets, in addition to being able to identify empty sets.
For example,

MEMBER-OF-SET ((set-name))

determines whether the current of RUN-UNIT is a member of (set-name),
where (set-name} may be ANY or NULL or a set name.

Database programming uchinistration. The actual organization of the SAIL/
DBMS database programming system is designed to support a hierarchy of users
consisting of the database administrator (DBA) and the application programmers.
ACM Transactions on Database Systems, Vol. 9, No. 1, March 1984.

A Database Management System for the Federal Courts l 87

The DBA is charged with the logical and physical database design, maintaining
the integrity of the database and, in our case, providing a library of routines to
access the database in such a way as to take advantage of the in-core database
capability described earlier. Application programmers make use of these routines,
as well as DML verbs, to write application programs.

In order to accommodate both groups of users, the data definition file (DDL)
is processed as previously described by a program which automatically generates
a library of procedures for accessing the in-core database, the compile-time
symbol table, the SAIL record definitions, and storage allocation requests for the
UWA. The DDL is centrally controlled by the DBA, who can thereby ensure
that certain data access programming conventions are followed, rather than
depending on the application programmers to abide by centrally established
guidelines. The DBA uses these automatically generated primitive procedures to
build higher-level procedures geared to a particular application for use by the
application programmers. Thus, centralized management of critical aspects of
data manipulation programming is maintained, while allowing the programmers
flexibility in the use of procedures in their applications. The compile-time symbol
table, the SAIL record definitions, and the UWA declarations are used by both
classes of users.

Another component of the system is a file containing macro definitions for the
DML verbs. This file is used by both groups of users in compiling their programs.
There are several advantages to such a scheme. First, if a not too radically
different database management system were to be employed, then user programs
need not be recoded. Only the DML verb definitions would have to be changed.
Second, extensions can be made to the database management system in a manner
relatively independent of the compiler of the high-level language. This depends
to a large extent on the availability of a powerful macro processing facility, such
as that provided by SAIL [22].

5. CONCLUSION

The database management system described in this paper has been successfully
utilized in the development of the criminal docketing system, which became
operational in late 1976. Currently, 15 of the largest federal District Courts (out
of a total of 94) utilize the system. These are the courts in Washington, D.C.,
Boston, Manhattan, Brooklyn, Atlanta, Detroit, Chicago, Kansas City, San
Antonio, Houston, Portland, San,Francisco, Los Angeles, San Diego, and Phoe-
nix. The caseloads of these courts constitute about 40 percent of all federal
defendant felony filings. Similar database systems are being constructed for civil,
appellate, and bankruptcy cases and other court applications.

The database programming system described herein has provided effective
technical management tools for the database administrator and application
project managers. The programmers have shown high productivity in its use, and
the database programming interface has provided the necessary flexibility to be
responsive to change in this dynamic new application area.

ACKNOWLEDGMENTS

We would like to acknowledge the valuable discussions we had with John Hulme,
Norbert Kubilus, and John Reiser during the design of the system.

ACM Transactions on Database Systems, Vol. 9, No. 1, March 1984.

88 l J. R. Buchanan, R. D. Fennel, and H. Samet

REFERENCES
1. BACHMAN, C.W. Data structure diagrams. Database f,2 (Summer 1969).
2. BEECH, D. A structured view of PL/I. ACM Comp&. Suru. 2,1 (March 1970), 33-64.
3. BUCHANAN, J.R., AND FENNELL, R.D. Model directed information systems for management of

the federal courts. Manage. Sci. 27,8 (Aug. 1981).
4. BUCHANAN, J.R., AND FENNELL, R.D. An intelligent information system for criminal case

management in the federal courts. In Proc 5th International Joint Conference on Artificial
Intelligence (Aug. 1977).

5. BUCHANAN, J.R. Management information systems for the federal courts. In Proc. of the
Conference on Interactive Information and Decision Support Systems, Office of Naval Research,
Wharton School of Management, Nov. 1975.

6. COBOL. American National Standard programming language COBOL. X3.23-1974, American
National Standards Institute, Inc., New York, 1974.

7. CODASYL DATABASE TASK GROUP. April I971 Report. ACM, New York, 1971.
8. CODD, E.F. A relational model of data for large shared data banks. Commun. ACM 13,6 (June

1970), 377-387.
9. DATE, C.J. An Introduction to Database Systems. Addison-Wesley, Reading, Mass., 1975.

10. DECsystem-10 Database Management System Programmer’s Procedures Manual. Document
DEC-lo-APPMA-B-D, Digital Equipment Corp., Maynard, Mass., 1977.

11. EBERSOLE, J.L., AND HALL, J.A. COURTRAN, an information system for the courts. J. Comput.
Law, Rutgers Univ., 1972.

12. ESWARAN, K.P., GRAY, J.N., LORIE, R.A., AND TRAIGER, L.I. The notions of consistency and
predicate locks in a database system. Commun. ACM 19,ll (Nov. 1976), 624-633.

13. FENNELL, R.D. Choosing a programming language for the implementation of large software
systems. Federal Judicial Center Internal Report, April 1979.

14. FRY, J.P., AND SIBLEY, E.H. Evolution of database management systems. ACM Cornput. Suru.
8,l (March 1976), 7-42.

15. HULME, J. Notes on the design of the criminal database. Federal Judicial Center Internal
Report, Sept. 1975.

16. NIHAN, C.W. COURTRAN II, an assessment of applications and computer requirements.
Federal Judicial Center Report, Sept. 1974.

17. PARSONS, F.G., DALE, A.G., AND YURKANAN, C.V. Data manipulation language requirements
for database management systems. Comput. J. (May 1974).

18. RAPIDATA CORP. A FORTRAN DML implementation for DBMS-lo. Fairfield, N.J.
19. SAIL User Manual. J.F. Reiser, Ed., Stanford Artificial Intelligence Laboratory Memo AIM-289,

Computer Science Dept., Stanford Univ., Stanford, Calif., Aug. 1976.
20. SALMOND, K., AND HULME, J. A study of database management system. Federal Judicial Center

Internal Report, Nov. 1975.
21. SAMET, H. A coroutine approach to parsing. ACM Trans. Program. Lang. Syst. 2,3 (July 1980),

290-306.
22. SAMET, H. Design of a macro system for high-level languages: a retrospective and prospective

view. Computer Science TR-1353, Univ. of Maryland, College Park, Dec. 1983.
23. Speedy Trial Act, Public Law 93-619,18 USC. 3161, Jan. 1975.
24. STACEY, G.M. A FORTRAN interface to the CODASYL Database Task Group Specifications.

Comput. J. (May 1974), 124-129.
25. TAYLOR, R.W., AND FRANK, R.L. CODASYL Database Task Group specifications. ACM

Comput. Suru. 8,l (March 1976), 67-103.
26. TSICHRITZIS, D.C., AND LOCHOVSKY, F.H. Hierarchical database management: a survey. ACM

Comput. Suru. 8,l (March 1976), 105-123.

Received 1978; revised December 1982; accepted May 1983

ACM Transactions on Database Systems, Vol. 9, No. 1, March 19%

