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A NEW APPROACH TO EVALUATING CODE GENERATION IN A STUDENT

ENVIRONMENT*
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A new approach to the evaluation of code generation and optimization in a student environment is

presented.
translation.

This approach relies on a validation procedure for demonstrating the correctness of the
The motivation for this approach, a brief description of its theoretical foundations, an

example, and a discussion of the types of errors that can be detected through the use of such a system
are set forth in the context of an existing system.

1. INTRODUCTION

Increasingly, students are expected to be well
versed in all aspects of computer science. A
particularly popular course is one dealing with
compiler comstruction ([1],[2]). Such a course has
traditionally focussed on theory coupled with the
construction of a complete compiler for a
substantial language. Most often the course [3]
covers symbol tables, lexical analysis, parsing,
code generation, and code optimization. Since the
emphasis 1s on "doing," care must be exercised in
the choice of a high level language and a low level
language since on the one hand they must be of a
sufficient complexity so that various phases of the
compilation process are non-trivial; yet, on the
other hand the combination of the languages must
not overwhelm the student.

Unfortunately, most compiler construction courses
devote most of the time to parsing with the result
that little attention is paid to code generatiom
and optimization. These topics are generally
resolved, if at all, by generating code for either
an idealized stack machine or a one register
machine [4]. The result is that the student is not
exposed to a realistic code generation situation
since the limited nature of the target machine
results in standard code sequences for the various
constructs of the high level language. Thus the
student has virtually no chance in displaying his
creativity or to employ optimizations that take
advantage of the architecture of the target
machine.

One of the main problems that plague the teaching
of code generation is the difficulty of evaluating
whether the code that has been generated is
correct. Unlike parsing, the correctness of code
cannot be easily "eyeballed." The student is
confronted with two problems. First, he must
decide, or learn, how to generate code, and,
secondly, he must debug the generated code. These
are two distinct problems. The second problem
cannot be solved by applying a common testing
technique of executing the object program with
sample data. This is not sufficient since correct
execution of the translated program does not
guarantee the correctness of the translation. The
previous solution has an additional shortcoming.
When applying test data to a program (e.g., pairs
of integers to a program that computes the greatest
common divisor), the source of the resulting error
can not be easily ascertained. The problem is that
the error could either be in the program or in the
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compiler. Thus we see that in order to test a
compiler, the test data must consist of source
programs. In other words, we wish to demonstrate
that the source program has been correctly
translated so that all subsequent executions of the
resulting object program yield identical results as
the source program.

In the following sections, we present a new
approach to evaluating code generation in a student
environment which relies on proving the correctness
of the translation. We give a brief background of
the underlying theory followed by an example.

Next, we discuss the types of errors that can be
detected through the use of such an approach. We
conclude our presentation with some suggestions for
future work.

2. PROPOSAL

In [5] a formalism is reported which 1is used to
prove that programs written in a high level
language are correctly translated to assembly
language. The formalism is particularly noteworthy
because a significant amount of optimization as
well as hand code can be handled. More
importantly, the proof system is independent of the
actual translation process. In fact, this
independence enhances its usefulness as an
evaluation tool for code generation and
optimization in a student environment. By being
able to cope with any translation process, a single
system can handle each student’s compiler.

The actual validation process consists of proving
equivalence between a program input to the compiler
and the corresponding translated program. This is
accomplished by finding an intermediate
representation which is common to both the original
and translated programs and then checking for
equivalence. Of course, we assume that such a
representation exists. By equivalence we mean that
the two programs are capable of being proved to be
structurally equivalent [6] - i.e., they have
identical execution sequences except for certain
valid rearrangements of computations. No use is
made of the purpose of the program in the process
of proving equivalence. Thus, for example, we can
not prove that a high level sorting program using
insertion sort is equivalent to a low level sorting
program using quicksort since the notion of sorting
is an input/output pair characterization of an
algorithm, and in this case we are confronted with
two different algorithms. Nevertheless, in the
case of validating code generation our notion of
equivalence 1s adequate.
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Fig. 1 gives an illustration of the actual
validation process. This process consists of three
steps. First, the original high level language
program is converted via a suitable set of
transformations to the intermediate representation.
Second, we build the intermediate representation
for the assembly language program by using a
technique termed "symbolic interpretation.' This
technique consists of activating a set of
procedures corresponding to instructions in the low
level program consistent with an execution level

definition of the high level.

language (similar to

interpretation). This intermediate representation
reflects all of the computations performed on all
possible execution paths. Third, a check must be
performed of the equivalence of the two

intermediate representations.

This check takes the

form of a procedure which applies valid equivalence
preserving transformations to the results of the
first two steps in attempting to reduce them to a

common representation.

high level low level
language language
program program
syntactic symbolic
transformations interpretation
v
intermediate intermediate
representation representation

proof of

equivalence

Fig. l. Compiler testing system diagram.

Symbelic interpretation makes use of an execution
level definition for the high level language. Such
a definition 1s concerned primarily with calling
sequence conventions, representation of primitive
constructs of the high level language in the low
level language, and an assumed run-time
environment. Further details can be found in

([51, (7).

The use of procedures to describe the low level
language instructions, symbolic interpretation, and
an intermediate representation are the
distinguishing factors between our approach and one
that would use decompilation methods [8}. Such an
approach attempts to reconstruct the original
program by searching for syntax in the object code.
We are able to handle compilers written by
different students since, unlike the case when
decompilation methods are used, there is no need to
know what code sequences each person (or compiler)
uses to encode a particular construct of the high

level language.

NEXT
PC2
PC3

PC5

TAGL

(JUMPE 1 TAGL)
(HRRZ 1 0 1)
(SKIPN 3 1)
(POPJ 12)
(HLRZ 4 0 3)
(CAME 4 2)
(JRST 0 PC2)
(HLRZ 1 0 1)
(POPJ 12)

Fig. 3.

3. EXAMPLE

In order to demonstrate the usefulness of these
ideas a proof system has been constructed which
employs a subset of LISP 1.6 [9] (a variant of LISP
[10]) as the high level language and LAP [9] (a
variant of the PDP-10 [11] assembly language) as
the low level language. A suitable intermediate
representation for LISP is shown to exist in [12].
In this section we present a typical user session.

As an example, consider the function NEXT whose
MLISP [13] (a parentheses free LISP also known as
meta-LISP) definition is given in fig. 2. The
function takes as its arguments a list L and an
element X. It searches L for an occurrence of X.
If such an occurrence is found, and if it is not
the last element of the list, then the next element
in the list is returned as the result of the
function. Otherwise, NIL is returned. For
example, application of the function to the list

(A BCDE) in search of D would result in E, while
a search for E or F would result in NIL.

NEXT(L,X) = if NULL(L) or NULL(CDR(L)) then NIL
else if CAR(L) EQ X then CAR(CDR(L))
else NEXT(CDR(L),X)

Fig., 2. MLISP encoding of NEXT.

Prior to discussing any low level language
encodings, we must have an execution level
definition for our high level language. We assume
that a LISP cell is represented by a full word
where the left and right halves point to CAR and
CDR respectively. Addresses of atoms are
represented by (QUOTE <atom-name>) and by zero in
the case of the atom NIL. The PDP-10 has a
hardware. stack and functions return via a return
address which has been placed on the stack by the
invoking function. A LAP program expects to find
its parameters in the accumulators (on the PDP-10
all accumulators are genmeral purpose registers and
can be used for indexing), and also returns its
result in accumulator l. The accumulators
containing the parameters are always of such a form
that a 0 is in the left half and the LISP pointer
is in the right half. All parameters are assumed
to be valid LISP pointers. A program is entered at
its first instruction and a return address is
situated in the top entry of a stack whose pointer
is in accumulator 12. Whenever recursion or a
function call to an external function occurs, the
contents of all the accumulators are assumed to
have been destroyed unless otherwise known.

Fig. 3 contains an erroneous LAP encoding, obtained
by a hand coding process, for the function given in
fig. 2. The format of a LAP instruction is (OPCODE
AC ADDR INDEX) where INDEX and ADDR are optional.
OPCODE is a PDP-10 instruction optionally suffixed
by @ which denotes indirect addressing. The AC and
INDEX fields contain numbers between 0 and decimal
15. ADDR denotes the address field. Verbal
descriptions of the instructions used in the
example LAP encodings can be found in Appendix I.

jump to TAGl if L is NIL

load accumulator 1 with CDR(L)

load accumulator 3 with CDR(L) and skip if not NIL
return NIL

load accumulator 4 with CAR(L)

skip 1if CAR(L) is EQ to X

compute NEXT(CDR(L),X)

load accumulator 1 with CAR(CDR(L))

return

Erroneous LAP encoding of NEXT.
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As soon as the user starts the proof system, he is
asked some questions with respect to the execution
level definition that he has assumed in his LAP
encoding. These questions serve in part to inform
the system of certain assumptions that might have
been made with respect to optimization of function
calls. Specifically, when functions invoke other
functions than themselves, then they must generally
go through the CALL or JCALL mechanism [9] (in case
tracing is possible). Antisymmetry refers to the
relationship exemplified by A<B is equivalent to
B>A. The question dealing with destruction of
accumulators pertains to overriding the initial
assumption that upon recursion or an external
function call all accumulators are assumed to no
longer have the same contents as they had prior to
the call. A typical user system dialogue for the
programs shown in fig. 2 and fig. 3 is shown below.

ENTER FILENAME CONTAINING LAP PROGRAM 70 BE
VAL IDATED.
%% (NEXT. LAP)

IF THE STACK POINTER IS NOT IN ACCUMULATOR 12
THEN ENTER AN ACCUMULATOR NUMBER. OTHERWISE
ENTER NIL.

**NIL

ENTER NAME OF FUNCTION TO BE VALIDATED.
**NEXT

ENTER FILENAME CONTAINING LISP ENCODING OF THE
FUNCTION TO BE VALIDATED AND THE FUNCTIONS
INVOKED BY IT.

**NEXT

THE ONLY KNOWN ANTISYMMETRIC FUNCTIONS ARE THE
PAIRS CONS XCONS AND *LESS *GREAT. ENTER A LIST
OF ANY OTHER PAIRS OR NIL.

**NIL

THE ONLY KNOWN COMMUTATIVE FUNCTIONS ARE EQ,
EQUAL, *PLUS, AND *TIMES. ENTER A LIST OF OTHERS
OR NIL.

*ANIL

THE ONLY FUNCTIONS KNOWN NOT TO DESTROY ALL
ACCUMULATORS ARE CONS, XCONS, NCONS, AND ATOM.
ENTER ANY OTHERS AND THE NUMBER OF THE HIGHEST
ACCUMULATOR THAT THEY DESTROY IN A DOTTED PAIR
FORMAT. OTHERWISE ENTER NIL.

**NIL

ENTER A LIST OF FUNCTIONS WHICH CAN BE ACTIVATED
WITHOUT THE CALL MECHANISM. BE SURE TO ENTER
THE NAME OF THE FUNCTION BEING VALIDATED, IF
APPLICABLE. OTHERWISE ENTER NIL.

**NIL

ENTER A LIST OF FUNCTIONS WHICH MUST BE
ACTIVATED BY THE CALL MECHANISM. DON’T INCLUDE
CONS, XCONS, NCONS, ATOM, EQ, NOT, NULL, CAR, AND
CDR WHICH ARE ALREADY KNOWN. OTHERWISE ENTER NIL.
**NIL

As stated earlier, the encoding given in fig. 3 is
erroneous. The validation process returns with an
error message of the form shown below.

Computation (CAR (CDR L)) can not be matched.
Computed at instruction PC5
along path NEXT,PC2,PC3,PC5.

The message identifies a computation which can not
be shown to be computed in both programs (i.e., the
LISP and LAP programs), and the location and
execution path along which the erroneous function
is computed. This can be seen by examining fig. 4
and fig. 5 which show the intermediate
representations corresponding to fig. 2 and fig. 3

respectively. The latter has been obtained by
symbolically interpreting the program in fig. 3.
These intermediate representations are in the form
of trees with a predicate at the root and the left
and right subtrees correspond to the true and false
values respectively of the predicate. In fact,
these forms are given as part of the error message
that the validation procedure emits when
encountering an error. Hence, users of the system
should be capable of deducing the error with this
information at hand.

(EQ L NIL)

NIL (EQ (CDR L) NIL)

NIL (EQ (CAR L) X)

(CAR (CDR L)) (NEXT (CDR L) X)

Fig. 4. Intermediate representation of fig. 2.

(EQ L NIL)

L  (EQ (CDR L) NIL)

(CDR L) (EQ (CAR (CDR L)) X)

(CAR (CDR L)) (NEXT (CDR L) X)

Fig. 5. Intermediate representation of fig. 3.

The problem is in the computation of the function
(CAR (CDR L)) which is later compared with X.
Closer examination of fig. 4 and fig. 5 reveals
that the predicate should have been (EQ (CAR L) X)
and in fact (CAR (CDR L)) should only be computed
in case the latter predicate is found to be true.
The problem is that we have destroyed the location
containing L before encountering the last
instruction at which L is needed. However, by
inserting a temporary storage operation between
locations NEXT and PC2 in fig. 3 we will have the
desired result. At this point, the conditional
skip and load operation at location PC3 is no
longer necessary - i.e., a test is sufficient and
we replace the skip by a conditional jump. The
resulting correct encoding is shown in fig. 6.
Note that the comment field in fig. 3 corresponding
to location PC3 contains what the programmer
thought was being computed - i.e., the comment is
also in error!
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NEXT (JUMPE 1 TAGl)

PC2 (MOVE 3 1)
(HRRZ 1 0 1)
(JUMPE 1 TAGL)
(HLRZ 4 0 3)
(CAME 4 2)
(JRST 0 PC2)
(HLRZ 1 0 1)

TAGL (POPJ 12)

jump to TAGl if L is NIL

load accumulator 3 with L

load accumulator 1 with CDR(L)

jump to TAG1 if CDR(L) is NIL

load accumulator 4 with CAR(L)

skip if CAR(L) is EQ to X

compute NEXT(CDR(L),X)

load accumulator 1 with CAR(CDR(L))
return

Fig. 6. Modified LAP encoding of NEXT.

4. ERRORS

As noted in the previous section, errors in the
translated program that are caused by the
translation process can be detected. These errors
can generally be classified into two categories
depending on the instance of their detection. The
first class of errors pertains to the well-
formedness of the program. The second class of
errors consists of computations occurring in the
source program and not in the object program and
vice versa.

Errors pertaining to the well-formedness of the
program are detected during the symbolic
interpretation of the translated program. Typical
errors include improper calling sequences, illegal
stack pointer formats, illegal operations on
certain high level language data structures (e.g.,
arithmetic on LISP pointers), etc. Such errors are
not uncommon and generally are the result of a
state of confusion on the part of the compiler
writer. These errors are of the type that would be
detected when attempting to execute the translated
program. However, the error message that will be
obtained is nowhere as revealing as the message
provided by our system since we can pinpoint the
instruction which will cause the problem to occur
at some time in the future. Thus the errors might
be better characterized as warnings.

The second class of errors is much harder to detect
without a proof system. In such a case there is
nothing seemingly wrong with the translated
program. Execution of the translated program may
not yield any problems that might cause the program
to blow up. These are the kind of errors that
occur when senses of tests are confused, a function
is applied to the wrong set of arguments, or the
wrong function is being applied. The last two
errors often result from improper use of common
subexpression elimination, rearranging the order of
computing arguments to functions, ete. 1In large
programming systems, such errors may go undetected
for a considerably long period of time.

The errors that have been detected during
experimental use of the system include the
following: Use of CAR instead of CDR. This was due
to the use of a HLRZ instruction instead of a HRRZ
- 1.e., possibly due to misspelling. Computation
of CONS(A,B) instead of CONS(B,A). Misconception
about the sense of a test - e.g., computing A>B as
the opposite test of B>A rather than B greater than
or equal to A. (CDR (CDR L)) instead of (CDR (CAR
L)). Errors were also detected with respect to
illegal stack pointer formats.

5. CONCLUSION

We have seen how a validation system can be used to
make code generation more tractable. We now have a
means of evaluating code generation from both an
efficiency and a correctness viewpoint. Hence this
aspect of the compilation process need not be
shunted in favor of parsing on the grounds that it
cannot be evaluated in a systematic manner.

A system for proving the correctness of code
generation for LISP and the PDP-10 currently
exists. It can be used with several dialects of
LISP - LISP 1.6 and UCI LISP [l4). A special
version of the system has been constructed for use
in conjunction with a course on LISP and data
structures. In this course one of the options for
a term project is the construction of an optimizing
LISP compiler (in fact such a course provided the
seed for the system reported here). It is hoped
that use of such a system will reveal the type of
errors that are commonly made by students. Results
of an analysis of these errors can be used by the
instructor to guide his exposition of the code
generation process.

Future work includes an extension to handle object
code for other machines besides the PDP-10 (e.g.,
PDP-11 [15]). An equally interesting extension,
although more difficult, would be the creation of a
proof procedure for a high level language other
than LISP. Granted, LISP is a rather simple
language in terms of its constructs. 1In
particular, its control structure (i.e., case
analysis) is very similar to our intermediate
representation. Nevertheless, we feel that other
well structured high level languages that are
richer in data structures could also be handled.
For example, in order to handle a language such as
PASCAL [16], we would need to be able to cope with
array descriptors, record structure descriptors,
etc. There is also a more general procedure
calling and return mechanism due to the various
types of parameters that can be used.

Another possible direction for future work is
expanding the type of information that can be
supplied to the system by the user. We have seen a
limited amount of such information in the sample
dialogue. Performance of our system could be
improved by declaring additional identities or
equivalences. For example, associativity of
functions, equalities, constancy of global variable
bindings across function calls, etc.
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APPENDIX I

The following are verbal definitions of LAP
instructions encountered in fig. 3 and fig. 6. AC
denotes the accumulator specified by the
accumulator field of a LAP instruction.

CAME: The contents of AC is compared with the
contents of the effective address and the next
instruction is skipped 1f equality holds.

HLRZ: Load the right half of AC with the left half
of the contents of the effective address; clear the
left half of AC.

HRRZ: Load the right half of AC with the right half
of the contents of the effective address; clear the
left half of AC.

JRST: Unconditional jump to the effective address.

JUMPE: Jump to the effective address if the
contents of AC is zeroj otherwise continue
execution at the next instruction.

MOVE: Load AC with the contents of the effective
address.

POPJ: Return from a recursive function call.
Formally, subtract octal 1 000 001 from AC to
decrement both halves by one and place the result
back in AC. If subtraction causes the count in the
left half of AC to reach ~1, then set the Pushdown
Overflow flag. The next instruction is taken from
the location addressed by the right half of the
location that was addressed by the right half of AC
prior to decrementing.

SKIPN: Skip the next instruction 1f the contents of
the effective address is not equal to zero. If the
AC field specification is non-zero, then load AC
with the contents of the effective address.
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