
A NORMAL FORM FOR COMPILER TESTING*

Hanan Samet
Computer Science Department

University of Maryland
College Park, Maryland 20742

Abstract

A formalism is presented for obtaining a normal form to be used in representing programs for compiler
testing. Examples are used to motivate the features that must be considered when developing such a
formalism. It is particularly suitable for heuristically optimized code and has been successfully
used in a system for proving that programs written in a subset of LISP are correctly translated to
assembly language.

I. INTRODUCTION

In [Samet75] work is reported on a system
designed to deal with the problem of proving the
correctness of translations performed by
translators which do a considerable amount of
heuristic code optimization. In this paper we
present the formalism used in that work to
represent the high level source program. This

formalism is termed a "normal form."

The paper is organized into several
sections. First, we present a summary of related
work. This is followed by a brief indication of
what constitutes a proof. Next, we give an example
of the problem for which our representation has
been designed. Once the previous overview has been
accomplished, we summarize the normal form that we
have chosen. This discussion deals with the
motivation for our choice, as well as a
presentation of its adaptation to a high level
language.

2. RELATED WORK

Compiler testing is a term we use to
describe a means of proving that given a compiler
(or any program translation procedure) for high
level language H and low level language L, a
program written in language H is correctly

translated to language L. We are especially
interested in cases where the translation involves
a considerable amount of "low level" optimization
[Loveman76]. Some possible approaches to the
problem include program proving [London72] and
program testing ~uang75].

*This work was supported in part by the Advanced
Projects Agency of the Department of Defense under
Contract DAHC 15-73-C-0435. The views expressed
are those of the author.

Most of the previous work in correctness
from the program proving approach has dealt with
specifying assertions ([Floyd67], [King69]) about
the intent of the program and then proving that

they do indeed hold. The assertions correspond to
a detailed formal specification of what constitutes
correct program behavior. The process of
specifying assertions is a rather difficult one
([Deutsch73], [Suzuki75]), and even when a program
is found to satisfy the stated assertions there is

no guarantee that the assertions were sufficiently
precise to account for all of the contingencies
(i.e. there is considerable difficulty in
specifying machine dependent details such as
overflow, precision, etc.). This difficulty is
further compounded when the programs to be proved
are of such a complexity that they defy formal
analysis (i.e. the exact meaning of the program is
not even well understood). Proofs using assertions
generally require the aid of a theorem prover and
in the case of a compiler they may be characterized
as proving that there does not exist a program that
is incorrectly translated by the compiler. We feel
that such an approach is unworkable for an
optimizing compiler although it has been done for a
simple LISP [McCarthy60] compiler [London71].

Program testing is a concept which has been
gaining an. increasing amount of attention in recent
years. This is in part due to the realization that
formal program proving methods rely on a very
powerful theorem proving capability which is
unlikely to appear in the near future. Currently,
program testing consists of applying a suitable set
of test criteria to the program at hand. This is
much easier said than done since the formulation of
suitable test criteria is not an easy process, and,
once done, there still remains the problem of test
case generation.

3. COMPILER TESTING

Our notion of compiler testing is a
variation on the concept of program testing. We
feel that in the case of a compiler there exists a

155

willingness to settle for proofs that specific
programs are correctly translated from a high level
language to the object language. We embed a proof
system in the compiler which proves the correctness
of the translation of each program that is compiled
as part of the compilation process. This sidesteps
the issue of proving that there does not exist a

program that is incorrectly compiled; but this
issue is now moot since essentially we are only
interested in the correctness of translation of

programs input to the compiler. Alternatively, we
are not interested in the question of the
correctness of the translation of programs that

have not yet been input to the compiler. In other
words, we bootstrap ourselves to a state where an
"effective correctness" can be attributed to the

compiler by virtue of the correct translation of
programs input to it.

Our concept of "test" consists of
demonstrating a correspondence or equivalence

between a program input to the compiler and the
corresponding translated program. The manner in
which we proceed is to find an intermediate
representation which is common to both the original
and translated programs and then demonstrate their
equivalence. This intermediate representation is

termed a normal form and an example of it is
presented, along with the process of obtaining it,
in greater detail in section 5. The process of

obtaining this representation for the translated
program is called "symbolic interpretation"
[Samet76]. This process makes use of procedural

descriptions of the primitive operations of the
object language.

Before proceeding any further, let us be

more precise in our definition of equivalence. By
equivalence we mean that the two programs must be
capable of being proved to be structurally
equivalent [Lee72], that is they have identical
execution sequences except for certain valid
rearrangements of computations. Such
rearrangements include transformations classified
as "low level" optimizations. However, more
ambitious transformations classified as "source
level" ([BurstallDarlington75], [Gerhart75],
[Wegbreit76]) are precluded. Note also that our
criterion of equivalence is a more stringent
requirement than that posed by the conventibnal
definition of equivalence which holds that two
programs are equivalent if they have a common

domain and range and both produce the same output

for any given input in their common domain. In the
process of demonstrating equivalence no use is made
of the purpose of the program. Thus, for example,
having the knowledge that a high level program uses
insertion sort and a low level program uses
quicksort to achieve sorting of the input is of no
use in proving equivalence of the two programs.
Recall, that sorting is an input-output pair
characterization of an algorithm.

4. EXAMPLE

The intermediate representation used in our
proofs is dependent to some extent on the high

level language for which the translation procedure

has been designed. In order to have a framework
for the discussion, we must assume the existence of
a suitable programming language. Our language is a

subset of LISP 1.6 [Quam72] which will be shown to
have an intermediate representation. Briefly, this
subset allows side-effects and global variables.

There are two restrictions. First, a function may
only access the values of global variables or the
values of its local variables - it may not access

another function's local variables. Second, the
target label of a GO in a PROG must not have
occurred physically prior to the occurrence of the
GO to the label.

In order to illustrate the type of programs
our system is designed to handle we give an example
of a high level language program, a low level
language program, and their intermediate
representations.

Consider the function INTERSECTION whose
MLISP [Smith70] (a parentheses free LISP also known
as meta-LISP) definition is given in figure I. The

function takes as its arguments two lists U and V
and returns as its result a list of all the
elements that appear in both lists. Each element
is assumed to occur only once in each list. For

example, application of the function to the lists
(A B C) and (D C B) results in the list (B C).

INTERSECTION(U,V) = if NULL(U) then NIL
else if ~MBER(CAR(U),V) then

CONS(CAR(U),
INTERSECTION(CDR(U),V))

else INTERSECTION(CDR(U),V)

Figure 1 - MLISP Encoding of INTERSECTION

The low level language with which we are
dealing is LAP [Quam72] - a variant of the PDP-10
[DEC69] assembly language. A LISP cell is assumed
to be represented by a full word where the left and

right halves point to CAR and CDR respectively.
Addresses of atoms are represented by (QUOTE <atom-
name>) and by zero in the case of the atom NIL.
The PDP-IO has a hardware stack and functions
return via a return address which has been placed
on the stack by the invoking function. A LAP
program expects to find its parameters in the
accumulators (on the PDP-10 all accumulators are
general purpose registers and can be used for
indexing), and also returns its result in
accumulator i. The accumulators containing the
parameters are always of such a form that a 0 is in

the left half and the LISP pointer is in the right

half. All parameters are assumed to be valid LISP
pointers. A program is entered at its first

instruction and a return address is situated in the

top entry of a stack whose pointer is in
accumulator 12. Whenever recursion or a function
call to an external function (via the CALL or JCALL
mechanism) occurs, the contents of all the
accumulators are assumed to have been destroyed
unless otherwise known. Exceptions include CONS
and XCONS (XCONS(A,B)=CONS(B,A)) which leave all
accumulators unchanged with the exception of i and

2.

Figure 2 contains a LAP encoding, obtained
by a hand coding process, for the function given in

156

figure I, The format of a LAP instruction is
(OPCODE AC ADDR INDEX) where INDEX and ADDR are
optional. OPCODE is a PDP-10 instruction
optionally suffixed by @ which denotes indirect
addressing. The AC and INDEX fields contain
numbers between 0 and decimal 15. ADDR denotes the
address field. A list of the form (C 0 0 numl
num2) appearing in the address field of an
instruction denotes the address of a word
containing numl and num2 in its left and right
halves respectively (assuming numl and num2 are
less than 15). The meaning of the instructions
used in the example LAP encoding should be clear
from the adjoining comments.

Figures 3 and 4 give a symbolic
intermediate representation of the functions
encoded by figures 1 and 2 respectively. The
intermediate representations for the two functions
are almost identical with the exception of the true
case for (EQ U NIL). However, use of equality
information resolves this problem since in the
former case U and NIL may be used interchangeably.
Nevertheless, there remains another problem. The
two functions do not have identical execution
sequences. Thus there is a need for more than just
a symbolic representation. We also need a means of
representing the order of execution of various
computations. For example, INTERSECTION(CDR(U),V)
is only computed once in figure 2 whereas in figure
I its computation is called for at two separate
instances. Moreover, it is computed before
MEMBER(CAR(U),V) rather than afterward. In this
case we must be able to prove that no side-effect
computation (e.g. an operation having the effect of
a RPLACA or RPLACD) can occur between the instance
of computation of INTERSECTION(CDR(U),V) and the
instances of its instantiation. This information
is obtained via flow analysis. Conflicts with
respect to the order of computing functions are
resolved by use of an additional intermediate
representation which reflects the instances at
~:ich various computations were performed. It is
the task of the proof procedure to verify that
these variations preserve equivalence.

(EQ U NIL)

NIL (EQ (MEMBER (CAR U) V) NIL)

(INTERSECTION (CDR U) < >

(CONS (CAR U) (INTERSECTION (CDR U) V))
Figure 3 - Intermediate Representation of Figure i

(EQ U NIL)

U (EQ (MEMBER (CAR U) V) NIL)

(INTERSECTION (CDR U) ~

(CONS (CAR U) (INTERSECTION (CDR U) V))

Figure 4 - Intermediate Representation of Figure 2

5. NORMAL FORM

Our formalism has its root in the work done
by McCarthy [McCarthy63] in showing the existence
of a canonical form for the theory of conditional
expressions and its use in proving equivalence.
This theory corresponds to analysis by cases in
mathematics and is basically a generalization of
propositional calculus.

INTERSECTION

TAG1

(JUMPE 1 TAG1)
(PUSH 12 I)
(PUSH 12 2)
(HRP~ I 0 I)
(CALL 2 (E INTERSECTION))
(MOVE 2 0 12)
(MOVEM I 0 12)
(HLRZ@ I -i 12)
(CALL 2 (E MEMBER))
(EXCH 1 0 12)

(HLRZ@ 2 -I 12)
(SKIPE 0 0 12)
(CALL 2 (E XCONS))
(SUB 12 (C 0 0 2 2))
(POPJ 12)

jump to TAG1 ~f U is NIL
save U on the stack
save V on the stack
load accumulator 1 with CDR(U)
compute INTERSECTION(CDR(U),V)
load accumulator 2 with V
save INTERSECTION(CDR(U),V)
load accumulator 1 with CAR(U)
compute MEMBER(CAR(U),V)
save MEMBER(CAR(U),V) and load accumulator
1 with INTERSECTION(CDR(U),V)
load accumulator 2 with CAR(U)
skip if MEMBER(CAR(U),V) is not true
compute CONS(CAR(U),INTERSECTION(CDR(U),V))
undo the first two push operations
return

Figure 2 - LAP Facoding of INTERSECTION

157

The basic entity is a generalized boolean

form (gbf) which has the form (p~x,y) where p,x,

and y are variables or gbfs and are known as the
premise, conclusion, and alternative respectively.
p takes the value of T, NIL, or undefined in which
case the gbf takes the value x,y, or undefined

respectively• Two gbfs are said to be strongly
equivalent if they have the same values for all
values of their constituent variables whereas they

are weakly equivalent (denoted by =) if they have

W

the same values only when all of their constituent
variables are defined• Thus in the case of weak
equivalence we disregard cases where the premises
are undefined. Equivalence can be tested by the
method of truth tables or by use of the following
axioms to transform any gbf into an equivalent one.

(i) (p~a,a) = a

w

(2) (T-a,b) = a
(3) (NIL~a,b) = b

(4) (p-T,NIL) = p
(5) (p- (p~a,b) ,c) = (p~a, c)
(6) (p-a,(p-b,c)) = (p-a,c)
(7) ((p-q,r)-a,b) = (p-(q-a,b),(r-a,b))
(8) (p-(q-a,b),(q-c,d)) = (q-(p-a,c),(p-b,d))

The above axioms can be used to transform

any gbf into a normal form which is a binary tree
whose nonterminal nodes correspond to variables
taking on values of T or NIL and whose terminal

nodes represent general valued variables. There is
a normal form algorithm for both weak and strong
equivalence - the difference being that during the
process of obtaining the normal form for strong
equivalence, axiom (I) can not be used at will. It
can only be used when its premise variable is
defined. Our algorithms are different from those

proposed by McCarthy where additional axioms are
introduced to cope with obtaining a normal form for
strong equivalence. By ordering the variables

appearing in premise positions according to some
lexicographical scheme the normal form becomes a
canonical form and we have the following result.

proving strong equivalence and in the more general
notion of functions rather than variables.

The relation of functions to gbfs
by the distributive law:

f(x ,...,x ,(p~q,r),x ,x)
1 i-I i+l n

= (p-f(x ,x ,q,x ,...,x),
1 i-i i+l n

f(x ,x ,r,x x))
1 i-i i+l n

is given

Let FL be a function of one or more
arguments which returns as its result the value of
its final argument.

A generalized COND is mapped onto the
following form:

(COND (p e) (p e e) ... (p e)) =

1 1 2 2 3 n n

(p -e ,(p -FL(e ,e) (p -e ,NIL)...))
1 1 2 2 3 n n

We define the base predicates in LISP to be

the functions EQ,ATOM, and EQUAL which are known to
return T or NIL. All gbfs whose predicate part is
not one of the previous, are replaced using the

following transformation:

(predicate~conclusion,alternative) =

(EQ(predicate,NIL)~alternative,conclusion)

All occurrences of these predicates in the
premise position of the gbf are termed explicit
occurrences. All other occurrences are termed
implicit occurrences and are replaced by their
equivalent via use of axiom (4) - i.e. predicate p
is replaced by (p-T,NIL). This is motivated by the
definition of a normal form where the propositional

variables have now been replaced by the more
general concept of a predicate.

Theorem: Two gbfs are equivalent (weak or strong)
iff they have the same (weak or strong) canonical

form•

Other forms of predicates such as AND, OR,
NOT, etc. are converted to their conditional form
representations•

In this paper we are only interested in
obtaining a representation of the function in some

normal form with no rearranging of conditions
(axiom (8)) or application of axiom (I). This is
because the normal form corresponding to a LISP

program will be used in a system for proving that
LISP programs are correctly compiled• At that
point these axioms will be used in an attempt to
match the normal form corresponding to the original
LISP function definition with the normal form of
the object progmam which has been obtained by use

of symbolic interpretation.

In order for the previous ideas to be
useful in proving the correctness of translation of

LISP programs we must show how to adapt them to
LISP programs• We are primarily interested in

An internal lambda of the form:

((LAMBDA (var var . . . var)

1 2 n

<function body sequence>)
<function body of var binding>

1

<function body of var binding>
2

<function body of var binding>)

n

is represented by the form:

158

FL(SETQ(var ,<function body of var binding>),
I 1

SETQ(var ,<function body of var binding>),
2 2

SErQ(var ,<function body of var binding>),

n n
FL(<function body sequence>))

Note that all lambda variables are given unique
names to avoid errors at a later stage when
bindings will be used instead of the variable

names.

Another feature present in LISP which does

not have an analog in [McCarthy63] is the concept
of a variable and assignments made to it. In
proving equivalence we will want to make certain
that SPECIAL (global) variables are assigned their
appropriate values; however, local variables and
variables associated with internal lambdas (lambda
variables) exist only as placeholders for
computations. The act of assignment is only
temporary and thus is not a necessary component of
the equivalence - i.e. in proving equivalence we
wish to show that the programs perform the same
computations on the LISP environment which means

that identical conditions are tested and identical
side-effects occur. In the case of local and
lambda variables, we simply use their bindings and
ignore the act of assignment. In the case of
SPECIAL variables we use their bindings as well as
record the act of assignment.

In the process of obtaining a normal form
we make use of the distributive law for functions
and conditions. This means that certain
computations, namely conditions, are moved so that
physical position no longer indicates the sequence
of computation. In order to maintain a record of
the original sequence of computation, we need a
representation of the LISP program in terms of the
order in which computations are performed. What is
really desired is a numbering scheme having the
characterization that associated with each
computation is a number with the property that all
of the computations predecessors have lower numbers

and the successors have higher numbers (i.e. a
partial ordering). This property can be achieved
by numbering a conditional form in the following
fashion: each time a number is assigned, it is
higher than any number previously assigned.

(I) an atomic symbol is assigned a number.

(2) a function f(arg ,arg ,...,arg) is numbered
1 2 n

in the order arg , arg ,..., arg , followed by
I 2 n

assigning a number to f.

(3) a general boolean form (p-q,r) is numbered in

the order p, q, r.

For example, consider the function UNION
whose I~ISP definition is given in figure 5. The
function takes as its arguments two lists U and V
and returns as its result a list of all the
elements that appear in either list. Each element
is assumed to occur only once in each list.
Application of the function to the lists (A B C)
and (D C B) results in the list (A D C B). Figure
6 contains the gbf representation corresponding to
figure 5. Figure 7 contains the result of applying
the above numbering algorithm to figure 6. Figure
8 contains the numeric and symbolic representations
corresponding to figure 5 after application of the
distributive law for functions. Notice that the
test (EQ (MEMBER (CAR U) V) NIL) appears before the

computation (CDR U) in figure 8.

UNION(U,V) = if NULL(U) then V
else UNION (CDR (U),

if MEMBER(CAP.(U),V) then V

else CONS (CAR(U),V))

Figure 5 - MLISP Encoding of UNION

((EQ U NIL)~V,
(UNION (CDR U)

((EQ (MEMBER (CAR U) V) NIL)

-V,
(CONS (CAR U) V))))

Figure 6 - Symbolic GBF Representation
Corresponding to Figure 5

((14 i0 12)-16,
(44 (20 18)

((32 (28 (24 22) 26) 30)

-34,
(42 (38 36) 40))))

Figure 7 - Numeric GBF Representation
Corresponding to Figure 5

((EQ U NIL)-V,
((EQ (MEMBER (CAR U) V) NIL)
-(UNION (CDR U) V),
(UNION (CDR U) (CONS (CAR U) V))))

((14 i0 12)-16,
((32 (28 (24 22) 26) 30)
-(44 (20 18) 34)
(44 (20 18) (42 (38 36) 40))))

Figure 8 - Numeric and Symbolic Representations
Corresponding to Figures 6 and 7 After
Application of the Distributive Law for

Functions

The algorithm for obtaining the normal form
is only briefly presented- It has two phases each
of which processes the symbolic and numeric
representations of the program in parallel. The
first phase corresponds to application of axioms

159

(2),(3), and (7) along with the distributive law
for functions while simultaneously binding
variables to their proper values. The second phase
corresponds to making use of axioms (2),(3),(5),
and (6) to get rid of duplicate occurrences of
predicates as well as redundant computations. The
latter is the case when a computation such as (CAR
U) in figures 3 and 5 is computed more than once
along a computation path with no intervening
computations that might cause the two instances to
have different values (i.e. no computations having
side-effects). Figure 9 contains the intermediate
representation corresponding to figure 8. Note
that all occurrences of the same local variable
have the same computation number. This computation
number is less than the computation numbers
associated with any function. Also, by convention
we assign NIL the computation number 0.

(EQ U NIL)

V (EQ (MEMBER (CAR U) V) NIL)

(UNION (CDR U) V) (UNION (CDR U) (CONS (CAR U) V))

(14 5 0)

6 (32 (28 (24 5) 6) 0)

(44 (20 5) 6) (44 (20 5) (42 (24 5) 6))

F i g u r e 9 - Normal Form C o r r e s p o n d i n g to F i g u r e 8

Briefly, some other steps are necessary to
properly deal with assignments to SPECIAL variables
and side-effect computations such as RPLACA and
RPLACD. We use a mechanism that views these
operations as two-parted. One corresponds to the
act of assignment and the other to the process of
returning a value. We decouple these two
components. This enables us to be able to deal
with cases where acts of assignment are redundant
as is the case when a value is assigned to a
SPECIAL variable without any access of the said
variable prior to a subsequent assignment. In this
case, the act of computing the new value being
assigned in the first case is not redundant while
the actual act of assignment is redundant.

We have seen that the numeric
representation of a LISP function has the property
that associated with each constituent computation
is a number which is greater than the numbers
associated with the computation's predecessors and
at the same time less than the numbers associated
with the computation's successors. This approach,
henceforth referred to as breadth first, was
necessary in order to properly execute the binding
and condition expansion part of the normal form
algorithm (also the only possible numeric
representation prior to its execution). The

duplicate computation removal phase, and more
importantly the matching phase (i.e. the proof of
the equivalence of the representations
corresponding to the source and object programs),
requires an even stronger criterion. We wish the
numeric representation to have the afore-mentioned
properties plus the property that all computations
with the same computation number have been computed
simultaneously. By simultaneously, we do not
necessarily require computation at the same
location. This criterion is not strong enough.
Basically, what we are after is the following: If
two identical computation numbers appear in two
different subtrees, then the functions associated
with them must have been computed with the same
input conditions and equivalent arguments. For
example, recall the following fragment from figure

6:

The
was:

(UNION (CDR U)
((EQ (MEMBER (CAR U) V) NIL)
-V,

(CONS (CAR U) V)))

numeric representation assigned to this form

(44 (20 18)
((32 (28 (24 22) 26) 30)
-34,
(42 (38 36) 40)))

After applying the first two phases of
form algorithm we have:

((EQ (MEMBER (CAR U) V) NIL)
-(UNION (CDR U) V),
(UNION (CDR U) (CONS (CAR U) V)))

with the numeric representation:

((32 (28 (24 5) 6) 0)
-(44 (20 5) 6),
(44 (20 5) (42 (24 5) 6)))

the normal

Note that the same computation number, 44,
is associated with the two instances of UNION.
However, the function UNION yields different
results for the two instances since in one case the
second argument is V and in the other case the
second argument is (CONS (CAR U) V). Thus we wish
to have different computation numbers for the two
instances of UNION. Of course, if V and (CONS (CAR
U) V) were equivalent (impossible in this case),
then the two instances of UNION could have the same
computation number; the proof procedure deals with
such questions.

Recalling our characterization of the
normal form as a tree, we see that the numbering
scheme that we require, known as depth first, has
the property that all computations performed solely
in the right subtree have a higher computation
number associated with them than the numbers
associated with computations performed solely in
the left subtree. In fact, this is the basis of
the algorithm used to convert a breadth first
numeric representation to a depth first numeric
representation.

160

Thus for the above example we would want

the following numeric representation:

((32 (28 (24 5) 6) 0)
~(44 (20 5) 6),
(48 (20 5) (46 (24 5) 6)))

and figure i0 is the numeric representation
corresponding to figure 9.

(1450)

6 (32 (28 (24 5) 6) O)

(44 (20 5) 6) (48 (2O 5) (46 (24 5) 6))

F i g u r e 10 - Depth F i r s t Renumber ing of F i g u r e 9

The duplicate computation removal algorithm
processes the symbolic and numeric representations
of the program in order of increasing computation
numbers. The main objective of the algorithm is to
remove predicates whose values are known and to
replace duplicate occurrences of computations by
their first occurrence. The tree-like nature of
our representations coupled with the property that
all computations performed solely in the left
subtree have lower computation numbers associated
with them than with those performed solely in the
right subtree greatly facilitates our work. We
also make use of the fact that application of axiom
(7) coupled with the manner in which the
distributive law for functions was applied
preserved the order in which conditions were tested
- i.e. each predicate has a lower computation
number associated with it than is associated with
the predicates computed in its subtrees.

At this point we have a normal form representation
for the original LISP program. As mentioned
earlier, the symbolic interpretation procedure
returns a similar representation for the object
program. All that remains is to prove that the two
representations are identical or that either one
can be transformed using our axioms into the other.
This procedure proceeds by attempting to prove that
each computation appearing in one of the
representations appears in the other and vice
versa. This is accomplished by uniformly assigning
the computation numbers in one representation, say
B, to be higher than all of the numbers in the
other representation, say A, and then, in
increasing order, search B for matching instances
of computations appearing in A. In the proof
liberal use is made of axioms (I),(2),(3),(5), and
(6) as well as substitution of equals for equals.

there is a problem. The proof system must prove
that (INTERSECTION (CDR U) V) can be computed
simultaneously and before the test (~MBER (CAR U)
V). In other words, we must be able to prove that
the act of computing (MEMBER (CAR U) V) can be
postponed to a point after computing (INTERSECTION
(CDR U) V). Thus we are proving the correctness of
a factoring-like optimization. Once it is shown
that figure 12 can be transformed to yield figure
ii, the process is repeated by assigning to the
computations in figure 11 higher numbers than those
in figure 12 and proving that figure 11 can be
transformed to yield figure 12.

(i050)

0 (16 (14 (12 5) 6) 0)

(20 (18 5) 6) (26 (12 5) (24 (22 5) 6))

F i g u r e l l - Numeric R e p r e s e n t a t i o n of F i g u r e 3

(2850)

5 (38 (36 (34 5) 6) 0)

(32 (30 5) 6) (40 (34 5) (32 (30 5) 6))

F i g u r e 12 - Numeric R e p r e s e n t a t i o n of F i g u r e 4

6. CONCLUSION

We have seen a formalism for representing a high
level language program so that a proof procedure

could be used for proving correctness of
translation. Our technique has been illustrated by
use of a sample language LISP. Indeed many of the
steps have been heavily influenced by LISP and its
structure. Nevertheless, we feel that many of
these techniques will be useful in attempting such
proofs for other languages. Future work should be
focussed on identifying inadequacies in our
formalism so that more complex languages can be
handled. In [Samet75] modifications are proposed
for handling more complicated LISP constructs such
as PROG, GO, and RETURN.

For example, figures ii and 12 contain the numeric
intermediate forms corresponding to figures 3 and 4
respectively- We assume that duplicate computation
removal has already been applied and thus (CAR U)
has the same computation number in both instances
in figures 11 and 12. Note also that we have
chosen to make all computation numbers in figure 12
higher than those in figure 11. Despite the
apparent similarity of the two representations,

7. REFERENCES

[BurstallDarlington75] - Burstall, R.M., and
Darlington, J., "Some Transformations for
Developing Recursive Programs," Proceedings of the
1975 International Conference on Reliable Software,

April 1975, pp. 465 -4v2.

161

[DEC69] - "PDP-10 System Reference Manual," Digital
Equipment Corporation, Maynard, Massachusetts,
1969.

[Deutsch73] - Deutsch, L.P., "An Interactive
Program Verifier," Ph.D. Thesis, Department of
Computer Science, University of California at
Berkeley, May 1973.

[Floyd67] - Floyd, R.W., "Assigning Meanings to
Programs," Proceedings of a Symposium in Applied
Mathematics, Volume 19, ~thematical Aspects of
Science, (Schwartz, J.T. ed.), American Math
Society, 1967, pp. 19-32.

[Gerhart75] - Gerhart, S.L., "Correctness
Preserving Program Transformations," Second ACM
Symposium o__n_n Principles of ProgramminE Languages,
January 1975, pp. 54-66.

[Huang75] - Huang, J.C., "An Approach to Program
Testing," ACM Computing Surv_~, September 1975,
pp. 113-128.

[King69] - King, J., "A Program Verifier," Ph.D.
Thesis, Department of Computer Science, Carnegie-
Mellon University, Pittsburgh, Pennsylvania, 1969.

[Lee72] - Lee, J.A.N., Computer Semantics, Van
Nostrand Reinhold, New York, 1972, pp. 346-347.

[London71] - London, R.L., "Correctness of Two
Compilers for a LISP Subset," Stanford Artificial
Intelligence Project Memo AIM-151, Computer Science
Department, Stanford University, October 1971.

[London72] - London, R.L., "The Current State of
Proving Programs Correct," in Proceedings of the
ACM 25th Annual Conference, 1972, pp. 39-46.

[Loveman76] - Loveman, D.B., "Program Improvement
by Source to Source Transformation," Third ACM
Symposium o n_n Principles of ProgramminE Languages,
January 1976, pp.140-152.

[McCarthy60] - McCarthy, J., "Recursive Functions
of Symbolic Expressions and their Computation by
Machine," Communications of the ACM, April 1960,
pp.184-195.

[McCarthy63] - McCarthy, J., "A Basis for a
Mathematical Theory of Computation," in Computer
Programming and Formal Systems (Eds. Braffort and
Hirshberg), North Holland, Amsterdam, 1963.

[Quam72] - Quam, L.H., and Diffie, W., "Stanford
LISP 1.6 Manual," Stanford Artificial Intelligence
Project Operating Note 28.7, Computer Science
Department, Stanford University, 1972.

[Samet75] - Samet, H., "Automatically Proving the
Correctness of Translations Involving Optimized
Code," Ph.D. Thesis, Stanford Artificial
Intelligence Project Memo AI~I-259, Computer Science
Department, Stanford University, 1975.

[Samet76] - Samet, H., "Compiler Testing via
Symbolic Interpretation," in Proceedings of the ACM
29th Annual Conference, 1976, pp. 492-497.

[Smith70] - Smith, D.C., '~LISP," Stanford
Artificial Intelligence Project Memo AIM-135,
Computer Science Department, Stanford University,
October 1970.

[Suzuki75] Suzuki, N, "Verifying Programs by
Algebraic and Logical Reductions," Proceedings of
the 1975 International Conference on Reliable
Software, April 1975, pp. 473-481.

[Wegbreit76] - Wegbreit, B., "Goal-Directed Program
Transformation," Third ACM Symposium on Principles
of Programming LanguaEes, January 1976, pp. 153-
170.

162

