
Multi-resolution Out-Of-Core Modeling
of Terrain and Geological Data

Emanuele Danovaro1,2, Leila De Floriani1,2, Enrico Puppo1, Hanan Samet2
1 Dipartimento di Informatica e Scienze dell’Informazione
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ABSTRACT
Multi-resolution is a useful tool for managing the complex-
ity of huge terrain and geological data sets. Since encoding
large data sets may easily exceed main memory capabilities,
data structures and algorithms capable of efficiently work-
ing in external memory are needed. In our work, we aim at
developing an out-of-core multi-resolution model dimension-
independent, that can be used for both terrains, represented
by Triangulated Irregular Networks(TINs), and 3D data,
such as geological data, represented by tetrahedral meshes.
We have based our approach on a general multi-resolution
model, that we have proposed in our previous work, which
supports the extraction of variable-resolution representa-
tions. As first step, we have developed, in a prototype simu-
lation system, a large number of clustering techniques for the
modifications in a multi-resolution model. Here, we describe
such techniques, and analyze and evaluate them experimen-
tally. The result of this investigation has led us to select
a specific clustering approach as the basis for an efficient
out-of-core data structure.

Categories and Subject Descriptors
I.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling

General Terms
Algorithms

Keywords
Terrain models, multi-resolution, out-of-core

1. INTRODUCTION
Datasets describing terrains, geophysical phenomena, or

generated by simulation, usually consist of a mesh of polyg-
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onal/polyhedral cells with one or more fields defined either
at the vertices, or on the cells of the mesh. A terrain model
is described by a mesh subdividing an either flat or spher-
ical domain, with a field representing elevation defined at
its vertices. In geological data, a volume is tessellated with
polyhedral cells, and a field can represent, e.g., concentra-
tion of water, minerals or pollution, pressure, mechanical
stress, etc.

Available datasets are becoming larger and larger, and
processing them at their full resolution has often prohibitive
computational costs, even for high-end workstations. Multi-
resolution models proposed in the literature may improve
efficiency of processing large datasets, by adapting resolu-
tion on-the-fly, according to the needs of an application [19].
Data at high resolution are pre-processed once to build a
multi-resolution data structure, which can be queried on-
line by the application. The multi-resolution model acts as
a black box that provides simplified datasets, where resolu-
tion is focused on the region of interest, and at the Level Of
Detail (LOD) required by the application. The simplified
dataset is an approximated representation of the data set at
full resolution. Thus, it is affected by some approximation
error, which is usually associated with either vertices or cells
of the simplified mesh. For instance, a triangle of a TIN will
represent the elevation of a portion of the terrain surface
within a certain error from ground truth.

In this work, we consider datasets represented by irregular
simplicial meshes. Examples are TINs for describing terrains
and tetrahedral meshes for describing geological data. In our
previous work, we have developed a dimension-independent
multi-resolution model based on simplicial decompositions,
called a Multi-Tessellation (MT), which provides a general
framework for multi-resolution models proposed in the lit-
erature [9, 25]. On the basis of this model, we have already
developed systems for terrain modeling [8] and volume vi-
sualization [2], as well as a library for the fast prototyping
of applications using multi-resolution, that we distribute in
the public domain [20].

However, the data structures we have developed so far
for the MT were designed to work in main memory. Since
current datasets often exceed the size of main memory, I/O
between levels of memory is often the bottleneck in compu-
tation (consider that a disk access is about one million times
slower than an access to primary memory). A naive man-
agement of external memory, e.g., with standard caching
and virtual memory policies, may thus highly degrade the
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performance of algorithms Indeed, some computations are
inherently non-local and require large amounts of I/O.

Out-of-core algorithms and data structures explicitly con-
trol the loading of data and their storage. Our goal here is
to define an out-of-core data structure for a multi-resolution
model that can store a large dataset and perform queries on
it on a consumer-type hardware platform.

To this aim, we have first analyzed the intrinsic structure
of multi-resolution models, and the nature of algorithms op-
erating on them to define queries. Generally speaking, data
in a multi-resolution model are spatially distributed and or-
ganized hierarchically, according to different levels of reso-
lution. Algorithms to perform queries on a multi-resolution
model are driven by a combination of spatial and resolution
filters, and they are all based on a traversal of the different
levels of resolution.

On the basis of our analysis, we have devoted a consider-
able amount of effort to define, implement, and experiment
with a wide range of techniques to cluster the components
of a multi-resolution model on disk pages, which follow the
resolution hierarchy and/or apply a spatial partitioning and
grouping. Experiments have been performed on terrains rep-
resented as TINs as well as on volumetric data.

The reminder of this paper is organized as follows. In
Section 2, we discuss related work. In Section 3, we briefly
describe the Multi-Tessellation. In Section 4, we analyze
the operations performed by algorithms to answer queries
on the out-of-core data structure for the MT. In Section 5,
we analyze a set of clustering techniques and caching poli-
cies. In Section 6, we present an experimental comparison
among the best clustering techniques. Concluding remarks
are drawn in Section 7.

2. RELATED WORK
Several techniques have been proposed in the literature for

out-of-core simplification of large-size triangle meshes. In
[15], Lindstrom presents an out-of-core simplification algo-
rithm, which is based on the vertex clustering technique first
introduced in [26], combined with a quadric error metric to
improve mesh quality. In [18], Lindstrom and Silva improve
over the above result by proposing an out-of-core simplifi-
cation algorithm, with reduced memory requirements and
which improves on the selection of the representative vertex
of the cluster. An extension of [15] has been proposed by
Shaffer and Garland [28], who use a BSP tree as an adap-
tive domain partition of the input mesh to improve vertex
clustering. Garland and Shaffer in [12] describe a two-step
technique that performs vertex clustering as the first step,
and iterative edge collapse as second one. El- Sana and Chi-
ang [11] present an external-memory algorithm to support
view-dependent simplification, based on segmenting a tri-
angle mesh into sub-meshes that can be simplified indepen-
dently, and then merged in a post- processing phase. In [5],
Cignoni et al., propose an out-of-core incremental simplifi-
cation algorithm, which subdivides the embedding space of
a mesh through an octree and iteratively simplifies each leaf
of the octree. Once leaves are simplified, they are merged
and the process is iteratively repeated. Isenburg et al [14]
present a simplification technique based on streaming a very
large triangle mesh through main memory. A mesh is repre-
sented as an interleaved sequence of triangles and vertices,
where each triangle is described by its three vertex indexes.

Fewer proposals exist for encoding, generating and query-

ing a multi-resolution model in external memory. Lindstrom
and Pascucci propose an out-of-core multi-resolution repre-
sentation for large terrain models described by a regular
nested partition of the domain into a hierarchy of right tri-
angles [17]. Out-of-core multi-resolution data structures for
irregular meshes have been proposed in [3, 4, 10, 11, 13, 16,
30]. These latter can be roughly subdivided into two classes
depending on whether they subdivide the space where the
mesh is embedded, or they cluster the nodes of the multi-
resolution data structure. In all the available techniques,
the underlying multi-resolution data structure is simply a
binary tree, in which a children-parent pair describes an
edge collapse operation.

Space-based techniques for terrain models have been pro-
posed in [3, 13, 21]. In [13], the domain is subdivided into a
uniform grid and separate vertex trees, one for each patch,
are built and maintained. In [3], a hierarchy of nested right
triangles is used to subdivide the domain, and an irregular
triangle mesh, which may consist of a few thousands of trian-
gles, is associated with each patch. In [21], a technique has
been designed for modular multi-resolution modeling based
on a subdivision of the domain into irregular cells. A multi-
resolution model of the lines bounding the subdivision is
built first, and then matching multi-resolution models, one
for each cell, are generated in a second step.

In [4], the approach proposed by the same authors in [3] is
extended to triangulated surfaces by using a decomposition
of the embedding space into a tetrahedral hierarchy, and as-
sociating an irregular triangle mesh with each tetrahedral
cell. In [30], a triangle mesh is partitioned into a hierarchy
of mesh clusters and a progressive mesh is encoded inside
each cluster. The method in [16] uses an octree as a multi-
resolution out- of-core data structure, which is built through
iterative vertex clustering in external memory [18]. In [11],
the view-dependent tree built during out- of-core mesh sim-
plification is organized into meta-nodes, thus giving rise to
a B-tree-like out-of-core data structure. A similar cluster-
ing strategy is applied in [10] by organizing a hierarchy of
half-edge collapses into blocks. The construction of the data
structure has to be performed in main memory.

All these data structures (with exception of [21]) have
been specifically targeted to view-depending rendering. The
out-of-core representations described in [10, 11, 13, 16, 30]
can be used only for multi-resolution models built through
a specific simplification technique (edge collapse or vertex
clustering). The representations in [3, 4], although efficient
in rendering, keep the multi-resolution data structure in
core, and store the triangulation of the patches in external
memory. In this way, the granularity of the multi- resolution
representation is quite coarse, and not sufficient for a fine
spatial analysis in specific regions of interest.

3. THE MULTI-TESSELLATION
The Multi-Tessellation (MT) is a model to represent multi-

resolution simplicial meshes in arbitrary dimensions [9, 25].
The MT provides a general framework for multi-resolution
models. So, the following concepts apply to most other mod-
els proposed in the literature.

An MT is composed of a base mesh at a coarse resolu-
tion plus a partially ordered set of modifications that can be
applied to locally refine the base mesh. In general, a modifi-
cation u consists of two sets of cells u− and u+, representing
an object portion at a lower and a higher LOD, respectively
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u− u+

u

Figure 1: A modification u and its application to
locally refine a mesh.

u1 u2

Figure 2: The DAG representing an MT: two nodes
connected by an arc are highlighted, and the corre-
sponding modifications are shown. The dark trian-
gle belongs to u2

− ∩ u1
+.

(see Figure 1). A modification can be applied in either way
to locally refine or coarsen a mesh.

A direct dependency relation is defined among the modifi-
cations. A modification u2 depends on another modification
u1 if u2 removes some cells inserted by u1, i.e., if the inter-
section u2

−∩u1
+ is not empty. The transitive closure of the

dependency relation is a partial order, which can be repre-
sented as a Directed Acyclic Graph (DAG) (see Figure 2).

Any subset of modifications, which is closed with respect
to the partial order, can be applied to the base mesh in any
total order extending the partial one, and gives a mesh at
variable LOD. Any closed set can be seen as a cut in the
DAG, and a mesh is extracted by adjusting the position
of the cut in the DAG according to query parameters: the
cut is moved upwards to coarsen the mesh and downwards
to refine it. Spatial queries that we need to perform on a
multi-resolution model are essentially aimed at extracting
simplified meshes which satisfy some application-dependent
requirement. Such queries can be classified into queries at a
uniform LOD and queries at a variable LOD. Uniform LOD
queries require a uniform resolution on the whole domain,
while variable LOD ones require high resolution inside a Re-
gion Of Interest (ROI) and arbitrary resolution outside. Ex-
amples of ROI are: a single point, a box, or the set of trian-
gles/tetrahedra intersected by a specific iso-contour. View-
dependent queries are also examples of variable-resolution
queries, in which the ROI is a view frustum, and resolu-
tion smoothly decreases according to the distance from the
observer.

LOD queries are all based on a basic algorithm, called se-
lective refinement, which performs a suitable DAG traversal
of a subset of the modifications of an MT. The traversal is
not a standard graph visit, but the order used is peculiar to
the query, being guided by the dependency relation and by
the query parameters.

4. I/O OPERATIONS IN SELECTIVE
REFINEMENT

We consider here an implementation of a selective refine-
ment algorithm which is based on a top-down graph traver-
sal and on a data structure that explicitly encodes the geom-
etry of cells and the DAG, such as that used in [20], and we
analyze its cost in terms of I/O operations. The data struc-
ture basically contains one record per node of the DAG. In
this record, we store the geometry of the update associated
with the node, its attributes, and the links to its parents and
children. Such links will thus refer to other records that, de-
pending on how the DAG is clustered, either will be found
in primary memory, or shall be loaded from disk. One I/O
operation consists of fetching/loading the record of a given
node. We also assume that the currently extracted mesh is
stored in main memory. This assumption is reasonable since
this mesh usually forms only a small fraction of the mesh at
full resolution.

The traversal starts from the base mesh and is guided
by the dependency relation and by a selection criterion τ
which is application-dependent. Criterion τ takes into ac-
count both the desired LOD and the ROI.

Procedure SELECTIVE REFINEMENT is invoked for the
first time on the modification corresponding to the root of
the DAG describing the MT, which encodes the base mesh.
Next, it traverses the DAG and recursively expands chil-
dren of the current node, if this is required by the selection
criterion τ . Also, all nodes that are ancestors of u are recur-
sively expanded before expanding u. Recursive procedure
FORCE REFINE performs this latter step.

Procedure SELECTIVE REFINEMENT(τ, Σ, u)
begin
/* add the modification and its missing ancestors */

FORCE REFINE(Σ, u)
for each u

′ children of u do
if not IS ACCEPTABLE(u′, τ) then

/* start recursion on required children */
SELECTIVE REFINEMENT(τ, Σ, u

′)
end SELECTIVE REFINEMENT

Procedure FORCE REFINE(Σ, u)
/* Expand u and all its ancestors */
begin

if not IS REFINED(u) then
P = parents of u

for each u
′ in P do

FORCE REFINE (Σ, u
′);

endfor
REFINE(Σ, u)

endif
end FORCE REFINE

We first need an I/O operation to load the base mesh,
after which the algorithm starts the traversal. Another I/O
operation occurs each time primitive IS ACCEPTABLE is
called to check whether or not a node must be expanded.
In some cases, it is possible to avoid such I/O operation by
storing in the record of a node also some attributes of its

145



parents and children (e.g., error threshold, bounding box,
minimum and maximum field value). In this way, only nodes
that need to be expanded will be loaded. This comes, of
course, at the expense of some additional storage.

Procedure FORCE REFINE expands a node. Before per-
forming expansion, it checks if all modifications the node de-
pends on have been expanded and, if not, it expands them
recursively. This implies one I/O operation per recursive
call to FORCE REFINE.

In a data structure that is designed just for primary mem-
ory, access to secondary memory is handled automatically
by virtual memory mechanisms. In this case, each read op-
eration loads only a few bytes (usually less than one KByte),
which results in a tremendous waste of time due to disk seek
time and latency. In order to reduce the number of I/O
operations from disk, we need to group modifications into
clusters, and store each cluster in a disk block. For a given
block size, I/O operations are minimized if all nodes in a
given block are visited before another block is loaded. How-
ever, since selective refinement algorithms visit the DAG and
perform modifications in a dynamically selected order, it is
impossible to forecast a storing order which will be the best
for all queries. We will thus look for a clustering technique
that gives a good performance on average.

An improvement can be achieved by introducing a cluster
cache, which is a portion of main memory storing a subset
of the clusters already loaded. When the selective refine-
ment algorithm tries to load a modification, the out-of-core
engine looks for it in the cache. If it is missing, then the
corresponding cluster is loaded and stored in the cache for
further use. If the cache is full, then we need to adopt a
cache replacement policy.

5. CLUSTERING TECHNIQUES
We have developed a simulation system on top of the MT

library [20]. Such system organizes modifications into clus-
ters, according to different policies. By using the system,
we have estimated the performance of selective refinement
algorithms, by counting the number of I/O operations from
secondary memory. In this way, we have compared several
clustering and caching techniques in both 2D and 3D set-
tings.

An analysis of LOD queries, of the parameters which de-
termine the shape of the MT, and of the DAG traversal
strategies used by the selective refinement algorithms has
suggested us two classes of clustering strategies, one based
on sorting the modifications in the MT (some derived from
strategies for DAG traversal), and the other based on spatial
grouping. Uniform LOD queries have suggested partition-
ing the MT into layers, where each successive layer should
guarantee a reduction in the approximation error, defined as
the error with which a modification approximates the full-
resolution model. Variable-LOD queries focus on a subset
of the domain at high resolution, and thus they have sug-
gested grouping the modifications according to a space clus-
tering technique, which takes into account their position in
space. We need to take three important elements into con-
sideration, when designing a clustering strategy: a spatial
criterion, a coherence in the dependency relation, and the
approximation error.

In Subsection 5.1, we discuss clustering techniques based
on grouping a totally ordered sequence of the modifications
in an MT, while in Subsection 5.2, we present clustering

techniques based on spatial grouping. In Subsection 5.3,
we discuss combinations of the previous ones. Finally, in
Subsection 5.4, we discuss a caching mechanism for clusters
of modifications.

5.1 Clustering based on a sorted sequence
In this subsection, we describe clustering techniques ap-

plied to a sequence of the modifications in the MT, obtained
by either sorting them according to some parameter (ap-
proximation error, maximum, minimum or average distance
from the root), or by performing a suitable DAG traversal.

Computation of clusters based on a sequence of modifica-
tions requires two steps:

• The sequence is computed either by sorting or by DAG
traversal.

• Starting from the beginning of the resulting sequence,
modifications are stored in disk pages until each disk
page is completely full.

The space utilization of these techniques is optimal. If the
MT model consists of N modifications and B is the size of
a disk page, then dN

B
e disk blocks are used if the number of

disk D = 1, or d N

B·D
e stripes in a RAID system.

We have considered the following parameters to sort the
modifications of an MT:

• Approximation error (Err): error with which a modi-
fication locally approximates the full- resolution mesh.

• Layer (Lyr): length of the shortest path from the root.

• Level (Lev): length of the longest path from the root.

• Distance (Ly2): average length of a path from the root.

We have generated totally ordered sequence of modifica-
tions according to the following DAG traversals:

• Depth-first traversal (DFS).

• Breadth-first traversal (BFS).

• Graph visit - depth-first (GrD): similar to a depth-first
traversal, but before adding a modification u, the traver-
sal algorithm checks if the ancestors of u have been
already applied to the current mesh. If not, then they
are added in the same order in which they are visited
by procedure FORCE REFINE. A depth-first selec-
tive refinement algorithm that visits the whole DAG
is simulated.

• Graph visit - Breadth-first (GrB): a variation of GrD,
but based on a breadth-first traversal.

Note that Lyr and BFS give similar results. The only dif-
ference is that modifications at the same minimal distance
from the root are considered in arbitrary order when sorting
according to Lyr, while, in BFS traversal, they are consid-
ered in the order in which they appear in the DAG encoding
structure.

For the sake of comparison, we have also implemented two
additional criteria:

• Random (Rnd): a sequence of modifications is gener-
ated randomly.
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Figure 3: A PR k-d tree with the resulting partition
of space and its tree representation.

• Sequential (Seq): we use the same sequence generated
by a top-down simplification procedure, or, in we re-
verse the sequence in the case of bottom-up simplifi-
cation strategies. Usually the simplification process is
error-driven, but there is no guarantee that the ap-
proximation error associated with modifications de-
creases monotonically

A clustering technique, which simply sorts modifications
and fills each disk block with a contiguous set of sorted mod-
ifications, does not introduce any overhead in storage space.
A disk block is usually at least 4 KBytes. There is no upper
bound on the block size, but a block that spans an entire
disk track best amortizes latency, and, thus, there is no need
to create larger blocks. This suggests an upper bound which
varies between 50 to 200 Kbytes.

If we consider an MT for terrain data (2D MT), each mod-
ification requires on average 112 bytes, while for an MT for
volume data (3D MT), the cost increases to 325 bytes. In
the case of a 2D (3D) MT, this results in a block transfer
size B ranging between 36 and 457-1828 (12 and 157-630)
modifications for a single disk architecture. The number of
modifications per block can decrease if we decide to store
additional information, such as bounding box, or approxi-
mation error, in order to speed up the execution of primitive
IS ACCEPTABLE, as discussed in Section 4.

5.2 Spatial clustering of an MT
We have considered two classes of spatial grouping strate-

gies. The methods in the first class are based on R*-trees.
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u6
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u3 R u9

u4

u7u5 u6 u10 u1

u2 u11 u8

Figure 4: A PK PR k-d tree with k = 3 correspond-
ing to the PR k-d tree shown in Figure 3: the re-
sulting partition of space and its tree representation.
Bold lines indicate the boundaries of blocks corre-
sponding to internal nodes. Gray levels represent
the layer in the tree.

We have used the implementation of R*-trees in [1]. We
associate a minimum axes-aligned bounding box with each
modification (e.g., a rectangle for 2D MTs and a paral-
lelepiped in the 3D case). If the query considers an ad-
ditional parameter, such as the approximation error, then
we have a higher-dimensional bounding box, in which one
of the dimension is the additional parameter.

In our prototype, we have implemented three and four di-
mensional R*-trees, based on Cartesian coordinates and, op-
tionally, on another parameter. Specifically, we have imple-
mented the following techniques, based on R*- tree: Carte-
sian coordinates (it will be labeled RTree); coordinate values
plus approximation error RTreeErr; coordinate values plus
minimum distance RTreeLyr; coordinate values plus average
distance RTreeLy2 and coordinate values plus maximum dis-
tance RTreeLev.

The other class of strategies uses space subdivision com-
bined with a grouping mechanism. Since the modifications
in the MT contain a small number of cells (4 triangles on
average in a 2D MT, and 13 tetrahedra on average in a 3D
MT), we associate each modification to its centroid. More-
over, since an MT is a dimension-independent model, these
centroids can be points in d-dimensional space. Thus, we
have selected a space partitioning technique that does not
depend on the dimension of the underlying space, i.e., a
Point Region k-d tree (PR k-d tree) [23].

A PR k-d tree is a spatial index based on the recursive
subdivision of the domain containing the data points (in our
case, the centroids). At each step the current block is halved.
The halving process cycles through different dimensions in
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a predefined and constant order. In the construction of the
PR k-d tree, we have considered the dimension of the space
in which the MT is embedded (2D or 3D in most cases). For
a two-dimensional space, we split at the first level along x, at
the second level along y, and then the process restarts from
x. We have performed space partitioning not only by using
the centroids, but also by using these latter combined with
other parameters, like the approximation error, the max-
imum, minimum or average distance from the root. For
instance, if we consider a 2D MT and we want to use an ad-
ditional parameter, then we construct a three-dimensional
PR k-d tree by considering the additional parameter as the
first halving criterion and then testing all the coordinates in
the standard order.

Figure 3 shows the space partition generated by a PR k-
d tree in two dimensions together with its corresponding
tree. White squares represent empty leaves. It is easy to
notice that a PR k-d tree can result in an unbalanced tree if
data are not uniformly distributed. This fact is well known
for all point-region trees [27]. However, the problem can be
partially overcome by the subsequent grouping step.

One way to group the full leaves of a PR k-d tree on disk
is by associating location codes with them, and storing these
codes in a B-tree [27]. This technique has the disadvantage
that the boundary of the domain covered by leaves stored in
the same node of the B-tree can be arbitrary complex. In
general, the domain might be not connected and, thus, we
could loose spatial coherence.

An interesting alternative consists of using a PK-tree as
a grouping mechanism. Originally proposed in [29], a PK-
tree is characterized by a parameter i, called the instanti-
ation value, which is the minimum number of nodes in the
tree grouped in a cluster. A PK tree is built recursivley
by applying a bottom-up grouping process to the nodes of
a tree T . Nodes belonging to T are grouped into clusters
until the minimum occupancy i has been reached. During
the grouping process empty leaves in T are removed. Since
the PR k-d tree is a binary tree, an interesting property
of the PR k-d tree grouped according to the PK-tree node
aggregation policy, that we call a PK PR k-d tree, is that
each node has a minimum of i children and a maximum of
2 · (i− 1), regardless of the dimensionality of the space [29].
This guarantees that disk blocks are at least half-full.

Figure 4 shows the PK PR k-d tree corresponding to the
PR k-d tree presented in Figure 3 with instantiation value
i = 3.

We have tested several clustering policies based on a PK PR
k-d tree. Specifically, we have implemented techniques based
on the values of the Cartesian coordinates of the centroid (it
will be labeled PKTree); on the coordinate values plus ap-
proximation error PKTreeErr; on the coordinate values plus
minimum distance from the root PKTreeLyr;on the coordi-
nate values plus average distance PKTreeLy2; and on the
coordinate values plus maximum distance PKTreeLev.

5.3 Combining sorting with spatial criteria
We have also combined the strategies described in the

previous two subsections together. We have developed a
technique that interleaves the effect of a sorting rule with
that of a space partitioning rule similar to that applied in
a PR k- d tree, resulting in a technique which resembles
priority search trees [22]. We consider a sequence of modifi-
cations in an MT generated by any sorting criterion, or any

DAG traversal, as described in Subsection 5.1. We store in a
disk page the first k modifications in the sequence, and then
we subdivide the remaining modifications according to the
selected space partitioning criterion. This process is applied
recursively to each subset of modifications.

We perform a recursive subdivision of the domain con-
taining the centroids associated with the modifications, or
of the domain defined by the centroids plus an additional
parameter, as in the PR k-d tree, since we subdivide the do-
main in half. The halving process cycles through different
dimensions in a predefined and constant order. The differ-
ence, compared witg a PR k-d tree, is that each node of
the tree can store up to k modifications. The resulting data
structure is a binary tree in which each node corresponds to
a disk block.

Our algorithm can be summarized as follows:

1. Compute a sequence of modifications. Let LS be such
a sequence.

2. Let B be the first block.

3. Remove the first k modifications from LS and store
them with the current disk block B.

4. If LS is not empty, then split LS into two sublists L′

S

and L′′

S according to the halving criterion adopted by
the PR k-d tree;

5. Apply 3 recursively on L′

S and L′′

S .

This technique, that combines sorting with space par-
titioning, has been applied by using all the sorting crite-
ria that we have developed which are described in Subsec-
tion 5.1, and the five halving rules adopted for the PR k-
d tree, described in Subsection 5.2.

5.4 Caching policy
During selective refinement, we need to load clusters of

modifications in main memory. Sometimes a cluster can be
referenced more than once, especially if we are building large
clusters. This suggests using a buffer to store the clusters
just loaded from disk. A common graphics workstation has
between 1 and 4 GBytes of main memory (this means it can
hold between 3 and 12 million of modifications). Even if
a huge multi-resolution model can be several times larger,
it is useful to use part of the main memory as a cache for
clusters of modifications. In our prototype it is possible to
have a cluster cache, whose size can be defined by a user,
and which can be dynamically redefined.

We have implemented two different cache replacement
policies: oldest and least-recently-used. According to our
tests, the least-recently-used policy seems to offer better re-
sults. Every test reported in Section 6 is based on this latter
cache replacement policy.

Figure 5 shows the effect of clustering based on an or-
dered sequence of modifications, and of a small cache that
can fit up to 2% of the modification in a multi-resolution
trianglular model. We show tests have been performed on a
terrain data set, the Mount Marcy dataset. This data set at
full resolution contains 1,442,401 points and 2,880,000 tri-
angles. It has a storage cost of 445 MBs. The same experi-
ments on other 2D and 3D data sets show similar results [6].
The graphs report the number of I/O operations for an MT
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Figure 5: Number of I/O operations for a 2D MT
stored on external memory. We used the explicit
MT data structure. Disk accesses without cluster-
ing modifications (continuous line), with sequential
clustering (dashed line), with clustering and caching
(dotted line) for a query at variable LOD, based on
a region of interest.

stored in external memory as a function of the error thresh-
old. The solid line represents disk accesses without cluster-
ing modifications, the dashed one represents disk accesses
with clustering and no caching, the dotted line represents
disk accesses with clustering and an additional cache.

6. ANALYSIS AND COMPARISONS
In this Section, we present the results of comparisons

among the clustering techniques we have described in the
previous section. Specifically, here we report results for the
ones that performed best in their category, which include:
Err, BFS, DFS, GrB, GrD, space partitioning on an approxima-
tion error and three coordinate values, and grouping with a
PK tree (PK tree) and with an R*-tree (R* tree). We also
present results obtained with a clustering technique that
combines the effects of sorting and space partitioning: space
partitioning on average distance and three coordinate val-
ues, and Ly2 sorting (SpaLy2). Each graph represents the
ratio between the number of disk accesses required to per-
form a set of selective refinement queries and the number
n = N/B of disk blocks required to store the model. Recall
that N is the size of the data, i.e. the number of modifi-
cations associated with an MT, and B is the size of a disk
page, i.e. the number of modifications that can fit in a disk
page. This permits us to compare results, independently of
model size.

We show results on a 2D data set representing the Grand
Canyon in Arizona. This data set consists of 4,194,304
points and the mesh at full resolution contains 8,380,418
triangles. It requires 1389 MBs of storage. We have ob-
tained similar results with other 2D and 3D datasets. A
complete set of experiments can be found in [6]. The cache
size is set at 1% of the size of the model, in order to enhance
differences among clustering techniques.

Figure 6 (a) shows the results for selective refinement at
uniform resolution on the Grand Canyon dataset. Sorting
based on the error threshold (Err) has the worst perfor-
mance. DFS performs quite well, and GrD, which performs
a depth-first traversal with inclusion of ancestors, presents
even better results. In this case, each of the space partition-

ing methods coupled with sorting rules behaves in nearly
the same way. The difference between the different tech-
niques is less than 5%. This behavior is likely to be a result
of the regular structure of the Grand Canyon dataset. The
best results are obtained by a breadth- first traversal with
inclusion of ancestors (GrB).

This result is somehow expected in the case of selective
refinement queries at a uniform resolution, since GrB clus-
ters modifications in the same order of a selective refinement
traversal at uniform resolution. It is much more interesting
to note that GrB, even with queries at variable resolution, of-
fers excellent results. Results on selective refinement at vari-
able resolution with a field value as a focus set are shown in
Figure 6 (b). In this case, considerations on the efficiency of
clustering techniques are comparable to the puniform case.
Results for selective refinement at variable resolution with a
box as focus set are shown in Figure 6(c). In this case, GrD
is really close to GrB, and all results obtained with clustering
techniques based on space clustering are close to each other.

Note that, even for a really small cache, that is about 1%
of the size of the whole model, a clustering technique based
on GrB exhibits a small overhead, compared to loading of
the whole model.
GrB is clearly the best performing technique implemented

in our prototype. Its overhead is negligible, and it scales well
based on the cache size. Its only drawback is that, in order
to be built, it requires a traversal of the DAG, which mimics
the selective refinement algorithm and must performed out-
of-core.

7. CONCLUDING REMARKS
We have investigated out-of core approaches for encod-

ing and manipulating multi-resolution models for two- and
three-dimensional scalar fields. The major issue here has
been developing and experimenting with effective techniques
for clustering the modifications in the multi-resolution model.
We have designed and developed a large variety of clus-
tering techniques (actually, 65), and we have experimented
with them in connection with the major selective refinement
queries, as well as with both terrain and geophysical data
sets. The clustering algorithms, that we have developed,
can be coupled either with a compact, or with an explicit
representation of the multi-resolution model, and form the
basis for the development of a system for out-of-core multi-
resolution modeling.

We are currently developing an out-of-core multi-resolution
modeling system for scalar fields based on the MT. The
data structure on which we will perform the selective refine-
ment queries is based on an explicit encoding of the mod-
ifications as sets of simplices (triangles or tetrahedra), and
on the clustering of the modifications according to the GrB

traversal technique. In order to build this data structure,
we consider the coarse mesh and the sequence of modifica-
tions produced by an out-of-core simplification algorithm.
We have designed an out-of-core algorithm which extracts
the dependency relation and produces an intermediate data
structure, an out-of-core algorithm for both traversing such
a data structure and for generating the clustered represen-
tation, and an out-of-core algorithm for selective refinement
(that we have already implemented in our simulation envi-
ronment) [6].

At a later stage, we also plan to develop specific imple-
mentations of the out-of-core modeling system based on im-
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Grand Canyon - Variable resolution: field value
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Grand Canyon - Variable resolution: ROI
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Figure 6: Number of I/O operations for performing queries at uniform resolution (a) or variable resolution
with a field value as focus set (b) or variable resolution in a box (c) on the Grand Canyon dataset.

150



plicit representations of the modifications, in particular by
using implicit procedural encodings of half- edge collapse on
triangle [24] and tetrahedral meshes [7].

There still remain important, yet relatively unexplored
issues concerning a multi-thread implementation, in which
the I/O process is a thread, and the selective refinement is a
separate one. This can be used to implement a pre-fetching
technique. Clusters that are likely to be required by the
selective refinement algorithm can be pre-loaded by the I/O
thread, with a reduction in the total execution time. We
plan to consider pre-fetching in our future work.
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