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18.1 Introduction

The representation of multidimensional data is an important issue in applications in diverse fields that
include database management systems, computer graphics, computer vision, computational geometry,
image processing, geographic information systems (GIS), pattern recognition, VLSI design, and others.
The most common definition of multidimensional data is a collection of points in a higher dimensional
space. These points can represent locations and objects in space as well as more general records. As an
exampleof a record, consider an employee record that has attributes corresponding to the employee’s name,
address, sex, age, height, weight, and social security number. Such records arise in database management
systems and can be treated as points in, for this example, a seven-dimensional space (i.e., there is one
dimension for each attribute), albeit the different dimensions have different type units (i.e., name and
address are strings of characters, sex is binary; while age, height, weight, and social security number are
numbers).
Whenmultidimensional data corresponds to locational data, we have the additional property that all of

the attributes have the same unit, which is distance in space. In this case, we can combine the attributes and
pose queries that involve proximity. For example, we may wish to find the closest city to Chicago within
the two-dimensional space fromwhich the locations of the cities are drawn. Another query seeks to find all
cities within 50miles of Chicago. In contrast, such queries are not very meaningful when the attributes do
not have the same type. For example, it is not customary to seek the person with age–weight combination
closest to John Jones, as we do not have a commonly accepted unit of year-pounds (year-kilograms) or
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definition thereof. It should be clear that we are not speaking of queries involving Boolean combinations
of the different attributes (e.g., range queries), which are quite common.
Whenmultidimensional data spans a continuous physical space (i.e., an infinite collection of locations),

the issues become more interesting. In particular, we are no longer just interested in the locations of
objects but, we are also interested in the space that they occupy (i.e., their extent). Some example objects
include lines (e.g., roads, rivers), regions (e.g., lakes, counties, buildings, cropmaps, polygons, polyhedra),
rectangles, and surfaces. The objectsmay be disjoint or could even overlap. Oneway to deal with such data
is to store it explicitly by parametrizing it and thereby reduce it to a point in a higher dimensional space.
For example, a line in two-dimensional space can be represented by the coordinate values of its endpoints
(i.e., a pair of x and a pair of y coordinate values) and then stored as a point in a four-dimensional space.
Thus, in effect, we have constructed a transformation (i.e., mapping) from a two-dimensional space (i.e.,
the space from which the lines are drawn) to a four-dimensional space (i.e., the space containing the
representative point corresponding to the line).
The transformation approach is fine if we are just interested in retrieving the data. It is appropriate

for queries about the objects (e.g., determining all lines that pass through a given point or that share an
endpoint, etc.) and the immediate space that they occupy. However, the drawback of the transformation
approach is that it ignores the geometry inherent in the data (e.g., the fact that a line passes through a
particular region) and its relationship to the space in which it is embedded.
For example, suppose that we want to detect if two lines are near each other, or, alternatively, to find

the nearest line to a given line. This is difficult to do in the four-dimensional space, regardless of how the
data in it is organized, since proximity in the two-dimensional space fromwhich the lines are drawn is not
necessarily preserved in the four-dimensional space. In other words, although the two lines may be very
close to each other, the Euclidean distance between their representative points may be quite large.
Of course, we could overcome these problems by projecting the lines back to the original space from

which they were drawn, but in such a case, we may ask what was the point of using the transformation in
the first place? In other words, at the least, the representation that we choose for the data should allow
us to perform operations on the data. Thus, we need special representations for spatial multidimensional
data other than point representations. One solution is to use data structures that are based on spatial
occupancy.
Spatial occupancy methods decompose the space from which the spatial data is drawn (e.g., the two-

dimensional space containing the lines) into regions called buckets. They are also commonly known
as bucketing methods. Traditional bucketing methods such as the grid file [45], BANG file [22], LSD
trees [27], buddy trees [55], etc. have been designed for multidimensional point data that need not be
locational. In the case of spatial data, these methods have usually been applied to the transformed data
(i.e., the representative points). In contrast, we discuss their application to the actual objects in the space
from which the objects are drawn (i.e., two dimensions in the case of a collection of line segments).
In this chapter, we explore a number of different representations of multidimensional data bearing

the above issues in mind. In the case of point data, we examine representations of both locational and
nonlocational data, as well as combinations of the two. While we cannot give exhaustive details of all of
the data structures, we try to explain the intuition behind their development as well as to give literature
pointers to where more information can be found. Many of these representations are described in greater
detail in [50, 51], including an extensive bibliography. Our approach is primarily a descriptive one. Most
of our examples are of two-dimensional spatial data, although we do touch briefly on three-dimensional
data.
At times, we discuss bounds on execution time and space requirements. Nevertheless, this information

is presented in an inconsistent manner. The problem is that such analyses are very difficult to perform for
many of the data structures that we present. This is especially true for the data structures that are based on
spatial occupancy (e.g., quadtree and R-tree variants). In particular, such methods have good observable
average-case behavior but may have very bad worst cases which may only arise rarely in practice. Their
analysis is beyond the scope of this chapter and usually we do not say anything about it. Nevertheless,



these representations find frequent use in applications where their behavior is deemed acceptable, and is
often found to be better than that of solutions whose theoretical behavior would appear to be superior.
The problem is primarily attributed to the presence of large constant factors which are usually ignored in
the big O and � analyses [38].
The rest of this chapter is organized as follows. Section 18.2 reviews a number of representations of

point data of arbitrary dimensionality. Section 18.3 describes bucketingmethods that organize collections
of spatial objects (as well as multidimensional point data) by aggregating their bounding rectangles.
Sections 18.2 and 18.3 are applicable to both spatial and nonspatial data, although all the examples that
we present are of spatial data. Section 18.4 focuses on representations of region data, while Section 18.5
discusses a subcase of region data, which consists of collections of rectangles. Section 18.6 deals with
curvilinear data, which also includes polygonal subdivisions and collections of line segments. Section 18.7
contains a summary and a brief indication of some research issues. Section 18.8 reviews some of the
definitions of the terms used in this chapter. Note that although our examples are primarily from a
two-dimensional space, the representations are applicable to higher dimensional spaces as well.

18.2 Point Data

Our discussion assumes that there is one record per data point, and that each record contains several
attributes or keys (also frequently called fields, dimensions, coordinates, and axes). In order to facilitate
retrieval of a record based on some of its attribute values, we also assume the existence of an ordering for
the range of values of each of these attributes. In the case of locational attributes, such an ordering is quite
obvious as the values of these attributes are numbers. In the case of alphanumeric attributes, the ordering
is usually based on the alphabetic sequence of the characters making up the attribute value. Other data
such as color could be ordered by the characters making up the name of the color or possibly the color’s
wavelength. It should be clear that finding an ordering for the range of values of an attribute is generally
not an issue; the real issue is what ordering to use!
The representation that is ultimately chosen for the data depends, in part, on answers to the following

questions:

1. What operations are to be performed on the data?

2. Should we organize the data or the embedding space from which the data is drawn?

3. Is the database static or dynamic (i.e., can the number of data points grow and shrink at will)?

4. Can we assume that the volume of data is sufficiently small so that it can all fit in core, or
should we make provisions for accessing disk-resident data?

Disk-resident data implies grouping the data (either the underlying space based on the volume— that
is, the amount— of the data it contains or the points, hopefully, by the proximity of their values) into sets
(termed buckets) corresponding to physical storage units (i.e., pages). This leads to questions about their
size, and how they are to be accessed.

1. Do we require a constant time to retrieve a record from a file or is a logarithmic function of
the number of records in the file adequate? This is equivalent to asking if the access is via a
directory in the form of an array (i.e., direct access) or a tree?

2. How large can the directories be allowed to grow before it is better to rebuild them?

3. How should the buckets be laid out on the disk?

Clearly, these questions are complex and we cannot address them all here. Some are answered in other
sections. In this section, we focus primarily on dynamic data with an emphasis on two dimensions (i.e.,
attributes) and concentrate on the following queries:

1. Point queries — that is, if a particular point is present.



2. Range queries.

3. Boolean combinations of 1 and 2.

Most of the representations that we describe can be extended easily to higher dimensions, although some
like the priority search tree are basically for two-dimensional data. Our discussion and examples are based
on the fact that all of the attributes are locational or numeric and that they have the same range, although
all of the representations can also be used to handle nonlocational and nonnumeric attributes. When
discussing behavior in the general case, we assume a data set of N points and d attributes.

The simplest way to store point data is in a sequential list. Accesses to the list can be sped up by forming
sorted lists for the various attributes which are known as inverted lists (e.g., [37]). There is one list for each
attribute. This enables pruning the search with respect to the value of one of the attributes. In order to
facilitate random access, the lists can be implemented using range trees [10].

It should be clear that the inverted list is not particularly useful for range searches. The problem is that
it can only speed up the search for one of the attributes (termed the primary attribute). A number of
solutions have been proposed. These solutions can be decomposed into two classes. One class of solutions
enhances the range tree corresponding to the inverted list to include information about the remaining
attributes in its internal nodes. This is the basis of the multidimensional range tree and variants of the
priority search tree [15, 41] that are discussed at the end of this section.

The second class of solutions is more widely used and is exemplified by the fixed-gridmethod [9, 37]. It
partitions the space from which the data is drawn into rectangular cells by overlaying it with a grid. Each
grid cell c contains a pointer to another structure (e.g., a list) which contains the set of points that lie in c.
Associated with the grid is an access structure to enable the determination of the grid cell associated with a
particular point p. This access structure acts like a directory and is usually in the form of a d-dimensional
array with one entry per grid cell or a tree with one leaf node per grid cell.

There are two ways to build a fixed grid. We can either subdivide the space into equal-sized intervals
along each of the attributes (resulting in congruent grid cells) or place the subdivision lines at arbitrary
positions that are dependent on the underlying data. In essence, the distinction is between organizing the
data to be stored and organizing the embedding space from which the data is drawn [45]. In particular,
when the grid cells are congruent (i.e., equal-sized when all of the attributes are locational with the same
range and termed a uniform grid), use of an array access structure is quite simple and has the desirable
property that the grid cell associated with point p can be determined in constant time. Moreover, in this
case, if the width of each grid cell is twice the search radius for a rectangular range query, then the average
search time is O(F · 2d) where F is the number of points that have been found [11]. Figure 18.1 is an
example of a uniform-grid representation for a search radius equal to 10 (i.e., a square of size 20 × 202).

Use of an array access structure when the grid cells are not congruent requires us to have a way of
keeping track of their size so that we can determine the entry of the array access structure corresponding
to the grid cell associated with point p. One way to do this is to make use of what are termed linear scales,
which indicate the positions of the grid lines (or partitioning hyperplanes in d > 2 dimensions). Given a
point p, we determine the grid cell in which p lies by finding the “coordinate values” of the appropriate
grid cell. The linear scales are usually implemented as one-dimensional trees containing ranges of values.

The use of an array access structure is fine as long as the data is static. When the data is dynamic, it is
likely that some of the grid cells become too full while other grid cells are empty. This means that we need
to rebuild the grid (i.e., further partition the grid or reposition the grid partition lines or hyperplanes) so
that the various grid cells are not too full. However, this creates many more empty grid cells as a result

2Note that although the data consists of three attributes, one of which is nonlocational (i.e., name) and two of which
are locational (i.e., the coordinate values), retrieval is only on the basis of the locational attribute values. Thus, there
is no ordering on the name, and, therefore, we treat this example as two-dimensional locational data.



FIGURE 18.1 Uniform-grid representation corresponding to a set of points with a search radius of 20.

of repartitioning the grid (i.e., empty grid cells are split into more empty grid cells). In this case, we have
two alternatives. The first is to assign an ordering to all the grid cells and to impose a tree access structure
on the elements of the ordering that correspond to nonempty grid cells. The effect of this alternative is
analogous to using a mapping from d dimensions to one dimension and then applying one of the one-
dimensional access structures such as a B-tree, balanced binary tree, etc., to the result of the mapping.
There are a number of possible mappings including row, Morton (i.e., bit interleaving or bit interlacing),
and Peano–Hilbert (e.g.,[51])3. This alternative is applicable regardless of whether or not the grid cells
are congruent. Of course, if the grid cells are not congruent, then we must also record their size in the
element of the access structure.

The second alternative is to merge spatially adjacent empty grid cells into larger empty grid cells, while
splitting grid cells that are too full, thereby making the grid adaptive. Again, the result is that we can no
longer make use of an array access structure to retrieve the grid cell that contains query point p. Instead,
we make use of a tree access structure in the form of a k-ary tree where k is usually 2d . Thus, what we have
done is marry a k-ary tree with the fixed-grid method. This is the basis of the point quadtree [17] and the
PR quadtree [46, 51] which are multidimensional generalizations of binary trees.

Thedifference between thepoint quadtree and thePRquadtree is the sameas thedifference between trees
and tries [20], respectively. The binary search tree [37] is an example of the former since the boundaries
of different regions in the search space are determined by the data being stored. Address computation
methods such as radix searching [37] (also known as digital searching) are examples of the latter, since
region boundaries are chosen from among locations that are fixed regardless of the content of the data
set. The process is usually a recursive halving process in one dimension, recursive quartering in two
dimensions, etc., and is known as regular decomposition.

In two dimensions, a point quadtree is just a two-dimensional binary search tree. The first point that is
inserted serves as the root, while the second point is inserted into the relevant quadrant of the tree rooted
at the first point. Clearly, the shape of the tree depends on the order in which the points were inserted.
For example, Fig. 18.2 is the point quadtree corresponding to the data of Fig. 18.1 inserted in the order
Chicago, Mobile, Toronto, Buffalo, Denver, Omaha, Atlanta, and Miami.

In two dimensions, the PR quadtree is based on a recursive decomposition of the underlying space into
four congruent (usually square in the case of locational attributes) cells until each cell contains no more

3These mappings have been investigated primarily for purely locational multidimensional point data. They cannot
be applied directly to the key values for nonlocational point data.



FIGURE 18.2 A point quadtree and the records it represents corresponding to Fig.18.1: (a) the resulting partition

of space, and (b) the tree representation.

than one point. For example, Fig. 18.3 is the PR quadtree corresponding to the data of Fig. 18.1. The shape
of the PR quadtree is independent of the order in which data points are inserted into it. The disadvantage
of the PR quadtree is that the maximum level of decomposition depends on the minimum separation
between two points. In particular, if two points are very close, then the decomposition can be very deep.
This can be overcome by viewing the blocks or nodes as buckets with capacity c and only decomposing a
block when it contains more than c points.

FIGURE 18.3 A PR quadtree and the records it represents corresponding to Fig.18.1: (a) the resulting partition of

space, and (b) the tree representation.

As the dimensionality of the space increases, each level of decomposition of the quadtree results inmany
new cells as the fanout value of the tree is high (i.e., 2d ). This is alleviated by making use of a k-d tree [7].
The k-d tree is a binary tree where at each level of the tree, we subdivide along a different attribute so that,
assuming d locational attributes, if the first split is along the x axis, then after d levels, we cycle back and
again split along the x axis. It is applicable to both the point quadtree and the PR quadtree (in which case
we have a PR k-d tree, or a bintree in the case of region data).



At times, in the dynamic situation, the data volume becomes so large that a tree access structure is
inefficient. In particular, the grid cells can become so numerous that they cannot all fit into memory,
thereby causing them to be grouped into sets (termed buckets) corresponding to physical storage units
(i.e., pages) in secondary storage. The problem is that, depending on the implementation of the tree access
structure, each time we must follow a pointer, we may need to make a disk access. This has led to a return
to the use of an array access structure. The difference from the array used with the static fixed-gridmethod
described earlier is that the array access structure (termed grid directory) may be so large (e.g., when d gets
large) that it resides on disk as well, and the fact that the structure of the grid directory can be changed
as the data volume grows or contracts. Each grid cell (i.e., an element of the grid directory) contains the
address of a bucket (i.e., page) that contains the points associated with the grid cell. Notice that a bucket
can correspond to more than one grid cell. Thus, any page can be accessed by two disk operations: one to
access the grid cell and one more to access the actual bucket.

This results in EXCELL [59] when the grid cells are congruent (i.e., equal-sized for locational data),
and grid file [45] when the grid cells need not be congruent. The difference between these methods is
most evident when a grid partition is necessary (i.e., when a bucket becomes too full and the bucket is not
shared among several grid cells). In particular, a grid partition in the grid file only splits one interval in
two, thereby resulting in the insertion of a (d − 1)-dimensional cross section. On the other hand, a grid
partition in EXCELL means that all intervals must be split in two, thereby doubling the size of the grid
directory.

Fixed-grids, quadtrees, k-d trees, grid file, EXCELL, as well as other hierarchical representations are
good for range searching as they make it easy to implement the query. A typical query is one that seeks all
cities within 80 miles of St. Louis, or, more generally, within 80 miles of the latitude position of St. Louis
and within 80 miles of the longitude position of St. Louis.4 In particular, these structures act as pruning
devices on the amount of search that will be performed as many points will not be examined since their
containing cells lie outside the query range. These representations are generally very easy to implement
and have good expected execution times, although they are quite difficult to analyze from a mathematical
standpoint. However, their worst cases, despite being rare, can be quite bad. These worst cases can be
avoided by making use of variants of range trees [10] and priority search trees [41]. They are applicable
to both locational and nonlocational attributes, although our presentation assumes that all the attributes
are locational.

A one-dimensional range tree is a balanced binary search tree where the data points are stored in the
leaf nodes and the leaf nodes are linked in sorted order by use of a doubly-linked list. A range search for
[L : R] is performed by searching the tree for the node with the smallest value that is ≥ L, and then
following the links until reaching a leaf node with a value greater than R. For N points, this process takes
O(log2 N + F ) time and uses O(N) storage. F is the number of points found.

A two-dimensional range tree is a binary tree of binary trees. It is formed in the following manner.
First, sort all of the points along one of the attributes, say x, and store them in the leaf nodes of a balanced
binary search tree, say T . With each non-leaf node of T , say I , associate a one-dimensional range tree, say
TI , of the points in the subtree rooted at I where now these points are sorted along the other attribute, say
y. The range tree also can be adapted easily to handle d-dimensional data. In such a case, for N points,
a d-dimensional range search takes O(logd

2 N + F ) time, where F is the number of points found. The

d-dimensional range tree uses O(N · logd−1
2 N) storage.

The priority search tree is a related data structure that is designed for solving queries involving semi-
infinite ranges in two-dimensional space. A typical query has a range of the form ([Lx : Rx], [Ly : ∞]).

4The difference between these two formulations of the query is that the former admits a circular search region, while
the latter admits a rectangular search region. In particular, the latter formulation is applicable to both locational
and non-locational attributes, while the former is only applicable to locational attributes.



For example, Fig. 18.4 is the priority search tree for the data of Fig. 18.1. It is built as follows. Assume
that no two data points have the same x coordinate value. Sort all the points along the x coordinate value
and store them in the leaf nodes of a balanced binary search tree (a range tree in our formulation), say
T . We proceed from the root node toward the leaf nodes. With each node I of T , associate the point in
the subtree rooted at I with the maximum value for its y coordinate that has not already been stored at a
shallower depth in the tree. If such a point does not exist, then leave the node empty. For N points, this
structure uses O(N) storage.

FIGURE 18.4 Priority search tree for the data of Fig.18.1. Each leaf node contains the value of its x coordinate in a

square box. Each nonleaf node contains the appropriate x coordinate midrange value in a box using a link drawn with

a broken line. Circular boxes indicate the value of the y coordinate of the point in the corresponding subtree with the

maximum value for its y coordinate that has not already been associated with a node at a shallower depth in the tree.

It is not easy to perform a two-dimensional range query of the form ([Lx : Rx], [Ly : Ry]) with a
priority search tree. The problem is that only the values of the x coordinates are sorted. In other words,
given a leaf node C that stores point (xC, yC), we know that the values of the x coordinates of all nodes to
the left of C are smaller than xC and the values of all those to the right of C are greater than xC . On the
other hand, with respect to the values of the y coordinates, we only know that all nodes below non-leaf
node D with value yD have values less than or equal to yD ; the y coordinate values associated with the
remaining nodes in the tree that are not ancestors of D may be larger or smaller than yD . This is not
surprising, because a priority search tree is really a variant of a range tree in x and a heap (i.e., priority
queue) [37] in y.

A heap enables finding the maximum (minimum) value in O(1) time. Thus, it is easy to perform a
semi-infinite range query of the form ([Lx : Rx], [Ly : ∞]), as all we need do is descend the priority
search tree and stop as soon as we encounter a y coordinate value that is less than Ly . For N points,
performing a semi-infinite range query in this way takes O(log2 N + F ) time, where F is the number of
points found.

The priority search tree is used as the basis of the range priority tree [15] to reduce the order of execution
time of a two-dimensional range query to O(log2 N + F ) time (but still using O(N · log2 N) storage).
Define an inverse priority search tree to be a priority search tree S such that with each node of S, say I , we
associate the point in the subtree rooted at I with the minimum (instead of the maximum!) value for its
y coordinate that has not already been stored at a shallower depth in the tree. The range priority tree is a
balanced binary search tree (i.e., a range tree), say T , where all the data points are stored in the leaf nodes
and are sorted by their y coordinate values. With each non-leaf node of T , say I , which is a left son of
its father, we store a priority search tree of the points in the subtree rooted at I . With each non-leaf node
of T , say I , which is a right son of its father we store an inverse priority search tree of the points in the
subtree rooted at I . For N points, the range priority tree uses O(N · log2 N) storage.



Performing a range query for ([Lx : Rx], [Ly : Ry]) using a range priority tree is done in the following
manner. We descend the tree looking for the nearest common ancestor ofLy andRy , sayQ. The values of
the y coordinates of all points in the left son ofQ are less thanRy . Wewant to retrieve just the ones that are
greater than or equal toLy . We can obtain themwith the semi-infinite range query ([Lx : Rx], [Ly : ∞]).
This can be done by using the priority tree associated with the left son of Q. Similarly, the values of the y

coordinates of all points in the right son ofQ are greater thanLy . Wewant to retrieve just the ones that are
less than or equal to Ry . We can obtain them with the semi-infinite range query ([Lx : Rx], [−∞ : Ry]).
This can be done by using the inverse priority search tree associated with the right son of Q. Thus, for N

points the range query takes O(log2 N + F ) time, where F is the number of points found.

18.3 Bucketing Methods

There are four principal approaches to decomposing the space from which the records are drawn. They
are applicable regardless of whether the attributes are locational or nonlocational, although our discussion
assumes that they are locational and that the records correspond to spatial objects. One approach makes
use of an object hierarchy. It propagates the space occupied by the objects up the hierarchy with the
identity of the propagated objects being implicit to the hierarchy. In particular, associated with each object
is an object description (e.g., for region data, it is the set of locations in space corresponding to the cells
that make up the object). Actually, since this information may be rather voluminous, it is often the case
that an approximation of the space occupied by the object is propagated up the hierarchy rather than the
collection of individual cells that are spanned by the object. For spatial data, the approximation is usually
the minimum bounding rectangle for the object, while for nonspatial data it is simply the hyperrectangle
whose sides have lengths equal to the ranges of the values of the attributes. Therefore, associated with each
element in the hierarchy is a bounding rectangle corresponding to the union of the bounding rectangles
associated with the elements immediately below it.

The R-tree (e.g., [6, 26]) is an example of an object hierarchy that finds use especially in database
applications. The number of objects or bounding rectangles that are aggregated in each node is permitted
to range between m ≤ �M/2	 and M . The root node in an R-tree has at least two entries unless it is a
leaf node, in which case it has just one entry corresponding to the bounding rectangle of an object. The
R-tree is usually built as the objects are encountered rather than waiting until all objects have been input.
The hierarchy is implemented as a tree structure with grouping being based, in part, on proximity of the
objects or bounding rectangles.

For example, consider the collection of line segment objects given in Fig. 18.5 shown embedded in a 4×4
grid. Figure 18.6(a) is an example R-tree for this collection with m = 2 and M = 3. Figure 18.6(b) shows
the spatial extent of the bounding rectangles of the nodes in Fig. 18.6(a), with heavy lines denoting the
bounding rectangles corresponding to the leaf nodes, and broken lines denoting the bounding rectangles
corresponding to the subtrees rooted at the nonleaf nodes. Note that the R-tree is not unique. Its structure
depends heavily on the order inwhich the individual objects were inserted into (and possibly deleted from)
the tree.

Given that each R-tree node can contain a varying number of objects or bounding rectangles, it is not
surprising that the R-tree was inspired by the B-tree [12]. Therefore, nodes are viewed as analogous to disk
pages. Thus, the parameters defining the tree (i.e., m and M) are chosen so that a small number of nodes
is visited during a spatial query (i.e., point and range queries), which means that m and M are usually
quite large. The actual implementation of the R-tree is really a B+-tree [12] as the objects are restricted to
the leaf nodes.

The efficiency of the R-tree for search operations depends on its ability to distinguish between occupied
space and unoccupied space (i.e., coverage), and to prevent a node from being examined needlessly due to
a false overlap with other nodes. In other words, we want to minimize coverage and overlap. These goals



FIGURE 18.5 Example collection of line segments embedded in a 4×4 grid.

FIGURE 18.6 (a) R-tree for the collection of line segments with m = 2 and M = 3, in Fig.18.5, and (b) the spatial
extents of the bounding rectangles. Notice that the leaf nodes in the index also store bounding rectangles, although

this is only shown for the nonleaf nodes.

guide the initial R-tree creation process as well, subject to the previously mentioned constraint that the
R-tree is usually built as the objects are encountered rather than waiting until all objects have been input.
The drawback of the R-tree (and any representation based on an object hierarchy) is that it does not

result in a disjoint decomposition of space. The problem is that an object is only associated with one
bounding rectangle (e.g., line segment i in Fig. 18.6 is associated with bounding rectangle R5, yet it passes
through R1, R2, R4, and R5, as well as through R0 as do all the line segments). In the worst case, thismeans
that when we wish to determine which object (e.g., an intersecting line in a collection of line segment
objects, or a containing rectangle in a collection of rectangle objects) is associatedwith a particular point in
the two-dimensional space from which the objects are drawn, we may have to search the entire collection.
For example, in Fig. 18.6, when searching for the line segment that passes through point Q, we need to
examine bounding rectangles R0, R1, R4, R2, and R5, rather than just R0, R2, and R5.
Thisdrawbackcanbeovercomebyusingoneof threeotherapproaches that arebasedonadecomposition

of space into disjoint cells. Their common property is that the objects are decomposed into disjoint
subobjects such that each of the subobjects is associated with a different cell. They differ in the degree
of regularity imposed by their underlying decomposition rules, and by the way in which the cells are
aggregated into buckets.
The price paid for the disjointness is that in order to determine the area covered by a particular object,

we have to retrieve all the cells that it occupies. This price is also paid when we want to delete an object.
Fortunately, deletion is not so common in such applications. A related costly consequence of disjointness
is that when we wish to determine all the objects that occur in a particular region, we often need to retrieve
some of the objects more than once. This is particularly troublesome when the result of the operation
serves as input to another operation via composition of functions. For example, suppose we wish to



compute the perimeter of all the objects in a given region. Clearly, each object’s perimeter should only be
computed once. Eliminating the duplicates is a serious issue (see [1] for a discussion of how to deal with
this problem for a collection of line segment objects, and [2] for a collection of rectangle objects).

The first method based on disjointness partitions the embedding space into disjoint subspaces, and
hence, the individual objects into subobjects, so that each subspace consists of disjoint subobjects. The
subspaces are then aggregated and grouped in another structure, such as a B-tree, so that all subsequent
groupings are disjoint at each level of the structure. The result is termed a k-d-B-tree [49]. The R+-
tree [56, 58] is amodification of the k-d-B-treewhere at each level we replace the subspace by theminimum
bounding rectangle of the subobjects or subtrees that it contains. The cell tree [25] is based on the same
principle as the R+-tree except that the collections of objects are bounded by minimum convex polyhedra
instead of minimum bounding rectangles.

TheR+-tree (aswell as the other related representations) ismotivated by a desire to avoid overlap among
the bounding rectangles. Each object is associated with all the bounding rectangles that it intersects. All
bounding rectangles in the tree (with the exception of the bounding rectangles for the objects at the leaf
nodes) are nonoverlapping.5 The result is that there may be several paths starting at the root to the same
object. This may lead to an increase in the height of the tree. However, retrieval time is sped up.

Figure 18.7 is an example of one possible R+-tree for the collection of line segments in Fig. 18.5. This
particular tree is of order (2,3) although in general it is not possible to guarantee that all nodes will always
have a minimum of 2 entries. In particular, the expected B-tree performance guarantees are not valid
(i.e., pages are not guaranteed to be m/M full) unless we are willing to perform very complicated record
insertion and deletion procedures. Notice that line segment objects c, h, and i appear in two different
nodes. Of course, other variants are possible since the R+-tree is not unique.

FIGURE18.7 (a) R+-tree for the collection of line segments in Fig.18.5 withm = 2 andM = 3, and (b) the spatial
extents of the bounding rectangles. Notice that the leaf nodes in the index also store bounding rectangles, although

this is only shown for the non-leaf nodes.

Methods such as the R+-tree (as well as the R-tree) have the drawback that the decomposition is data-
dependent. This means that it is difficult to perform tasks that require composition of different operations
and data sets (e.g., set-theoretic operations such as overlay). The problem is that although these methods

5From a theoretical viewpoint, the bounding rectangles for the objects at the leaf nodes should also be disjoint
However, this may be impossible (e.g., when the objects are line segments and if many of the line segments intersect
at a point).



are good are distinguishing between occupied and unoccupied space in a particular image, they are unable
to correlate occupied space in two distinct images, and likewise for unoccupied space in the two images.

In contrast, the remaining two approaches to the decomposition of space into disjoint cells have a
greater degree of data-independence. They are based on a regular decomposition. The space can be
decomposed either into blocks of uniform size (e.g., the uniform grid [19]) or adapt the decomposition
to the distribution of the data (e.g., a quadtree-based approach such as [54]). In the former case, all the
blocks are congruent (e.g., the 4 × 4 grid in Fig. 18.5). In the latter case, the widths of the blocks are
restricted to be powers of two6 and their positions are also restricted. Since the positions of the subdivision
lines are restricted, and essentially the same for all images of the same size, it is easy to correlate occupied
and unoccupied space in different images.

The uniform grid is ideal for uniformly distributed data, while quadtree-based approaches are suited
for arbitrarily distributed data. In the case of uniformly distributed data, quadtree-based approaches
degenerate to a uniform grid, albeit they have a higher overhead. Both the uniform grid and the quadtree-
based approaches lend themselves to set-theoretic operations, and thus they are ideal for tasks that require
the composition of different operations and data sets. In general, since spatial data are not usually
uniformlydistributed, thequadtree-based regular decomposition approach ismoreflexible. Thedrawback
of quadtree-like methods is their sensitivity to positioning in the sense that the placement of the objects
relative to the decomposition lines of the space in which they are embedded effects their storage costs and
the amount of decomposition that takes place. This is overcome to a large extent by using a bucketing
adaptation that decomposes a block only if it contains more than b objects.

18.4 Region Data

There aremanyways of representing region data. We can represent a region either by its boundary (termed
a boundary-based representation) or by its interior (termed an interior-based representation). In this
section, we focuson representationsof collectionsof regionsby their interior. In someapplications, regions
are really objects that are composed of smaller primitive objects by use of geometric transformations and
Boolean set operations. Constructive solid geometry (CSG) [48] is a term usually used to describe such
representations. They are beyond the scope of this chapter. Instead, unless noted otherwise, our discussion
is restricted to regions consisting of congruent cells of unit area (volume) with sides (faces) of unit size
that are orthogonal to the coordinate axes.

Regionswith arbitrary boundaries are usually represented by either using approximating bounding rect-
angles or more general boundary-based representations that are applicable to collections of line segments
that do not necessarily form regions. In that case, we do not restrict the line segments to be perpendicular
to the coordinate axes. Such representations are discussed in Section 18.6. It should be clear that although
our presentation and examples in this section deal primarily with two-dimensional data, they are valid for
regions of any dimensionality.

The region data is assumed to be uniform in the sense that all the cells that comprise each region are of
the same type. In other words, each region is homogeneous. Of course, an image may consist of several
distinct regions. Perhaps the best definition of a region is as a set of four-connected cells (i.e., in two
dimensions, the cells are adjacent along an edge rather than a vertex) each of which is of the same type.
For example, we may have a crop map where the regions correspond to the four-connected cells on which
the same crop is grown. Each region is represented by the collection of cells that comprise it. The set of

6More precisely, for arbitrary attributes that can be locational and nonlocational, there exist j ≥ 0 such that the
product ofwi , the width of the block along attribute i, and 2j is equal to the length of the range of values of attribute
i.



collections of cells that make up all of the regions is often termed an image array, because of the nature in
which they are accessed when performing operations on them. In particular, the array serves as an access
structure in determining the region associated with a location of a cell as well as all remaining cells that
comprise the region.
When the region is represented by its interior, then often we can reduce the storage requirements by

aggregating identically valued cells into blocks. In the rest of this section we discuss different methods of
aggregating the cells that comprise each region into blocks as well as the methods used to represent the
collections of blocks that comprise each region in the image.
The collection of blocks is usually a result of a space decomposition process with a set of rules that

guide it. There are many possible decompositions. When the decomposition is recursive, we have the
situation that the decomposition occurs in stages and often, although not always, the results of the stages
form a containment hierarchy. This means that a block b obtained in stage i is decomposed into a set
of blocks bj that span the same space. Blocks bj are, in turn, decomposed in stage i + 1 using the same
decomposition rule. Some decomposition rules restrict the possible sizes and shapes of the blocks as well
as their placement in space. Some examples include

• Congruent blocks at each stage

• Similar blocks at all stages

• All sides of a block are of equal size

• All sides of each block are powers of two.

Other decomposition rules dispense with the requirement that the blocks be rectangular (i.e., there exist
decompositions using other shapes such as triangles, etc.), while still others do not require that they be
orthogonal, although, as stated before, we do make these assumptions here. In addition, the blocks may
be disjoint or be allowed to overlap. Clearly, the choice is large. In the following, we briefly explore some
of these decomposition processes. We restrict ourselves to disjoint decompositions, although this need
not be the case (e.g., the field tree [18]).
The most general decomposition permits aggregation along all dimensions. In other words, the de-

composition is arbitrary. The blocks need not be uniform or similar. The only requirement is that the
blocks span the space of the environment. The drawback of arbitrary decompositions is that there is little
structure associated with them. This means that it is difficult to answer queries such as determining the
region associated with a given point, besides exhaustive search through the blocks. Thus, we need an
additional data structure known as an index or an access structure. A very simple decomposition rule that
lends itself to such an index in the form of an array is one that partitions a d-dimensional space having
coordinate axes xi into d-dimensional blocks by use of hi hyperplanes that are parallel to the hyperplane
formed by xi = 0 (1 ≤ i ≤ d). The result is a collection of

∏d
i=1(hi + 1) blocks. These blocks form

a grid of irregular-sized blocks rather than congruent blocks. There is no recursion involved in the de-
composition process. We term the resulting decomposition an irregular grid, as the partition lines are at
arbitrary positions in contrast to a uniform grid [19] where the partition lines are positioned so that all of
the resulting grid cells are congruent.
Although the blocks in the irregular grid are not congruent, we can still impose an array access structure

by adding d access structures termed linear scales. The linear scales indicate the position of the partitioning
hyperplanes that are parallel to the hyperplane formed by xi = 0 (1 ≤ i ≤ d). Thus, given a location l

in space, say (a,b) in two-dimensional space, the linear scales for the x and y coordinate values indicate
the column and row, respectively, of the array access structure entry which corresponds to the block that
contains l. The linear scales are usually represented as one-dimensional arrays although they can be
implemented using tree access structures such as binary search trees, range trees, segment trees, etc.
Perhaps the most widely known decompositions into blocks are those referred to by the general terms

quadtree and octree [50, 51]. They are usually used to describe a class of representations for two- and
three-dimensional data (and higher as well), respectively, that are the result of a recursive decomposition



of the environment (i.e., space) containing the regions into blocks (not necessarily rectangular) until the
data in each block satisfies some condition (e.g., with respect to its size, the nature of the regions that
comprise it, the number of regions in it, etc.). The positions and/or sizes of the blocks may be restricted
or arbitrary. It is interesting to note that quadtrees and octrees may be used with both interior-based and
boundary-based representations, although only the former are discussed in this section.

There are many variants of quadtrees and octrees (see also Sections 18.2, 18.5, and 18.6), and they are
used in numerous application areas including high energy physics, VLSI, finite element analysis, andmany
others. Below, we focus on region quadtrees [35] and to a lesser extent on region octrees [32, 43] They are
specific examples of interior-based representations for two- and three-dimensional region data (variants
for data of higher dimension also exist), respectively, that permit further aggregation of identically-valued
cells.

Region quadtrees and region octrees are instances of a restricted-decomposition rule where the envi-
ronment containing the regions is recursively decomposed into four or eight, respectively, rectangular
congruent blocks until each block is either completely occupied by a region or is empty (such a decom-
position process is termed regular). For example, Fig. 18.8(a) is the block decomposition for the region
quadtree corresponding to three regions A, B, and C. Notice that in this case, all the blocks are square, have
sides whose size is a power of 2, and are located at specific positions. In particular, assuming an origin
at the upper-left corner of the image containing the regions, then the coordinate values of the upper-left
corner of each block (e.g., (a, b) in two dimensions) of size 2i × 2i satisfy the property that a mod 2i = 0
and b mod 2i = 0.

The traditional, and most natural, access structure for a region quadtree corresponding to a d-
dimensional image is a tree with a fanout of 2d [e.g., Fig. 18.8(b)]. Each leaf node in the tree corresponds
to a different block b and contains the identity of the region associated with b. Each non-leaf node f

corresponds to a block whose volume is the union of the blocks corresponding to the 2d sons of f . In this
case, the tree is a containment hierarchy and closely parallels the decomposition in the sense that they are
both recursive processes and the blocks corresponding to nodes at different depths of the tree are similar
in shape.

Determining the region associated with a given point p is achieved by a process that starts at the root
of the tree and traverses the links to the sons whose corresponding blocks contain p. This process has an
O(m) cost where the image has a maximum of m levels of subdivision (e.g., an image all of whose sides
are of length 2m).

Observe that using a tree with fanout 2d as an access structure for a regular decomposition means
that there is no need to record the size and location of the blocks as this information can be inferred

FIGURE 18.8 (a) Block decomposition and (b) its tree representation for the region quadtree corresponding to a

collection of three regions A, B, and C.



from knowledge of the size of the underlying space. This is because the 2d blocks that result from each
subdivision step are congruent. For example, in two dimensions, each level of the tree corresponds to a
quartering process that yields four congruent blocks. Thus, as long as we start from the root, we know the
location and size of every block.

One of the motivations for the development of data structures such as the region quadtree is a desire
to save space. The formulation of the region quadtree that we have just described makes use of an access
structure in the form of a tree. This requires additional overhead to encode the internal nodes of the
tree as well as the pointers to the subtrees. In order to further reduce the space requirements, a number
of alternative access structures to the tree with fanout 2d have been proposed. They are all based on
finding a mapping from the domain of the blocks to a subset of the integers (i.e., to one dimension) and
then using the result of the mapping as the index in one of the familiar tree-like access structures (e.g., a
binary search tree, range tree, B+-tree, etc.). The effect of these mappings is to provide an ordering on
the underlying space. There are many possible orderings (e.g., Chapter 2 in [50]), with the most popular
shown in Fig. 18.9. The domain of these mappings is the location of the cells in the underlying space,
and thus we need to use some easily identifiable cell in each block such as the one in the block’s upper-left
corner. Of course, we also need to know the size of each block. This information can be recorded in the
actual index as each block is uniquely identified by the location of the cell in its upper-left corner.

FIGURE 18.9 The result of applying four common different space-ordering methods to an 8×8 collection of cells

whosefirst element is in theupper-left corner: (a) roworder, (b) row-primeorder, (c)Mortonorder, (d)Peano–Hilbert.

Since the size of each block b in the region quadtree can be specified with a single number indicating
the depth in the tree at which b is found, we can simplify the representation by incorporating the size
into the mapping. One mapping simply concatenates the result of interleaving the binary representations
of the coordinate values of the upper-left corner (e.g., (a, b) in two dimensions) and i of each block of
size 2i so that i is at the right. The resulting number is termed a locational code and is a variant of the
Morton order [Fig. 18.9(c)]. Assuming such a mapping and sorting the locational codes in increasing
order yields an ordering equivalent to that which would be obtained by traversing the leaf nodes (i.e.,
blocks) of the tree representation [e.g., Fig. 18.8(b)] in the order NW, NE, SW, SE. The Morton ordering
[as well as the Peano–Hilbert ordering shown in Fig. 18.9(d)] is particularly attractive for quadtree-like
block decompositions, because all cells within a quadtree block appear in consecutive positions in the



ordering. Alternatively, these two orders exhaust a quadtree block before exiting it. Therefore, once again,
determining the region associated with point p consists of simply finding the block containing p.

As the dimensionality of the space (i.e., d) increases, each level of decomposition in the region quadtree
results in many new blocks as the fanout value 2d is high. In particular, it is too large for a practical
implementation of the tree access structure. In this case, an access structure termed a bintree [36, 53, 60]
with a fanout value of 2 is used. The bintree is defined in amanner analogous to the region quadtree except
that at each subdivision stage, the space is decomposed into two equal-sized parts. In two dimensions, at
odd stages we partition along the y axis and at even stages we partition along the x axis. In general, in the
case of d dimensions, we cycle through the different axes every d levels in the bintree.

The region quadtree, as well as the bintree, is a regular decomposition. This means that the blocks are
congruent—that is, at each level of decomposition, all of the resulting blocks are of the same shape and
size. We can also use decompositions where the sizes of the blocks are not restricted in the sense that the
only restriction is that they be rectangular and be a result of a recursive decomposition process. In this case,
the representations that we described must be modified so that the sizes of the individual blocks can be
obtained. An example of such a structure is an adaptation of the point quadtree [17] to regions. Although
the point quadtree was designed to represent points in a higher dimensional space, the blocks resulting
from its use to decompose space do correspond to regions. The difference from the region quadtree is that
in the point quadtree, the positions of the partitions are arbitrary, whereas they are a result of a partitioning
process into 2d congruent blocks (e.g., quartering in two dimensions) in the case of the region quadtree.

As in the case of the region quadtree, as the dimensionality d of the space increases, each level of
decomposition in the point quadtree results in many new blocks since the fanout value 2d is high. In
particular, it is too large for a practical implementation of the tree access structure. In this case, we can
adapt the k-d tree [7], which has a fanout value of 2, to regions. As in the point quadtree, although the
k-d tree was designed to represent points in a higher dimensional space, the blocks resulting from its use
to decompose space do correspond to regions. Thus, the relationship of the k-d tree to the point quadtree
is the same as the relationship of the bintree to the region quadtree. In fact, the k-d tree is the precursor of
the bintree and its adaptation to regions is defined in a similar manner in the sense that for d-dimensional
data we cycle through the d axes every d levels in the k-d tree. The difference is that in the k-d tree, the
positions of the partitions are arbitrary, whereas they are a result of a halving process in the case of the
bintree.

The k-d tree can be further generalized so that the partitions take place on the various axes at an arbitrary
order, and, in fact, the partitions need not bemade on every coordinate axis. The k-d tree is a special case of
the BSP tree (denoting binary space partitioning) [23] where the partitioning hyperplanes are restricted to
be parallel to the axes, whereas in the BSP tree they have an arbitrary orientation. The BSP tree is a binary
tree. In order to be able to assign regions to the left and right subtrees, we need to associate a direction with
each subdivision line. In particular, the subdivision lines are treated as separators between two halfspaces.7

Let the subdivision line have the equation a ·x +b ·y +c = 0. We say that the right subtree is the “positive”
side and contains all subdivision lines formed by separators that satisfy a · x + b · y + c ≥ 0. Similarly, we
say that the left subtree is “negative” and contains all subdivision lines formed by separators that satisfy
a · x + b · y + c < 0. As an example, consider Fig. 18.10(a), which is an arbitrary space decomposition
whose BSP tree is given in Fig. 18.10(b). Notice the use of arrows to indicate the direction of the positive
halfspaces. The BSP tree is used in computer graphics to facilitate viewing.

7A (linear) halfspace in d-dimensional space is defined by the inequality$d
i=0ai · xi ≥ 0 on the d + 1 homogeneous

coordinates (x0 = 1). The halfspace is represented by a column vector a. In vector notation, the inequality is written
as a ·x ≥ 0. In the case of equality, it defines a hyperplane with a as its normal. It is important to note that halfspaces
are volume elements; they are not boundary elements.



FIGURE 18.10 (a) An arbitrary space decomposition and (b) its BSP tree. The arrows indicate the direction of the

positive halfspaces.

As mentioned before, the various hierarchical data structures that we described can also be used to
represent regions in three dimensions and higher. As an example, we briefly describe the region octree
which is the three-dimensional analog of the region quadtree. It is constructed in the following manner.
We start with an image in the form of a cubical volume and recursively subdivide it into eight congruent
disjoint cubes (called octants) until blocks are obtained of a uniform color or a predetermined level of
decomposition is reached. Figure 18.11(a) is an example of a simple three-dimensional object whose
region octree block decomposition is given in Fig. 18.11(b) and whose tree representation is given in
Fig. 18.11(c).

FIGURE 18.11 (a) Example three-dimensional object; (b) its region octree block decomposition; and (c) its tree

representation.

The aggregation of cells into blocks in region quadtrees and region octrees is motivated, in part, by
a desire to save space. Some of the decompositions have quite a bit of structure, thereby leading to
inflexibility in choosing partition lines, etc. In fact, at times, maintaining the original image with an array
access structure may be more effective from the standpoint of storage requirements. In the following,
we point out some important implications of the use of these aggregations. In particular, we focus on
the region quadtree and region octree. Similar results could also be obtained for the remaining block
decompositions.

The aggregation of similarly valued cells into blocks has an important effect on the execution time of the
algorithms that make use of the region quadtree. In particular, most algorithms that operate on images
represented by a region quadtree are implemented by a preorder traversal of the quadtree, and thus their
execution time is generally a linear function of the number of nodes in the quadtree. A key to the analysis
of the execution time of quadtree algorithms is theQuadtreeComplexity Theorem [32], which states that
the number of nodes in a region quadtree representation for a simple polygon (i.e., with nonintersecting
edges and without holes) is O(p + q) for a 2q × 2q image with perimeter p measured in terms of the



width of unit-sized cells (i.e., pixels). In all but the most pathological cases (e.g., a small square of unit
width centered in a large image), the q factor is negligible, and thus, the number of nodes is O(p).

The Quadtree Complexity Theorem also holds for three-dimensional data [42] (i.e., represented by a
region octree) where perimeter is replaced by surface area, as well as for objects of higher dimensions d

for which it is proportional to the size of the (d − 1)-dimensional interfaces between these objects. The
most important consequence of the Quadtree complexity theorem is that it means that most algorithms
that execute on a region quadtree representation of an image, instead of one that simply imposes an array
access structure on the original collection of cells, usually have an execution time that is proportional to
the number of blocks in the image rather than the number of unit-sized cells. In its most general case, this
means that the use of the region quadtree, with an appropriate access structure, in solving a problem in d-
dimensional space will lead to a solution whose execution time is proportional to the (d − 1)-dimensional
space of the surface of the original d-dimensional image. On the other hand, use of the array access
structure on the original collection of cells results in a solution whose execution time is proportional
to the number of cells that comprise the image. Therefore, region quadtrees and region octrees act like
dimension-reducing devices.

18.5 Rectangle Data

The rectangle data type lies somewhere between the point and region data types. It can also be viewed as a
special case of the region data type in the sense that it is a region with only four sides. Rectangles are often
used to approximate other objects in an image for which they serve as the minimum rectilinear enclosing
object. For example, bounding rectangles are used in cartographic applications to approximate objects
such as lakes, forests, hills, etc. In such a case, the approximation gives an indication of the existence of an
object. Of course, the exact boundaries of the object are also stored; but they are only accessed if greater
precision is needed. For such applications, the number of elements in the collection is usually small, and
most often the sizes of the rectangles are of the same order of magnitude as the space from which they are
drawn.

Rectangles are also used in VLSI design rule checking as a model of chip components for the analysis
of their proper placement. Again, the rectangles serve as minimum enclosing objects. In this application,
the size of the collection is quite large (e.g., millions of components) and the sizes of the rectangles are
several orders of magnitude smaller than the space from which they are drawn.

It shouldbe clear that the actual representation that isuseddependsheavilyon theproblemenvironment.
At times, the rectangle is treated as the Cartesian product of two one-dimensional intervals with the
horizontal intervalsbeing treated inadifferentmanner than thevertical intervals. In fact, the representation
issue is often reduced to one of representing intervals. For example, this is the case in the use of the plane-
sweep paradigm [47] in the solution of rectangle problems such as determining all pairs of intersecting
rectangles. In this case, each interval is represented by its left and right endpoints. The solutionmakes use
of two passes.

The first pass sorts the rectangles in ascending order on the basis of their left and right sides (i.e., x

coordinate values) and forms a list. The second pass sweeps a vertical scan line through the sorted list
from left to right halting at each one of these points, say p. At any instant, all rectangles that intersect
the scan line are considered active and are the only ones whose intersection needs to be checked with the
rectangle associated with p. This means that each time the sweep line halts, a rectangle either becomes
active (causing it to be inserted in the set of active rectangles) or ceases to be active (causing it to be deleted
from the set of active rectangles). Thus, the key to the algorithm is its ability to keep track of the active
rectangles (actually just their vertical sides) as well as to perform the actual one-dimensional intersection
test.

Data structures such as the segment tree [8], interval tree [14], and the priority search tree [41] can
be used to organize the vertical sides of the active rectangles so that, for N rectangles and F intersecting



pairs of rectangles, the problem can be solved in O(N · log2 N + F ) time. All three data structures enable
intersection detection, insertion, and deletion to be executed in O(log2 N) time. The difference between
them is that the segment tree requires O(N · log2 N) space while the interval tree and the priority search
tree only need O(N) space.
The key to the use of the priority search tree to solve the rectangle intersection problem is that it treats

eachvertical side (yB, yT )as apoint (x, y) in a two-dimensional space (i.e., it transforms the corresponding
interval into a point as discussed in Section 18.1). The advantage of the priority search tree is that the
storage requirements for the second pass only depend on the maximum number M of vertical sides that
can be active at any one time. This is achieved by implementing the priority search tree as a red-black
balanced binary tree [24], thereby guaranteeing updates inO(log2 M) time. This also has an effect on the
execution time of the second pass which is O(N · log2 M + F ) instead of O(N · log2 N + F ). Of course,
the first pass which must sort the endpoints of the horizontal sides still takes O(N · log2 N) time for all
three representations.
Most importantly, the priority search tree enables a more dynamic solution than either the segment or

interval trees as only the endpoints of the horizontal sides need to be known in advance. On the other
hand, for the segment and interval trees, the endpoints of both the horizontal and vertical sides must be
known in advance. Of course, in all cases, all solutions based on the plane-sweep paradigm are inherently
not dynamic as the paradigm requires that we examine all of the data one by one. Thus, the addition of
even one new rectangle to the database forces the re-execution of the algorithm on the entire database.
In this chapter, we are primarily interested in dynamic problems. The data structures that are chosen

for the collection of the rectangles are differentiated by the way in which each rectangle is represented.
One representation discussed in Section 18.1 reduces each rectangle to a point in a higher dimensional
space, and then treats the problem as if we have a collection of points [28]. Again, each rectangle is a
Cartesian product of two one-dimensional intervals where the difference from its use with the plane-sweep
paradigm is that each interval is represented by its centroid and extent. Each set of intervals in a particular
dimension is, in turn, represented by a grid file [45], which is described in Section 18.2.
The second representation is region-based in the sense that the subdivision of the space from which the

rectangles are drawn depends on the physical extent of the rectangle — not just one point. Representing
the collection of rectangles, in turn, with a tree-like data structure has the advantage that there is a relation
between the depth of node in the tree and the size of the rectangle(s) that is (are) associated with it.
Interestingly, some of the region-based solutions make use of the same data structures that are used in the
solutions based on the plane-sweep paradigm.
There are three types of region-based solutions currently in use. The first two solutions use the R-tree

and the R+-tree (discussed in Section 18.3) to store rectangle data (in this case the objects are rectangles
instead of arbitrary objects). The third is a quadtree-based approach and uses the MX-CIF quadtree [34].
In the MX-CIF quadtree, each rectangle is associated with the quadtree node corresponding to the

smallest block which contains it in its entirety. Subdivision ceases whenever a node’s block contains no
rectangles. Alternatively, subdivision can also cease once a quadtree block is smaller than a predetermined
threshold size. This threshold is often chosen to be equal to the expected size of the rectangle [34]. For
example, Fig. 18.12 is the MX-CIF quadtree for a collection of rectangles. Rectangles can be associated
with both terminal and nonterminal nodes.
It should be clear that more than one rectangle can be associated with a given enclosing block, and thus,

often we find it useful to be able to differentiate between them. This is done in the following manner [34].
Let P be a quadtree node with centroid (CX,CY ), and let S be the set of rectangles that are associated
with P . Members of S are organized into two sets according to their intersection (or collinearity of their
sides) with the lines passing through the centroid of P ’s block—that is, all members of S that intersect the
line x = CX form one set and all members of S that intersect the line y = CY form the other set.
If a rectangle intersectsboth lines (i.e., it contains thecentroidofP ’s block), thenweadopt theconvention

that it is stored with the set associated with the line through x = CX. These subsets are implemented as
binary trees (really tries), which in actuality are one-dimensional analogs of the MX-CIF quadtree. For



FIGURE 18.12 (a) Collection of rectangles and the block decomposition induced by the MX-CIF quadtree; (b) the

tree representation of (a); (c) the binary trees for the y axes passing through the root of the tree in (b), and (d) the NE

son of the root of the tree in (b).

example, Fig. 18.12(b)andFig. 18.12(d) illustrate thebinary trees associatedwith they axespassing through
the root and the NE son of the root, respectively, of the MX-CIF quadtree of Fig. 18.12(c). Interestingly,
theMX-CIF quadtree is a two-dimensional analog of the interval tree described above. More precisely, the
MX-CIF is a two-dimensional analog of the tile tree [40] which is a regular decomposition version of the
interval tree. In fact, the tile tree and the one-dimensionalMX-CIF quadtree are identical when rectangles
are not allowed to overlap.

18.6 Line Data and Boundaries of Regions

Section 18.4 was devoted to variations on hierarchical decompositions of regions into blocks, an approach
to region representation that is based on a description of the region’s interior. In this section, we focus on
representations that enable the specification of the boundaries of regions, as well as curvilinear data and
collections of line segments. The representations are usually based on a series of approximations which
provide successively closer fits to the data, often with the aid of bounding rectangles. When the boundaries
or line segments have a constant slope (i.e., linear and termed line segments in the rest of this discussion),
then an exact representation is possible.

There are several ways of approximating a curvilinear line segment. The first is by digitizing it and then
marking the unit-sized cells (i.e., pixels) through which it passes. The second is to approximate it by a set
of straight line segments termed a polyline. Assuming a boundary consisting of straight lines (or polylines
after the first stage of approximation), the simplest representation of the boundary of a region is the
polygon. It consists of vectors which are usually specified in the form of lists of pairs of x and y coordinate
values corresponding to their start and end points. The vectors are usually ordered according to their
connectivity. One of the most common representations is the chain code [21], which is an approximation
of a polygon’s boundary by use of a sequence of unit vectors in the four (and sometimes eight) principal
directions.

Chain codes, and other polygon representations, break down for data in three dimensions and higher.
This is primarily due to the difficulty in ordering their boundaries by connectivity. The problem is that
in two dimensions connectivity is determined by ordering the boundary elements ei,j of boundary bi of
object o so that the end vertex of the vector vj corresponding to ei,j is the start vertex of the vector vj+1

corresponding to ei,j+1. Unfortunately, such an implicit ordering does not exist in higher dimensions as
the relationship between the boundary elements associated with a particular object are more complex.

Instead, wemust make use of data structures that capture the topology of the object in terms of its faces,
edges, and vertices. The winged-edge data structure is one such representation that serves as the basis of
the boundary model (also known as BRep [5]). Such representations are not discussed further here.

Polygon representations are very local. In particular, if we are at one position on the boundary, we don’t
know anything about the rest of the boundary without traversing it element by element. Thus, using such



representations, given a random point in space, it is very difficult to find the nearest line to it as the lines
are not sorted. This is in contrast to hierarchical representations which are global in nature. They are
primarily based on rectangular approximations to the data as well as on a regular decomposition in two
dimensions. In the rest of this section, we discuss a number of such representations.

In Section 18.3 we already examined two hierarchical representations (i.e., the R-tree and the R+-tree)
that propagate object approximations in the form of bounding rectangles. In this case, the sides of the
bounding rectangles had to be parallel to the coordinate axes of the space from which the objects are
drawn. In contrast, the strip tree [4] is a hierarchical representation of a single curve that successively
approximates segments of it with bounding rectangles that does not require that the sides be parallel to
the coordinate axes. The only requirement is that the curve be continuous; it need not be differentiable.

The strip tree data structure consists of a binary tree whose root represents the bounding rectangle of
the entire curve. The rectangle associatedwith the root corresponds to a rectangular strip, that encloses the
curve, whose sides are parallel to the line joining the endpoints of the curve. The curve is then partitioned
in two at one of the locations where it touches the bounding rectangle (these are not tangent points as the
curve only needs to be continuous; it need not be differentiable). Each subcurve is then surrounded by a
bounding rectangle and the partitioning process is applied recursively. This process stops when the width
of each strip is less than a predetermined value.

In order to be able to cope with more complex curves such as those that arise in the case of object
boundaries, the notion of a strip treemust be extended. In particular, closed curves and curves that extend
past their endpoints require some special treatment. The general idea is that these curves are enclosed by
rectangles which are split into two rectangular strips, and from now on the strip tree is used as before.

The strip tree is similar to thepoint quadtree in the sense that thepoints atwhich the curve is decomposed
depend on the data. In contrast, a representation based on the region quadtree has fixed decomposition
points. Similarly, strip treemethods approximate curvilinear data with rectangles of arbitrary orientation,
while methods based on the region quadtree achieve analogous results by use of a collection of disjoint
squares having sides of length power of two. In the following we discuss a number of adaptations of the
region quadtree for representing curvilinear data.

The simplest adaptation of the region quadtree is the MX quadtree [32, 33]. It is built by digitizing the
line segments and labeling each unit-sized cell (i.e., pixel) through which it passes as of type boundary.
The remaining pixels aremarked WHITE and aremerged, if possible, into larger and larger quadtree blocks.
Figure 18.13(a) is the MX quadtree for the collection of line segment objects in Fig. 18.5. A drawback of
the MX quadtree is that it associates a thickness with a line. Also, it is difficult to detect the presence of a
vertex whenever five or more line segments meet.

FIGURE 18.13 (a) MX quadtree and (b) edge quadtree for the collection of line segments of Fig.18.5.



The edge quadtree [57, 61] is a refinement of theMXquadtree based on the observation that the number
of squares in the decomposition can be reduced by terminating the subdivision whenever the square
contains a single curve that can be approximated by a single straight line. For example, Fig. 18.13(b) is
the edge quadtree for the collection of line segment objects in Fig. 18.5. Applying this process leads to
quadtrees in which long edges are represented by large blocks or a sequence of large blocks. However, small
blocks are required in the vicinity of corners or intersecting edges. Of course, many blocks will contain
no edge information at all.

The PM quadtree family [44, 54] (see also edge-EXCELL [59]) represents an attempt to overcome some
of the problems associated with the edge quadtree in the representation of collections of polygons (termed
polygonal maps). In particular, the edge quadtree is an approximation because vertices are represented
by pixels. There are a number of variants of the PM quadtree. These variants are either vertex-based or
edge-based. They are all built by applying the principle of repeatedly breaking up the collection of vertices
and edges (forming the polygonal map) until obtaining a subset that is sufficiently simple so that it can be
organized by some other data structure.

The PM1 quadtree [54] is an example of a vertex-based PM quadtree. Its decomposition rule stipulates
that partitioning occurs as long as a block contains more than one line segment unless the line segments
are all incident at the same vertex which is also in the same block [e.g., Fig. 18.14(a)]. Given a polygonal
map whose vertices are drawn from a grid (say 2m × 2m), and where edges are not permitted to intersect
at points other than the grid points (i.e., vertices), it can be shown that the maximum depth of any leaf
node in the PM1 quadtree is bounded from above by 4m + 1 [52]. This enables a determination of the
maximum amount of storage that will be necessary for each node.

FIGURE 18.14 (a) PM1 quadtree and (b) PMR quadtree for the collection of line segments of Fig. 18.5.

A similar representation has been devised for three-dimensional images (e.g., [3] and the references
cited in [51]). The decomposition criteria are such that no node contains more than one face, edge, or
vertex unless the faces all meet at the same vertex or are adjacent to the same edge. This representation
is quite useful, since its space requirements for polyhedral objects are significantly smaller than those of a
region octree.

The PMR quadtree [44] is an edge-based variant of the PM quadtree. It makes use of a probabilistic
splitting rule. A node is permitted to contain a variable number of line segments. A line segment is stored
in a PMR quadtree by inserting it into the nodes corresponding to all the blocks that it intersects. During
this process, the occupancy of each node that is intersected by the line segment is checked to see if the
insertion causes it to exceed a predetermined splitting threshold. If the splitting threshold is exceeded, then
the node’s block is split once, and only once, into four equal quadrants.



For example, Fig. 18.14(b) is the PMR quadtree for the collection of line segment objects in Fig. 18.5
with a splitting threshold value of 2. The line segments are inserted in alphabetic order (i.e., a–i). It
should be clear that the shape of the PMR quadtree depends on the order in which the line segments are
inserted. Note the difference from the PM1 quadtree in Fig. 18.14(a)—that is, the NE block of the SW
quadrant is decomposed in the PM1 quadtree while the SE block of the SW quadrant is not decomposed
in the PM1 quadtree.

On the other hand, a line segment is deleted from a PMR quadtree by removing it from the nodes
corresponding to all the blocks that it intersects. During this process, the occupancy of the node and its
siblings is checked to see if the deletion causes the total number of line segments in them to be less than
the predetermined splitting threshold. If the splitting threshold exceeds the occupancy of the node and its
siblings, then they are merged and the merging process is reapplied to the resulting node and its siblings.
Notice the asymmetry between the splitting and merging rules.

The PMR quadtree is very good for answering queries such as finding the nearest line to a given
point [29, 30] (see [31] for an empirical comparison with hierarchical object representations such as the
R-tree and R+-tree). It is preferred over the PM1 quadtree (as well as the MX and edge quadtrees) as
it results in far fewer subdivisions. In particular, in the PMR quadtree there is no need to subdivide in
order to separate line segments that are very “close” or whose vertices are very “close,” which is the case
for the PM1 quadtree. This is important, since four blocks are created at each subdivision step. Thus,
when many subdivision steps that occur in the PM1 quadtree result in creating many empty blocks, the
storage requirements of the PM1 quadtree will be considerably higher than those of the PMR quadtree.
Generally, as the splitting threshold is increased, the storage requirements of the PMR quadtree decrease
while the time necessary to perform operations on it will increase.

Using a random image model and geometric probability, it has been shown [39], theoretically and
empirically using both random and realmap data, that for sufficiently high values of the splitting threshold
(i.e., ≥ 4), the number of nodes in a PMR quadtree is asymptotically proportional to the number of line
segments and is independent of the maximum depth of the tree. In contrast, using the same model, the
number of nodes in the PM1 quadtree is a product of the number of lines and the maximal depth of the
tree (i.e., n for a 2n × 2n image). The same experiments and analysis for the MX quadtree confirmed
the results predicted by the Quadtree complexity theorem (see Section 18.4), which is that the number of
nodes is proportional to the total length of the line segments.

Observe that although a bucket in the PMR quadtree can contain more line segments than the splitting
threshold, this is not a problem. In fact, it can be shown [51] that the maximum number of line segments
in a bucket is bounded by the sum of the splitting threshold and the depth of the block (i.e., the number
of times the original space has been decomposed to yield this block).

18.7 Research Issues and Summary

A review has been presented of a number of representations of multidimensional data. Our focus has been
on multidimensional spatial data with extent rather than just multidimensional point data. Moreover,
the multidimensional data was not restricted to locational attributes in that the handling of nonlocational
attributes for point data was also described. There has been a particular emphasis on hierarchical repre-
sentations. Such representations are based on the “divide-and-conquer” problem-solving paradigm. They
are of interest because they enable focusing computational resources on the interesting subsets of data.
Thus, there is no need to expend work where the payoff is small. Although many of the operations for
which they are used can often be performed equally as efficiently, or more so, with other data structures,
hierarchical data structures are attractive because of their conceptual clarity and ease of implementation.

When the hierarchical data structures are based on the principle of regular decomposition, we have the
added benefit that different data sets (often of differing types) are in registration. This means that they
are partitioned in known positions that are often the same or subsets of one another for the different data



sets. This is true for all the features including regions, points, rectangles, lines, volumes, etc. This means
that a query such as “finding all cities with more than 20,000 inhabitants in wheat growing regions within
30 miles of the Mississippi River” can be executed by simply overlaying the region (crops), point (i.e.,
cities), and river maps even though they represent data of different types. Alternatively, we may extract
regions such as those within 30 miles of the Mississippi River. Such operations find use in applications
involving spatial data such as geographic information systems.
Current research in multidimensional representations is highly application-dependent in the sense that

the work is driven by the application. Many of the recent developments have been motivated by the
interaction with databases. The choice of a proper representation plays a key role in the speed with which
responses are provided to queries. Knowledge of the underlying data distribution is also a factor and
research is ongoing to make use of this information in the process of making a choice. Most of the initial
applications in which the representation of multidimensional data has been important have involved
spatial data of the kind described in this chapter. Such data is intrinsically of low dimensionality (i.e., two
and three). Future applications involve higher dimensional data for applications such as image databases
where the data are often points in feature space. The incorporation of the time dimension is also an
important issue that confronts many database researchers.

18.8 Defining Terms

Bintree: A regular decomposition k-d tree for region data.

Boundary-based representation: A representation of a region that is based on its boundary.

Bucketing methods: Data organization methods that decompose the space from which spatial data
is drawn into regions called buckets. Some conditions for the choice of region boundaries
include the number of objects that they contain or on their spatial layout (e.g., minimizing
overlap or coverage).

Fixed-grid method: Space decomposition into rectangular cells by overlaying a grid on it. If the
cells are congruent (i.e., of the same width, height, etc.), then the grid is said to be uniform.

Interior-based representation: A representation of a region that is based on its interior (i.e., the
cells that comprise it).

K-d tree: General term used to describe space decomposition methods that proceed by recursive
decomposition across a single dimension at a time of the space containing the data until some
condition is met such as that the resulting blocks contain nomore than b objects (e.g., points,
lines, etc.) or that the blocks are homogeneous. The k-d tree is usually a data structure for
points which cycles through the dimensions as it decomposes the underlying space.

Multidimensional data: Data that has several attributes. It includes records in a database manage-
ment system, locations in space, and also spatial entities that have extent such as lines, regions,
volumes, etc.

Octree: A quadtree-like decomposition for three dimensional data.

Quadtree: General term used to describe space decomposition methods that proceed by recursive
decomposition across all the dimensions (technically two dimensions) of the space containing
the data until some condition is met such as that the resulting blocks contain no more than b

objects (e.g., points, lines, etc.) or that the blocks are homogeneous (e.g., region data). The
underlying space is not restricted to two-dimensions although this is the technical definition
of the term. The result is usually a disjoint decomposition of the underlying space.

Quadtree complexity theorem: The number of nodes in a quadtree region representation for a
simple polygon (i.e., with nonintersecting edges and without holes) isO(p + q) for a 2q × 2q

image with perimeter p measured in pixel widths. In most cases, q is negligible, and thus, the
number of nodes is proportional to the perimeter. It also holds for three-dimensional data



where the perimeter is replaced by surface area, and in general for d-dimensions where instead
of perimeter we have the size of the (d −1)-dimensional interfaces between the d-dimensional
objects.

R-tree: An object hierarchy where associated with each element of the hierarchy is the minimum
bounding rectangle of the union of theminimum bounding rectangles of the elements imme-
diately below it. The elements at the deepest level of the hierarchy are groups of spatial objects.
The result is usually a nondisjoint decomposition of the underlying space. The objects are
aggregated on the basis of proximity and with the goal of minimizing coverage and overlap.

Regular decomposition: A space decomposition method that partitions the underlying space by
recursively halving it across the various dimensions instead of permitting the partitioning
lines to vary.
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Further Information

It is impossible to give a complete enumeration of where research on multidimensional data struc-
tures is published, since it is often mixed with the application. Hands-on experience with some
of the representations described in this chapter can be obtained by looking at the JAVA applets on
http://www.cs.umd.edu/˜hjs/quadtree/index.html. Multidimensional spatial data is cov-
ered in the texts by Samet [50, 51]. Their perspective is one from computer graphics, image processing,
geographic information systems (GIS), databases, solid modeling, as well as VLSI design and compu-
tational geometry. A more direct computational geometry perspective can be found in the books by
Edelsbrunner [16], Preparata and Shamos [47], and Overmars et al. [13].
New developments in the field of multidimensional data structures are reported in many different

conferences, again since it is so application-driven. Some good starting pointers from the GIS perspective
are the Symposiumon Spatial Databases and the InternationalWorkshop on Spatial DataHandling, which
areheld inalternatingyears. Fromthe standpointof computational geometry, theannualACMSymposium
on Computational Geometry and the annual ACM-SIAM Symposium on Discrete Algorithms are good
sources. From the perspective of databases, the annual ACM Conference on the Management of Data
(SIGMOD) and the Very Large Database Conference (VLDB) usually contain a few papers dealing with
the application of such representation. Other useful sources are the proceedings of the annual SIGGRAPH
Conference.
Journals where such research appears are as varied as the applications. Theoretical results can be found

in SIAM Journal of Computing while those from the GIS perspective may be found in a new journal
calledGeoInformatica. Many related articles are also found in the computer graphics and computer vision
journals such as ACM Transactions on Graphics, the old Computer Vision, Graphics and Image Processing,
which has been renamed Graphical Models and Image Processing and Image Understanding, and IEEE
Transactions on Pattern Analysis and Machine Intelligence.

http://www.cs.umd.edu/~hjs/quadtree/index.html
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