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Abstract 

A formalism is presented for obtaining a normal form to be used in representing programs for compiler 
testing. Examples are used to motivate the features that must be considered when developing such a 
formalism. It is particularly suitable for heuristically optimized code and has been successfully 
used in a system for proving that programs written in a subset of LISP are correctly translated to 
assembly language. 

I. INTRODUCTION 

In [Samet75] work is reported on a system 
designed to deal with the problem of proving the 
correctness of translations performed by 
translators which do a considerable amount of 
heuristic code optimization. In this paper we 
present the formalism used in that work to 
represent the high level source program. This 

formalism is termed a "normal form." 

The paper is organized into several 
sections. First, we present a summary of related 
work. This is followed by a brief indication of 
what constitutes a proof. Next, we give an example 
of the problem for which our representation has 
been designed. Once the previous overview has been 
accomplished, we summarize the normal form that we 
have chosen. This discussion deals with the 
motivation for our choice, as well as a 
presentation of its adaptation to a high level 
language. 

2. RELATED WORK 

Compiler testing is a term we use to 
describe a means of proving that given a compiler 
(or any program translation procedure) for high 
level language H and low level language L, a 
program written in language H is correctly 

translated to language L. We are especially 
interested in cases where the translation involves 
a considerable amount of "low level" optimization 
[Loveman76]. Some possible approaches to the 
problem include program proving [London72] and 
program testing ~uang75]. 

*This work was supported in part by the Advanced 
Projects Agency of the Department of Defense under 
Contract DAHC 15-73-C-0435. The views expressed 
are those of the author. 

Most of the previous work in correctness 
from the program proving approach has dealt with 
specifying assertions ([Floyd67], [King69]) about 
the intent of the program and then proving that 

they do indeed hold. The assertions correspond to 
a detailed formal specification of what constitutes 
correct program behavior. The process of 
specifying assertions is a rather difficult one 
([Deutsch73], [Suzuki75]), and even when a program 
is found to satisfy the stated assertions there is 

no guarantee that the assertions were sufficiently 
precise to account for all of the contingencies 
(i.e. there is considerable difficulty in 
specifying machine dependent details such as 
overflow, precision, etc.). This difficulty is 
further compounded when the programs to be proved 
are of such a complexity that they defy formal 
analysis (i.e. the exact meaning of the program is 
not even well understood). Proofs using assertions 
generally require the aid of a theorem prover and 
in the case of a compiler they may be characterized 
as proving that there does not exist a program that 
is incorrectly translated by the compiler. We feel 
that such an approach is unworkable for an 
optimizing compiler although it has been done for a 
simple LISP [McCarthy60] compiler [London71]. 

Program testing is a concept which has been 
gaining an. increasing amount of attention in recent 
years. This is in part due to the realization that 
formal program proving methods rely on a very 
powerful theorem proving capability which is 
unlikely to appear in the near future. Currently, 
program testing consists of applying a suitable set 
of test criteria to the program at hand. This is 
much easier said than done since the formulation of 
suitable test criteria is not an easy process, and, 
once done, there still remains the problem of test 
case generation. 

3. COMPILER TESTING 

Our notion of compiler testing is a 
variation on the concept of program testing. We 
feel that in the case of a compiler there exists a 
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willingness to settle for proofs that specific 
programs are correctly translated from a high level 
language to the object language. We embed a proof 
system in the compiler which proves the correctness 
of the translation of each program that is compiled 
as part of the compilation process. This sidesteps 
the issue of proving that there does not exist a 

program that is incorrectly compiled; but this 
issue is now moot since essentially we are only 
interested in the correctness of translation of 

programs input to the compiler. Alternatively, we 
are not interested in the question of the 
correctness of the translation of programs that 

have not yet been input to the compiler. In other 
words, we bootstrap ourselves to a state where an 
"effective correctness" can be attributed to the 

compiler by virtue of the correct translation of 
programs input to it. 

Our concept of "test" consists of 
demonstrating a correspondence or equivalence 

between a program input to the compiler and the 
corresponding translated program. The manner in 
which we proceed is to find an intermediate 
representation which is common to both the original 
and translated programs and then demonstrate their 
equivalence. This intermediate representation is 

termed a normal form and an example of it is 
presented, along with the process of obtaining it, 
in greater detail in section 5. The process of 

obtaining this representation for the translated 
program is called "symbolic interpretation" 
[Samet76]. This process makes use of procedural 

descriptions of the primitive operations of the 
object language. 

Before proceeding any further, let us be 

more precise in our definition of equivalence. By 
equivalence we mean that the two programs must be 
capable of being proved to be structurally 
equivalent [Lee72], that is they have identical 
execution sequences except for certain valid 
rearrangements of computations. Such 
rearrangements include transformations classified 
as "low level" optimizations. However, more 
ambitious transformations classified as "source 
level" ([BurstallDarlington75], [Gerhart75], 
[Wegbreit76]) are precluded. Note also that our 
criterion of equivalence is a more stringent 
requirement than that posed by the conventibnal 
definition of equivalence which holds that two 
programs are equivalent if they have a common 

domain and range and both produce the same output 

for any given input in their common domain. In the 
process of demonstrating equivalence no use is made 
of the purpose of the program. Thus, for example, 
having the knowledge that a high level program uses 
insertion sort and a low level program uses 
quicksort to achieve sorting of the input is of no 
use in proving equivalence of the two programs. 
Recall, that sorting is an input-output pair 
characterization of an algorithm. 

4. EXAMPLE 

The intermediate representation used in our 
proofs is dependent to some extent on the high 

level language for which the translation procedure 

has been designed. In order to have a framework 
for the discussion, we must assume the existence of 
a suitable programming language. Our language is a 

subset of LISP 1.6 [Quam72] which will be shown to 
have an intermediate representation. Briefly, this 
subset allows side-effects and global variables. 

There are two restrictions. First, a function may 
only access the values of global variables or the 
values of its local variables - it may not access 

another function's local variables. Second, the 
target label of a GO in a PROG must not have 
occurred physically prior to the occurrence of the 
GO to the label. 

In order to illustrate the type of programs 
our system is designed to handle we give an example 
of a high level language program, a low level 
language program, and their intermediate 
representations. 

Consider the function INTERSECTION whose 
MLISP [Smith70] (a parentheses free LISP also known 
as meta-LISP) definition is given in figure I. The 

function takes as its arguments two lists U and V 
and returns as its result a list of all the 
elements that appear in both lists. Each element 
is assumed to occur only once in each list. For 

example, application of the function to the lists 
(A B C) and (D C B) results in the list (B C). 

INTERSECTION(U,V) = if NULL(U) then NIL 
else if ~MBER(CAR(U),V) then 

CONS(CAR(U), 
INTERSECTION(CDR(U),V)) 

else INTERSECTION(CDR(U),V) 

Figure 1 - MLISP Encoding of INTERSECTION 

The low level language with which we are 
dealing is LAP [Quam72] - a variant of the PDP-10 
[DEC69] assembly language. A LISP cell is assumed 
to be represented by a full word where the left and 

right halves point to CAR and CDR respectively. 
Addresses of atoms are represented by (QUOTE <atom- 
name>) and by zero in the case of the atom NIL. 
The PDP-IO has a hardware stack and functions 
return via a return address which has been placed 
on the stack by the invoking function. A LAP 
program expects to find its parameters in the 
accumulators (on the PDP-10 all accumulators are 
general purpose registers and can be used for 
indexing), and also returns its result in 
accumulator i. The accumulators containing the 
parameters are always of such a form that a 0 is in 

the left half and the LISP pointer is in the right 

half. All parameters are assumed to be valid LISP 
pointers. A program is entered at its first 

instruction and a return address is situated in the 

top entry of a stack whose pointer is in 
accumulator 12. Whenever recursion or a function 
call to an external function (via the CALL or JCALL 
mechanism) occurs, the contents of all the 
accumulators are assumed to have been destroyed 
unless otherwise known. Exceptions include CONS 
and XCONS (XCONS(A,B)=CONS(B,A)) which leave all 
accumulators unchanged with the exception of i and 

2. 

Figure 2 contains a LAP encoding, obtained 
by a hand coding process, for the function given in 
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figure I, The format of a LAP instruction is 
(OPCODE AC ADDR INDEX) where INDEX and ADDR are 
optional. OPCODE is a PDP-10 instruction 
optionally suffixed by @ which denotes indirect 
addressing. The AC and INDEX fields contain 
numbers between 0 and decimal 15. ADDR denotes the 
address field. A list of the form (C 0 0 numl 
num2) appearing in the address field of an 
instruction denotes the address of a word 
containing numl and num2 in its left and right 
halves respectively (assuming numl and num2 are 
less than 15). The meaning of the instructions 
used in the example LAP encoding should be clear 
from the adjoining comments. 

Figures 3 and 4 give a symbolic 
intermediate representation of the functions 
encoded by figures 1 and 2 respectively. The 
intermediate representations for the two functions 
are almost identical with the exception of the true 
case for (EQ U NIL). However, use of equality 
information resolves this problem since in the 
former case U and NIL may be used interchangeably. 
Nevertheless, there remains another problem. The 
two functions do not have identical execution 
sequences. Thus there is a need for more than just 
a symbolic representation. We also need a means of 
representing the order of execution of various 
computations. For example, INTERSECTION(CDR(U),V) 
is only computed once in figure 2 whereas in figure 
I its computation is called for at two separate 
instances. Moreover, it is computed before 
MEMBER(CAR(U),V) rather than afterward. In this 
case we must be able to prove that no side-effect 
computation (e.g. an operation having the effect of 
a RPLACA or RPLACD) can occur between the instance 
of computation of INTERSECTION(CDR(U),V) and the 
instances of its instantiation. This information 
is obtained via flow analysis. Conflicts with 
respect to the order of computing functions are 
resolved by use of an additional intermediate 
representation which reflects the instances at 
~:ich various computations were performed. It is 
the task of the proof procedure to verify that 
these variations preserve equivalence. 

(EQ U NIL) 

NIL (EQ (MEMBER (CAR U) V) NIL) 

(INTERSECTION (CDR U ) < >  

(CONS (CAR U) (INTERSECTION (CDR U) V)) 
Figure 3 - Intermediate Representation of Figure i 

(EQ U NIL) 

U (EQ (MEMBER (CAR U) V) NIL) 

(INTERSECTION (CDR U ) ~  

(CONS (CAR U) (INTERSECTION (CDR U) V)) 

Figure 4 - Intermediate Representation of Figure 2 

5. NORMAL FORM 

Our formalism has its root in the work done 
by McCarthy [McCarthy63] in showing the existence 
of a canonical form for the theory of conditional 
expressions and its use in proving equivalence. 
This theory corresponds to analysis by cases in 
mathematics and is basically a generalization of 
propositional calculus. 

INTERSECTION 

TAG1 

(JUMPE 1 TAG1) 
(PUSH 12 I) 
(PUSH 12 2) 
(HRP~ I 0 I )  
(CALL 2 (E INTERSECTION)) 
(MOVE 2 0 12) 
(MOVEM I 0 12) 
(HLRZ@ I -i 12) 
(CALL 2 (E MEMBER)) 
(EXCH 1 0 12) 

(HLRZ@ 2 -I 12) 
(SKIPE 0 0 12) 
(CALL 2 (E XCONS)) 
(SUB 12 (C 0 0 2 2)) 
(POPJ 12) 

jump to TAG1 ~f U is NIL 
save U on the stack 
save V on the stack 
load accumulator 1 with CDR(U) 
compute INTERSECTION(CDR(U),V) 
load accumulator 2 with V 
save INTERSECTION(CDR(U),V) 
load accumulator 1 with CAR(U) 
compute MEMBER(CAR(U),V) 
save MEMBER(CAR(U),V) and load accumulator 
1 with INTERSECTION(CDR(U),V) 
load accumulator 2 with CAR(U) 
skip if MEMBER(CAR(U),V) is not true 
compute CONS(CAR(U),INTERSECTION(CDR(U),V)) 
undo the first two push operations 
return 

Figure 2 - LAP Facoding of INTERSECTION 
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The basic entity is a generalized boolean 

form (gbf) which has the form (p~x,y) where p,x, 

and y are variables or gbfs and are known as the 
premise, conclusion, and alternative respectively. 
p takes the value of T, NIL, or undefined in which 
case the gbf takes the value x,y, or undefined 

respectively• Two gbfs are said to be strongly 
equivalent if they have the same values for all 
values of their constituent variables whereas they 

are weakly equivalent (denoted by = ) if they have 

W 

the same values only when all of their constituent 
variables are defined• Thus in the case of weak 
equivalence we disregard cases where the premises 
are undefined. Equivalence can be tested by the 
method of truth tables or by use of the following 
axioms to transform any gbf into an equivalent one. 

(i) (p~a,a) = a 

w 

(2) (T-a,b) = a 
(3) (NIL~a,b) = b 

(4) (p-T,NIL) = p 
(5) (p- (p~a,b) ,c) = (p~a, c) 
(6) (p-a,(p-b,c)) = (p-a,c) 
(7) ((p-q,r)-a,b) = (p-(q-a,b),(r-a,b)) 
(8) (p-(q-a,b),(q-c,d)) = (q-(p-a,c),(p-b,d)) 

The above axioms can be used to transform 

any gbf into a normal form which is a binary tree 
whose nonterminal nodes correspond to variables 
taking on values of T or NIL and whose terminal 

nodes represent general valued variables. There is 
a normal form algorithm for both weak and strong 
equivalence - the difference being that during the 
process of obtaining the normal form for strong 
equivalence, axiom (I) can not be used at will. It 
can only be used when its premise variable is 
defined. Our algorithms are different from those 

proposed by McCarthy where additional axioms are 
introduced to cope with obtaining a normal form for 
strong equivalence. By ordering the variables 

appearing in premise positions according to some 
lexicographical scheme the normal form becomes a 
canonical form and we have the following result. 

proving strong equivalence and in the more general 
notion of functions rather than variables. 

The relation of functions to gbfs 
by the distributive law: 

f(x ,...,x ,(p~q,r),x .... ,x ) 
1 i-I i+l n 

= (p-f(x .... ,x ,q,x ,...,x ), 
1 i-i i+l n 

f(x .... ,x ,r,x ..... x )) 
1 i-i i+l n 

is given 

Let FL be a function of one or more 
arguments which returns as its result the value of 
its final argument. 

A generalized COND is mapped onto the 
following form: 

(COND (p e ) (p e e ) ... (p e )) = 

1 1 2 2 3 n n 

(p -e ,(p -FL(e ,e ) .... (p -e ,NIL)...)) 
1 1 2 2 3 n n 

We define the base predicates in LISP to be 

the functions EQ,ATOM, and EQUAL which are known to 
return T or NIL. All gbfs whose predicate part is 
not one of the previous, are replaced using the 

following transformation: 

(predicate~conclusion,alternative) = 

(EQ(predicate,NIL)~alternative,conclusion) 

All occurrences of these predicates in the 
premise position of the gbf are termed explicit 
occurrences. All other occurrences are termed 
implicit occurrences and are replaced by their 
equivalent via use of axiom (4) - i.e. predicate p 
is replaced by (p-T,NIL). This is motivated by the 
definition of a normal form where the propositional 

variables have now been replaced by the more 
general concept of a predicate. 

Theorem: Two gbfs are equivalent (weak or strong) 
iff they have the same (weak or strong) canonical 

form• 

Other forms of predicates such as AND, OR, 
NOT, etc. are converted to their conditional form 
representations• 

In this paper we are only interested in 
obtaining a representation of the function in some 

normal form with no rearranging of conditions 
(axiom (8)) or application of axiom (I). This is 
because the normal form corresponding to a LISP 

program will be used in a system for proving that 
LISP programs are correctly compiled• At that 
point these axioms will be used in an attempt to 
match the normal form corresponding to the original 
LISP function definition with the normal form of 
the object progmam which has been obtained by use 

of symbolic interpretation. 

In order for the previous ideas to be 
useful in proving the correctness of translation of 

LISP programs we must show how to adapt them to 
LISP programs• We are primarily interested in 

An internal lambda of the form: 

((LAMBDA (var var . . . var ) 

1 2 n 

<function body sequence>) 
<function body of var binding> 

1 

<function body of var binding> 
2 

<function body of var binding>) 

n 

is represented by the form: 
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FL(SETQ(var ,<function body of var binding>), 
I 1 

SETQ(var ,<function body of var binding>), 
2 2 

SErQ(var ,<function body of var binding>), 

n n 
FL(<function body sequence>)) 

Note that all lambda variables are given unique 
names to avoid errors at a later stage when 
bindings will be used instead of the variable 

names. 

Another feature present in LISP which does 

not have an analog in [McCarthy63] is the concept 
of a variable and assignments made to it. In 
proving equivalence we will want to make certain 
that SPECIAL (global) variables are assigned their 
appropriate values; however, local variables and 
variables associated with internal lambdas (lambda 
variables) exist only as placeholders for 
computations. The act of assignment is only 
temporary and thus is not a necessary component of 
the equivalence - i.e. in proving equivalence we 
wish to show that the programs perform the same 
computations on the LISP environment which means 

that identical conditions are tested and identical 
side-effects occur. In the case of local and 
lambda variables, we simply use their bindings and 
ignore the act of assignment. In the case of 
SPECIAL variables we use their bindings as well as 
record the act of assignment. 

In the process of obtaining a normal form 
we make use of the distributive law for functions 
and conditions. This means that certain 
computations, namely conditions, are moved so that 
physical position no longer indicates the sequence 
of computation. In order to maintain a record of 
the original sequence of computation, we need a 
representation of the LISP program in terms of the 
order in which computations are performed. What is 
really desired is a numbering scheme having the 
characterization that associated with each 
computation is a number with the property that all 
of the computations predecessors have lower numbers 

and the successors have higher numbers (i.e. a 
partial ordering). This property can be achieved 
by numbering a conditional form in the following 
fashion: each time a number is assigned, it is 
higher than any number previously assigned. 

(I) an atomic symbol is assigned a number. 

(2) a function f(arg ,arg ,...,arg ) is numbered 
1 2 n 

in the order arg , arg ,..., arg , followed by 
I 2 n 

assigning a number to f. 

(3) a general boolean form (p-q,r) is numbered in 

the order p, q, r. 

For example, consider the function UNION 
whose I~ISP definition is given in figure 5. The 
function takes as its arguments two lists U and V 
and returns as its result a list of all the 
elements that appear in either list. Each element 
is assumed to occur only once in each list. 
Application of the function to the lists (A B C) 
and (D C B) results in the list (A D C B). Figure 
6 contains the gbf representation corresponding to 
figure 5. Figure 7 contains the result of applying 
the above numbering algorithm to figure 6. Figure 
8 contains the numeric and symbolic representations 
corresponding to figure 5 after application of the 
distributive law for functions. Notice that the 
test (EQ (MEMBER (CAR U) V) NIL) appears before the 

computation (CDR U) in figure 8. 

UNION(U,V) = if NULL(U) then V 
else UNION (CDR (U), 

if MEMBER(CAP.(U),V) then V 

else CONS (CAR(U),V)) 

Figure 5 - MLISP Encoding of UNION 

((EQ U NIL)~V, 
(UNION (CDR U) 

((EQ (MEMBER (CAR U) V) NIL) 

-V, 
(CONS (CAR U) V))))  

Figure 6 - Symbolic GBF Representation 
Corresponding to Figure 5 

((14 i0 12)-16, 
(44 (20 18) 

((32 (28 (24 22) 26) 30) 

-34, 
(42 (38 36) 40)))) 

Figure 7 - Numeric GBF Representation 
Corresponding to Figure 5 

((EQ U NIL)-V, 
((EQ (MEMBER (CAR U) V) NIL) 
-(UNION (CDR U) V), 
(UNION (CDR U) (CONS (CAR U) V)))) 

((14 i0 12)-16, 
((32 (28 (24 22) 26) 30) 
-(44 (20 18) 34) 
(44 (20 18) (42 (38 36) 40)))) 

Figure 8 - Numeric and Symbolic Representations 
Corresponding to Figures 6 and 7 After 
Application of the Distributive Law for 

Functions 

The algorithm for obtaining the normal form 
is only briefly presented- It has two phases each 
of which processes the symbolic and numeric 
representations of the program in parallel. The 
first phase corresponds to application of axioms 
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(2),(3), and (7) along with the distributive law 
for functions while simultaneously binding 
variables to their proper values. The second phase 
corresponds to making use of axioms (2),(3),(5), 
and (6) to get rid of duplicate occurrences of 
predicates as well as redundant computations. The 
latter is the case when a computation such as (CAR 
U) in figures 3 and 5 is computed more than once 
along a computation path with no intervening 
computations that might cause the two instances to 
have different values (i.e. no computations having 
side-effects). Figure 9 contains the intermediate 
representation corresponding to figure 8. Note 
that all occurrences of the same local variable 
have the same computation number. This computation 
number is less than the computation numbers 
associated with any function. Also, by convention 
we assign NIL the computation number 0. 

(EQ U NIL) 

V (EQ (MEMBER (CAR U) V) NIL) 

(UNION (CDR U) V) (UNION (CDR U) (CONS (CAR U) V)) 

(14 5 0) 

6 (32 (28 (24 5) 6) 0) 

(44 (20 5) 6) (44 (20 5) (42 (24 5) 6 ) )  

F i g u r e  9 - Normal Form C o r r e s p o n d i n g  to  F i g u r e  8 

Briefly, some other steps are necessary to 
properly deal with assignments to SPECIAL variables 
and side-effect computations such as RPLACA and 
RPLACD. We use a mechanism that views these 
operations as two-parted. One corresponds to the 
act of assignment and the other to the process of 
returning a value. We decouple these two 
components. This enables us to be able to deal 
with cases where acts of assignment are redundant 
as is the case when a value is assigned to a 
SPECIAL variable without any access of the said 
variable prior to a subsequent assignment. In this 
case, the act of computing the new value being 
assigned in the first case is not redundant while 
the actual act of assignment is redundant. 

We have seen that the numeric 
representation of a LISP function has the property 
that associated with each constituent computation 
is a number which is greater than the numbers 
associated with the computation's predecessors and 
at the same time less than the numbers associated 
with the computation's successors. This approach, 
henceforth referred to as breadth first, was 
necessary in order to properly execute the binding 
and condition expansion part of the normal form 
algorithm (also the only possible numeric 
representation prior to its execution). The 

duplicate computation removal phase, and more 
importantly the matching phase (i.e. the proof of 
the equivalence of the representations 
corresponding to the source and object programs), 
requires an even stronger criterion. We wish the 
numeric representation to have the afore-mentioned 
properties plus the property that all computations 
with the same computation number have been computed 
simultaneously. By simultaneously, we do not 
necessarily require computation at the same 
location. This criterion is not strong enough. 
Basically, what we are after is the following: If 
two identical computation numbers appear in two 
different subtrees, then the functions associated 
with them must have been computed with the same 
input conditions and equivalent arguments. For 
example, recall the following fragment from figure 

6: 

The 
was: 

(UNION (CDR U) 
((EQ (MEMBER (CAR U) V) NIL) 
-V, 

(CONS (CAR U) V))) 

numeric representation assigned to this form 

(44 (20 18) 
((32 (28 (24 22) 26) 30) 
-34, 
(42 (38 36) 40))) 

After applying the first two phases of 
form algorithm we have: 

((EQ (MEMBER (CAR U) V) NIL) 
-(UNION (CDR U) V), 
(UNION (CDR U) (CONS (CAR U) V))) 

with the numeric representation: 

((32 (28 (24 5) 6) 0) 
-(44 (20 5) 6), 
(44 (20 5) (42 (24 5) 6))) 

the normal 

Note that the same computation number, 44, 
is associated with the two instances of UNION. 
However, the function UNION yields different 
results for the two instances since in one case the 
second argument is V and in the other case the 
second argument is (CONS (CAR U) V). Thus we wish 
to have different computation numbers for the two 
instances of UNION. Of course, if V and (CONS (CAR 
U) V) were equivalent (impossible in this case), 
then the two instances of UNION could have the same 
computation number; the proof procedure deals with 
such questions. 

Recalling our characterization of the 
normal form as a tree, we see that the numbering 
scheme that we require, known as depth first, has 
the property that all computations performed solely 
in the right subtree have a higher computation 
number associated with them than the numbers 
associated with computations performed solely in 
the left subtree. In fact, this is the basis of 
the algorithm used to convert a breadth first 
numeric representation to a depth first numeric 
representation. 
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Thus for the above example we would want 

the following numeric representation: 

((32 (28 (24 5) 6) 0) 
~(44 (20 5) 6), 
(48 (20 5) (46 (24 5) 6))) 

and figure i0 is the numeric representation 
corresponding to figure 9. 

(1450) 

6 (32 (28 (24 5) 6) O) 

(44 (20 5) 6) (48 (2O 5) (46 (24 5) 6 ) )  

F i g u r e  10 - Depth F i r s t  Renumber ing  of  F i g u r e  9 

The duplicate computation removal algorithm 
processes the symbolic and numeric representations 
of the program in order of increasing computation 
numbers. The main objective of the algorithm is to 
remove predicates whose values are known and to 
replace duplicate occurrences of computations by 
their first occurrence. The tree-like nature of 
our representations coupled with the property that 
all computations performed solely in the left 
subtree have lower computation numbers associated 
with them than with those performed solely in the 
right subtree greatly facilitates our work. We 
also make use of the fact that application of axiom 
(7) coupled with the manner in which the 
distributive law for functions was applied 
preserved the order in which conditions were tested 
- i.e. each predicate has a lower computation 
number associated with it than is associated with 
the predicates computed in its subtrees. 

At this point we have a normal form representation 
for the original LISP program. As mentioned 
earlier, the symbolic interpretation procedure 
returns a similar representation for the object 
program. All that remains is to prove that the two 
representations are identical or that either one 
can be transformed using our axioms into the other. 
This procedure proceeds by attempting to prove that 
each computation appearing in one of the 
representations appears in the other and vice 
versa. This is accomplished by uniformly assigning 
the computation numbers in one representation, say 
B, to be higher than all of the numbers in the 
other representation, say A, and then, in 
increasing order, search B for matching instances 
of computations appearing in A. In the proof 
liberal use is made of axioms (I),(2),(3),(5), and 
(6) as well as substitution of equals for equals. 

there is a problem. The proof system must prove 
that (INTERSECTION (CDR U) V) can be computed 
simultaneously and before the test (~MBER (CAR U) 
V). In other words, we must be able to prove that 
the act of computing (MEMBER (CAR U) V) can be 
postponed to a point after computing (INTERSECTION 
(CDR U) V). Thus we are proving the correctness of 
a factoring-like optimization. Once it is shown 
that figure 12 can be transformed to yield figure 
ii, the process is repeated by assigning to the 
computations in figure 11 higher numbers than those 
in figure 12 and proving that figure 11 can be 
transformed to yield figure 12. 

(i050) 

0 (16 (14 (12 5) 6) 0) 

(20 (18 5) 6) (26 (12 5) (24 (22 5) 6 ) )  

F i g u r e  l l  - Numeric R e p r e s e n t a t i o n  of  F i g u r e  3 

(2850) 

5 (38 (36 (34 5) 6) 0) 

(32 (30 5) 6) (40 (34 5) (32 (30 5) 6 ) )  

F i g u r e  12 - Numeric R e p r e s e n t a t i o n  of  F i g u r e  4 

6. CONCLUSION 

We have seen a formalism for representing a high 
level language program so that a proof procedure 

could be used for proving correctness of 
translation. Our technique has been illustrated by 
use of a sample language LISP. Indeed many of the 
steps have been heavily influenced by LISP and its 
structure. Nevertheless, we feel that many of 
these techniques will be useful in attempting such 
proofs for other languages. Future work should be 
focussed on identifying inadequacies in our 
formalism so that more complex languages can be 
handled. In [Samet75] modifications are proposed 
for handling more complicated LISP constructs such 
as PROG, GO, and RETURN. 

For example, figures ii and 12 contain the numeric 
intermediate forms corresponding to figures 3 and 4 
respectively- We assume that duplicate computation 
removal has already been applied and thus (CAR U) 
has the same computation number in both instances 
in figures 11 and 12. Note also that we have 
chosen to make all computation numbers in figure 12 
higher than those in figure 11. Despite the 
apparent similarity of the two representations, 
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