
Programming J . J . Homing
Languages Editor

Proving the
Correctness of
Heuristically
Optimized Code
H a n a n S a m e t
U n i v e r s i t y o f M a r y l a n d , C o l l e g e P a r k

A system for proving that programs written in a
high level language are correctly translated to a low
level language is described. A primary use of the system
is as a postoptimization step in code generation. The
low level language programs need not be generated by a
compiler and in fact could be hand coded. Examples of
the usefulness of such a system are given. Some
interesting results are the ability to handle programs
that implement recursion by bypassing the start of the
program, and the detection and pinpointing of a wide
class of errors in the low level language programs. The
examples demonstrate that optimization of the genre of
this paper can result in substantially faster operation
and the saving of memory in terms of program and
stack sizes.

Key Words and Phrases: compilers, correctness,
code optimization, debugging, program verification,
Lisp

CR Categories: 4.12, 4.21, 4.22, 5.24

General permission to make fair use in teaching or research of all
or part of this material is granted to individual readers and to nonprofit
libraries acting for them provided that ACM's copyright notice is given
and that reference is made to the publication, to its date of issue, and
to the fact that reprinting privileges were granted by permission of the
Association for Computing Machinery. To otherwise reprint a figure,
table, other substantial excerpt, or the entire work requires specific
permission as does republication, or systematic or multiple reproduc-
tion.

This work was supported in part by the Advanced Research
Projects Agency of the Department of Defense under Contract DAHC
15-73-C-0435. The views expressed are those of the author.

Author's address: Computer Science Department, University of
Maryland, College Park, MD 20742.
© 1978 ACM 0001-0782/78/0700-0570 $00.75

5"/0

I. Introduction

In [23], a formalism is presented for proving that
programs written in a high level language are correctly
translated to assembly language. The prime motivation
for the work is a desire to prove that optimizations
performed during the translation process are correct. In
particular, these optimizations are often of a heuristic,
nonrepeatable nature--e .g, the type of improvements
that could be performed by an individual while peering
over an object program. The unpredictability of the
behavior of such individuals poses the requirement that
the proof procedure must be independent of the inter-
mediary mechanism which transforms the source pro-
gram into the object program (e.g. a compiler or any
hand-coding procedure).

This previous requirement means that the notion of
correctness must be carefully defined and that capabili-
ties of such a proof must be precisely identified. This in
turn leads to a need for a representation which reflects
both the high- and low level programs. In order to be
able to find and make use of such a representation,
critical semantic properties of the high level language in
question must be identified as well as their interrelation-
ship to the instruction set of the computer executing the
object programs.

In this paper we present an overview of the proof
system reported in [23]. First, we state the relationship of
our goals to previous work. This is followed by a scenario
of a typical heuristic optimization process which dem-
onstrates the capabilities and limitations of the proof
system. Next, we present the intermediate representation
that we have chosen, the manner in which it is obtained,
and the techniques used in a proof. Finally, we briefly
discuss the implementat ion status of the system.

2. Relation to Other Work

We are interested in proving that programs are cor-
rectly translated. A similar problem that has been receiv-
ing much attention in the past few years is that of proving
programs correct [16]. Most of the attempts have been
along the lines of assertions [8, 11] about the intent of
the program which are then proved to hold. The diffi-
culties with such methods are numerous. The most not-
able problems are encountered in specifying the asser-
tions [7, 27] and the actual proof method. Proofs using
such methods reduce to showing that a set of assertions
hold. However, no allowance is made for the possibility
that the assertions might be inadequate to specify all of
the effects of the program in question. Thus we are led
to a belief that the concept of intent is too imprecise for
proving correctness of compilation whereas it is justifia-
ble in proving equivalence between algorithms.

In the case of computer programs written in a higher
level language we are primarily interested in the correct-
ness of the translation. In this case, there is no need for

Communications July 1978
of Volume 21
the ACM Number 7

any knowledge about the purpose of the program to be
translated. For example, there exist a number of different
algorithms for sorting (e.g. quicksort, shellsort, etc.). In
order to prove the equivalence of two of these algorithms
we must resort to demonstrating that they both possess
a common input-output pair characterization. Thus a
conventional proof attempts to show that the algorithms
yield identical results for all possible inputs. The problem
of proving the equivalence of different algorithms is
known to be generally unsolvable by use of halting
problemlike arguments.

In order to avoid the unsolvability problem we must
be more precise in our definition of equivalence. By
equivalence we mean that the two programs must be
capable of being proved to be structurally equivalent
[14], that is, they have identical execution sequences (e.g.
they must test the same conditions) except for certain
valid rearrangements of computations. Such rearrange-
ments include transformations classified as "low level"
optimizations [17]. However, more ambitious transfor-
mations classified as "source level" [5, 9, 29] are pre-
cluded. Note also that our criterion of equivalence is a
more stringent requirement than that posed by the con-
ventional definition of equivalence which holds that two
programs are equivalent if they have a common domain
and range and both produce the same output for any
given input in their common domain. In our process of
demonstrating equivalence no use is made of the purpose
of the program.

Notice that we prove the correctness of the transla-
tion. One method of achieving this is to prove that the
translator (for example a compiler) is correct--e.g, to
prove that there does not exist a program which is
incorrectly translated by the compiler. In this case we
would revert to the intent characterization of correctness
set forth previously. Instead, we prove for each program
input to the translation process, that the translated ver-
sion is equivalent to the original program. Thus, we are
not making any claims with respect to the general cor-
rectness of the translation process. A proof must be
generated for each input to the translation process. How-
ever, this has several important advantages, especially
when the translator is a compiler. First, as long as the
compiler does its job for each program put into it, its
correctness is of a secondary nature-- that is, we can
attribute an effective correctness to the compiler. Second,
the proof process is independent of the compiler. This
means that if another compiler were used no difference
would result, thereby implying that programs could be
compiled by hand or mechanically translated. This is
quite important and identifies the proof as belonging to
the semantics of the high- and low level languages in
which the input and output, respectively, are expressed
rather than belonging to the translation process. Third,
any proof method that would prove a compiler correct
would be limited with respect to the types of optimiza-
tions that it could allow. This is because such a method
would rely on the identification of all the possible optim-

571

izing transformations. This is the type of approach taken
in the proof of the correctness of LCOM0 and LCOM4
[15]. In contrast, we are interested in a heuristic code
generation procedure which often relies on a "hypothesis
and test" [20] approach. This is illustrated in the next
section.

3. Example

The main motivation for this work has been a desire
to write an optimizing compiler. In order to achieve this
goal, it was determined that a correctness proof of the
optimization process was necessary. In particular, we are
interested in proving that small perturbations in the code
leave the effect of the function unchanged. In this section
we present a scenario of a typical optimization process
to which our work is addressed. Some of the optimiza-
tions that we examine include common subexpression
elimination, changing calling sequence conventions,
elimination of recursion by iteration, and bypassing the
start of the program when recursion is in order. The
primary goal of the optimizations is to reduce the amount
of work necessary to set up linkages between functions
and to use as much local information as possible--for
example, values of conditions tested, contents of accu-
mulators, etc. Such techniques, despite seeming "less
than earth shattering" when viewed individually, yield
significant reductions in time and space when viewed
collectively. The purpose of the examples in this section
is to give the reader a feeling for the concepts which
must be handled by a proof procedure and for the power
of the results that can be achieved despite our rather
narrow definition of equivalence. We use Lisp [l 8] as the
high level language and Lap [21] (a variant of the PDP-
l0 [6] assembly language) as the object language.

As an example, consider the function REVERSE which
takes as its argument a list L and returns as its result a
pointer to a copy of the list where all the links have been
reversed. For example, application of the function to the
list (ABC) results in the list (CBA). A formulation of
this function in a dialect of Lisp known as Mlisp [26]
(i.e. meta Lisp) is given in Figure 1. This formulation of
the function will be referred to as Algorithm I.

In order to be able to examine some low level lan-
guage programs, we must have an execution-level defi-
nition of the high level language. In our case, such a
definition enables us to make sense of the following Lap
programs in the context of a Lisp environment. Briefly,
each PDP- l0 word is 36 bits wide and can be partitioned
into two 18 bit halves. A Lisp cell is represented by a full
word whose left and right halves point to CAR and CDR,
respectively. Addresses of atoms are represented by
(QUOTE (atom name)) and by zero in the case of the
atom NIL. The PDP-10 has a hardware stack and func-
tions return via a return address which has been placed
on the stack by the invoking function. A Lap program
expects to find its parameters in the accumulators (on
the PDP-10 all accumulators are general purpose regis-

Communicat ions July 1978
of Volume 21
the ACM Number 7

Fig. 1. Algorithm 1 for REVERSE.

REVERSE(L) = if NULL(L) then NIL
else *APPEND(REVERSE(CDR(L)),CONS(CAR(L),NIL))

Fig, 2. Lisp 1.6 Compiler-generated encoding of Figure 1.

PC1 (PUSH 12 I)
(JUMPE I TAG1)
(HRRZ@ 1 0 12)

I CALL 1 (E REVERSE))
PUSH 12 l)
HLRZ@ 1 -i 12)
(CALL i (E NCONS))

PC8 (MOVE 2
(POP 12 II
(CALL 2 (E *APPEND))

TAG1 (SUB 12 (C 0 0 1 I))
(POPJ 12)

save L on the stack
{o S to TAGI if L is

accumulator i with CDR(L)
compute REVERSE(CDR(L))
save REVERSE(CDR(L)) on the stack
load accumulator I with CAR(L)
compute CONS(CAR(L),NIL)
load accumulator 2 with CONS(CAR(L),NIL)
load accumulator i with REVERSE(CDR(L)) from the stack
compute *APPEND(REVERSE(CDR(L)),CONS(CAR(L),NIL))
undo the first push operation
return

Fig. 3. Result of optimizing Figure 2.

PC3

(SKIPN 2 I)
(POPJ 12)

I HLRZ I 0 I)
CALL I (E NCONS))
PUSH 12 I)
(HRRZ 1 0 2)

I CALL I (E REVERSE))
POP 12 2)
JCALL 2 (E *APPEND))

load accumulator 2 with L and skip if not NIL
return NIL
load accumulator 1 with CAR(L)
compute CONS(CAR(L).NIL)
save CONS(CAR(L),NIL) on the stack
load accumulator 1 with CDR(L)
compute REVERSE(CDR(L))
loaa accumulator 2 with CONS(CAR(L).NIL) from the stack
compute *APPEND(REVERSE(CDR(L)),CONS(CAR(L),NIL))

Fig. 4. Algorithm 2 for REVERSE.

REVERSE(L) = REVERSI(NIL,L)
REVERSI(RL, L) = if NULL(L) then RL

el se REVERS 1 (CONS (CAR (L), RL), CDR (L))

Fig. 5. Lisp 1.6 compiler generated encoding for Figure 4.

PCI (PUSH 12 I)
PC2 (PUSH 12 2)
PC3 (JUMPN 2 TAG2)
PC4 (JRST 0 TAGI)
TAG2 (MOVE 2 -I 12)
PC6 (HLRZ@ I 0 12) ..

(CALL 2 (E CONS))
(HRRZ@ 2 0 12)

PC9 (CALL 2 (E REVERS1))
TAG1 (SUB 12 (C 0 0 2 2))
PC11 (POPJ 12)

save RL on the stack
save L on the stack
~ump to TAG2 if L is not NIL

to TAG I
accumulator 2 with RL

load accumulator 1 with CAR(L)
compute CONS(CAR(L),RL)
load accumulator 2 with CDR(L)
compute REVERSI(CONS(CAR(L),RL),CDR(L))
undo the first two push operations
return

ters and can be used for indexing) and also returns its
result in accumulator 1. In the case o f REVERSE, param-
eter L is in accumulator 1. The accumulators containing
the parameters are always o f such a form that a 0 is in
the left half, and the Lisp pointer is in the right half. All
parameters are assumed to be valid Lisp pointers. A
program is entered at its first instruction and a return
address is situated in the top entry of a stack whose
pointer is in accumulator 12. Whenever recursion or a
function call to an external function (via the CALL or
JCALL mechanism) occurs, the contents o f all the accu-
mulators are assumed to have been destroyed unless
otherwise known. Exceptions include CONS and XCONS
(XCONS(A,B) = CONS(B,A)), and NCONS (NCONS(A) =
CONS(A,NIL)) which are known to leave unchanged all
accumulators other than those containing the arguments.
In other words, CONS and XCONS only affect accumula-
tors 1 and 2 while NCONS only affects accumulator 1. It
should be clear that in any case certain accumulators
used by the Lisp system such as 12 (i.e. the stack pointer),
the free storage list, etc. are not assumed to have changed.
This is not a problem since the proof system is aware of
what accumulators a user may read and overwrite and

572

likewise for locations on the stack (that is, all locations
above the return address).

The Lisp 1.6 [21] compiler generates the Lap code
given in Figure 2 for this function. The format of a Lap
ins truct ion is (OPCODE AC A D D R INDEX) w h e r e INDEX

and ADDR are optional. OPCODE is a PDP-10 instruction
optionally suffixed by @ which denotes indirect address-
ing. The AC and INDEX fields contain numbers between
0 and decimal 15. ADDR denotes the address field. A list
o f the form (C 0 0 n u n 1 nun2) appearing in the address
field of an instruction is interpreted as an address o f a
word containing num l and n u n 2 in its left and right
halves, respectively (assuming num l and n u n 2 are less
than or equal to 0.15). The meanings o f the instructions
should be clear from the adjoining comments. Neverthe-
less, the appendix contains verbal descriptions o f all o f
the instructions used in our examples.

There are a number o f unnecessary operations in this
encoding. First, there is no need to save L on the stack
at PC 1 prior to determining if it is NIL. Second, we may
rearrange the order o f computing the arguments to *AP-
PEND thereby taking advantage o f the fact that NCONS
leaves the contents o f all accumulators besides 1 un-

Communications July 1978
of Volume 21
the ACM Number 7

Fig. 6. Result of optimizing Figure 5.

PC1 (JUMPE 2 TAG1)
REV (PUSH 12 2)

(HLRZ 2 0 2)
PC4 (CALL 2 (E XCONS))
PC5 (HRRZ@ 2 0
PC6 (SUB 12 (C 020 1 I))

i)

PC7 (JUMPN 2 REV)

TAG1 (POPJ 12)

jump to TAG1 if L is NIL
save L on the stack
load accumulator 2 with CAR(L)
compute CONS (CAR(L) ,RL)
loaa accumulator 2 with CDR(L)
undo the first push operation
if CDR(L) is not NIL then compute
REVERS 1 (CONS (CAR (L), RL), CDR (L))
return

Fig. 7. Result of optimizing Figure 6.

(JUMPE 2 TAGI)
PC2 (PUSH 1202 ~
REV (HLRZ)

(CALL 2 (E XCONS))
PC5 (HRRZS@ 2 0 12)
PC6 (JUMPN 2 REV)

(SUB 12 (C 0 0 1 i))
TAG1 (POPJ 12)

jump to TAG1 if L is NIL
save L on the stack
load accumulator 2 with CAR(L)
compute CONS (CAR(L) ,RL)
load accumulator 2 and the top of the stack with CDR(L)
if CDR(L) is not NIL then compute
REVERS 1 (CONS (CAR (L), RL), CDR (L))
adjust the stack pointer
return

Fig. 8. Optimal Lap encoding corresponding to Figure 4.

REV

(SKIPN 3 2)
(POPJ 12)
(HLRZ 2

(JIJNPN 3 REV)

(POPJ 12)

load accumulator 3 with L and skip if not NIL
return NIL
load accumulator 2 with CAR(L)
compute CONS (CAR(L),RL)
load accumulator 3 with CDR(L)
if CDR(L) is not NIL then compute
REVERS I (CONS (CAR (L), RL), CDR (L))
return

changed. This means that L need not be saved on the
stack. Therefore, we save it in accumulator 2 while at
the same time a test is performed to determine if it is
NIL. Third, we observe that since we no longer save any
variables on the stack, there is no need to invoke *AP-
PEND recursively. Instead, a JCALL (the unconditional
jump equivalent of CALL) is used. Figure 3 contains the
result of these optimizations.

The above optimizations have resulted in the reduc-
tion of the lengths of the inner loop and the overall
program from 12 and 12 to 8 and 9, respectively. This is
about as good as encoding as we can get for this formu-
lation of the REVERSE algorithm because six operations
are required for each iteration. These operations are the
computation of CAR, CDR, CONS, *APPEND, recursion,
and the testing of the nullness of L. In addition, we must
temporarily save and restore the value of one of the
arguments to *APPEND while computing the other one.
Thus the length of the inner loop cannot be reduced
further without changing the algorithm. Such an alter-
nate formulation, referred to as Algorithm 2, is given in
Figure 4.

Algorithm 2 makes use of an auxiliary function RE-
VERSl. This function has an additional variable which
serves to accumulate the result as the algorithm is ap-
plied. It is clear that Algorithm 2 is more efficient than
Algorithm 1 by noting that no *APPEND operations need
to be performed. Moreover, the algorithm is iterative in
the sense that the call to REVERS 1 is the final step of the
algorithm. The Lap encoding produced by the Lisp 1.6
compiler is shown in Figure 5.

This encoding abounds with unnecessary operations.
Thus we carry out the following sequence of optimization
steps to obtain the encoding in Figure 6. There is no

573

need to save RL on the stack at location PC I since
accumulator 1 is never stored into prior to the last
reference to it. By making use of an XCONS operation
there is no longer any need to load accumulator 2 with
RL at TAG2. This implies that accumulator 2 must be
loaded with CAR(L) at location PC6. The pair of branch
instructions at locations PC3 and PC4 can be placed
before saving L at PC2. In fact, a more optimal move is
to simply replace them by a JUMPE to PC11. Recursion
at PC9 may be replaced by iteration provided that the
stack pointer is adjusted prior to the jump. Further
reduction in execution time can be achieved by observing
that instead of an unconditional jump at PC9 to a
conditional jump prior to PC2, we may perform a con-
ditional jump at PC9 with the sense of the test reversed.
This will be referred to as loop shortcutting. (See [28] for
a similar idea.) To a Sail [22] programmer this concept
is somewhat analogous to the similarity between a FOR
loop and a DO UNTIL loop. Thus Figure 6 contains a
jump to location REV from PC7 rather than to the start
of the program.

The encoding in Figure 6 contains a PUSH operation
at location REV which has the effect of recycling the stack
location released at location PC6. The length of the inner
loop could be decreased by two instructions if we would
place the value of CDR(L) on the stack as well as in
accumulator 2. Thus the PUSH and the stack adjustment
operations at locations REV and PC6, respectively, could
be moved out of the inner loop. Figure 7 shows one
possible way to achieve this effect by use of a HRRZS
instruction. This instruction forms a word containing
zero and the right half of the contents of the effective
address and stores it in both the accumulator specified
by the accumulator field and the location addressed by

Communications July 1978
of Volume 21
the ACM Number 7

the effective address. Such an optimization has the in-
teresting effect of modifying the calling sequence from
one where the arguments are in accumulators l and 2
when there is an external invocation of the function to
one where one of the arguments is now also on the top
of the stack when the function is invoked internally (that
is, recursion via PC6).

At a first glance it would seem that we have succeeded
in reducing the length of the inner loop to four instruc-
tions. However, use of the proof system reveals that we
have erred. Unfortunately, the HRRZS@ instruction at
PC5 places its result back in the location designated by
the effective address. Thus instead of CDR(L) b e i n g

placed on the top of the stack we have succeeded in
changing the right half of the location pointed at by L to
be 0. That is, CAR(L) becomes 0 or NIL. The left half of
the location pointed at by L remains the same as does
the top of the stack which still contains a pointer to L.
Note that accumulator 2 has been loaded with 0 and
CDR(L) in the left and right halves, respectively. In
Section 4.2 we shed some light on how the error was
detected.

Further reflection on the encoding in Figure 6 reveals
that the only reason for the PUSH and stack adjustment
operations at locations REV and PC6 is the external
function call to XCONS at PC4. However, XCONS only
destroys accumulators 1 and 2. Thus instead of saving L
on the stack at REV, we may store it in an accumulator,
say 3. This renders the operations at REV and PC6
unnecessary. In fact, we merely need to initialize accu-
mulator 3 with L and iterate with CDR(t.) in accumulator
3. Thus we are making use of a different calling sequence
for internal recursion since invocation of the function
from outside finds L in accumulator 2 while internal
invocation finds L in accumulator 3. The new encoding
is given in Figure 8. The change in the calling sequence
poses no problem for the proof system because whenever
loop shortcutting is performed we must make sure that
all locations that will be subsequently referenced are set
to their proper values. This is one of the tasks of the
symbolic interpretation process discussed in Section 4.2.

Observe that the length of the original encoding has
been reduced from 11 to 7 instructions. More impor-
tantly, the length of the inner loop has decreased from
10 to 4 instructions. The new encoding can be considered
optimal for the following reason. Algorithm 2 requires
five operations; CAR, CDR, CONS, the testing of the
nullness of L, and the iteration step. At times a test may
be combined with another nontest operation. We have
only one test operation. Therefore, the minimal number
of instructions with which we could accomplish our
desired computation is four and since we were able to
encode the function with four instructions we have
achieved the lower bound.

The above examples serve to indicate the type of
optimization we wish to be able to prove correct. Al-
though these encodings were a result of a hand optimi-
zation procedure, we feel that in the future such opti-

574

mizations could be achieved by a so-called postoptimiz-
ing program. The examples showed that there is a limit
to the number of optimizations that can be performed
before a change must be made to the algorithm. Specif~
ically, this was seen in the transition from Algorithm l
to Algorithm 2. We cannot prove the equivalence of the
two algorithms by using our techniques. Such work has
a greater payoff when done at the source level. In fact,
systems such as that reported in [4] are expressly designed
to deal with these issues.

4. Representation

The examples of Section 3 serve to demonstrate that
any proof system that is chosen must abandon any notion
of the existence of a unique relationship between the
source code and the object code. We have seen that
program translation is a many-to-many-process--that
there is no one-to-one relationship between source code
and object code. Therefore, there is no reflection of the
source-level syntax in the object code and thus we find
little use for decompilation [10] techniques--such meth-
ods attempt to reconstruct a high level program from the
object code. Instead we use an intermediate representa-
tion of the program referred to as the normal form which
reflects all of the computations and decisions that are
performed. In addition, this representation reflects an
ordering based on the relative times at which the various
computations are executed.

The proof system consists of the following phases.
The original high level language program is converted
to the intermediate representation by use of a set of
transformations. Similarly, the low level language pro-
gram is converted to the intermediate representation by
means of a process known as symbolic interpretation.
This process entails the interpretation of a procedure for
each instruction in the object program along each pos-
sible execution path. These procedures have the effect of
updating a model of the computation which reflects the
contents of relevant locations, conditions tested, and
computations performed. Next, an attempt is made to
prove that the two intermediate forms can be trans-
formed into each other. During the proof procedure
inequivalence may be detected and the sources of error
can often be pinpointed.

In the remainder of the paper we will give an over-
view of how the above notions are used in a proof system.
However, in order to have some framework for the
discussion we must assume the existence of a suitable
high level language, a low level language, and an exe-
cution-level definition. Our high level language is a
subset of Lisp and our object language is Lap.

Briefly, we are dealing with a subset of Lisp that
allows side effects and global variables. There are two
restrictions. First, a function may only access the values
of global variables or the values of its own local varia-
b l e s - i t may not access another function's local varia-

Communications July 1978
of Volume 2 l
the ACM Number 7

Fig. 9. Intermediate representation corresponding to Figure 1.

(EQ L NIL)

NIL (~APPEND (REVERSE (CDR L))
(CONS (CAR L) NIL))

Fig. 10. Numeric intermediate representation corresponding to
Figure 1.

(10 5 0)

o I16

bles. Second, the target label of a GO in a PROG must not
have occurred physically prior to the occurrence of the
GO to the label. For further discussion of this restriction
see Section 6.

4.1 Intermediate Representation
The intermediate representation has its root in the

work done by McCarthy [19] in showing the existence of
a canonical form for the theory of conditional expres-
sions and its use in proving equivalence. This theory
corresponds to analysis by cases in mathematics and is
basically a generalization of propositional calculus. As
an example, see Figure 9 which is a two-dimensional
realization of the intermediate representation corre-
sponding to Figure 1.

The basic entity of the intermediate representation is
a generalized boolean form (gbf) which can be visualized
as a tree, and has the form (p ~ x, y) where p, x, and y
are variables or gbf 's and are known as the premise,
conclusion, and alternative, respectively, p takes the
value of T (for true), NIL (for false), or undefined in
which case the gbf takes the value x, y, or undefined,
respectively. Two gbfs are said to be strongly equivalent
(denoted by =) if they have the same values for all values
of their constituent variables whereas they are weakly
equivalent (denoted by =w) if they have the same values
only when all of their constituent variables are defined.
Thus in the case of weak equivalence we disregard cases
where the premises are undefined. Equivalence can be
tested by the method of truth tables or by use of the
following axioms to transform any gbf into an equivalent
one.

(p--> a, a) = ~a (I)
(T--, a, b) = a (2)
(NIL =---) a, b) = b (3)
(p -----) T, NIL) =p (4)
(p -~ (p --, a, b), c) = 6o -~ ~, c) (5)
(p--~ a, (p ~ b, c)) = (p ~ a, c) (6)
((p ~ q, r) ~ a, b) = (p ~ (q ~ a, b), (r ~ a, b)) (7)
(p ~ (q ~ a, b), (q ~ c, d)) = (q ~ (p ~ a, c), (p ~ b, d)) (8)

The above axioms can be used to transform any gbf
into a normal form which is a binary tree whose nonter-
minal nodes correspond to variables taking on values of
T or NIL and whose terminal nodes represent general

575

valued variables. There is a normal form algorithm for
both weak and strong equivalence-- the difference being
that during the provess of obtaining the normal form for
strong equivalence axiom (1) can not be used at will. It
can only be used when its premise variable is defined.

In order for the above ideas to be useful in proving
the correctness of translation of Lisp programs we must
show how they are adapted to include the constructs
present in Lisp programs. We are primarily interested in
proving strong equivalence and in the more general
notion of functions rather than variables.

For example, the relation of functions to gbf 's is
given by the distributive law:

f (X l X i -1 , (p --* q, r), Xi+l x,~)

= (p ----~f(x, x i - 1 , q, x i+, Xn),
• f (x l x i - , , r, Xi+x Xn))

A COND is normally of the form (COND (pl el) (p2 e2)
• .. (pn e,)) and it is mapped into (pl ---* ea, (p2 ---> e2
(pn --'-> en, NIL) ...)). We generalize this form to enable a
sequence of computations to be specified in case a con-
dition is true. This is achieved by the introduction of the
function FL, defined to be a function of one or more
arguments, which returns, as its result, the value of its
final argument. For example, in the above COND if it was
desired to perform the computations e21 and ezz in case
p2 is true, then we would have the following mapping:

(COND (101 el)(p2 e2a e2z) ... (pn en))

= (pa ~ el, (p2 ~ FL(ezl, ez~) (pn ~ en, NIL) ...))

We also add a capability for dealing with internal
lambdas, PROG'S, and global (SPECIAL) variables. These
constructs involve a feature absent in the treatment of
[19]--the concept of a variable and assignments made to
it. In proving equivalence we will want to make certain
that SPECIAL (global) variables are assigned their appro-
priate values; however, local variables and variables
associated with internal lambdas (lambda variables) exist
only as placeholders for computations. Therefore, for the
latter, the act of assignment is only temporary and thus
is not a necessary component of the equivalence. That
is, in proving equivalence we wish to show that the
programs perform the same computations on the Lisp
environment which means that identical conditions are
tested and identical side effects occur. In the case of local
and lambda variables we simply use their bindings and
ignore the act of assignment. In the case of SPECIAL
variables we use their bindings as well as record the act
of assignment.

In the process of obtaining a normal form we will be
using the distributive law for functions and conditions.
This will mean that certain computations, namely con-
ditions, will be moved so that the physical position will
no longer indicate the sequence of computation. For
example, in the distributive law for functions given
above, the predicate p is specified to be computed after
Xl , X2, . . . , Xi--1 and before q, r, Xi+l, xi+z, . . . , x , . However,
after application of the distributive law the computation

Communications July 1978
of Volume 21
the ACM Number 7

o fp might be misconstrued to take place before all other
computations. In order to maintain a record of the
original sequence of computation we need a representa-
tion of the Lisp program in terms of the order in which
computations are performed. What is really desired is a
numbering scheme having the characterization that as-
sociated with each computation is a number with the
property that all of the computation's predecessors have
lower numbers and the successors have higher numbers
(a partial ordering). For example, see Figure 10, which
is a numeric intermediate representation of the function
REVERSE given in Figure 1. Notice that the atom NIL is
assigned a computation number of zero and the com-
putation numbers associated with atomic variables are
smaller in magnitude than those associated with func-
tions since the variables were computed (i.e., their bind-
ings) prior to the execution of any computation in the
program. The numbers will be seen to be useful in the
proof procedure (see Section 4.3) when we will want to
prove the validity of rearranging the order of computing
arguments to a function.

4.2 Symbolic Interpretation
In order to obtain the intermediate representation of

the object program we require an assembly-language
understanding system. Such a system includes a mecha-
nism for describing a computer instruction set and to
some degree its basic architecture. Once such a mecha-
nism is defined, we make use of what is termed symbolic
interpretation to build the intermediate representation.
This is done by activating a set of procedures correspond-
ing to instructions in the object program.

The procedures are expressed in terms of other prim-
itive procedures (e.g. ACFIELD, EFFECTADDRESS, and
CONTENTS in Figure 1 l) in which is embedded, to some
extent, the execution-level definition of the high level
language (see Section 3). For each instruction there is a
procedure that specifies how the instruction affects an
entity known as the computation model. This model
reflects, by use of an equality database, the contents of
the various data structures relevant to the execution of
the program (e.g. accumulators, stack, etc.), the values of
the conditions that have been tested, and any side effect
computations that have taken place. The procedural
description must also provide a capability to invoke
various parts of the object program as is the case when
processing a condition, branch, or a function call.

As an example of the instruction-description facility,
consider Figure 11 where the MOVE and HRRZS@ in-
structions of the PDP-10 are described. Each instruction
is described via an MLISP FEXPR (a procedure whose
arguments have not yet been evaluated). The argument
to each such procedure represents a list containing all
but the OPCODE fields of a Lap instruction. For example,
symbolic interpretation of the (MOVE 2 l) instruction at
label PC8 of Figure 2 will result in the invocation of the
MOVE procedure with ARGS being bound to the list (2
1)--i.e., we have the procedure call (MOVE 2 1). This is

576

Fig. 11. MOVE and HRRZS@ instruction descriptions.

FE)~R MOVE (ARGS)"
LOADS TORE (ACFIEL~ (ARGS) ,CONTENTS (EFFECTADDRES S (ARGS))) ;

FEXPR HRRZS@(ARGS);
BEGIN

NEW ADDRESS, CONTNTS ;
ADDRES S+I NDIRECT (CONTENTS (EFFECTADDRES S (ARGS)));
CONTNTS ~-EXr ENDZ ERO (RIGHTCONTENTS (ADDRESS)) ;
LOADS TOR E (ACF IELD (ARGS), CONTNT S) ;
LOADSTORE (ADDRESS, CONTNTS) ;

END ;

all made possible by the EVAL mechanism of Lisp which
enables the program and data to be indistinguishable.

The instruction descriptions are used in the following
manner. In the case of the (MOVE 2 1) instruction at label
PC8 in Figure 2, the computation model is updated by
LOADSTORE to indicate that accumulator 2 contains the
same computation as accumulator 1, which is known by
the model to contain CONS(CAR(L), NIL). In the case of
the (HRRZS@ 2 0 12) instruction at label PC5 in Figure
7, the computation model is updated by LOADSTORE to
indicate that accumulator 2 contains CDR applied to the
top of the stack, which is known by the computation
model to contain L. In other words, accumulator 2
contains CDR(L). In addition, the computation model is
updated by LOADSTORE to indicate that the left half of
the location pointed at by L is loaded with 0 (i.e., NIL).
However, this is the definition of a RPLACA operation
and thus RPLACA(L, NIL) is also added to the set of
computations that have been performed. Note that no-
where in the procedural definition of HRRZS@ is there
any indication that CDR is being computed. We are able
to detect the computation of CDR by virtue of the act of
fetching the right half of the contents of a Lisp pointer.
This is because the computation model is aware that the
contents of the left and right halves of a cell pointed at
by a Lisp pointer contain CAR and CDR, respectively, of
the pointer. Such computations are recognized by the
primitives which are used to describe the instructions
(e.g. CONTENTS, EEEECTADDRESS, etc.). Clearly, other
instructions can be used to achieve the effect of CDR, yet
we do not need to state this in our instruction description.

The MOVE and HRRZS@ instructions have straight-
forward instruction descriptions since their only effect is
the modification of the computation model. Other in-
structions perform control operations such as conditional
branching as well as modify the computation model. In
this case we need additional descriptive mechanisms.

For example, when conditional branching instruc-
tions are encountered, the symbolic interpretation proc-
ess attempts to form a description of a test using con-
structs of the high level language and then determines if
its value is known. In the affirmative case the appropriate
path is taken and the next instruction along the path is
symbolically interpreted. Such situations arise when
either the operands of the test do not involve data items
of the high level language (e.g. Lisp pointers) or the
condition represents a test whose value has been deter-
mined earlier in the execution path. The determination
of the value of a test is accomplished by interrogating

Communications July 1978
of Volume 2 l
the ACM Number 7

Fig. 12. Tree representation of a test.

PREDICATE

CONCLUS ION ALTERNATIVE

Fig. 14. Result of symbolic interpretation of(SK~PN 21) in Figure 3.

(EQ L NIL)

UNKNOWN-CONCLUSION UNKNOWN-ALTERNATIVE

Fig. 13. SKIPN instruction description.

FEXPR SKIPN (ARGS) ;
BEGIN

NEW M~G, TST ;
ME}IG~-CONTENTS (EFFECTADDRES S (ARGS)); GS -
IF ACFIELD(ARGS) NEQ 0 THEN LOADSTORE(ACFIELD(AR),MEMG);
TST+CHECKTEST (MEMG, ZEROCNST) ;
IF TST THEN RETURN(

IF CDR TST THEN NEXTINSTRUCTION()
ELSE UNCONDITIONALSKIP()) ;

FALS EPREDIC ATE () ;
CONDIT IONALS KIP (ARGS, FUNCT ION SKI PNTRUE) ;
SKIPALTERNATIVE (ARGS, FUNCTION SKIPNFALSE) ;

END ;

FEXPR SKIPNTRUE (ARGS) ;
UNCONDITIONALS KIP () ;

FEXPR SKIPNFALSE(ARGS);
NEXt INS TRUC TION () ;

the computation model which is cognizant of the results
of all tests along the execution path. If the condition is
a test whose value is unknown, then the two alternate
paths are symbolically interpreted in order, and the result
returned is a tree as shown in Figure 12.

Prior to the evaluation of each path, the computation
model is updated to reflect the assumed value of the test.
This includes modification of relevant memory locations
as well as propagating equalities and inequalities, as the
case may be, through the equality database. This latter
step is crucial to having the capability to recognize the
occurrence of substitution of equals for equals. For
example, in Algorithm 1 of REVERSE, once L is known
to be equal to NIL we may use L or NIL interchangeably.

The equality database is a set of equivalence classes
and pairs of inequivalences which have resulted from the
symbolic interpretation of the various conditions along
an execution path. Transitivity and functional applica-
tion are fully propagated. Equality and inequality of two
operands is determined by parsing their symbolic rep-
resentations and checking if they are members of the
same equivalence class [25]. If the two operands are
members of the same equivalence class, then they are
known to be equal. If the parsing process determines
that the two operands are in different equivalence classes,
then we must determine if these two classes are known
to be inequivalent. This is achieved by assuming that the
two equivalence classes are equal and correspondingly
updating the database to reflect the merging of the two
classes. If a contradiction is obtained during the propa-
gation of the equivalence, then the two operands are
known to be unequal. Otherwise, the equality of the two
operands is unknown.

An example of a conditional branch instruction is
SKIPN (see Figure 13) which is used to skip the following
instruction if the contents of the effective address is
nonzero. In addition, if the accumulator name specified
by the accumulator field is nonzero, then the said accu-
mulator is loaded with the contents of the effective

577

address. The instruction description first tests for the
occurrence of a nonzero accumulator name. Once this is
done, we see the use of several control primitives in order
to provide for the symbolic interpretation of both alter-
natives of the test. CHECKTEST examines the operands
and, if possible, forms a valid test. (TST is a local variable
which temporarily records the result of the test.) Next, if
the value of the condition is already known, then appro-
priate action is taken. FALSEPREDICATE marks the sense
of the test. (An instruction skipping on equality with
zero would u s e TRUEPREDICATE.) CONDITIONALSKIP
and SKIPALTERNATIVE (and similarly CONDITIONAL-
JUMP and JUMPALTERNATIVE in the case of a conditional
branch) serve to recursively invoke the symbolic inter-
pretation of the paths corresponding to the true and false
cases of the test. One of the parameters to these primitives
is the name of another routine which specifies any further
processing that might be required prior to executing the
path. The actual updating of the computation model
occurs in control routines such as CONDITIONALSKIP and
SKIPALTERNATIVE. Specifically, the computation model
is saved in CONDITIONALSKIP prior to the reinvocation
of the symbolic interpretation process for the true case
of the condition and restored to its previous value prior
to exiting from CONDITIONALSKIP. Note that the com-
putation model needs to be saved only when a condi-
tional branch instruction is encountered. The construc-
tion of the tree corresponding to the result of the sym-
bolic interpretation process occurs in SKIPALTERNATIVE.

Whenever the symbolic interpretation process is
about to interpret an instruction which has been previ-
ously encountered along the path being symbolically
interpreted (i.e. loop shortcutting), then recursion is as-
sumed to have taken place (recall the branch to label
REV in Figure 8.) In such a case, the symbolic interpre-
tation process will attempt to show that if a branch had
indeed been made to the start of the program, then the
said instruction would have been reached with the same
state of the computation model by ,drtue of known
values for all of the conditions along some path to the
instruction in question. If such a path from the start of
the program exists, then it is unique since a condition
cannot be both true and false. Note that the contents of
all locations that are subsequently referenced prior to
being overwritten must contain appropriate values. In
fact, this is one of the ways the error was detected in the
branch from PC6 to REV in Figure 7. In this case accu-
mulator 2 and the top of the stack will both be referenced
subsequent to REV prior to being overwritten. Further-
more, when REV is entered via PC2, accumulator 2 and
the top of the stack contain identical or equivalent values.
Yet, when REV is entered via PC6, accumulator 2 con-
tains CDR(L) while the top of the stack contains L.

Communications July 1978
of Volume 21
the ACM Number 7

Fig. 15, Intermediate representation corresponding to Figure 3.

(1o 5 o)

L (*APPEND (REVERSE (CDR L)) 5 (20 (18 (16 5))
(CONS (CAR L) NIL)) (14 (12 5) 0))

Fig. 16. Partial trace of proof of equivalence of Figure 3 and Figure 1.

i.

* **NORMAL***
(EQ L NIL)

NIL (*APPEND (REVERSE (CDR L)i
(CONS (CAR L) NIL))

REDER IVED
(EQ L NIL)

NIL (*APPEND (REVERSE (CDR L))
(CONS (CAR L) NIL))

MANIPULATE NORMAL FORM TO MATCH REDERIVED FORM

(30 5 O)

0 (40 1334 13362
(10 5 0)

0 (20 (18 5)) . 4 6 2 5) 0))

1. 1.

(EQ L NIL)
BY USING THE FORM
(EQ L NIL) / - . . .

NIL (*APPEND (REVERSE (CDR L))
(CONS (CAR L) NIL))

TRYING TO MATCH THE COMPUTATION NUMBERS APPEARING IN THE FUNCTION

(IO 5 o)

(30 5 0)

0 (40 (34 (32 5))
(38 (36 5) 0))

i. I. i. COMPUTATION NUMBER I0 IS MATCHED BY COMPUTATION NUMBER 30

i. 2. TRYING TO MATCH THE COMPUTATION NUMBERS APPEARING IN THE FUNCTION

NIL 0
BY USING THE FOR/4
N IL 0

i. 3. TRYING TO MATCH THE COMPUTATION NUMBERS APPEARING IN THE FUNCTION

(*APPEND (REVERSE (CDR L))
(CONS (CAR L) NIL))

BY USING THE FORM
(*APPEND (REVERSE (CDR L))

(CONS (CAR L) NIL))

(20 (18 (16 5))
(14 (12 5) 0))

(40 (34 (32 5))
(38 (36 5) 0))

1.3.1.

1.3.2.

1.3.3.

1.3.4.

1.3.5.

COMPUTATION NUMBER 12 IS MATCHED BY COMPUTATION NUMBER 36

COMPUTATION NUMBER 14 IS MATCHED BY COMPUTATION NUMBER 38

COMPUTATION NUMBER 16 IS MATCHED BY COMPUTATION NUMBER 32

COMPUTATION NUMBER 18 IS MATCHED BY COMPUTATION NUMBER 34

COMPUTATION NUMBER 20 IS MATCHED BY COMPUTATION NUMBER 40

As an example of the symbolic interpretation process,
consider the encoding of Algorithm 1 of REVERSE given
in Figure 3. The first instruction that we encounter is
SKIPN which is used to skip to label PC3 if accumulator
1 is nonzero. The result is shown in Figure 14. Recalling
that NIL is represented by zero, we observe that the test
corresponds to checking if the list L is NIL--i.e. (EQ L
NIL). Since neither of the paths corresponding to the true
and false cases of the test have yet been symbolically
interpreted, we denote the two subtrees as UNKNOWN-
CONCLUSION and UNKNOWN-ALTERNATIVE. This pro-
cedure is continued in this manner until the symbolic
and numeric intermediate representations shown in Fig-
ure 15 are obtained. The numbers are assigned to the

578

computations as they are symbolically interpreted.
Again, only the relative ordering is significant.

4.3 Proof
The proof procedure makes no use of a theorem

prover. Instead, it relies on the intermediate representa-
tion of the original function being placed in a normal
form. This form is obtained by a two-part algorithm.
The first part corresponds to application of axioms (2),
(3), and (7) along with the distributive law for functions
while simultaneously binding variables to their proper
values. The latter is necessary when SETQ'S (Lisp's as-
signment operator) and internal lambdas are being used.
The second part corresponds to making use of axioms

Communications July 1978
of Volume 21
the ACM Number 7

(2), (3), (5), and (6) to remove predicates whose values
are known and to replace duplicate occurrences of com-
putations by their first occurrence. As an example of the
former consider the gbf (p ~ - (q ~-- (p ~-- a, b), c), d).
The second instance ofp is redundant and is replaced by
its equivalent--i .e.T. Subsequent application of axiom
(2) results in the form (p ~- (q *- a, c), d).

Note that when duplicate occurrences of computa-
tions are replaced by their first occurrences we must
make sure that they are indeed duplicate. For example,
when a computation such as CDR(L) is computed more
than once along an execution path, then the second
occurrence is a duplicate only if no computations took
place between the two instances which might cause them
to have different values (e.g. a RPLACD operation which
has as its side effect the modification of a right half of
some element in the List Structure). The detection of
redundancies and the determination that no intervening
side effect computations have occurred is aided by a flow
analysis and by the numeric representation where the
latter indicates a relative order for the instances of com-
putation of all computations along an execution path.

At this point we have a normal form representation
for the original Lisp program. As mentioned earlier, the
symbolic interpretation procedure returns a similar rep-
resentation for the object program. To this representation
we also apply the second part of the above normal form
algorithm to replace duplicate occurrences of computa-
tions by their first occurrence. In cases where no com-
putation rearrangement or loop shortcutting has taken
place, equivalence will now hold. For many compilers
such situations are not uncommon. Otherwise we must
prove that using our axioms, either one of the forms can
be transformed into the other. This procedure, termed
matching, begins by attempting to prove that each com-
putation appearing in one of the forms appears in the
other and vice versa. This matching process is accom-
plished by uniformly assigning the computation numbers
in one form, say B, to be higher than all of the numbers
in the other form, say A, and then, in increasing order,
search form B for matching instances of computations
appearing in form A. Whenever a computation, say C,
in A is matched by a computation, say D, in B, then D
is replaced by C, which has a lower computation number
and the proof continues. During the proof liberal use is
made of axioms (1), (2), (3), (5), and (6) as well as
substitution of equals for equals, and possibly functional
expansion in cases of loop shortcutting where conditions
are precomputed (e.g. in the proof of the equivalence of
Figures 4 and 8).

As an example in which a computation appears in
one form and not in the other consider a slightly modified
version of Figure 6 where PC7 is 0UMPN 2 PC 1) instead
of (JUMPN 2 REV) and PC5 has changed from (HRRZ@
2 0 12) to (HRRZS@ 2 0 12). In this case, the only
problem is that an (RPLACA L NIL) results from the
HRRZS@ operation at PC5 in addition to loading accu-
mulator 2 with (CDR L). Unfortunately, the original

579

program in Figure 4 does not call for the computation of
(RPLACA L NIL). Thus we see why the proof system must
prove that each computation that appears in one form
must appear in the other form and vice versa.

For our examples we must prove the equivalence of
Figures 9, 10, and 15. Symbolically, the two intermediate
representations are almost identical. The only difference
is that when (EQ L NIL) is true, the intermediate repre-
sentation corresponding to the original program indicates
that a value of NIL is to be returned while the interme-
diate representation corresponding to the Lap program
in Figure 3 indicates that L ought to be returned. In fact,
this discrepancy is resolved by the component of the
proof procedure which replaces duplicate occurrences of
computations by their first occurrence. Thus, in reality,
L is replaced by NIL since NIL has a lower computation
number by virtue of the numbering scheme which assigns
a computation number of 0 to the atoms T and ME.

The numeric intermediate representations of the ar-
guments to *APPEND also differ. Specifically, (REVERSE
(CDR L)) is computed before (CONS (CAR L) NIL) in the
original program while the Lap program in Figure 3
reverses this order. The proof must show that this vari-
ation preserves equivalence. Since no global variables
are being referenced here, the only possible side effects
are RPLACA and RPLACD operations whose occurrence
would affect the rearrangement of the order of comput-
ing functions involving the computation of CAR or CDR,
respectively. However, neither CONS, REVERSE, nor *AP-
PEND involve such operations. Thus the rearranging is
valid.

One half of the actual proof for our example, a proof
that each computation in the intermediate representation
corresponding to Figure 3 (termed the rederived form)
appears in the intermediate representation corresponding
to Figure l (termed the normal form) is given in Figure
16. There are several items of note. First, when (EQ L
NIL) is true, NIL, rather than L, is being used since
duplicate computation removal has already been ap-
plied. Second, all computation numbers of functions in
the normal form are higher than all of the computation
numbers in the rederived form. Of course, the occur-
rences of the atoms NIL and L have the same computa-
tion numbers in both forms since they can be thought to
be computed (i.e., bound in the case of L) prior to the
invocation of the function being processed. For example,
in proving that (CAR L) in the rederived form is matched
by (CAR L) in the normal form, we must prove that
between computation number 12 and 36 no operation is
performed in the normal form whose result is the modi-
fication of the left half of a Lisp cell. In other words,
computation numbers 32 and 34 which correspond to
(REVERSE (CDR L)) do not involve RPLACA operations.
We are not concerned with computation number 30
which corresponds to the predicate EQ, since it has
already been matched by computation l0 and hence has
been replaced in the normal form by 10.

The examples we have seen illustrate that the two

Communications July 1978
of Volume 21
the ACM Number 7

intermediate representations are often very similar. In
fact, if no loop shortcutting or rearrangement of com-
putations (this includes common subexpression elimi-
nation) take place, then the intermediate representations
will be identical. Nevertheless, such cases should not
detract from our techniques; the point to note is that in
these cases the symbolic interpretation process often
results in the detection of errors as well as in the verifi-
cation of the extraction of several redundant computa-
tions. For example, recall the errors in Figure 7 pertain-
ing to the erroneous calling sequence.

5. Implementation Status

A system has been implemented to prove the cor-
rectness of translation of Lisp programs to Lap and is
currently running on a PDP-10. Both Lisp 1.6 and ucI
LisP [3] can be handled. The system is written in Mlisp
and consists of two components which may be run
separately. One component, DERIV, corresponds to the
symbolic interpretation procedure and returns as its re-
sult a suitable intermediate representation for a Lap
program. The second component, CANON, proves the
equivalence of the original Lisp program and the output

of DERIV.
The proof system is interactive in the sense of asking

the" riser a set of questions to aid in the proof process.
These questions deal with calling sequence conventions
and properties of functions which may be needed in a
proof. For example, the system needs to know if the
optimization process makes use of the commutativity of
functions other than p lus and TIMES. Similarly, the
system must be made aware of the antisymmetry of pairs
of operations other than CONS-XCONS and LESS-GREAT
(e.g. A < B is equivalent to B > A).

When given a pair of programs to try to prove
equivalent, the system will always terminate with a yes
or no answer. A "yes" answer means that the programs
are equivalent. A "no" answer results when either an
error has been found or certain components of the
intermediate representation cannot be matched due to
insufficient equality information. There are two types of
errors. Errors that are detected during symbolic interpre-
tation generally correspond to an object program that
does not obey calling sequence conventions--i.e, the
program is not well formed. For example, recall the
erroneous encoding in Figure 7. Errors detected during
the proof procedure generally correspond to computa-
tions present in the object program and absent in the
source program or vice versa. The actual location of
many errors can be pinpointed by virtue of the numeric
representation of the function that was processed by the
symbolic interpretation procedure. Specifically, a dic-
tionary is kept containing all of the computation numbers
with the instruction number and execution path along
which they have been computed. When the proof pro-
cedure detects certain errors, it outputs the dictionary
entry associated with the offending computation.

580

The system has been used to prove the correctness or
incorrectness of a large number of programs. For ex-
ample, one program named Hier [24] was compiled by
the Lisp 1.6 compiler to yield an encoding of 145 instruc-
tions. Using the types of optimizations discussed in Sec-
tion 3, the object program was hand optimized to yield
an encoding consisting of 105 instructions which, in
addition, was 40 percent faster and required 50 percent
less stack space. The most interesting aspect of the hand
coding was that during the coding process a number of
errors were made. However, the system was able to
detect all of these errors and emit error messages that
pinpointed the locations of the errors. The actual process
of correcting the errors took several iterations through
the proof system since only one error at a time can be
detected for each execution path.

When using compiled code, the two components
DERIV and CANON Occupy 19K and 14K 36 bit words on
a PDP-10. Of course there is a need for additional space
for the basic Lisp system (25K) and the list structures.
The latter is primarily dependent on the size and com-
plexity of the program being processed.

The amount of time necessary to prove the correct-
ness of translation is dependent on the size of the func-
tion and the type of optimization performed. We are
primarily concerned with the number of conditions
tested in each function since the symbolic interpretation
process and the proof procedure must explore all possible
execution paths. This implies a possible exponential
contribution by the function size (in term of conditions)
to the amount of time required to perform a proof (but
see the note about COND in Section 6). Optimized encod-
ings exhibiting loop shortcutting where conditions are
precomputed, as in Figure 8, require slightly longer
proofs since the symbolic interpretation process must
prove that values of conditions whose computation has
been bypassed are known, as well as demonstrate that
all locations referenced subsequent to the target label of
the instance of loop shortcutting have appropriate values.
For example, on a PDP-10 (KLI0-AA with 384K mem-
ory) using core images of 55K resulted in a proof of the
equivalence of Figures 1 and 3 taking 8 seconds, Figures
4 and 8 taking l0 seconds, while 50 seconds were nec-
essary for the hand-optimized version of Hier mentioned
earlier.

6. Conclusion

An overview has been presented of a formalism for
proving the correctness of translations involving a heu-
ristic code optimization process. The formalism has been
demonstrated by means of a system which proves the
correctness of translations involving Lisp and Lap.
Clearly, instruction sets of other computers could also be
handled. Extending our ideas to other computers would
serve to highlight any deficiencies in our machine-de-
scription process. A more ambitious direction is to at-

Communications July 1978
of Volume 21
the ACM Number 7

t empt to app ly our techniques to o ther h igh level lan-
guages. Admi t t ed ly , Lisp is a ra ther s imple l anguage in
terms o f its constructs. In par t icular , its cont ro l s t ructure
(i.e. case analysis) is qui te s imi lar to our in te rmedia te
representa t ion . Nevertheless , we feel that o ther well-
s t ruc tured high level l anguages could also be handled .

In Sect ion 4 we men t ioned a res t r ic t ion on b a c k w a r d
jumps . Specif ical ly, we said that, at present , in a PROG
we can only hand le the GO construct whose target label
has not occurred phys ica l ly pr ior to the GO statement .
This restr ic t ion is re la ted to the quest ion o f loops and
b a c k w a r d jumps . Par t o f the p rob l em is our insistence
on in terpre t ing recurs ion to have occurred whenever the
symbol ic in te rpre ta t ion process is abou t to in terpre t an
ins t ruct ion which has been prev ious ly encoun te red a long
the pa th (i.e. loop shortcut t ing) . A solut ion is to b reak
up the or ig inal h igh level l anguage p rog ram into modules
o f intervals [l , 2] having one ent ry po in t and several exit
points. Branches which j u m p back anywhere wi thin the
in terval o ther than to the ent ry node o f the in terval are
assumed to be cases o f loop shortcut t ing. Branches to
points o ther than ent ry nodes in o ther in tervals are also
assumed to be cases o f loop shortcut t ing. Proofs would
be necessary for each o f these intervals.

Symbol ic in terpre ta t ion , as well as the p r o o f process,
must exercise all possible execut ion paths. This is differ-
ent f rom symbol ic execut ion [12] where var ious cases o f
a h igh level l anguage p rog ram are tested by use o f
symbol ic values for the parameters . Thus our system has
a po ten t ia l d r a w b a c k in that for a p r o g r a m with a large
n u m b e r o f IF THEN ELSE s ta tements the in te rmedia te
represen ta t ion (i.e. the tree) might grow to be ra ther
large. Specif ical ly, for N such s ta tements we might have
to process 2**N execut ion paths. For tuna te ly , condi t ions
in recursive p rog rams o f the na ture with which we are
dea l ing are more o f the form of a COND. In such a case
N condi t ions only represent N + 1 execut ion paths.
Nevertheless , the p r o b l e m associa ted with the 2**N ex-
ecut ion pa ths could be a l lev ia ted by use o f the no t ion o f
intervals presented above. In fact, scrut iny o f m a n y Lisp
p rog rams reveals them to consist o f a large set o f smal l
recursive funct ions very much ak in to the not ion o f
intervals. Al terna t ive ly , a facil i ty could be p rov ided for
the user to select which execut ion pa ths are to be tested.

The system as presented here f inds usefulness as a
pos top t imiza t ion c o m p o n e n t o f a compi ler . It is also
wel l -sui ted to an in teract ive op t imiza t ion process where
a user sits at his t e rmina l and in terac t ive ly appl ies t rans-
fo rmat ions to his p rogram. Dur ing this process, mis takes
m a y be made , and i f possible they are detected, and the
user is i n fo rmed o f his e r rant ways. This is qui te s imi lar
to a system for achieving the type o f results p roposed in

[13].
A n o t h e r po ten t ia l app l ica t ion o f a p r o o f system for

the correctness o f t rans la t ion is in the d o m a i n o f boot -
s t rapping. Suppose we only have a Lisp in te rpre te r avai l -
able and we desire to have a compiler . The solut ion is to
wri te such a compi le r in Lisp, say C, and let the compi le r

581

t rans la te i tself to y ie ld C' wri t ten in a s sembly language.
A p r o o f system such as the one descr ibed here in can be
used to prove that C and C' are equiva len t and hence
that they genera te equ iva len t code. This is accompl i shed
by proving that C has correct ly t rans la ted C to y ie ld C'.
In fact, such ideas are po ten t ia l ly useful in dea l ing with
crosscompi lers for min icompute rs . However , we might
add as a note o f caut ion, that d i f ferent mach ine archi-
tectures m a y cause p rob lems with respect to di f ferent
word sizes, cha rac te r formats , i npu t -ou tpu t pr imit ives ,
and o ther m a c h i n e - d e p e n d e n t factors.

8. Appendix

PDP-10 Operations
CALL A special Lap instruction which is analogous to a

PUSHJ. The difference is that it is used to invoke Lisp
functions via the property list. This is useful when a
trace of the arguments to a function is desired, or when
the actual binding of a function changes. (CALL num
(E fname)) denotes a CALL to fname where num is the
number of arguments.

HLRZ Load the right half of accumulator AC with the left half
of the contents of the effective address and clear the
left half of AC.

HRLZ@ Same as HLRZ with indirect addressing.
HRRZ Load the right half of accumulator AC with the right

half of the contents of the effective address and clear
the left half of AC.

HRRZ@ Same as HRRZ with indirect addressing.
HRRZS Load the right half of accumulator AC with the right

half of the contents of the effective address and clear
the left half of AC. The same value is also stored in the
effective address--i.e., the left half of the effective
address is set to zero.

HRRZS@ Same as HRRZS with indirect addressing.
JCALL A special Lap instruction which is analogous to a JRST.

The difference is that it is used to invoke Lisp functions
via the property list. This is useful when a trace of the
arguments to a function is desired, or when the actual
binding of a function changes.

JRST Unconditional jump to the effective address.
JUMPE Jump to the effective address if the contents of accu-

mulator AC is zero; otherwise continue execution at the
next instruction.

JUMPN Jump to the effective address if the contents of accu-
mulator AC is unequal to zero; otherwise continue
execution at the next instruction.

MOVE Load accumulator AC with the contents of the effective
address.

MOVEI Load the right half of accumulator AC with the effective
address, and clear the left half.

POP Move the contents of the location addressed by the
right half of accumulator AC to the effective address
and then subtract octal l 000 001 from AC to decrement
both halves by one. If the subtraction causes the count
in the left half of AC to reach - l , then the Pushdown
Overflow flag is set.

POPJ Subtract octal l 000 001 from accumulator AC to
decrement both halves by one. If subtraction causes the
count in the left half of AC to reach - I, then set the
Pushdown Overflow flag. The next instruction is taken
from the location addressed by the right half of the
location that was addressed by AC prior to decrement-
ing.

PUSH Add octal l 000 001 to accumulator AC to increment
both halves by one and then move the contents of the

Communications July 1978
of Volume 2 l
the ACM Number 7

PUSHJ

SKIPN

SUB

effective address to the location now addressed by the
right half of AC. If the addition causes the count in the
left half of AC to reach zero, then set the Pushdown
Overflow flag.
Add octal 1 000 001 to accumulator AC to increment
both halves by one. If addition causes the count in the
left half of AC to reach zero, then set the Pushdown
Overflow flag. Store the contents of the program
counter and the processor flags in the right and left
halves, respectively, of the location now addressed by
the right half of AC, and continue execution at the
effective address.
Skip the next instruction if the contents of the effective
address is not equal to zero. If the AC field specification
is nonzero, then load accumulator AC with the contents
of the effective address.
The contents of the effective address is subtracted from
the contents of accumulator AC, and the result is left in
AC.

Acknowledgments . S p e c i a l t h a n k s go to P r o f e s s o r

V i n t C e r f fo r h i s c o n s t a n t a d v i c e a n d e n c o u r a g e m e n t

d u r i n g a p e r i o d in w h i c h s o m e o f t h i s r e s e a r c h w a s

p u r s u e d . T h a n k s a l so go to t h e r e f e r ee s a n d t h e ed i to r ,

B e n W e g b r e i t , f o r a s k i n g t h e r i g h t q u e s t i o n s .

Received February 1976; revised August 1977

References
1. Aho, A., and Ullman, J.D. The Theory of Parsing, Translation,
and Compiling, Vol. 2. Prentice-Hall, Englewood Cliffs, N.J., 1973, p.
938.
2. Allen, F.E. Control flow analysis. SIGPLAN Notices (ACM), 5,
7 (July 1970), 1-19, 239-307.
3. Bobrow, R.J., Burton, R.R., and Lewis, D. UCI LISP Manual.
Inform. and Comptr. Sci. Tech. Rep. No. 21, U. of California at
Irvine, Oct. 1972.
4. Boyer, R.S., and Moore, J.S. Proving theorems about LISP
functions. J. ACM 22, 1 (Jan. 1975), 129-144.
5. Burstall, R.M., and Darlington, J. Some transformations for
developing recursive programs. Proc. 1975 Int. Conf. on Reliable
Software, April 1975, pp. 465-472.
6. Digital Equipment Corp. PDP-10 System Reference Manual.
Digital Equipment Corporation, Maynard, Mass., 1969.
7. Deutsch, L.P. An interactive program verifier. Ph.D. Th., Dept.
Comptr. Sci., U. of California at Berkeley, May 1973.
8. Floyd, R.W. Assigning meanings to programs. Proceedings of a
Symposium in Applied Mathematics, Vol. 19, Mathematical Aspects of
Science, J.T. Schwartz, Ed., Amer. Math. Soc., Providence, R.I. 1967,
pp. 19-32.
9. Gerhart, S.L. Correctness preserving program transformations.
Proc. Second ACM Symp. on Principles of Programming Languages,
Jan. 1975, pp. 54-66.
10. Hollander, C.R. Decompilation of object programs. Ph.D. Th.,
Tech. Rep. No. 54, Digital Syst. Lab., Dept. of Electr. Eng., Stanford
U., Stanford, Calif., 1973.
I1. King, J.C. A program verifier. Ph.D. Th., Dept. of Comptr. Sci.,
Carnegie-Mellon U., Pittsburgh, Pa., 1969.
12. King, J.C. Symbolic execution and program testing. Comm. A CM
19, 7 (July 1976), 385-394.
13. Knuth, D. Structured programming with GO TO statements.
Rep. STAN-CS-74-416, Comptr. Sci. Dept., Stanford U., Stanford,
Calif., May 1974.
14. Lee, J.A.N. Computer Semantics. Van Nostrand Reinhold, New
York, 1972, 346-347.

.

15. London, R.L. Correctness of two compilers for a LISP subset.
Stanford Artif. Intell. Proj. Memo AIM-151, Comptr. Sci. Dept.,
Stanford U., Stanford, Calif., Oct. 1971.
16. London, R.L. The current state of proving programs correct.
Proc. ACM 25th Annual Conf., 1972, pp. 39-46.
17. Loveman, D.B. Program improvement by source to source

582

transformation. Proc. Third ACM Symp. on Principles of
Programming Languages, Jan. 1976, p. 145.
18. McCarthy, J. Recursive functions of symbolic expressions and
their computation by machine. Comm. ACM 3, 4 (April 1960),
184-195.
19. McCarthy, J. A basis for a mathematical theory of computation.
In Computer Programming and Formal Systems, P. Braffort and D.
Hirshberg, Eds, North Holland, Amsterdam, 1963.
20. Newell, A. Artificial intelligence and the concept of mind. In
Computer Models of Thought and Language, R.C. Schank and K.M.
Colby Eds., W.H. Freeman, San Francisco, 1973, pp. 1-60.
21. Quam, L.H., and Diffie, W. Stanford LISP 1.6 Manual. Stanford
Artif. Intell. Proj. Operating Note 28.7, Comptr. Sci. Dept., Stanford
U., Stanford, Calif., 1972.
22. Reiser, J.F., Ed. SAIL User Manual. Stanford Artif. Intell. Proj.
Memo AIM-289, Comptr. Sci. Dept., Stanford U., Stanford, Calif.,
Aug. 1976.
23. Samet, H. Automatically proving the correctness of translations
involving optimized code. Ph.D. Th., Stanford Artif. Intell. Proj.
Memo AIM-259, Comptr. Sci. Dept., Stanford U., Stanford, Calif.,
1975.
24. Samet, H. A study in automatic debugging of compilers. TR-545,
Comptr. Sci. Dept., U. of Maryland, College Park, Md., 1977.
25. Samet, H. Equivalence and inequivalence of instances of
formulas. TR-553, Comptr. Sci. Dept., U. of Maryland, College Park,
Md., 1977.
26. Smith, D.C. MLISP. Stanford Artif. Intell. Proj. Memo AIM-135,
Comptr. Sci. Dept., Stanford U., Stanford, Calif., Oct. 1970.
27. Suzuki, N. Verifying programs by algebraic and logical
reductions. Proc. 1975 Int. Conf. on Reliable Software, April 1975,
pp. 473-481.
28. Wegbreit, B. Property extraction in well-founded property sets.
IEEE Tran. Software Eng. SE-I,31 (Sept. 1975), pp. 270-285.
29. Wegbreit, B. Goal-directed program transformation. Proc. Third
ACM Symp. on Principles of Programming Languages, Jan. 1976,
pp. 153-170.

Communications July 1978
of Volume 21
the ACM Number 7

