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I. Introduction 

In [23], a formalism is presented for proving that 
programs written in a high level language are correctly 
translated to assembly language. The prime motivation 
for the work is a desire to prove that optimizations 
performed during the translation process are correct. In 
particular, these optimizations are often of a heuristic, 
nonrepeatable nature--e .g,  the type of improvements  
that could be performed by an individual while peering 
over an object program. The unpredictability of  the 
behavior of  such individuals poses the requirement that 
the proof  procedure must be independent of  the inter- 
mediary mechanism which transforms the source pro- 
gram into the object program (e.g. a compiler or any 
hand-coding procedure). 

This previous requirement means that the notion of  
correctness must be carefully defined and that capabili- 
ties of  such a proof  must be precisely identified. This in 
turn leads to a need for a representation which reflects 
both the high- and low level programs. In order to be 
able to find and make use of  such a representation, 
critical semantic properties of  the high level language in 
question must be identified as well as their interrelation- 
ship to the instruction set of  the computer  executing the 
object programs. 

In this paper  we present an overview of  the proof  
system reported in [23]. First, we state the relationship of  
our goals to previous work. This is followed by a scenario 
of  a typical heuristic optimization process which dem- 
onstrates the capabilities and limitations of  the proof  
system. Next, we present the intermediate representation 
that we have chosen, the manner  in which it is obtained, 
and the techniques used in a proof. Finally, we briefly 
discuss the implementat ion status of  the system. 

2. Relation to Other Work 

We are interested in proving that programs are cor- 
rectly translated. A similar problem that has been receiv- 
ing much attention in the past few years is that of  proving 
programs correct [16]. Most of  the attempts have been 
along the lines of  assertions [8, 11] about the intent of  
the program which are then proved to hold. The diffi- 
culties with such methods are numerous. The most not- 
able problems are encountered in specifying the asser- 
tions [7, 27] and the actual proof  method. Proofs using 
such methods reduce to showing that a set of  assertions 
hold. However, no allowance is made for the possibility 
that the assertions might be inadequate to specify all of  
the effects of  the program in question. Thus we are led 
to a belief that the concept of  intent is too imprecise for 
proving correctness of  compilation whereas it is justifia- 
ble in proving equivalence between algorithms. 

In the case of  computer  programs written in a higher 
level language we are primarily interested in the correct- 
ness of  the translation. In this case, there is no need for 
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any knowledge about the purpose of  the program to be 
translated. For example, there exist a number of  different 
algorithms for sorting (e.g. quicksort, shellsort, etc.). In 
order to prove the equivalence of two of  these algorithms 
we must resort to demonstrating that they both possess 
a common input-output pair characterization. Thus a 
conventional proof attempts to show that the algorithms 
yield identical results for all possible inputs. The problem 
of proving the equivalence of  different algorithms is 
known to be generally unsolvable by use of  halting 
problemlike arguments. 

In order to avoid the unsolvability problem we must 
be more precise in our definition of equivalence. By 
equivalence we mean that the two programs must be 
capable of being proved to be structurally equivalent 
[14], that is, they have identical execution sequences (e.g. 
they must test the same conditions) except for certain 
valid rearrangements of  computations. Such rearrange- 
ments include transformations classified as "low level" 
optimizations [17]. However, more ambitious transfor- 
mations classified as "source level" [5, 9, 29] are pre- 
cluded. Note also that our criterion of  equivalence is a 
more stringent requirement than that posed by the con- 
ventional definition of  equivalence which holds that two 
programs are equivalent if they have a common domain 
and range and both produce the same output for any 
given input in their common domain. In our process of 
demonstrating equivalence no use is made of  the purpose 
of the program. 

Notice that we prove the correctness of  the transla- 
tion. One method of  achieving this is to prove that the 
translator (for example a compiler) is correct--e.g, to 
prove that there does not exist a program which is 
incorrectly translated by the compiler. In this case we 
would revert to the intent characterization of correctness 
set forth previously. Instead, we prove for each program 
input to the translation process, that the translated ver- 
sion is equivalent to the original program. Thus, we are 
not making any claims with respect to the general cor- 
rectness of  the translation process. A proof must be 
generated for each input to the translation process. How- 
ever, this has several important advantages, especially 
when the translator is a compiler. First, as long as the 
compiler does its job for each program put into it, its 
correctness is of  a secondary nature-- that  is, we can 
attribute an effective correctness to the compiler. Second, 
the proof  process is independent of the compiler. This 
means that if another compiler were used no difference 
would result, thereby implying that programs could be 
compiled by hand or mechanically translated. This is 
quite important and identifies the proof as belonging to 
the semantics of the high- and low level languages in 
which the input and output, respectively, are expressed 
rather than belonging to the translation process. Third, 
any proof method that would prove a compiler correct 
would be limited with respect to the types of optimiza- 
tions that it could allow. This is because such a method 
would rely on the identification of all the possible optim- 
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izing transformations. This is the type of  approach taken 
in the proof of the correctness of  LCOM0 and LCOM4 
[15]. In contrast, we are interested in a heuristic code 
generation procedure which often relies on a "hypothesis 
and test" [20] approach. This is illustrated in the next 
section. 

3. Example 

The main motivation for this work has been a desire 
to write an optimizing compiler. In order to achieve this 
goal, it was determined that a correctness proof of the 
optimization process was necessary. In particular, we are 
interested in proving that small perturbations in the code 
leave the effect of  the function unchanged. In this section 
we present a scenario of a typical optimization process 
to which our work is addressed. Some of  the optimiza- 
tions that we examine include common subexpression 
elimination, changing calling sequence conventions, 
elimination of recursion by iteration, and bypassing the 
start of  the program when recursion is in order. The 
primary goal of the optimizations is to reduce the amount 
of  work necessary to set up linkages between functions 
and to use as much local information as possible--for 
example, values of  conditions tested, contents of  accu- 
mulators, etc. Such techniques, despite seeming "less 
than earth shattering" when viewed individually, yield 
significant reductions in time and space when viewed 
collectively. The purpose of  the examples in this section 
is to give the reader a feeling for the concepts which 
must be handled by a proof procedure and for the power 
of  the results that can be achieved despite our rather 
narrow definition of  equivalence. We use Lisp [l 8] as the 
high level language and Lap [21] (a variant of the PDP- 
l0 [6] assembly language) as the object language. 

As an example, consider the function REVERSE which 
takes as its argument a list L and returns as its result a 
pointer to a copy of the list where all the links have been 
reversed. For example, application of  the function to the 
list (ABC) results in the list (CBA). A formulation of  
this function in a dialect of  Lisp known as Mlisp [26] 
(i.e. meta Lisp) is given in Figure 1. This formulation of 
the function will be referred to as Algorithm I. 

In order to be able to examine some low level lan- 
guage programs, we must have an execution-level defi- 
nition of  the high level language. In our case, such a 
definition enables us to make sense of the following Lap 
programs in the context of  a Lisp environment. Briefly, 
each PDP- l0  word is 36 bits wide and can be partitioned 
into two 18 bit halves. A Lisp cell is represented by a full 
word whose left and right halves point to CAR and CDR, 
respectively. Addresses of  atoms are represented by 
(QUOTE (atom name)) and by zero in the case of the 
atom NIL. The PDP-10 has a hardware stack and func- 
tions return via a return address which has been placed 
on the stack by the invoking function. A Lap program 
expects to find its parameters in the accumulators (on 
the PDP-10 all accumulators are general purpose regis- 
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Fig. 1. Algorithm 1 for REVERSE. 

REVERSE(L) = if NULL(L) then NIL 
else *APPEND(REVERSE(CDR(L)),CONS(CAR(L),NIL)) 

Fig, 2. Lisp 1.6 Compiler-generated encoding of Figure 1. 

PC1 (PUSH 12 I) 
(JUMPE I TAG1) 
(HRRZ@ 1 0 12) 

I CALL 1 (E REVERSE)) 
PUSH 12 l) 
HLRZ@ 1 -i 12) 
(CALL i (E NCONS)) 

PC8 (MOVE 2 
(POP 12 II 
(CALL 2 (E *APPEND)) 

TAG1 (SUB 12 (C 0 0 1 I)) 
(POPJ 12) 

save L on the stack 
{o S to TAGI if L is 

accumulator i with CDR(L) 
compute REVERSE(CDR(L)) 
save REVERSE(CDR(L)) on the stack 
load accumulator I with CAR(L) 
compute CONS(CAR(L),NIL) 
load accumulator 2 with CONS(CAR(L),NIL) 
load accumulator i with REVERSE(CDR(L)) from the stack 
compute *APPEND(REVERSE(CDR(L)),CONS(CAR(L),NIL)) 
undo the first push operation 
return 

Fig. 3. Result of optimizing Figure 2. 

PC3 

(SKIPN 2 I) 
(POPJ 12) 

I HLRZ I 0 I) 
CALL I (E NCONS)) 
PUSH 12 I) 
(HRRZ 1 0 2) 

I CALL I (E REVERSE)) 
POP 12 2) 
JCALL 2 (E *APPEND)) 

load accumulator 2 with L and skip if not NIL 
return NIL 
load accumulator 1 with CAR(L) 
compute CONS(CAR(L).NIL) 
save CONS(CAR(L),NIL) on the stack 
load accumulator 1 with CDR(L) 
compute REVERSE(CDR(L)) 
loaa accumulator 2 with CONS(CAR(L).NIL) from the stack 
compute *APPEND(REVERSE(CDR(L)),CONS(CAR(L),NIL)) 

Fig. 4. Algorithm 2 for REVERSE. 

REVERSE(L) = REVERSI(NIL,L) 
REVERSI(RL, L) = if NULL(L) then RL 

el se REVERS 1 (CONS (CAR (L), RL ), CDR (L) ) 

Fig. 5. Lisp 1.6 compiler generated encoding for Figure 4. 

PCI (PUSH 12 I) 
PC2 (PUSH 12 2) 
PC3 (JUMPN 2 TAG2) 
PC4 (JRST 0 TAGI) 
TAG2 (MOVE 2 -I 12) 
PC6 (HLRZ@ I 0 12) .. 

(CALL 2 (E CONS)) 
(HRRZ@ 2 0 12) 

PC9 (CALL 2 (E REVERS1)) 
TAG1 (SUB 12 (C 0 0 2 2)) 
PC11 (POPJ 12) 

save RL on the stack 
save L on the stack 
~ump to TAG2 if L is not NIL 

to TAG I 
accumulator 2 with RL 

load accumulator 1 with CAR(L) 
compute CONS(CAR(L),RL) 
load accumulator 2 with CDR(L) 
compute REVERSI(CONS(CAR(L),RL),CDR(L)) 
undo the first two push operations 
return 

ters and can be used for indexing) and also returns its 
result in accumulator 1. In the case o f  REVERSE, param- 
eter L is in accumulator 1. The accumulators containing 
the parameters are always o f  such a form that a 0 is in 
the left half, and the Lisp pointer is in the right half. All 
parameters are assumed to be valid Lisp pointers. A 
program is entered at its first instruction and a return 
address is situated in the top entry of  a stack whose  
pointer is in accumulator 12. Whenever recursion or a 
function call to an external function (via the CALL or 
JCALL mechanism) occurs, the contents o f  all the accu- 
mulators are assumed to have been destroyed unless 
otherwise known.  Exceptions include CONS and XCONS 
(XCONS(A,B) = CONS(B,A)), and NCONS (NCONS(A) = 
CONS( A,NIL )) which are known to leave unchanged all 
accumulators other than those containing the arguments. 
In other words, CONS and XCONS only affect accumula- 
tors 1 and 2 while NCONS only affects accumulator 1. It 
should be clear that in any case certain accumulators 
used by the Lisp system such as 12 (i.e. the stack pointer), 
the free storage list, etc. are not assumed to have changed. 
This is not a problem since the proof  system is aware of  
what accumulators a user may read and overwrite and 
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likewise for locations on the stack (that is, all locations 
above the return address). 

The Lisp 1.6 [21] compiler generates the Lap code 
given in Figure 2 for this function. The format of  a Lap 
ins truct ion  is (OPCODE AC A D D R  INDEX) w h e r e  INDEX 

and ADDR are optional. OPCODE is a PDP-10 instruction 
optionally suffixed by @ which denotes indirect address- 
ing. The AC and INDEX fields contain numbers between 
0 and decimal 15. ADDR denotes the address field. A list 
o f  the form ( C  0 0 n u n  1 nun2)  appearing in the address 
field of  an instruction is interpreted as an address o f  a 
word containing num l and n u n 2  in its left and right 
halves, respectively (assuming num l and n u n 2  are less 
than or equal to 0.15). The meanings o f  the instructions 
should be clear from the adjoining comments.  Neverthe- 
less, the appendix contains verbal descriptions o f  all o f  
the instructions used in our examples. 

There are a number o f  unnecessary operations in this 
encoding. First, there is no need to save L on the stack 
at PC 1 prior to determining if it is NIL. Second, we may 
rearrange the order o f  computing the arguments to *AP- 
PEND thereby taking advantage o f  the fact that NCONS 
leaves the  contents o f  all accumulators besides 1 un- 
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Fig. 6. Result of optimizing Figure 5. 

PC1 (JUMPE 2 TAG1) 
REV (PUSH 12 2) 

(HLRZ 2 0 2) 
PC4 (CALL 2 (E XCONS)) 
PC5 (HRRZ@ 2 0 
PC6 (SUB 12 (C 020 1 I)) 

i) 

PC7 (JUMPN 2 REV) 

TAG1 (POPJ 12) 

jump to TAG1 if L is NIL 
save L on the stack 
load accumulator 2 with CAR(L) 
compute CONS (CAR(L) ,RL) 
loaa accumulator 2 with CDR(L) 
undo the first push operation 
if CDR(L) is not NIL then compute 
REVERS 1 (CONS (CAR (L), RL), CDR (L)) 
return 

Fig. 7. Result of optimizing Figure 6. 

(JUMPE 2 TAGI) 
PC2 (PUSH 1202 ~ 
REV (HLRZ ) 

(CALL 2 (E XCONS)) 
PC5 (HRRZS@ 2 0 12) 
PC6 (JUMPN 2 REV) 

(SUB 12 (C 0 0 1 i)) 
TAG1 (POPJ 12) 

jump to TAG1 if L is NIL 
save L on the stack 
load accumulator 2 with CAR(L) 
compute CONS (CAR(L) ,RL) 
load accumulator 2 and the top of the stack with CDR(L) 
if CDR(L) is not NIL then compute 
REVERS 1 (CONS (CAR (L), RL ), CDR (L)) 
adjust the stack pointer 
return 

Fig. 8. Optimal Lap encoding corresponding to Figure 4. 

REV 

(SKIPN 3 2) 
(POPJ 12) 
(HLRZ 2 

(JIJNPN 3 REV) 

(POPJ 12) 

load accumulator 3 with L and skip if not NIL 
return NIL 
load accumulator 2 with CAR(L) 
compute CONS (CAR(L),RL) 
load accumulator 3 with CDR(L) 
if CDR(L) is not NIL then compute 
REVERS I (CONS (CAR (L), RL), CDR (L)) 
return 

changed. This means that L need not be saved on the 
stack. Therefore, we save it in accumulator 2 while at 
the same time a test is performed to determine if it is 
NIL. Third, we observe that since we no longer save any 
variables on the stack, there is no need to invoke *AP- 
PEND recursively. Instead, a JCALL (the unconditional 
jump equivalent of CALL) is used. Figure 3 contains the 
result of these optimizations. 

The above optimizations have resulted in the reduc- 
tion of  the lengths of  the inner loop and the overall 
program from 12 and 12 to 8 and 9, respectively. This is 
about as good as encoding as we can get for this formu- 
lation of  the REVERSE algorithm because six operations 
are required for each iteration. These operations are the 
computation of  CAR, CDR, CONS, *APPEND, recursion, 
and the testing of  the nullness of  L. In addition, we must 
temporarily save and restore the value of  one of the 
arguments to *APPEND while computing the other one. 
Thus the length of  the inner loop cannot be reduced 
further without changing the algorithm. Such an alter- 
nate formulation, referred to as Algorithm 2, is given in 
Figure 4. 

Algorithm 2 makes use of  an auxiliary function RE- 
VERSl. This function has an additional variable which 
serves to accumulate the result as the algorithm is ap- 
plied. It is clear that Algorithm 2 is more efficient than 
Algorithm 1 by noting that no *APPEND operations need 
to be performed. Moreover, the algorithm is iterative in 
the sense that the call to REVERS 1 is the final step of  the 
algorithm. The Lap encoding produced by the Lisp 1.6 
compiler is shown in Figure 5. 

This encoding abounds with unnecessary operations. 
Thus we carry out the following sequence of optimization 
steps to obtain the encoding in Figure 6. There is no 
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need to save RL on the stack at location PC I since 
accumulator 1 is never stored into prior to the last 
reference to it. By making use of  an XCONS operation 
there is no longer any need to load accumulator 2 with 
RL at TAG2. This implies that accumulator 2 must be 
loaded with CAR(L) at location PC6. The pair of  branch 
instructions at locations PC3 and PC4 can be placed 
before saving L at PC2. In fact, a more optimal move is 
to simply replace them by a JUMPE to PC11. Recursion 
at PC9 may be replaced by iteration provided that the 
stack pointer is adjusted prior to the jump. Further 
reduction in execution time can be achieved by observing 
that instead of  an unconditional jump at PC9 to a 
conditional jump prior to PC2, we may perform a con- 
ditional jump at PC9 with the sense of  the test reversed. 
This will be referred to as loop shortcutting. (See [28] for 
a similar idea.) To a Sail [22] programmer this concept 
is somewhat analogous to the similarity between a FOR 
loop and a DO UNTIL loop. Thus Figure 6 contains a 
jump to location REV from PC7 rather than to the start 
of  the program. 

The encoding in Figure 6 contains a PUSH operation 
at location REV which has the effect of recycling the stack 
location released at location PC6. The length of  the inner 
loop could be decreased by two instructions if we would 
place the value of CDR(L) on the stack as well as in 
accumulator 2. Thus the PUSH and the stack adjustment 
operations at locations REV and PC6, respectively, could 
be moved out of  the inner loop. Figure 7 shows one 
possible way to achieve this effect by use of  a HRRZS 
instruction. This instruction forms a word containing 
zero and the right half of  the contents of the effective 
address and stores it in both the accumulator specified 
by the accumulator field and the location addressed by 
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the effective address. Such an optimization has the in- 
teresting effect of modifying the calling sequence from 
one where the arguments are in accumulators l and 2 
when there is an external invocation of the function to 
one where one of  the arguments is now also on the top 
of the stack when the function is invoked internally (that 
is, recursion via PC6). 

At a first glance it would seem that we have succeeded 
in reducing the length of  the inner loop to four instruc- 
tions. However, use of the proof system reveals that we 
have erred. Unfortunately, the HRRZS@ instruction at 
PC5 places its result back in the location designated by 
the effective address. Thus instead of  CDR( L) b e i n g  

placed on the top of  the stack we have succeeded in 
changing the right half of the location pointed at by L to 
be 0. That  is, CAR(L) becomes 0 or NIL. The left half of  
the location pointed at by L remains the same as does 
the top of  the stack which still contains a pointer to L. 
Note that accumulator 2 has been loaded with 0 and 
CDR(L) in the left and right halves, respectively. In 
Section 4.2 we shed some light on how the error was 
detected. 

Further reflection on the encoding in Figure 6 reveals 
that the only reason for the PUSH and stack adjustment 
operations at locations REV and PC6 is the external 
function call to XCONS at PC4. However, XCONS only 
destroys accumulators 1 and 2. Thus instead of  saving L 
on the stack at REV, we may store it in an accumulator, 
say 3. This renders the operations at REV and PC6 
unnecessary. In fact, we merely need to initialize accu- 
mulator 3 with L and iterate with CDR(t.) in accumulator 
3. Thus we are making use of  a different calling sequence 
for internal recursion since invocation of the function 
from outside finds L in accumulator 2 while internal 
invocation finds L in accumulator 3. The new encoding 
is given in Figure 8. The change in the calling sequence 
poses no problem for the proof system because whenever 
loop shortcutting is performed we must make sure that 
all locations that will be subsequently referenced are set 
to their proper values. This is one of the tasks of  the 
symbolic interpretation process discussed in Section 4.2. 

Observe that the length of  the original encoding has 
been reduced from 11 to 7 instructions. More impor- 
tantly, the length of the inner loop has decreased from 
10 to 4 instructions. The new encoding can be considered 
optimal for the following reason. Algorithm 2 requires 
five operations; CAR, CDR, CONS, the testing of the 
nullness of  L, and the iteration step. At times a test may 
be combined with another nontest operation. We have 
only one test operation. Therefore, the minimal number 
of instructions with which we could accomplish our 
desired computation is four and since we were able to 
encode the function with four instructions we have 
achieved the lower bound. 

The above examples serve to indicate the type of  
optimization we wish to be able to prove correct. Al- 
though these encodings were a result of  a hand optimi- 
zation procedure, we feel that in the future such opti- 
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mizations could be achieved by a so-called postoptimiz- 
ing program. The examples showed that there is a limit 
to the number of optimizations that can be performed 
before a change must be made to the algorithm. Specif~ 
ically, this was seen in the transition from Algorithm l 
to Algorithm 2. We cannot prove the equivalence of  the 
two algorithms by using our techniques. Such work has 
a greater payoff  when done at the source level. In fact, 
systems such as that reported in [4] are expressly designed 
to deal with these issues. 

4. Representation 

The examples of Section 3 serve to demonstrate that 
any proof system that is chosen must abandon any notion 
of the existence of a unique relationship between the 
source code and the object code. We have seen that 
program translation is a many-to-many-process--that  
there is no one-to-one relationship between source code 
and object code. Therefore, there is no reflection of  the 
source-level syntax in the object code and thus we find 
little use for decompilation [10] techniques--such meth- 
ods attempt to reconstruct a high level program from the 
object code. Instead we use an intermediate representa- 
tion of  the program referred to as the normal form which 
reflects all of  the computations and decisions that are 
performed. In addition, this representation reflects an 
ordering based on the relative times at which the various 
computations are executed. 

The proof  system consists of the following phases. 
The original high level language program is converted 
to the intermediate representation by use of  a set of 
transformations. Similarly, the low level language pro- 
gram is converted to the intermediate representation by 
means of  a process known as symbolic interpretation. 
This process entails the interpretation of  a procedure for 
each instruction in the object program along each pos- 
sible execution path. These procedures have the effect of  
updating a model of the computation which reflects the 
contents of  relevant locations, conditions tested, and 
computations performed. Next, an attempt is made to 
prove that the two intermediate forms can be trans- 
formed into each other. During the proof  procedure 
inequivalence may be detected and the sources of error 
can often be pinpointed. 

In the remainder of the paper we will give an over- 
view of  how the above notions are used in a proof system. 
However, in order to have some framework for the 
discussion we must assume the existence of  a suitable 
high level language, a low level language, and an exe- 
cution-level definition. Our high level language is a 
subset of Lisp and our object language is Lap. 

Briefly, we are dealing with a subset of  Lisp that 
allows side effects and global variables. There are two 
restrictions. First, a function may only access the values 
of  global variables or the values of  its own local varia- 
b l e s - i t  may not access another function's local varia- 
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Fig. 9. Intermediate representation corresponding to Figure 1. 

(EQ L NIL) 

NIL (~APPEND (REVERSE (CDR L)) 
(CONS (CAR L) NIL)) 

Fig. 10. Numeric intermediate representation corresponding to 
Figure 1. 

(10 5 0) 

o I16 

bles. Second, the target label of  a GO in a PROG must not 
have occurred physically prior to the occurrence of  the 
GO to the label. For further discussion of  this restriction 
see Section 6. 

4.1 Intermediate Representation 
The intermediate representation has its root in the 

work done by McCarthy [19] in showing the existence of 
a canonical form for the theory of  conditional expres- 
sions and its use in proving equivalence. This theory 
corresponds to analysis by cases in mathematics and is 
basically a generalization of propositional calculus. As 
an example, see Figure 9 which is a two-dimensional 
realization of  the intermediate representation corre- 
sponding to Figure 1. 

The basic entity of  the intermediate representation is 
a generalized boolean form (gbf) which can be visualized 
as a tree, and has the form (p ~ x, y) where p, x, and y 
are variables or gbf 's  and are known as the premise, 
conclusion, and alternative, respectively, p takes the 
value of T (for true), NIL (for false), or undefined in 
which case the gbf  takes the value x, y, or undefined, 
respectively. Two gbfs  are said to be strongly equivalent 
(denoted by =)  if  they have the same values for all values 
of  their constituent variables whereas they are weakly 
equivalent (denoted by =w) if they have the same values 
only when all of  their constituent variables are defined. 
Thus in the case of  weak equivalence we disregard cases 
where the premises are undefined. Equivalence can be 
tested by the method of  truth tables or by use of  the 
following axioms to transform any gbf  into an equivalent 
one. 

(p--> a, a) = ~a (I)  
(T--, a, b) = a (2) 
(NIL =---) a, b) = b (3) 
(p -----) T, NIL) =p (4) 
(p -~ (p --, a, b), c) = 6o -~ ~, c) (5) 
(p--~ a, (p ~ b, c)) = (p ~ a, c) (6) 
((p ~ q, r) ~ a, b) = (p ~ (q ~ a, b), (r ~ a, b)) (7) 
(p ~ (q ~ a, b), (q ~ c, d)) = (q ~ (p ~ a, c), (p ~ b, d)) (8) 

The above axioms can be used to transform any gbf 
into a normal form which is a binary tree whose nonter- 
minal nodes correspond to variables taking on values of  
T or NIL and whose terminal nodes represent general 
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valued variables. There is a normal  form algorithm for 
both weak and strong equivalence-- the difference being 
that during the provess of  obtaining the normal  form for 
strong equivalence axiom (1) can not be used at will. It 
can only be used when its premise variable is defined. 

In order for the above ideas to be useful in proving 
the correctness of  translation of  Lisp programs we must 
show how they are adapted to include the constructs 
present in Lisp programs. We are primarily interested in 
proving strong equivalence and in the more general 
notion of  functions rather than variables. 

For example, the relation of functions to gbf 's  is 
given by the distributive law: 

f ( X l  . . . . .  X i -1 ,  ( p  --* q,  r), Xi+l . . . . .  x,~) 

= (p  ----~f(x, . . . . .  x i - 1 ,  q, x i+,  . . . . .  Xn), 
• f ( x l  . . . . .  x i - , ,  r, Xi+x . . . . .  Xn) )  

A COND is normally of  the form (COND (pl el) (p2 e2) 
• .. (pn e,))  and it is mapped into (pl ---* ea, (p2 ---> e2 . . . .  
( pn  --'-> en,  NIL) ...)). We generalize this form to enable a 
sequence of  computations to be specified in case a con- 
dition is true. This is achieved by the introduction of  the 
function FL, defined to be a function of  one or more 
arguments, which returns, as its result, the value of its 
final argument. For example, in the above COND if it was 
desired to perform the computations e21 and ezz in case 
p2 is true, then we would have the following mapping: 

(COND (101 el)(p2 e2a e2z) ... ( pn  en) )  

= (pa ~ el, (p2 ~ FL(ezl, ez~) . . . .  (pn  ~ en,  NIL) ...)) 

We also add a capability for dealing with internal 
lambdas, PROG'S, and global (SPECIAL) variables. These 
constructs involve a feature absent in the treatment of  
[ 19]--the concept of  a variable and assignments made to 
it. In proving equivalence we will want to make certain 
that SPECIAL (global) variables are assigned their appro- 
priate values; however, local variables and variables 
associated with internal lambdas ( lambda variables) exist 
only as placeholders for computations. Therefore, for the 
latter, the act of  assignment is only temporary and thus 
is not a necessary component  of  the equivalence. That  
is, in proving equivalence we wish to show that the 
programs perform the same computations on the Lisp 
environment which means that identical conditions are 
tested and identical side effects occur. In the case of  local 
and lambda variables we simply use their bindings and 
ignore the act of  assignment. In the case of  SPECIAL 
variables we use their bindings as well as record the act 
of  assignment. 

In the process of  obtaining a normal form we will be 
using the distributive law for functions and conditions. 
This will mean that certain computations, namely con- 
ditions, will be moved so that the physical position will 
no longer indicate the sequence of  computation. For 
example, in the distributive law for functions given 
above, the predicate p is specified to be computed after 
Xl ,  X2, . . .  , Xi--1 and before q, r, Xi+l, xi+z,  . . . ,  x , .  However, 
after application of  the distributive law the computation 
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o fp  might be misconstrued to take place before all other 
computations. In order to maintain a record of  the 
original sequence of computation we need a representa- 
tion of  the Lisp program in terms of the order in which 
computations are performed. What is really desired is a 
numbering scheme having the characterization that as- 
sociated with each computation is a number with the 
property that all of  the computation's predecessors have 
lower numbers and the successors have higher numbers 
(a partial ordering). For example, see Figure 10, which 
is a numeric intermediate representation of  the function 
REVERSE given in Figure 1. Notice that the atom NIL is 
assigned a computation number of  zero and the com- 
putation numbers associated with atomic variables are 
smaller in magnitude than those associated with func- 
tions since the variables were computed (i.e., their bind- 
ings) prior to the execution of  any computation in the 
program. The numbers will be seen to be useful in the 
proof procedure (see Section 4.3) when we will want to 
prove the validity of rearranging the order of computing 
arguments to a function. 

4.2 Symbolic Interpretation 
In order to obtain the intermediate representation of  

the object program we require an assembly-language 
understanding system. Such a system includes a mecha- 
nism for describing a computer instruction set and to 
some degree its basic architecture. Once such a mecha- 
nism is defined, we make use of  what is termed symbolic 
interpretation to build the intermediate representation. 
This is done by activating a set of  procedures correspond- 
ing to instructions in the object program. 

The procedures are expressed in terms of  other prim- 
itive procedures (e.g. ACFIELD, EFFECTADDRESS, and 
CONTENTS in Figure 1 l) in which is embedded, to some 
extent, the execution-level definition of  the high level 
language (see Section 3). For  each instruction there is a 
procedure that specifies how the instruction affects an 
entity known as the computation model. This model 
reflects, by use of  an equality database, the contents of  
the various data structures relevant to the execution of  
the program (e.g. accumulators, stack, etc.), the values of  
the conditions that have been tested, and any side effect 
computations that have taken place. The procedural 
description must also provide a capability to invoke 
various parts of  the object program as is the case when 
processing a condition, branch, or a function call. 

As an example of  the instruction-description facility, 
consider Figure 11 where the MOVE and HRRZS@ in- 
structions of  the PDP-10 are described. Each instruction 
is described via an MLISP FEXPR (a procedure whose 
arguments have not yet been evaluated). The argument 
to each such procedure represents a list containing all 
but the OPCODE fields of  a Lap instruction. For example, 
symbolic interpretation of  the (MOVE 2 l) instruction at 
label PC8 of  Figure 2 will result in the invocation of  the 
MOVE procedure with ARGS being bound to the list (2 
1)--i.e., we have the procedure call (MOVE 2 1). This is 
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Fig. 11. MOVE and HRRZS@ instruction descriptions. 

FE)~R MOVE (ARGS)" 
LOADS TORE (ACFIEL~ (ARGS) ,CONTENTS (EFFECTADDRES S (ARGS) ) ) ; 

FEXPR HRRZS@(ARGS); 
BEGIN 

NEW ADDRESS, CONTNTS ; 
ADDRES S+I NDIRECT (CONTENTS (EFFECTADDRES S (ARGS) ) ); 
CONTNTS ~-EXr ENDZ ERO (RIGHTCONTENTS (ADDRESS) ) ; 
LOADS TOR E (ACF IELD (ARGS), CONTNT S ) ; 
LOADSTORE (ADDRESS, CONTNTS ) ; 

END ; 

all made possible by the EVAL mechanism of  Lisp which 
enables the program and data to be indistinguishable. 

The instruction descriptions are used in the following 
manner. In the case of  the (MOVE 2 1) instruction at label 
PC8 in Figure 2, the computation model is updated by 
LOADSTORE to indicate that accumulator 2 contains the 
same computation as accumulator 1, which is known by 
the model to contain CONS(CAR(L), NIL). In the case of  
the (HRRZS@ 2 0 12) instruction at label PC5 in Figure 
7, the computation model is updated by LOADSTORE to 
indicate that accumulator 2 contains CDR applied to the 
top of  the stack, which is known by the computation 
model to contain L. In other words, accumulator 2 
contains CDR(L). In addition, the computation model is 
updated by LOADSTORE to indicate that the left half  of  
the location pointed at by L is loaded with 0 (i.e., NIL). 
However, this is the definition of  a RPLACA operation 
and thus RPLACA(L, NIL) is also added to the set of  
computations that have been performed. Note that no- 
where in the procedural definition of  HRRZS@ is there 
any indication that CDR is being computed. We are able 
to detect the computation of  CDR by virtue of the act of  
fetching the right half  of the contents of  a Lisp pointer. 
This is because the computation model is aware that the 
contents of the left and right halves of a cell pointed at 
by a Lisp pointer contain CAR and CDR, respectively, of  
the pointer. Such computations are recognized by the 
primitives which are used to describe the instructions 
(e.g. CONTENTS, EEEECTADDRESS, etc.). Clearly, other 
instructions can be used to achieve the effect of  CDR, yet 
we do not need to state this in our instruction description. 

The MOVE and HRRZS@ instructions have straight- 
forward instruction descriptions since their only effect is 
the modification of  the computation model. Other in- 
structions perform control operations such as conditional 
branching as well as modify the computation model. In 
this case we need additional descriptive mechanisms. 

For example, when conditional branching instruc- 
tions are encountered, the symbolic interpretation proc- 
ess attempts to form a description of  a test using con- 
structs of the high level language and then determines if 
its value is known. In the affirmative case the appropriate 
path is taken and the next instruction along the path is 
symbolically interpreted. Such situations arise when 
either the operands of  the test do not involve data items 
of  the high level language (e.g. Lisp pointers) or the 
condition represents a test whose value has been deter- 
mined earlier in the execution path. The determination 
of the value of  a test is accomplished by interrogating 
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Fig. 12. Tree representation of  a test. 

PREDICATE 

CONCLUS ION ALTERNATIVE 

Fig. 14. Result of  symbolic interpretation of(SK~PN 21) in Figure 3. 

(EQ L NIL) 

UNKNOWN-CONCLUSION UNKNOWN-ALTERNATIVE 

Fig. 13. SKIPN instruction description. 

FEXPR SKIPN (ARGS) ; 
BEGIN 

NEW M~G, TST ; 
ME}IG~-CONTENTS (EFFECTADDRES S (ARGS)); GS - 
IF ACFIELD(ARGS) NEQ 0 THEN LOADSTORE(ACFIELD(AR ),MEMG); 
TST+CHECKTEST (MEMG, ZEROCNST) ; 
IF TST THEN RETURN( 

IF CDR TST THEN NEXTINSTRUCTION() 
ELSE UNCONDITIONALSKIP( ) ) ; 

FALS EPREDIC ATE ( ) ; 
CONDIT IONALS KIP (ARGS, FUNCT ION SKI PNTRUE ) ; 
SKIPALTERNATIVE (ARGS, FUNCTION SKIPNFALSE) ; 

END ; 

FEXPR SKIPNTRUE (ARGS) ; 
UNCONDITIONALS KIP ( ) ; 

FEXPR SKIPNFALSE(ARGS ); 
NEXt INS TRUC TION ( ) ; 

the computation model which is cognizant of  the results 
of  all tests along the execution path. If  the condition is 
a test whose value is unknown, then the two alternate 
paths are symbolically interpreted in order, and the result 
returned is a tree as shown in Figure 12. 

Prior to the evaluation of  each path, the computation 
model is updated to reflect the assumed value of  the test. 
This includes modification of  relevant memory locations 
as well as propagating equalities and inequalities, as the 
case may be, through the equality database. This latter 
step is crucial to having the capability to recognize the 
occurrence of  substitution of  equals for equals. For 
example, in Algorithm 1 of  REVERSE, once L is known 
to be equal to NIL we may use L or NIL interchangeably. 

The equality database is a set of equivalence classes 
and pairs of  inequivalences which have resulted from the 
symbolic interpretation of the various conditions along 
an execution path. Transitivity and functional applica- 
tion are fully propagated. Equality and inequality of two 
operands is determined by parsing their symbolic rep- 
resentations and checking if they are members of  the 
same equivalence class [25]. If  the two operands are 
members of  the same equivalence class, then they are 
known to be equal. If  the parsing process determines 
that the two operands are in different equivalence classes, 
then we must determine if these two classes are known 
to be inequivalent. This is achieved by assuming that the 
two equivalence classes are equal and correspondingly 
updating the database to reflect the merging of  the two 
classes. If  a contradiction is obtained during the propa- 
gation of  the equivalence, then the two operands are 
known to be unequal. Otherwise, the equality of  the two 
operands is unknown. 

An example of  a conditional branch instruction is 
SKIPN (see Figure 13) which is used to skip the following 
instruction if the contents of  the effective address is 
nonzero. In addition, if the accumulator name specified 
by the accumulator field is nonzero, then the said accu- 
mulator is loaded with the contents of  the effective 
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address. The instruction description first tests for the 
occurrence of  a nonzero accumulator name. Once this is 
done, we see the use of  several control primitives in order 
to provide for the symbolic interpretation of  both alter- 
natives of  the test. CHECKTEST examines the operands 
and, if possible, forms a valid test. (TST is a local variable 
which temporarily records the result of  the test.) Next, if 
the value of  the condition is already known, then appro- 
priate action is taken. FALSEPREDICATE marks the sense 
of  the test. (An instruction skipping on equality with 
zero would u s e  TRUEPREDICATE.) CONDITIONALSKIP 
and SKIPALTERNATIVE (and similarly CONDITIONAL- 
JUMP and JUMPALTERNATIVE in the case of a conditional 
branch) serve to recursively invoke the symbolic inter- 
pretation of  the paths corresponding to the true and false 
cases of  the test. One of  the parameters to these primitives 
is the name of  another routine which specifies any further 
processing that might be required prior to executing the 
path. The actual updating of  the computation model 
occurs in control routines such as CONDITIONALSKIP and 
SKIPALTERNATIVE. Specifically, the computation model 
is saved in CONDITIONALSKIP prior to the reinvocation 
of  the symbolic interpretation process for the true case 
of the condition and restored to its previous value prior 
to exiting from CONDITIONALSKIP. Note that the com- 
putation model needs to be saved only when a condi- 
tional branch instruction is encountered. The construc- 
tion of  the tree corresponding to the result of  the sym- 
bolic interpretation process occurs in SKIPALTERNATIVE. 

Whenever the symbolic interpretation process is 
about to interpret an instruction which has been previ- 
ously encountered along the path being symbolically 
interpreted (i.e. loop shortcutting), then recursion is as- 
sumed to have taken place (recall the branch to label 
REV in Figure 8.) In such a case, the symbolic interpre- 
tation process will attempt to show that if a branch had 
indeed been made to the start of the program, then the 
said instruction would have been reached with the same 
state of  the computation model by ,drtue of known 
values for all of  the conditions along some path to the 
instruction in question. If  such a path from the start of  
the program exists, then it is unique since a condition 
cannot be both true and false. Note that the contents of 
all locations that are subsequently referenced prior to 
being overwritten must contain appropriate values. In 
fact, this is one of  the ways the error was detected in the 
branch from PC6 to REV in Figure 7. In this case accu- 
mulator 2 and the top of  the stack will both be referenced 
subsequent to REV prior to being overwritten. Further- 
more, when REV is entered via PC2, accumulator 2 and 
the top of  the stack contain identical or equivalent values. 
Yet, when REV is entered via PC6, accumulator 2 con- 
tains CDR(L) while the top of  the stack contains L. 
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Fig. 15, Intermediate representation corresponding to Figure 3. 

(1o 5 o) 

L (*APPEND (REVERSE (CDR L)) 5 (20 (18 (16 5)) 
(CONS (CAR L) NIL)) (14 (12 5) 0)) 

Fig. 16. Partial trace of proof of equivalence of Figure 3 and Figure 1. 

i. 

* **NORMAL*** 
(EQ L NIL) 

NIL (*APPEND (REVERSE (CDR L)i 
(CONS (CAR L) NIL)) 

***REDER IVED*** 
(EQ L NIL) 

NIL (*APPEND (REVERSE (CDR L)) 
(CONS (CAR L) NIL)) 

MANIPULATE NORMAL FORM TO MATCH REDERIVED FORM 

(30 5 O) 

0 (40 1334 13362 
(10 5 0) 

0 (20 (18 5)) . 4  6 2 5) 0) )  

1. 1. 

(EQ L NIL) 
***BY USING THE FORM*** 
(EQ L NIL) / - . . .  

NIL (*APPEND (REVERSE (CDR L)) 
(CONS (CAR L) NIL)) 

TRYING TO MATCH THE COMPUTATION NUMBERS APPEARING IN THE FUNCTION 

(IO 5 o) 

(30 5 0) 

0 (40 (34 (32 5)) 
(38 (36 5) 0 ) )  

i. I. i. COMPUTATION NUMBER I0 IS MATCHED BY COMPUTATION NUMBER 30 

i. 2. TRYING TO MATCH THE COMPUTATION NUMBERS APPEARING IN THE FUNCTION 

NIL 0 
***BY USING THE FOR/4*** 
N IL 0 

i. 3. TRYING TO MATCH THE COMPUTATION NUMBERS APPEARING IN THE FUNCTION 

(*APPEND (REVERSE (CDR L)) 
(CONS (CAR L) NIL)) 

***BY USING THE FORM*** 
(*APPEND (REVERSE (CDR L)) 

(CONS (CAR L) NIL)) 

(20 (18 (16 5))  
(14 (12 5) 0))  

(40 (34 (32 5)) 
(38 (36 5) 0))  

1.3.1. 

1.3.2. 

1.3.3. 

1.3.4. 

1.3.5. 

COMPUTATION NUMBER 12 IS MATCHED BY COMPUTATION NUMBER 36 

COMPUTATION NUMBER 14 IS MATCHED BY COMPUTATION NUMBER 38 

COMPUTATION NUMBER 16 IS MATCHED BY COMPUTATION NUMBER 32 

COMPUTATION NUMBER 18 IS MATCHED BY COMPUTATION NUMBER 34 

COMPUTATION NUMBER 20 IS MATCHED BY COMPUTATION NUMBER 40 

As an example of  the symbolic interpretation process, 
consider the encoding of Algorithm 1 of REVERSE given 
in Figure 3. The first instruction that we encounter is 
SKIPN which is used to skip to label PC3 if accumulator 
1 is nonzero. The result is shown in Figure 14. Recalling 
that NIL is represented by zero, we observe that the test 
corresponds to checking if the list L is NIL--i.e. (EQ L 
NIL). Since neither of  the paths corresponding to the true 
and false cases of  the test have yet been symbolically 
interpreted, we denote the two subtrees as UNKNOWN- 
CONCLUSION and UNKNOWN-ALTERNATIVE. This pro- 
cedure is continued in this manner until the symbolic 
and numeric intermediate representations shown in Fig- 
ure 15 are obtained. The numbers are assigned to the 
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computations as they are symbolically interpreted. 
Again, only the relative ordering is significant. 

4.3 Proof 
The proof procedure makes no use of  a theorem 

prover. Instead, it relies on the intermediate representa- 
tion of  the original function being placed in a normal 
form. This form is obtained by a two-part algorithm. 
The first part corresponds to application of  axioms (2), 
(3), and (7) along with the distributive law for functions 
while simultaneously binding variables to their proper 
values. The latter is necessary when SETQ'S (Lisp's as- 
signment operator) and internal lambdas are being used. 
The second part corresponds to making use of axioms 
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(2), (3), (5), and (6) to remove predicates whose values 
are known and to replace duplicate occurrences of com- 
putations by their first occurrence. As an example of the 
former consider the gbf (p ~ -  (q ~-- (p ~-- a, b), c), d). 
The second instance ofp  is redundant and is replaced by 
its equivalent--i .e.T. Subsequent application of axiom 
(2) results in the  form (p ~- (q *- a, c), d). 

Note that when duplicate occurrences of computa- 
tions are replaced by their first occurrences we must 
make sure that they are indeed duplicate. For example, 
when a computation such as CDR(L) is computed more 
than once along an execution path, then the second 
occurrence is a duplicate only if no computations took 
place between the two instances which might cause them 
to have different values (e.g. a RPLACD operation which 
has as its side effect the modification of a right half of 
some element in the List Structure). The detection of 
redundancies and the determination that no intervening 
side effect computations have occurred is aided by a flow 
analysis and by the numeric representation where the 
latter indicates a relative order for the instances of com- 
putation of all computations along an execution path. 

At this point we have a normal form representation 
for the original Lisp program. As mentioned earlier, the 
symbolic interpretation procedure returns a similar rep- 
resentation for the object program. To this representation 
we also apply the second part of the above normal form 
algorithm to replace duplicate occurrences of computa- 
tions by their first occurrence. In cases where no com- 
putation rearrangement or loop shortcutting has taken 
place, equivalence will now hold. For many compilers 
such situations are not uncommon. Otherwise we must 
prove that using our axioms, either one of the forms can 
be transformed into the other. This procedure, termed 
matching, begins by attempting to prove that each com- 
putation appearing in one of the forms appears in the 
other and vice versa. This matching process is accom- 
plished by uniformly assigning the computation numbers 
in one form, say B, to be higher than all of the numbers 
in the other form, say A, and then, in increasing order, 
search form B for matching instances of computations 
appearing in form A. Whenever a computation, say C, 
in A is matched by a computation, say D, in B, then D 
is replaced by C, which has a lower computation number 
and the proof continues. During the proof liberal use is 
made of axioms (1), (2), (3), (5), and (6) as well as 
substitution of equals for equals, and possibly functional 
expansion in cases of loop shortcutting where conditions 
are precomputed (e.g. in the proof of the equivalence of 
Figures 4 and 8). 

As an example in which a computation appears in 
one form and not in the other consider a slightly modified 
version of Figure 6 where PC7 is 0UMPN 2 PC 1) instead 
of (JUMPN 2 REV) and PC5 has changed from (HRRZ@ 
2 0 12) to (HRRZS@ 2 0 12). In this case, the only 
problem is that an (RPLACA L NIL) results from the 
HRRZS@ operation at PC5 in addition to loading accu- 
mulator 2 with (CDR L). Unfortunately, the original 
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program in Figure 4 does not call for the computation of 
(RPLACA L NIL). Thus we see why the proof system must 
prove that each computation that appears in one form 
must appear in the other form and vice versa. 

For our examples we must prove the equivalence of 
Figures 9, 10, and 15. Symbolically, the two intermediate 
representations are almost identical. The only difference 
is that when (EQ L NIL) is true, the intermediate repre- 
sentation corresponding to the original program indicates 
that a value of NIL is to be returned while the interme- 
diate representation corresponding to the Lap program 
in Figure 3 indicates that L ought to be returned. In fact, 
this discrepancy is resolved by the component of the 
proof procedure which replaces duplicate occurrences of 
computations by their first occurrence. Thus, in reality, 
L is replaced by NIL since NIL has a lower computation 
number by virtue of the numbering scheme which assigns 
a computation number of 0 to the atoms T and ME. 

The numeric intermediate representations of the ar- 
guments to *APPEND also differ. Specifically, (REVERSE 
(CDR L)) is computed before (CONS (CAR L) NIL) in the 
original program while the Lap program in Figure 3 
reverses this order. The proof must show that this vari- 
ation preserves equivalence. Since no global variables 
are being referenced here, the only possible side effects 
are RPLACA and RPLACD operations whose occurrence 
would affect the rearrangement of the order of comput- 
ing functions involving the computation of CAR or CDR, 
respectively. However, neither CONS, REVERSE, nor *AP- 
PEND involve such operations. Thus the rearranging is 
valid. 

One half of the actual proof for our example, a proof 
that each computation in the intermediate representation 
corresponding to Figure 3 (termed the rederived form) 
appears in the intermediate representation corresponding 
to Figure l (termed the normal form) is given in Figure 
16. There are several items of note. First, when (EQ L 
NIL) is true, NIL, rather than L, is being used since 
duplicate computation removal has already been ap- 
plied. Second, all computation numbers of functions in 
the normal form are higher than all of the computation 
numbers in the rederived form. Of course, the occur- 
rences of the atoms NIL and L have the same computa- 
tion numbers in both forms since they can be thought to 
be computed (i.e., bound in the case of L) prior to the 
invocation of the function being processed. For example, 
in proving that (CAR L) in the rederived form is matched 
by (CAR L) in the normal form, we must prove that 
between computation number 12 and 36 no operation is 
performed in the normal form whose result is the modi- 
fication of the left half of a Lisp cell. In other words, 
computation numbers 32 and 34 which correspond to 
(REVERSE (CDR L)) do not involve RPLACA operations. 
We are not concerned with computation number 30 
which corresponds to the predicate EQ, since it has 
already been matched by computation l0 and hence has 
been replaced in the normal form by 10. 

The examples we have seen illustrate that the two 
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intermediate representations are often very similar. In 
fact, if  no loop shortcutting or rearrangement of com- 
putations (this includes common subexpression elimi- 
nation) take place, then the intermediate representations 
will be identical. Nevertheless, such cases should not 
detract from our techniques; the point to note is that in 
these cases the symbolic interpretation process often 
results in the detection of  errors as well as in the verifi- 
cation of  the extraction of several redundant computa- 
tions. For example, recall the errors in Figure 7 pertain- 
ing to the erroneous calling sequence. 

5. Implementation Status 

A system has been implemented to prove the cor- 
rectness of  translation of  Lisp programs to Lap and is 
currently running on a PDP-10. Both Lisp 1.6 and ucI  
LisP [3] can be handled. The system is written in Mlisp 
and consists of two components which may be run 
separately. One component, DERIV, corresponds to the 
symbolic interpretation procedure and returns as its re- 
sult a suitable intermediate representation for a Lap 
program. The second component, CANON, proves the 
equivalence of  the original Lisp program and the output 

of DERIV. 
The proof system is interactive in the sense of  asking 

the" riser a set of  questions to aid in the proof process. 
These questions deal with calling sequence conventions 
and properties of  functions which may be needed in a 
proof. For example, the system needs to know if the 
optimization process makes use of  the commutativity of 
functions other than p lus  and TIMES. Similarly, the 
system must be made aware of  the antisymmetry of  pairs 
of  operations other than CONS-XCONS and LESS-GREAT 
(e.g. A < B is equivalent to B > A). 

When given a pair of programs to try to prove 
equivalent, the system will always terminate with a yes 
or no answer. A "yes" answer means that the programs 
are equivalent. A "no" answer results when either an 
error has been found or certain components of  the 
intermediate representation cannot be matched due to 
insufficient equality information. There are two types of 
errors. Errors that are detected during symbolic interpre- 
tation generally correspond to an object program that 
does not obey calling sequence conventions--i.e, the 
program is not well formed. For example, recall the 
erroneous encoding in Figure 7. Errors detected during 
the proof procedure generally correspond to computa- 
tions present in the object program and absent in the 
source program or vice versa. The actual location of 
many errors can be pinpointed by virtue of  the numeric 
representation of  the function that was processed by the 
symbolic interpretation procedure. Specifically, a dic- 
tionary is kept containing all of  the computation numbers 
with the instruction number and execution path along 
which they have been computed. When the proof pro- 
cedure detects certain errors, it outputs the dictionary 
entry associated with the offending computation. 
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The system has been used to prove the correctness or 
incorrectness of  a large number of programs. For ex- 
ample, one program named Hier [24] was compiled by 
the Lisp 1.6 compiler to yield an encoding of  145 instruc- 
tions. Using the types of  optimizations discussed in Sec- 
tion 3, the object program was hand optimized to yield 
an encoding consisting of  105 instructions which, in 
addition, was 40 percent faster and required 50 percent 
less stack space. The most interesting aspect of the hand 
coding was that during the coding process a number of  
errors were made. However, the system was able to 
detect all of  these errors and emit error messages that 
pinpointed the locations of  the errors. The actual process 
of correcting the errors took several iterations through 
the proof  system since only one error at a time can be 
detected for each execution path. 

When using compiled code, the two components 
DERIV and CANON Occupy 19K and 14K 36 bit words on 
a PDP-10. Of  course there is a need for additional space 
for the basic Lisp system (25K) and the list structures. 
The latter is primarily dependent on the size and com- 
plexity of  the program being processed. 

The amount of  time necessary to prove the correct- 
ness of  translation is dependent on the size of  the func- 
tion and the type of optimization performed. We are 
primarily concerned with the number of  conditions 
tested in each function since the symbolic interpretation 
process and the proof procedure must explore all possible 
execution paths. This implies a possible exponential 
contribution by the function size (in term of  conditions) 
to the amount of  time required to perform a proof (but 
see the note about COND in Section 6). Optimized encod- 
ings exhibiting loop shortcutting where conditions are 
precomputed, as in Figure 8, require slightly longer 
proofs since the symbolic interpretation process must 
prove that values of conditions whose computation has 
been bypassed are known, as well as demonstrate that 
all locations referenced subsequent to the target label of 
the instance of  loop shortcutting have appropriate values. 
For example, on a PDP-10 (KLI0-AA with 384K mem- 
ory) using core images of  55K resulted in a proof of  the 
equivalence of  Figures 1 and 3 taking 8 seconds, Figures 
4 and 8 taking l0 seconds, while 50 seconds were nec- 
essary for the hand-optimized version of  Hier mentioned 
earlier. 

6. Conclusion 

An overview has been presented of  a formalism for 
proving the correctness of  translations involving a heu- 
ristic code optimization process. The formalism has been 
demonstrated by means of  a system which proves the 
correctness of  translations involving Lisp and Lap. 
Clearly, instruction sets of  other computers could also be 
handled. Extending our ideas to other computers would 
serve to highlight any deficiencies in our machine-de- 
scription process. A more ambitious direction is to at- 
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t empt  to app ly  our  techniques  to o ther  h igh  level lan-  
guages.  Admi t t ed ly ,  Lisp is a ra ther  s imple  l anguage  in 
terms o f  its constructs.  In  par t icular ,  its cont ro l  s t ructure 
(i.e. case analysis)  is qui te  s imi lar  to our  in te rmedia te  
representa t ion .  Nevertheless ,  we feel that  o ther  well-  
s t ruc tured  high level l anguages  could  also be handled .  

In  Sect ion 4 we men t ioned  a res t r ic t ion on b a c k w a r d  
jumps .  Specif ical ly,  we said that,  at present ,  in a PROG 
we can only  hand le  the GO construct  whose target  label  
has not  occurred  phys ica l ly  pr ior  to the GO statement .  
This  restr ic t ion is re la ted  to the quest ion o f  loops  and  
b a c k w a r d  jumps .  Par t  o f  the p rob l em is our  insistence 
on in terpre t ing  recurs ion to have  occurred  whenever  the 
symbol ic  in te rpre ta t ion  process is abou t  to in terpre t  an  
ins t ruct ion which  has been prev ious ly  encoun te red  a long 
the pa th  (i.e. loop shortcut t ing) .  A solut ion is to b reak  
up  the or ig inal  h igh level l anguage  p rog ram into modules  
o f  intervals  [ l ,  2] having  one ent ry  po in t  and  several  exit  
points.  Branches  which  j u m p  back  anywhere  wi thin  the 
in terval  o ther  than  to the ent ry  node  o f  the in terval  are 
assumed  to be cases o f  loop shortcut t ing.  Branches  to 
points  o ther  than  ent ry  nodes  in o ther  in tervals  are also 
assumed  to be cases o f  loop  shortcut t ing.  Proofs  would  
be necessary for each o f  these intervals.  

Symbol ic  in terpre ta t ion ,  as well  as the p r o o f  process,  
must  exercise all  possible  execut ion paths.  This  is differ-  
ent  f rom symbol ic  execut ion [12] where  var ious  cases o f  
a h igh  level l anguage  p rog ram are tested by  use o f  
symbol ic  values  for the parameters .  Thus  our  system has 
a po ten t ia l  d r a w b a c k  in that  for  a p r o g r a m  with a large 
n u m b e r  o f  IF THEN ELSE s ta tements  the in te rmedia te  
represen ta t ion  (i.e. the tree) might  grow to be ra ther  
large. Specif ical ly,  for  N such s ta tements  we might  have  
to process 2**N execut ion paths.  For tuna te ly ,  condi t ions  
in recursive p rog rams  o f  the na ture  with which we are 
dea l ing  are  more  o f  the form of  a COND. In such a case 
N condi t ions  only  represent  N + 1 execut ion paths.  
Nevertheless ,  the p r o b l e m  associa ted  with the 2**N ex- 
ecut ion pa ths  could  be a l lev ia ted  by  use o f  the no t ion  o f  
intervals  presented  above.  In  fact, scrut iny o f  m a n y  Lisp 
p rog rams  reveals  them to consist  o f  a large set o f  smal l  
recursive funct ions  very much  ak in  to the not ion  o f  
intervals.  Al terna t ive ly ,  a facil i ty could  be p rov ided  for 
the user  to select which  execut ion pa ths  are  to be tested. 

The  system as presented  here f inds usefulness as a 
pos top t imiza t ion  c o m p o n e n t  o f  a compi ler .  It is also 
wel l -sui ted  to an  in teract ive  op t imiza t ion  process where  
a user  sits at  his t e rmina l  and  in terac t ive ly  appl ies  t rans-  
fo rmat ions  to his p rogram.  Dur ing  this process,  mis takes  
m a y  be made ,  and  i f  possible  they  are  detected,  and  the 
user  is i n fo rmed  o f  his e r rant  ways. This  is qui te  s imi lar  
to a system for achieving the type o f  results  p roposed  in 

[13]. 
A n o t h e r  po ten t ia l  app l ica t ion  o f  a p r o o f  system for 

the correctness  o f  t rans la t ion  is in the d o m a i n  o f  boot -  
s t rapping.  Suppose  we only  have a Lisp in te rpre te r  avai l -  
able  and  we desire  to have a compiler .  The  solut ion is to 
wri te  such a compi le r  in Lisp, say C, and  let the compi le r  
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t rans la te  i tself  to y ie ld  C' wri t ten  in a s sembly  language.  
A p r o o f  system such as the one descr ibed  here in  can  be 
used to prove  that  C and  C'  are equiva len t  and  hence  
that  they  genera te  equ iva len t  code. This  is accompl i shed  
by  proving  that  C has  correct ly  t rans la ted  C to y ie ld  C'. 
In fact, such ideas  are po ten t ia l ly  useful  in dea l ing  with 
crosscompi lers  for  min icompute rs .  However ,  we might  
add  as a note  o f  caut ion,  that  d i f ferent  mach ine  archi-  
tectures m a y  cause p rob lems  with respect  to di f ferent  
word  sizes, cha rac te r  formats ,  i npu t -ou tpu t  pr imit ives ,  
and  o ther  m a c h i n e - d e p e n d e n t  factors. 

8. Appendix 

PDP-10 Operations 
CALL A special Lap instruction which is analogous to a 

PUSHJ. The difference is that it is used to invoke Lisp 
functions via the property list. This is useful when a 
trace of the arguments to a function is desired, or when 
the actual binding of a function changes. (CALL num 
(E fname)) denotes a CALL to fname where num is the 
number of arguments. 

HLRZ Load the right half of accumulator AC with the left half 
of the contents of the effective address and clear the 
left half of AC. 

HRLZ@ Same as HLRZ with indirect addressing. 
HRRZ Load the right half of accumulator AC with the right 

half of the contents of the effective address and clear 
the left half of AC. 

HRRZ@ Same as HRRZ with indirect addressing. 
HRRZS Load the right half of accumulator AC with the right 

half of the contents of the effective address and clear 
the left half of AC. The same value is also stored in the 
effective address--i.e., the left half of the effective 
address is set to zero. 

HRRZS@ Same as HRRZS with indirect addressing. 
JCALL A special Lap instruction which is analogous to a JRST. 

The difference is that it is used to invoke Lisp functions 
via the property list. This is useful when a trace of the 
arguments to a function is desired, or when the actual 
binding of a function changes. 

JRST Unconditional jump to the effective address. 
JUMPE Jump to the effective address if the contents of accu- 

mulator AC is zero; otherwise continue execution at the 
next instruction. 

JUMPN Jump to the effective address if the contents of accu- 
mulator AC is unequal to zero; otherwise continue 
execution at the next instruction. 

MOVE Load accumulator AC with the contents of the effective 
address. 

MOVEI Load the right half of accumulator AC with the effective 
address, and clear the left half. 

POP Move the contents of the location addressed by the 
right half of accumulator AC to the effective address 
and then subtract octal l 000 001 from AC to decrement 
both halves by one. If the subtraction causes the count 
in the left half of AC to reach - l ,  then the Pushdown 
Overflow flag is set. 

POPJ Subtract octal l 000 001 from accumulator AC to 
decrement both halves by one. If subtraction causes the 
count in the left half of AC to reach - I, then set the 
Pushdown Overflow flag. The next instruction is taken 
from the location addressed by the right half of the 
location that was addressed by AC prior to decrement- 
ing. 

PUSH Add octal l 000 001 to accumulator AC to increment 
both halves by one and then move the contents of the 
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PUSHJ 

SKIPN 

SUB 

effective address to the location now addressed by the 
right half of AC. If the addition causes the count in the 
left half of AC to reach zero, then set the Pushdown 
Overflow flag. 
Add octal 1 000 001 to accumulator AC to increment 
both halves by one. If addition causes the count in the 
left half of AC to reach zero, then set the Pushdown 
Overflow flag. Store the contents of the program 
counter and the processor flags in the right and left 
halves, respectively, of the location now addressed by 
the right half of AC, and continue execution at the 
effective address. 
Skip the next instruction if the contents of the effective 
address is not equal to zero. If the AC field specification 
is nonzero, then load accumulator AC with the contents 
of the effective address. 
The contents of the effective address is subtracted from 
the contents of accumulator AC, and the result is left in 
AC. 
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