
A N G E W A N D T E M A T H E M A T I K

U N D

I N F O R M A T I K

Workshop on Massive Geometric

Data Sets (Massive2005)

Lars Arge1, Mark de Berg2,
Jan Vahrenhold3 (eds.)

1Department of Computer Science, University of Aarhus,
Aabogade 34, DK-8200 Aarhus N, Denmark

2Department of Mathematics and Computing Science, TU
Eindhoven, P.O. Box 513, 5600 MB Eindhoven, the Netherlands

3Westfälische Wilhelms-Universität Münster, Department of
Computer Science, Einsteinstr. 62, D-48149 Münster, Germany

02/05 – I

U N I V E R S I T Ä T M Ü N S T E R

Preface

This booklet contains the abstracts of the 13 talks given at the Workshop on Massive
Geometric Data Sets (Massive2005). Bringing together researchers from different areas
but with a common interest in handling massive data sets, this informal workshop was
held in connection with the Twenty-First Annual ACM Symposium on Computational
Geometry on June 9, 2005, at the National Research Council Campus in Pisa, Italy.

We thank the Netherlands Organization for Scientific Research and the University of
Münster for their financial support that made this workshop possible. We are also grateful
to the Istituto di Informatica e Telematica of the Consiglio Nazionale delle Ricerche for
their help with the local arrangements and for hosting the workshop.

Lars Arge, Mark de Berg, and Jan Vahrenhold

Organizing Committee

Lars Arge University of Aarhus / Duke University (workshop organization)
Mark de Berg TU Eindhoven (workshop organization)
Adriana Lazzaroni IIT-CNR (local arrangements)
Giuseppe Liotta University of Perugia (local arrangements)
Marco Pellegrini IIT-CNR (local arrangements)
Jan Vahrenhold University of Münster (workshop organization)

1

2

Contents

Fishing for Patterns in Data Streams
Hershberger, Shrivastava, Suri, Tóth . 5

Cluster Hulls: A Technique for Summarizing Spatial Data Streams
Hershberger, Shrivastava, Suri . 7

Using Data Streams Algorithms for Computing Properties of Large Graphs
Buriol, Donato, Leonardi, Matzner . 9

Coresets in Dynamic Geometric Data Streams
Frahling, Sohler . 15

Online Data Reconstruction
Ailon, Chazelle, Comandur, Liu . 17

Identifying Geometric Outliers in Massive Data Sets
Dulá . 19

Cache-Oblivious Linear Programming
Cabello, de Berg, Goaoc, Schroders . 21

Streaming Formats for Geometric Data Sets
Isenburg, Lindstrom, Gumhold, Snoeyink 23

A Java-Based System for Large-Scale Rendering
Dalal, Dévai, Rahman . 25

Cache-Oblivious Mesh Layouts
Yoon, Lindstrom, Pasucci, Manocha . 29

Sorting Points From IRk Into Hilbert Order
Liu, Mascarenhas, Snoeyink . 35

Computing Pfafstetter Labelings I/O-Effciently
Arge, Danner, Haverkort, Zeh . 37

Out-Of-Core Multi-Tesselation
Danovaro, De Floriani, Puppo, Samet . 43

3

4

Space Complexity of Hierarchical Heavy Hitters

in Multi-Dimensional Data Streams

John Hershberger∗ Nisheeth Shrivastava † Subhash Suri† Csaba D. Tóth‡

Abstract

Heavy hitters, which are items occurring with frequency above a given threshold, are an important aggregation
and summary tool when processing data streams or data warehouses. Hierarchical heavy hitters (HHHs) have
been introduced as a natural generalization for hierarchical and multi-dimensional data domains. An important
application, for instance, involves inferring patterns in the stream of IP packets in the Internet, for the purpose of
traffic engineering or network security. Each IP packet is mapped to a multi-dimensional point using its header
fields, and the goal is to extract classification rules that account for a large fraction of the traffic. In geometric
terms, the problem involves identifying rectangular boxes that contain a significant fraction of a stream of points,
excluding those points counted in a smaller heavy hitter box.

Formally, consider a stream S of d-dimensional points and a family B of axis-aligned d-dimensional boxes.
Both |S| and |B| are large—the points of the stream arrive online, and they are too numerous to be stored in
memory; the boxes also are too numerous to be maintained explicitly and are defined implicitly by certain rules.
The boxes in B are partially ordered by the containment relation: for two boxes B and B′, we write B′ ≺ B if
B′ ⊂ B. We define the frequency (or, population) of a box B to be the number of points in the stream that
lie in B, namely, |B ∩ S|; we use the notation S to also denote the part of the stream seen so far. We are
interested in identifying those boxes with frequency greater than φ|S|, for a given parameter 0 < φ < 1. In
order to avoid redundancy, however, hierarchical heavy hitters are defined using the discounted frequency of a
box. (Otherwise, all boxes containing a heavy box may be flagged as heavy even if they do not contain many
additional points.) Discounted frequencies and φ-hierarchical heavy hitters (φ-HHHs) are defined recursively: the
discounted frequency of B counts only those points that lie in B but not in another φ-HHH B′ where B′ ≺ B.
A box B is a φ-HHH if its discounted frequency exceeds φ|S|.

Hierarchical heavy hitters are natural and powerful constructs, but reliably estimating the discounted frequency
of boxes has proved elusive. None of the known space-efficient data stream algorithms offer a worst-case guarantee
on the approximation quality of the boxes they flag as φ-HHH . In this talk, we formalize the difficulty of computing
true hierarchical heavy hitters and prove lower bounds on the space complexity of algorithms that compute them.

For streams of 1-dimensional data, we give an Ω(1/φ2) space lower bound for any algorithm, using an
information-theoretic argument. To prove lower bounds for streams of multi-dimensional data and to estab-
lish stronger space bounds, we limit our discussion to a simple model of deterministic algorithms, which we call
the box frequency model. In this model, an algorithm with space bound s is allowed s distinct counters, and each
counter maintains the frequency of a box. We show that any single-pass deterministic scheme that computes
φ-HHHs for d-dimensional data in the box frequency model with any bounded approximation guarantee must use
Ω(1/φd+1) space. This bound is asymptotically tight as we can show a deterministic data stream algorithm (in
the box frequency model) that computes φ-HHHs with constant approximation error, using O(1/φd+1) memory.

∗Mentor Graphics Corp., 8005 SW Boeckman Road, Wilsonville, OR 97070, USA, john_hershberger@mentor.com and (by cour-
tesy) Department of Computer Science, University of California at Santa Barbara.
†Department of Computer Science, University of California at Santa Barbara, Santa Barbara, CA 93106, USA, {nisheeth,

suri}@cs.ucsb.edu.
‡Department of Mathematics, Room 2-336, MIT, Cambridge, MA 02139, USA, toth@math.mit.edu.

1

5

6

Cluster Hulls:

A Technique for Summarizing Spatial Data Streams

John Hershberger∗ Nisheeth Shrivastava† Subhash Suri†

The extraction of meaning from data is perhaps the most important problem in all of science. Algorithms
that can aid in this process by identifying useful structure are valuable in many areas of science, engineering, and
information management. In particular, finding a simple characterization of a distribution known only through a
collection of sample points is fundamental in many settings.

We consider the following problem: given an on-line, possibly unbounded stream of two-dimensional points,
how can we summarize its spatial distribution or shape using a small, bounded amount of memory? We propose
a novel scheme, called ClusterHulls, which represents the shape of the stream as a dynamic collection of convex
hulls, with a total of at most m vertices, where m is the size of the memory. The algorithm dynamically adjusts
both the number of hulls and the number of vertices in each hull to represent the stream using its fixed memory
budget. Thus, depending on the input, the algorithm adaptively spends more points on clusters with complex
(potentially more interesting) boundaries and fewer on simple clusters. Because each cluster is represented by its
convex hull, the ClusterHull summary is particularly useful for preserving such geometric characteristics of each
cluster as its boundary shape, orientation, and volume. Furthermore, since hulls are objects with spatial extent,
we can also maintain additional information such as the number of input points contained within each hull, or
their approximate data density (e.g., population divided by the hull volume). By shading the hulls in proportion
to their density, we can then compactly convey a simple visual representation of the data distribution.

We implemented ClusterHulls and experimented with both synthetic and real data to evaluate its performance,
comparing it against a data stream version of k-means clustering. In all cases, the representation by ClusterHulls
appears to be more information-rich than k-means, even when the latter is enhanced with some simple ways to
capture cluster shape. See the example figures below.

The top row shows input data consisting of three nat-
ural circular clusters (left) and the output of Cluster-
Hulls (right) with m = 45. The bottom row shows two
different outputs of k-means, with m = 45. Left: the
result of computing k = 45 centers. Right: the result
of computing k = 5 centers and for each center main-
taining a random sample of 9 points to get a rough
representation of the cluster geometry. The k-means
algorithm does not give an accurate representation of
the cluster boundaries in either case.

The data set shown at the top contains about 68, 000
points corresponding to the locations of the West
Nile virus cases reported in the US, as collected by
the CDC and the USGS. The lower figures show the
results of ClusterHulls (left) and k-means (right) for
m = 256. The hulls generated by ClusterHulls are
shaded according to their densities (darker regions
are more dense).

∗Mentor Graphics Corp., 8005 SW Boeckman Road, Wilsonville, OR 97070, USA, john_hershberger@mentor.com and (by cour-
tesy) Department of Computer Science, University of California at Santa Barbara.

†Department of Computer Science, University of California at Santa Barbara, Santa Barbara, CA 93106, USA, {nisheeth,suri}@
cs.ucsb.edu.

1

7

8

Using data stream algorithms for computing properties of large
graphs ∗

Luciana S. Buriol

Dipartimento di Informatica e Sistemistica
Universitá di Roma ”La Sapienza”
Via Salaria 113, 00198 Roma, Italy

buriol@dis.uniroma1.it

Stefano Leonardi

Dipartimento di Informatica e Sistemistica
Universitá di Roma ”La Sapienza”
Via Salaria 113, 00198 Roma, Italy
Stefano.Leonardi@dis.uniroma1.it

Debora Donato

Dipartimento di Informatica e Sistemistica
Universitá di Roma ”La Sapienza”
Via Salaria 113, 00198 Roma, Italy

donato@dis.uniroma1.it

Tobias Matzner

Fakultät für Informatik
Universität Karlsruhe
Karlsruhe, Germany

tobias.matzner@rechnerpost.de

ABSTRACT

The focus of this paper is on the practical use of data stream
algorithms for monitoring statistical and topological proper-
ties of large graphs such as the webgraph. By webgraph we
mean the directed graph generated from the link structure
of webpages: each webpage is a node and each hyperlink
is an arc in this graph. We study experimentally the ap-
plication of the algorithm of Datar and Muthukrishnan [5]
for maintaining the indegree rarity distribution and the den-
sity of low cardinality bipartite cliques in a graph read in a
streamed fashion. The α-rarity of a stream is the ratio be-
tween the number of elements that appear exactly α times
and the total number of different items in the stream. We
present results and show that the approximated values are
very close to the optima even when a low precision is re-
quested.

1. INTRODUCTION

Data stream algorithms aim to maintain the underlying in-
formation of a stream of data, using small memory space.
The data is processed on the fly, as it is generated, or it can
also be read from second memory devices. Typical applica-
tions of data stream algorithms are originated from massive
datasets such as network traffic measurements, telephone
call records, biological datasets and atmospheric observa-
tions. In these applications is unnecessary or impractical to
read data multiple times. In many cases, the data is not even
stored. This paper focuses on a ”new” natural application
for data streams. We are interested in using data stream
algorithms for monitoring statistical and topological prop-
erties of large graphs such as the webgraph. By webgraph we
mean the directed graph generated from the link structure

∗This work was partially supported by the EU within the
6th Framework Programme under contract 001907 “Dynami-
cally Evolving, Large Scale Information Systems” (DELIS) and
the FET Open Project IST-2001-33555 ”COevolution and Self-
organization in Dynamical Networks”.

of webpages: each webpage is a node and each hyperlink
is an arc in this graph. Likewise, sub-graphs can be gener-
ated from specific webpage collections such as blogs, online
encyclopedias, online bookstores, the collection of webpages
within a domain, and many others. The graph read in a
streaming fashion considers each edge as an item and the
stream is not required to be structured.

The main advantage of using data streams instead of exact
algorithms is that the space used for managing and mining
the stream is small, without resorting to external memory
algorithms. Furthermore, results can be output anytime
during the stream processing, not requiring that the whole
data input be processed in advance. On the other hand,
data stream algorithms do not provide exact values, but an
approximation that depends on the precision required and
the amount of resources we are willing to invest.

Several theorical results have been proposed in this new
research field, some of them have not yet been implemented
and experimented, some of them are not practical. In this
paper we observe how a data stream algorithm behaves in
practice for computing the indegree rarity distribution of a
graph over the arc arrivals. More specifically, we maintain
the distribution of the number of nodes that has a given
indegree over the total number of different nodes seen in the
stream so far. We use the algorithm proposed by Datar and
Muthukrishnan [5] and show experimentally that the results
are very close to the optima even when a low precision is
requested. The original algorithm proposes the use of min-
wise hash functions, whereas we use universal hashing [5].
This decision is due to the fact that computing min-wise
hashing consumes about two orders of magnitude more time
than universal hashing without providing better results in
practice for the graphs we have tested.

When considering a specific structure in the data stream,
other properties can be computed. For example, reading
the stream in an adjacency list fashion, the same rarity al-
gorithm can be used for estimating the density of minors
such as small bipartite cliques.

9

The indegree of webpages is an important measure of their
popularity. The experimental observation of the indegree
distribution has been the subject of seminal works aimed to
characterize the structure of the webgraph [2, 3]. This study
has also revealed a surprising number of dense subgraphs,
specifically bipartite cliques, of moderately small size [8],
considered as cores of hidden web communities.

In the next section we present the α-rarity algorithm of
Datar and Muthukrishnan [5]. Section 3 describes the adap-
tations of the α-rarity algorithm for computing indegree rar-
ity distribution, as well as for computing minors of small
size. In section 4 we present experimental results for rarity
of indegree e bipartite cliques of size three (k3,3) and for
the minors k(1,3) and k(2,3). We generalize the set of all
minors mentioned above using the term k(i,3), where i de-
notes the number of nodes in the graph that points to each
node of a triple (set of three nodes). Comparison with the
results of an optimal computation shows excellent practi-
cal results of our implementations. Section 4 also described
the optimization of a an implementation of min-wise hash
functions [10].

2. ESTIMATING RARITY OVER DATA
STREAM WINDOWS

We use the α − rare algorithm of Datar and Muthukrish-
nan [5] for driving our experiments. Consider a stream of
items ai generated in a universe U=[1,..,n]. A stream is a set
of m elements a1, a2, ..., am such that ai ∈ U . An item i is
called α− rare if it appears exactly α times in the stream.
Let’s call #α − rare the number of elements that appear
exactly α times in the stream. Likewise, #distinct denotes
de number of distinct items in the stream. The α-rarity ρα
is defined as the ratio ρα = #α−rare

#distinct
. In other words, the

α-rarity of a stream is the measure of number of items that
repeat exactly α times in the stream.

The algorithm proposed by Datar and Muthukrishnan [5]
for computing the α-rarity of a stream uses min-wise hash
functions. Min-wise independent permutation families are
defined in [4]. Let Sn be the set of all permutations π of
[1,...,n]. A permutation family F (subset of all permutations
over [1..n]) is exactly min-wise independent if for any subset
X of [1..n], and any x ∈ X, when π is chosen at random from
F we have Pr{min{π(X)} = π(x)} = 1

|X| . In other words,

it is required that all elements of a given set X have an equal
chance to become the minimum element of the image of X

under π.

The referred algorithm uses only O(log N + log u) space,
and O(log log N) per item processing time. It estimates ρ by
ρ̂ ∈ [1±ε]ρ+ερ for a given fraction ε, with hight probability.
The algorithm uses h = 2ε−3p−1logτ−1 hash functions and
two |h|-vectors, min and count, in main memory. Each po-
sition i of the vector min contains the minimum value found
so far by the min-wise hash hi, whereas count maintains,
for each position i, the number of times that the current
minimum min-wise value was found. For each value of α, ρ̂
is computed as the ration between the number of counters
that have exactly value α and h.

A slightly different algorithm is proposed for computing
the α-rarity of a windowed stream. E.g, Considering a fix
window size equal to W, the algorithm maintains the α-rarity
of the last W items seen in the stream. In this case, to main-
tain the current minimum for each hash function is a bit

more complicated. Instead of the |h|-vector min, a linked
list LM is used. For each min-wise hash function, all non
dominated minima are maintained, also with indication of
the number and the time of the occurrences of that mini-
mum. For non dominated minima we mean the min-wise
hash values that are larger than the current minimum, but
were generated more recently and belong to the current win-
dow. The number of times that each minimum was found
is stored in another linked list LT, instead of using the |h|-
vector count. Each element in this list contain information
about the time the correspondent minimum was found. For
each new item processed in the stream, the lists are updated
twice. First the items no longer in the lists are removed
(checking LT info) and next, the lists are update with the
new element.

3. COMPUTING THE RARITY DIS-
TRIBUTION OF INDEGREE AND
K(I,3)

In this sections we describe how the not-windowed algorithm
described in the previous section is adapted to compute the
α-rarity algorithm for computing the indegree and k(i,3)

rarity distributions of a graph.

Considering an arbitrary scan of a digraph G=(V,E), where
V is the set of nodes and E is the set of edges of this graph.
The items of the stream, in this case, are the list of edges.
The α-rarity of the stream can be understood as the per-
centage of nodes that has indegree α. With the underlying
data stored for estimating α, we can compute the α- rarity
for any αi < α. So, computing the rarity distribution for an
α large enough, we obtain the rarity indegree distribution of
the graph considering any value α. The rarity distribution
can be computed for a complete stream, or for the window
of the last W items seen in the stream.

When considering some structure in the stream, other
properties can be computed. For example, reading the stream
in an adjacency list fashion, the same rarity algorithm can
be used for approximating the density of minors, such as
small bipartite cliques. Such kind of structured data stream
can be found naturally on some applications. For exam-
ple, during a crawling process, each current fetched page is
parsed and all outgoing links of this page identified. It is
exactly this kind of order that we are considering here.

Now we describe the adaptation of the α-rarity algorithm
for computing the k(i,3) rarity distribution on a graph.
The digraph G is read in a streaming fashion, e.g., all out-
going links of a node i ∈ V are read in sequence. The
lists of outgoing edges are not required to be in any spe-
cific order, as well as the edges intern to each list. So,
for each node u, for each outgoing edge (−→u, a) ∈ OUT (u),
triples are calculated considering node a and all combina-
tions two by two of the head-node of the edges seen so far
in OUT (u). E.g, triples (a,b,c) are calculated for nodes

b, c ∈ OUT (u) considering edges (
−→
u, b) and (−→u, c) previously

located in OUT (u) than (−→u, a). So, the overall number of
triples (T) of the graph is the sum of the combination three
by three of head-nodes of the outgoing list of each node

u ∈ V , e.g., T =
Pi
i=1

di∗(di−1)∗(di−2)
6

where di = |OUT (i)|
is the outdegree of the node i. We require to store in main
memory the whole outgoing adjacency list of the current
node.

10

4. EXPERIMENTAL RESULTS
In this section we describe the experimental results we per-
formed using the α-rarity algorithm. The algorithms were
coded in g++ version 3.3.2. The experiments were con-
ducted in a Intel Pentium IV, with 1GB RAM, running
Mandrake 9.0.

Due to the excessive computational time spent by min-
wise hash functions, we use universal hash functions instead.
We used the hash function (hash31) and the random number
generator (prng int) from the online available codes from
the MassDAL group of Rutgers
(http://www.cs.rutgers.edu/ muthu/massdal-code-index.html).

The implementation of all algorithms presented in this
section, as well as the optimized version of min-wise hash
functions, are available by e-mail request.

We start describing the optimization applied to the on-
line available implementation of min-wise functions. Next,
we describe the datasets we used and afterwards present re-
sults for the indegree distribution for the entire graph view
and for the windowed case. We conclude our experiments
with some results for the α-rarity algorithm applied for the
k(i,3) case.

4.1 Optimization of Min-wise hashing
We use an optimized version of Jerry Zhao’s implementa-
tion [10] of an approximate restricted min-wise independent
permutation family proposed by Alon et al. [1]. In practice,
one can allow certain relaxations. One of the relaxed defini-
tion is approximate restricted min-wise permutation family.
The implementation uses a linear feedback shift register with
a irreducible polynomial as feedback rule as described in [1]
to generate hash values. A certain number of those hash-
ing functions is then used to compute the permutation value
[4]. The time to compute a permutation using this imple-
mentation is O(n(loglog n + log k + log 1

ε
)) using a 1

ε
away

approximate min-wise permutation for [0..n] restricted by
2k-wise independence. The space cost of the original imple-
mentation is O(loglog n + log k + log 1

ε
). Our modification

is to store intermediate results during the calculation of the
register values instead of starting over from the beginning
every time the hash function is called. For this purpose
we memorize blocks of consequent values long enough to be
able to resume calculation from this point i.e. of the length
of the feedback rule. Thus the space cost is increased but
the software remains usable on a normally equipped system.
The calculation time however – together with slight changes
to avoid expensive functions – was reduced by a factor of
orders of magnitude.

4.2 Datasets
We conducted our experiments on streams of Wikipedia
graphs. A graph of this type is generated from the link struc-
ture of the online and free-content encyclopedia Wikipedia
(www.wikipedia.org). It started in January 15, 2001 with a
few English articles. Four years later, Wikipedia has more
than 1 million articles, available in more than 100 languages:
The English version is the largest one, with about half mil-
lion articles. Following the definition of a webgraph, each
article is a node, and each hyperlink is a link in the graph.
One graph is extracted for each language.

There are a few reasons why we are using wikipedia graphs
for tests:

• independency of external links: wikipedia articles link
mainly to articles on the same dataset.

• variety of graph sizes: it can be collected one graph by
language, and the graph dimensions vary from a few
hundred pages up to half million pages.

• generation on time: wikipedia provides time informa-
tion associated with nodes. Moreover, it provides old
information: time information of data of creation and
dates of modification for each page on the dataset.

• available on dumps: it can be dumped as mysql tables,
instead of been crawled. New dumps are provided al-
most weekly.

We generate streams of edges of the wikipedia graphs fol-
lowing their generation on time. In our experiments we use
the graphs wikiEN, wikiDE, wikiFR, wikiIT, wikiPT from
the datasets extracted from the English, German, French,
Italian and Portuguese languages, respectively. The graphs
were obtained from an old dump of July 2004. Due to space
restrictions, we limited the presentation of experimental re-
sults in this extended abstract to the wikiEN and wikiPT

graphs. Some comments are added about the experimental
results on the other three graphs. Graph wikiPT contains
8,131 nodes and 48,168 edges, while graph wikiEN is two
orders of magnitude larger containing 286,754 nodes and
4,065,530 edges.

4.3 Rarity Indegree Distribution

This subsection describes the results obtained using the α-
rarity algorithm for the entire stream (unbounded) and the
windowed cases. Figure 1 presents results for the rarity for
the unbounded case, using 1000 hash functions. The lines
are plot for a logarithmic number of indegree values. The
plot omits results for indegree higher than 63 for the sake
of clarity of the figure, but a complete plot would present
additional lines on the bottom of the figure, appearing on
increasing order of the number of edges processed.

For a good approximation, a larger number of hash func-
tions are required. For example, if we set ε = p = τ = 0.1,
10,000 hash function are required. For ε = p = τ = 0.2, just
437 hash functions are needed. But we observed, that even
with a small number of hash functions, the results are close
to the optima. Figure 2 presents results when using only
100 hash functions.

For the windowed case, similar quality of results were
found. Figure 3 presents results for windows of 100,000
items, estimated using 100 hash functions.

We also found good approximation when using the α-
rarity algorithm for computing the rarity distribution of
k(i,3) on the graph. Results for i=1,2,3 are plot in Fig-
ure 4. The plot is in log scale to be able to visualize all
three distributions clearly on the same plot. Usually the
number of k(1,3) � k(2,3) � k(3,3). The difference be-
tween this values decrease with the increase of i. Observe,
for example, the precision on results between the estimated
and exact computation of k(1,3) and k(2,3). Since k(1,3)

is found many more times than k(2,3), the results are more
accurate. For values of i > 4 we did not plot for the sake of
clarity of the plot, but the precision on the results decrease

11

50%

40%

30%

20%

10%

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06

pe
rc

en
ta

ge
 o

f n
od

es

#edges

Estimated rarity for indegree 1
Exact rarity for indegree 1

Estimated rarity for indegree 2-3
Exact rarity for indegree 2-3

Estimated rarity for indegree 4-7
Exact rarity for indegree 4-7

Estimated rarity for indegree 8-15
Exact rarity for indegree 8-15

Estimated rarity for indegree 16-31
Exact rarity for indegree 16-31

Estimated rarity for indegree 32-63
Exact rarity for indegree 32-63

Figure 1. Estimated and exact indegree rarity distributions computed
for edges arrivals of graph wikiEN. The estimation makes use of
1000 universal hashing functions. Values are presented to α up to
63, presented as log2 plot. This plot presents the percentage of
nodes with a given indegree (y-basis) considering the amount of
edges processed so far (x-basis). Results are plot every 100,000
items processed.

with the increase of i. As expected, we have less precision for
computing ρ̂ of α-rare elements that occur less frequently.

We finalize the experimental results section with a time
analysis as a function of the number of hash functions used
and the number of elements hashed. Table 1 presents the
average time spent for computing windows of 1,000, 10,000,
100,000 and 1,000,000 items (W). For each value of W, the
use of 100 and 1000 universal hash functions are considered.
The first column (W) indicates the number of elements pro-
cessed for the respective time information presented. It also
indicates the size of the windows for the windowed case. The
times are an average of the overall times of all windows of
W items processed. Times are about constant over the win-
dows. The second column, #h, indicates the number of uni-
versal hash functions used. The last three columns, I, WI and
k(i,3), presents the average time for the indegree rarity dis-
tribution, windowed indegree rarity distribution and k(i,3)

rarity distribution, respectively. For the k(i,3) case, a sec-
ond time value is printed, indicating the time spent to pro-
cess W triples. Similar results for approximation and times
are observed for the other 4 graphs (we omit results due
to space limitations). For the k(i,3) case, values for W of
triples processed were add in parenthesis. Computational
times using the optimized min-wise hash function was omit-
ted due to the excessive time spent. For example, for com-
puting 10,000 items and using 100 hash functions, for the
indegree rarity distribution, the algorithm takes on average
more than 200 seconds, whereas only 0.03 s. is spent using
universal hashing. Before the optimization, it was spending
thousands of seconds for the same configuration.

Times presented for the indegree rarity distribution are
very small, even when considering the larger windows. For
example, using a thousand hash functions just half second
is spent on average for processing 1 billion items. Another
observation is that the time grows linearly with the increase
of the number of hash functions used and with the number
of items considered in each window considered. For the win-
dowed case, much higher times were found. That happens

50%

40%

30%

20%

10%

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06

pe
rc

en
ta

ge
 o

f n
od

es

#edges

Estimated rarity for indegree 1
Exact rarity for indegree 1

Estimated rarity for indegree 2-3
Exact rarity for indegree 2-3

Estimated rarity for indegree 4-7
Exact rarity for indegree 4-7

Estimated rarity for indegree 8-15
Exact rarity for indegree 8-15

Estimated rarity for indegree 16-31
Exact rarity for indegree 16-31

Estimated rarity for indegree 32-63
Exact rarity for indegree 32-63

Figure 2. Estimated and exact indegree rarity distribution computed
for edges arrivals of graph wikiEN. The estimation makes use of
100 universal hashing functions. Values are presented to α up to
63, presented as log2 plot. This plot presents the percentage of
nodes with a given indegree (y-basis) considering the amount of
edges processed so far (x-basis). Results are plot every 100,000
items processed.

Table 1. Average computation times in seconds for streams of fix
size from the wikiEN (results for the indegree rarity distribution)
and wikiPT (results for the k(i,3) rarity distribution) graphs. For
each one of the three applications (indegree, windowed indegree and
k(i,3) rarity distribution), times are printed for each W elements
hashed, considering the use of 100 and 1000 hash functions. For
the k(i,3) column, values for W of triples processed were add in
parenthesis.
W #h I WI k(i,3)

100 1,000 0.003 0.03 9.36 (0.015)
1000 1,000 0.03 0.67 118.53 (0.19)
100 10,000 0.03 0.37 131.01 (0.21)
1000 10,000 0.30 10.22 1166.61 (1.87)
100 100,000 0.32 3.90 1272,67 (2.04)
1000 100,000 2.93 141.35 11765,96 (18.86)
100 1,000,000 3.24 40.54 12776,61 (20.48)
1000 1,000,000 29.32 1708.30 117859.27 (188.92)

because each update on the dynamic lists take O(L), where
L represents the size of the list. Again the times increase
linearly with increase of the window size and the number
of hash functions used. For the k(i,3) computation, much
more time was spent. The bottleneck of this application is
that all triples of nodes within and adjacency list have to
be computed. This enumeration takes long time, since often
nodes of webgraphs have very large outdegree. For example,
for the wikiPT graph used for the experiments and average
of 624 triples are composed for each edge (his head node is
considered for composing triples). Again the times increase
linearly with the increase of W and #h. The graph wikiPT

was used in this experiments since it is not possible to com-
pute the exact number of k(3,3) for large graphs as the
wikiEN in main memory.

5. CONCLUDING REMARKS

In this paper we use in practice data stream algorithms
for computing statistical and topological properties of large

12

90%

80%

70%

60%

50%

40%

30%

20%

10%

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06

pe
rc

en
ta

ge
 o

f n
od

es

#edges

Estimated rarity for indegree 1
Exact rarity for indegree 1

Estimated rarity for indegree 2-3
Exact rarity for indegree 2-3

Estimated rarity for indegree 4-7
Exact rarity for indegree 4-7

Figure 3. Estimated and exact indegree rarity computed for edges
arrivals of graph wikiEN under the windowed model. Each window
contains 100,000 items. The estimation makes use of 100 universal
hashing functions. Values are presented to α up to 7, presented as
log2 plot. This plot presents the percentage of nodes with a given
indegree (y-basis) considering the amount of edges processed so far
(x-basis).

graphs. We presented experimental results for the α-rarity
algorithm applied on webgraphs for computing the rarity
distribution of indegree and k(i,3) and obtained very good
approximations. For the windowed case, applied for the in-
degree distribution, we observed again good approximation
in a reasonable time. For the k(i,3) estimation we ob-
tained good approximations, but spending long time. That
happens because, in this case, all triples obtained are hashed
by the #h hash functions. For the wikiPT graph, we observe
a total of 624 triples generated for each edge processed.

We conclude that using universal hashing by this algo-
rithm speed up a lot the codes, maintaining good approxi-
mations.

As further work, we would like to test other algorithms
that estimates interesting statistical and topological proper-
ties of webgraphs. Moreover, dynamic aspects of webgraphs
also could be explored, as edges being inserted and removed
over time. The α-rarity algorithm does not have solution for
deletions. But a recent publication of Cormode, Muthukr-
ishnan and Rozenbaum [6] presents an algorithm that main-
tain results considering also deletions. Likewise, a sampling
algorithm was presented by Frahling, Indyk and Sohler [7],
also for maintaining distributions under insertions and dele-
tions. Another important issue is on computing minors.
The only reference on data streams for computing minors
is by Yossef, Kumar and Sivakumar [9], but the bounds are
not encouraging. Algorithms for computing minors as trian-
gles and small cliques, with implementable bounds, would
be a great contribution of that stream algorithms for our
purposes.

6. ACKNOWLEDGEMENTS

We are very thankful to Jerry Zhao for providing the first
version of the min-wise hash functions and for the sugges-
tions for its optimization. We also thanks S. Muthukrishnan
for several helpful discussions.

1%

10%

100%

 100000 1e+06 1e+07

pe
rc

en
ta

ge
 o

f n
od

es

Thirty billion triples generated for 48166 edges arrivals

Estimated rarity for k1,3
Exact rarity for k1,3

Estimated rarity for k2,3
Exact rarity for k2,3

Estimated rarity for k3,3
Exact rarity for k3,3

Figure 4. Plot in log scale of the estimated and exact ki,3 rarity
distribution, for i=1,2 and 3, computed for edges arrivals of graph
wikiPT. The estimation makes use of 1000 universal hash functions.
This plot presents the percentage of triples pointed by exactly i nodes
(y-basis) considering the amount of triples seen so far (x-basis). The
triples are computed accordingly with the edges arrivals. Results are
plot every 10,000 triples processed.

References
[1] N. Alon, O. Goldreich, J. Hastad, and R. Peralta,

Simple constructions of almost k-wise independent ran-
dom variables, Journal of Random structures and Al-
gorithms 3 (1992), no. 3, 289–304.

[2] A.L. Barabasi and A. Albert, Emergence of scaling in
random networks, Science (1999), no. 286, 509.

[3] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Ra-
jagopalan, S. Stata, A. Tomkins, and J. Wiener, Graph
structure in the web, Computer Networks 33 (2000),
309–320.

[4] A.Z. Broder, M. Charikar, A.M. Frieze, and M. Mitzen-
macher, Min-wise independent permutations, Proc. of
STOC (1998), 327–336.

[5] M. Datar and S. Muthukrishnan, Estimating rarity
and similarity over data stream windows, LNCS 2461
(2002), 323–334.

[6] Irina Rozembaum G. Cormogode, S. Muthukrishnan,
Summarizing and mining inverse distributions on data
streams via dynamic inverse sampling, Proccedings of
the 31st VLDB Conferenct (2005).

[7] C. Sohler G. Frahling, P. Indyk, Sampling in dynamic
data streams and applications, 21st Annual Symposium
on Computational Geometry (2005).

[8] R. Kumar, P. Raghavan, S. Rajagopalan, and A.
Tomkins, Trawling the web for emerging cyber commu-
nities, (1999), 403–416.

[9] D. Sivakumar Z. Bar-Yosseff, R. Kumar, Reductions
in streaming algorithms, with an application to count-
ing triangles in graphs, Proceedings of the thirteenth
annual ACM-SIAM symposium on Discrete algorithms
(2002), 623–632.

[10] J. Zhao, An implementation of min-wise
independent permutation family, (2005),
http://www.icsi.berkeley.edu/ zhao/minwise/.

13

14

Coresets in Dynamic Geometric Data Streams

Gereon Frahling
frahling@upb.de

Christian Sohler
csohler@upb.de

Heinz Nixdorf Institute & Computer Science Department
University of Paderborn

Fuerstenallee 11
33102 Paderborn, Germany

ABSTRACT

A dynamic geometric data stream consists of a sequence of
m insert/delete operations of points from the discrete space
{1, . . . ,∆}d. We develop streaming (1+ε)-approximation al-
gorithms for k-median, k-means, MaxCut, maximum weighted
matching (MaxWM), maximum travelling salesperson (MaxTSP),
maximum spanning tree (MaxST), and average distance over
dynamic geometric data streams. Our algorithms maintain
a small weighted set of points (a coreset) that approximates
with probability 2/3 the current point set with respect to the
considered problem during the m insert/delete operations of
the data stream. They use poly(ε−1, logm, log ∆) space and
update time per insert/delete operation for constant k and
dimension d.

Having a coreset one only needs a fast approximation al-
gorithm for the weighted problem to compute a solution
quickly. In fact, even an exponential algorithm is some-
times feasible as its running time may still be polynomial in
n. For example one can compute in poly(logn, exp(O((1 +
log(1/ε)/ε)d−1))) time a solution to k-median and k-means
where n is the size of the current point set and k and d are
constants. Finding an implicit solution to MaxCut can be
done in poly(logn, exp((1/ε)O(1))) time. For MaxST and
average distance we require poly(logn, ε−1) time and for
MaxWM we require O(n3) time to do this.

15

16

Online Data Reconstruction

Bernard Chazelle
Department of Computer Science

Princeton University
35 Olden Street

Princeton, NJ 08544-2087
chazelle@cs.princeton.edu

ABSTRACT

I will discuss open problems and a few preliminary results
in the area of online data reconstruction.

Consider a (geometric) dataset that is assumed to satisfy
various structural properties. Because of noise and errors,
however, an unknown fraction of the data might be violating
some of these properties.

Can one enforce the desired structural properties in an
online setting?

(Joint work with Nir Ailon, Seshadhri Comandur, and
Ding Liu.)

17

18

Identifying Geometric Outliers in Massive Data Sets

José H. Dulá
School of Business

Virginia Commonwealth University
1015 Floyd Avenue, Box 84-4000
Richmond, VA 23284-4000, USA

ABSTRACT

Consider a finite point set A in m-dimensional space and the
polyhedral hulls it generates from constrained linear combi-
nations of its elements. A data point, aj

∗
, is a geometric

outlier if it belongs to a support set of a hull. There are
several interesting problems that are modelled using these
point sets and the resulting polyhedral objects. Examples
include efficiency/performance evaluation, ranking and or-
dering schemes, mining for the detection of fraud, etc; all
of which offer instances involving massive data sets. These
applications require the identification of the extreme ele-
ments of the polyhedral sets; i.e., geometric outliers; a com-
putationally intensive task. Traditional approaches solve as
many LPs as the cardinality of the point set. A new genera-
tion of faster, output-sensitive, algorithms increase dramat-
ically the scale of the applications. We discuss algorithmic
and computational issues for massive data sets.

19

20

Cache-Oblivious Linear Programming

Sergio Cabello
IMFM, Department of Mathematics

Jadranska 19
SI-1000 Ljubljana, Slovenia
sergio.cabello@imfm.uni-lj.si

Mark de Berg
Department of Mathematics and Computing Science

TU Eindhoven, P.O. Box 513
5600 MB Eindhoven, the Netherlands

M.T.d.Berg@win.tue.nl

Xavier Goaoc
Loria

615 rue du Jardin Botanique, B.P. 101
54602 Villers-lès-Nancy cedex, France

goaoc@loria.fr

Mark Schroders
Department of Mathematics and Computing Science

TU Eindhoven, P.O. Box 513
5600 MB Eindhoven, the Netherlands

M.F.A.Schroders@win.tue.nl

ABSTRACT

Linear programming is a fundamental optimization problem:
minimize a linear function in d-dimensional space under lin-
ear constraints. In small dimension, several optimal algo-
rithms have been proposed both deterministic or random-
ized. There exist several simple internal-memory random-
ized incremental algorithms whose expected running time is
optimal.

Most computers use a memory hierarchy, from the fast
cache memory to the slow hard-drive, to store and manipu-
late data. The internal-memory model assumes a constant
cost for a basic operation, be it adding two numbers or re-
trieving a data from memory. However, for large data sets
the cost of accessing the memory can be really high and,
from an efficiency point of view the bottleneck switches from
computation time to memory access latency. The cache-
oblivious model addresses this issue by taking into account
the paging mechanism inherent to memory hierarchies. This
model is theoretically sound as it does not assume any pre-
cise knowledge of the characteristics of the machine. Fur-
thermore, several results indicate that it can predict practi-
cal behaviors for large data sets: algorithms that are faster
in that model have better practical performances.

We study the problem of linear programming in small di-
mension in the cache oblivious model. We analyze the per-
formance of randomized incremental algorithms and show
that they are sub-optimal. We then give an algorithm opti-
mal in both the internal-memory and cache-oblivious mod-
els.

21

22

Streaming Formats for Geometric Data Sets

Martin Isenburg∗

Max-Planck-Institut f̈ur Informatik
Saarbr̈ucken

Peter Lindstrom
Lawrence Livermore
National Laboratory

Stefan Gumhold
Max-Planck-Institut

für Informatik

Jack Snoeyink
University of North Carolina

at Chapel Hill

Abstract
Recent years have seen an immense increase in the complexity of
geometric data sets. Today’s gigabyte-sized 3D models can no
longer be completely loaded into the main memory of common
desktop PCs. Unfortunately, most storage and exchange formats for
geometric data do not account for this. They were designed years
ago when models were orders of magnitudes smaller. Using these
formats to store and distribute giga-byte sized data sets is inefficient
and unduly complicates all subsequent processing.

In this talk we will describe streaming formats for geometric data
that are basically as simple as existing formats but more suitable for
storing large data sets than all current alternatives. Such formats
contain tiny bits of additional information that “finalize” previously
read data. This information specifies which elements of a mesh or
which areas in space have already been completely traversed. This
gives the necessary guarantees to safely process these parts of the
data and deallocate the corresponding data structures without first
parsing the entire data set. While the focus of this talk is mainly
on “topological streaming” of unstructured meshes, we will also
motivate “spatial streaming” of meshes and point clouds.

1 Motivation and Overview
Modern scientific technologies enable the creation of digital 3D
models of incredible detail and precision. These geometric data
sets easily reach sizes of several gigabytes, making subsequent pro-
cessing a difficult task. The sheer amount of data may not only
exhaust the main memory resources of common desktop PCs, but
even exceed the address space limit of a 32-bit machine. To process
such data sets, one resorts toout-of-corealgorithms that arrange the
data so that it does not need to be kept in memory in its entirety, and
adapt their computations to operate mainly on the loaded parts.

But for unstructured surface or volume meshes, already the way
the raw input data is stored can turn the simplest pre-processing
into a highly IO-inefficient operation. Current mesh formats use
an array of floats to specify the vertex properties followed by an
array of indices into the vertex array to specify the polygons or
polyhedra. Storing large meshes in such a format means that one
gigabyte-sized array of data is indexed by another gigabyte-sized
block of data. Since the order in which the mesh elements appear
in these arrays is left unspecified even simple de-referencing (i.e.
resolving all vertex references) can potentially thrash the memory.

The ineffiency of indexed mesh input has been addressed in large
mesh papers for the last eight years. [Chiang and Silva 1997] write
that “Unfortunately, the datasets are often given in a format that
contains indices to vertices. Thus we have to de-reference the in-
dices before actually building the interval tree.” and propose to use
external sorting for this. Despite requiring large amount of scratch
space and multiple passes over the data, this has since become the
standard mechanism for dealing with large indexed meshes. Recent
works often try to abandon indexed meshes altogether. [Cignoni
et al. 2004], for example, assume that “the mesh is represented as
a triangle soup, i.e., a list of triangles with direct vertex informa-
tion”. But as most their data sets are originally stored as indexed
meshes, like the 3D scans of Michelangelo’s statues [Levoy et al.
2000], they still need to de-reference in a pre-processing step.

∗isenburg@cs.unc.edu http://www.cs.unc.edu/ ˜ isenburg/sm

We will try to convince the audience thatstreaming meshformats
are much better suited for storing and distributing large meshes
than current alternatives. First, they do not have the problem of
in-efficient dereferencing, second, they are a more “natural” output
format for memory-limited applications that generate large meshes,
and third, they are an ideal input and ouput format for I/O-efficient
algorithms that perform out-of-core stream processing.

The basic idea is to logically interleave vertices and the mesh
elements that reference them and to provide explicit information
about when vertices are “finalized” or “referenced for the last time”.
While the required changes to go from existing formats to streaming
formats are minimal, the payoff can be substantial. Because the for-
mat tells us which of the previously read vertices to keep in mem-
ory, we can trivially de-reference such meshes in an IO-optimal
manner—the problem of repeated, possibly incoherent look-up of
vertex data in a gigantic array does not exist. And because the for-
mat tells us which vertices can safely be deallocated because they
are no longer needed, we can do this for meshes of practically arbi-
trary size while requiring only moderate amounts of memory.

But a streaming mesh format is not only a better input format for
large meshes—it is also a more natural output format for most mesh
generating applications. Given limited memory resources, it is in
fact quitedifficult to output meshes into standard indexed formats.
A mesh generating application that can only hold and work on small
pieces of the data at any time will need to store vertices and trian-
gle into seperate temporary files and concatenate them later. Mem-
ory mapping the vertex and triangle arrays is not possible without
knowing the exact size of the vertex array in advance. For exam-
ple, an out-of-core marching cubes iso-surface implementation that
processes the volume layer by layer will naturally output vertices
and triangles in the same order. And vertices from the last layer can
trivially be finalized before moving on to the next layer.

Furthermore, a streaming mesh format is the ideal input and out-
put for stream processing. In this model, the mesh streams through
an in-core buffer, which is large enough to hold all active mesh el-
ements. For straight-forward tasks, such as rendering a flat shaded
mesh, a minimal stream buffer is needed. For more elaborate pro-
cessing tasks, a larger stream buffer may hold as many additional
mesh elements as there are memory resources, allowing random ac-
cess to a localized but continuously changing subset of the mesh.

Streaming meshes allow pipelined processing, where multiple
tasks run concurrently on separate pieces of the mesh. One mod-
ule’s output then serves as the input for another module. Envision a
scenario where one algorithm extracts an isosurface and pipes it as
a streaming mesh to a simplification process, which in turn streams
the simplified mesh to a compression engine that encodes it and
immediately transmits the resulting bit stream to a remote location
where triangles are rendered as they decompress. In fact, we now
have all components of this pipeline—and it is the streaming format
that makes it possible to pipe them all together.

References
CHIANG , Y.-J., AND SILVA , C. T. 1997. I/O optimal isosurface extraction. InVisu-

alization ’97, 293–300.
CIGNONI, P., GANOVELLI , F., GOBBETTI, E., MARTON, F., PONCHIO, F., AND

SCOPIGNO, R. 2004. Adaptive tetrapuzzles - efficient out-of-core construction
and visualization of gigantic polygonal models. InSIGGRAPH 2004, 796–803.

LEVOY, M., PULLI , K., CURLESS, B., RUSINKIEWICZ, S., KOLLER, D., PEREIRA,
L., GINZTON, M., ANDERSON, S., DAVIS , J., GINSBERG, J., SHADE, J., AND

FULK , D. 2000. The Digital Michelangelo Project. InSIGGRAPH 2000, 131–144.

23

24

A Java-Based System for Large-Scale Rendering

[Extended Abstract]

Sourav Dalal
London South Bank University

103 Borough Road
London, SE1 0AA, UK

dalalsa@lsbu.ac.uk

Frank Dévai
London South Bank University

103 Borough Road
London, SE1 0AA, UK

fl.devai@lsbu.ac.uk

Md Mizanur Rahman
London South Bank University

103 Borough Road
London, SE1 0AA, UK
rahmanml@sbu.ac.uk

ABSTRACT

The geometric aspects of the visualisation of large data sets,
in particular, digital models of real or planned solid objects
in a heterogeneous distributed environment are investigated.
It is demonstrated that image compositing does not scale
well on networks of workstations. A distributed system,
based on scanline algorithms and using Java technology, is
proposed. The proposed system is efficient as servers only
need to solve a problem of growth rate of n log n, it is fault
tolerant as both lost messages and server failures are tol-
erated, and it has negligible hardware costs as it runs on
existing networks of workstations. The system is also scal-
able, as data sets sent to servers only need to be sent once
regardless of the number of servers, and the amount of data
transmitted by servers only depends on the resolution of the
final image.

1 Introduction

Applications like flight simulation, medical training, com-
puter aided design, three-dimensional geographic informa-
tion systems etc, require the visualisation of large data sets.
These data sets are usually polygon-mesh models, contain-
ing 10–100 million polygons. One of the fundamental prob-
lems of rendering these data sets is visibility determination;
the process of deciding what parts of the surface of the model
can be seen from a possibly moving point. Any algorithm
for determining the visibility of a set of polygons in three-
dimensional space with a total of N edges takes Θ(N2) time
in the worst case [5, 13]. This growth rate is a serious
difficulty. To overcome it hardware accelerators are used
in low-end systems, and parallel algorithms are proposed
for high-performance graphics systems. For example, the
hidden-line problem can be solved in Θ(log N) time either
on N2 EREW or on N2/ log N CREW PRAM processors,
and the hidden-surface problem in the same Θ(log N) time
on N2 CREW PRAM processors. The Θ(log N) result can-
not be further improved even if arbitrarily many processors
were available [6, 8, 9]. Algorithms with a smaller num-
ber of processors, called coarse-grain algorithms, can also
be derived from these results, e.g., a hidden-surface algo-

rithm that takes O(N2 log N
p

+ log N) time in the worst case

by using p CREW PRAM processors [9].

Unfortunately, parallel architectures either suffer from the
problem of latency or do not scale well, hence are expensive.
Using distributed shared memory (DSM) running on a net-
work of workstations [2] seems to be a better alternative.

There are some drawbacks, however, e.g., overhead: if a
processor needs to access a variable available only on a re-
mote machine, the whole page must be transferred. Experts
like Tanenbaum and van Steen [21] are skeptical: “After
almost 15 years of research on distributed shared memory,
DSM researchers are still struggling to combine efficiency
and programmability. To attain high performance on large-
scale multicomputers, programmers resort to message pass-
ing despite its higher complexity compared to programming
(virtual) shared memory systems. It seems therefore jus-
tified to conclude that DSM for high-performance parallel
programming cannot fulfill its initial expectations.”

2 Previous work

Early approaches to high-performance rendering can be clas-
sified as image parallelism and object parallelism [4]. In
image parallelism regions of the screen are allocated to pro-
cessors [1, 10, 16]. In object parallelism subsets of objects,
typically polygons, are allocated to processors [14, 15, 18,
19]. Different processors may produce pixels at the same
screen location, therefore pixels from each processor must
be combined into a complete scene. This problem is called
the pixel merging or image compositing problem.

The simplest solution is binary-tree compositing. Con-
sidering n processors, 1, 2, . . . , n, where n is a power of 2,
each processor determines the full-screen image of the ob-
jects allocated to it. Then each odd-numbered processor i,
i = 1, 3, . . . , n − 1, passes on its image to processor i + 1,
where the two images are composited pixel by pixel. In the
next stage processor 2 passes on its image to processor 4,
processor 6 to processor 8, and so on, where again the two
images are composited. After log n stages the final image is
contained by processor n.

The disadvantage of binary-tree compositing is that when
a processor passed on its image, it becomes idle; the final
stage of compositing is performed by only one processor,
processor n. To exploit more parallelism binary-swap com-
positing has been proposed [12]. The key idea is that instead
of processor i sending its image to processor j, and leaving
processor j alone doing the composition, both processor i
and j splits their image into two halves, which are swapped,
and both processors perform compositing one half of the im-
age. After log n stages each processor contains 1/2n of the
final image.

Considering the hardware base, an important observation
is that early systems used special-purpose hardware [1, 10,

25

14, 15, 16, 18, 19]. In the 1990s high-performance render-
ing systems gradually moved on to general-purpose high-
performance computer systems, such as the Connection Ma-
chine CM-5 [12] or hypercubes [11]. The trend continues
with the use of clusters of workstations [3, 20].

Implementing high-performance rendering systems on ex-
isting clusters of workstations communication costs are be-
coming a bottleneck. While in a hypercube, for example,
each one of n processors are connected to log n other pro-
cessors, PC clusters typically use bus-based interconnection
networks, such as Gigabit Ethernet. The communication
cost of image compositing can be significant on these archi-
tectures. For example, binary-swap compositing transmits
up to 2.43n1/3p pixels on average on n processors, where p is
the number of pixels in the final image [12]. Though binary-
swap compositing is aimed at massively parallel processing
[12], around 100 workstations would transmit an order of
magnitude more pixels than necessary for the final image.
We propose a system that never transmits more than the
number pixels in the final image.

3 The proposed system

The objective of this research is the design and implemen-
tation of a light-weight, inexpensive message-passing archi-
tecture for the visualisation of large geometric models. This
system also uses networks of workstations, typically avail-
able in a university environment, but unlike DSM, it is a
more efficient approach using scanline algorithms [7]. A
scanline is a row of pixels of the image. The pixels of a
scanline can be obtained by determining the visibility of the
objects in the plane perpendicular to the screen and contain-
ing the scanline. The intersection of a polygon-mesh model
(i.e., a set of polygons) and a plane is a set of line segments
in the plane.

Our system is based on a client-server architecture, where
a number of servers support typically one client. Each server
is responsible for the calculation of a couple of scanlines, and
the delivery of the results back to the client which displays
the image.

The operation of the system is outlined as follows. The
user, sitting in front of a graphics workstation running the
client software, selects a geometric model or virtual envi-
ronment they want to visualize. Once the geometric model
has been selected, the client software distributes the corre-
sponding data set on a high-speed network by using scalable
reliable multicast. All workstations having the server soft-
ware installed pick up the model, and store it on their local
disk. On user interaction, e.g., zoom, translation or rota-
tion of the model, the client broadcasts a 4x4 homogeneous
transformation matrix. All the available servers receiving
this matrix perform the required transformation on their
stored model.

Each server is associated with a unique name, which is an
integer in the range [0, m−1], where m is the total number of
the available servers at any given point of time. In reply to a
client request, each server calculates a number of scanlines.
Scanlines are numbered from 0 to h − 1, where h is the
height of the image, i.e., the total number of scanlines on
the screen of the client’s workstation. Server k calculates
scanlines i = k + jm, for j = 0, 1, 2, . . . , such that i < h,
and sends them back to the client.

The client then assembles the scanlines, and displays the
next frame. It also calculates a new transformation matrix
from user input, gathers server statistics, rename servers if
necessary and informs each server involved. Then it goes
back to the beginning of the loop broadcasting a new trans-
formation matrix and requesting scanlines.

In the unlikely case of the output of a single server is lost,
the scanlines from the previous frame are used. Often there
is no difference between the same scanlines of subsequent
frames (e.g., when a designer is contemplating a part of the
model) and the difference is hardly noticeable on moving
images. (Note that the scanlines are delivered by the servers
in an interleaved pattern: a scanline from server k is followed
by one from server k + 1, and so on.)

If, however, the client notices from server statistics that
the output of a server is consistently lost in the last few
frames, the client renames the servers: If, say, server k is
not responding, server m − 1 is renamed as k, and m is
reduced by 1. If a server re-appears, it is given the name m,
and m is incremented by 1.

From the above it follows that the system is fault tolerant
in the sense that it tolerates both lost messages and server
failures. The latter is particularly important, because in
this way the workstations do not have to be dedicated to
the system. The servers run on workstations as background
processes; when a workstation gets idle, the server joins the
system, and it leaves the system when preempted by an
interactive process. Thus, the hardware cost of the system is
negligible, as organizations like universities or design offices
already have extensive workstation networks.

The increase of processor and network speed and memory
and disk capacities makes it possible that servers can store
the complete data set, hence eliminating image compositing.
Also new compression techniques help to distribute models
to servers more quickly. For example, the Edgebreaker com-
pression technique [17] can be used when the client multi-
casts the 3D geometric model to servers. If the 3D model is
a triangle mesh, typically there are twice as many triangles
as vertices. Each vertex needs typically three floating-point
numbers, i.e., 3×4 = 12 bytes for its x, y and z coordinates.
If the triangles are represented either by integer references
or pointers to vertices, each triangle needs also 3× 4 bytes.
This memory requirement is roughly twice as much as the
memory requirement of the vertices as there are twice as
many triangles. Edgebreaker can compress this connectiv-
ity information just to two bits or less than two bits per
triangle [17]. The servers can use run-length encoding when
returning the scanlines.

Another significant advantage of the proposed architec-
ture is that the servers only need to compute a planar visibil-
ity problem with a complexity of Θ(n log n) rather than the
3D problem of complexity Θ(N2), where n ≤ N is the num-
ber of line segments in the plane of the scanline. The planar
visibility problem is well understood, and this research gave
us the opportunity to implement 10 scanline algorithms, and
analyse their asymptotic resource requirements.

Asymptotic analysis, however, cannot take into consider-
ation constant factors, which can be different in different
environments. Therefore a portable testbed was developed
for the comparative evaluation of the actual performance of
the algorithms on the particular hardware-software platform
they are used. In this way in a heterogeneous distributed

26

system the fastest version of the server can be installed in
any given machine environment.

Considering the number of possible algorithms together
with their variants, the number of time measurements re-
quired for conclusive results is substantial, hence using real
3D models would be too expensive and time consuming.
Since the input to a scan-line algorithm is only a planar
set of line segments, a more efficient test-data generation
method based on random line segments was developed.

As some scanline algorithms exploit the fact that the input
obtained from real solid models results in a set of line seg-
ments that are non-intersecting (except at their endpoints)
a test-data generation method was required to produce a
planar set of non-intersecting random line segments. Our
method takes a total of 4n random numbers and O(n log n)
time in the worst case to generate 4n coordinates for a set
of n non-intersecting random line segments in the plane.

The Java language is used for both the development of
a prototype distributed system and the testbed. Since the
running time of scanline algorithms is very short, accurate
time-measurement techniques are required. These were im-
plemented by reading the time-stamp counters of the pro-
cessors using Java native methods.

The advantages of using the Java language are that Java
is a publicly available software technology with the a sup-
port of a large community. It provides large class libraries
and an object-oriented development environment. The main
disadvantage is that object creation can be too expensive
for a high-performance graphics system. Therefore we reuse
objects wherever possible. Also some of our scanline algo-
rithms use parallel arrays instead of objects. For example,
it would be natural to represent the x1, y1, x2 and y2 co-
ordinates of a line segment by using a line-segment object,
but using four parallel arrays for the four co-ordinates im-
proves server performance.

4 Concluding remarks

Though the planar visibility problem is well researched, we
encountered some interesting problems which, we believe,
are unsolved. For example, one of our algorithms, called
the priority-queue method, gave better than expected ex-
perimental results. This algorithm uses a heap to maintain
an order on line segments. It is known that n elements can
be inserted in a heap in O(n) expected time, but deleting the
minimum element takes Θ(log n) time on average. Our al-
gorithm, however, deletes arbitrary elements, which are near
to leaf nodes most of the time, thus repairing the heap costs
little. So far, however, we could not turn our arguments into
a formal proof.

References
[1] K. Akeley and T. Jermoluk. High-performance polygon

rendering. Computer Graphics, 22(4):239–246, 1988.
[2] C. Amza et al. TreadMarks: Shared memory com-

puting on networks of workstations. IEEE Computer,
29(2):18–28, 1996.

[3] J. Chhugani et al. vLOD: High-fidelity walkthrough of
large virtual environments. IEEE Transactions on Vi-
sualization and Computer Graphics, 11(1):35–47, 2005.

[4] M. Cox and P. Hanrahan. Pixel merging for object-
parallel rendering: a distributed snooping algorithm. In

PRS’93: Proc. 1993 Symposium on Parallel Rendering,
pages 49–56, New York, NY, USA, 1993. ACM Press.

[5] F. Dévai. Quadratic bounds for hidden-line elimination.
In Proc. 2nd Annu. ACM Sympos. Comput. Geom.,
pages 269–275, 1986.

[6] F. Dévai. An O(log N) parallel time exact hidden-
line algorithm. In Eurographics’87 Workshop on Ad-
vances in Computer Graphics Hardware II, pages 47–63.
Springer, 1988.

[7] F. Dévai. Scan-line methods for parallel rendering. In
M. Chen et al., editors, High-Performance Computing
for Computer Graphics and Visualisation., pages 88–
98. Springer, 1995.

[8] F. Dévai. On the computational requirements of vir-
tual reality systems. In State of the Art Reports, Eu-
rographics’97, pages 59–92, Sep. 1997.

[9] F. Dévai. Parallel algorithms for visibility computa-
tions. In Eurographics UK Chapter Annual Conference,
volume 17, April 1999.

[10] H. Fuchs et al. Pixel-Planes 5: A heterogeneous mul-
tiprocessor graphics system using processor-enhanced
memories. Computer Graphics, 23(3):79–88, 1989.

[11] T. Kurc, C. Aykanat, and B. Ozguc. Object-space par-
allel polygon rendering on hypercubes. Computers &
Graphics, 22:487–503, 1998.

[12] K.-L. Ma et al. Parallel volume rendering using
binary-swap compositing. IEEE Comput. Graph. Appl.,
14(4):59–68, 1994.

[13] M. McKenna. Worst-case optimal hidden-surface re-
moval. ACM Trans. Graph., 6:19–28, 1987.

[14] S. Molnar. Combining z-buffer engines for higher-speed
rendering. In Eurographics’88 Workshop on Advances
in Computer Graphics Hardware III, pages 171–182.
Springer, 1991.

[15] S. Molnar, J. Eyles, and J. Poulton. PixelFlow: High-
speed rendering using image composition. Computer
Graphics, 26:231–240, 1992.

[16] Michael Potmesil and Eric M. Hoffert. The pixel ma-
chine: a parallel image computer. Computer Graphics,
23(3):69–78, 1989.

[17] J. Rossignac. Edgebreaker: Connectivity compression
for triangle meshes. IEEE Transactions on Visualiza-
tion and Computer Graphics, 5(1):47–61, January/
March 1999.

[18] B.-O. Schneider and U. Claussen. PROOF: An architec-
ture for rendering in object space. In Eurographics’88
Workshop on Advances in Computer Graphics Hard-
ware III, pages 121–140. Springer, 1991.

[19] C. D. Shaw, M. Green, and J. Schaeffer. A VLSI ar-
chitecture for image composition. In Eurographics’88
Workshop on Advances in Computer Graphics Hard-
ware III, pages 183–199. Springer, 1991.

[20] A. Takeuchi et al. An improved binary-swap com-
positing for sort-last parallel rendering on distributed
memory multiprocessors. Parallel Computing, 29(11–
12):1745–1762, 2003.

[21] A. S. Tanenbaum and M. van Steen. Distributed
Systems—Principles and Paradigms. Prentice Hall,
2002.

27

28

Cache-Oblivious Layouts of Polygonal Meshes
Extended Abstract

Sung-Eui Yoon1∗ Peter Lindstrom2 Valerio Pascucci2 Dinesh Manocha1

1University of North Carolina at Chapel Hill 2Lawrence Livermore National Laboratory
http://gamma.cs.unc.edu/COL

Abstract
We present a novel method for computing cache-oblivious layouts
of large meshes that improve the performance of interactive visual-
ization and geometric processing algorithms. Given that the mesh is
accessed in a reasonably coherent manner, we assume no particular
data access patterns or cache parameters of the memory hierarchy
involved in the computation. Furthermore, our formulation extends
directly to computing layouts of multiresolution and bounding vol-
ume hierarchies of large meshes.

We develop a simple and practical cache-oblivious metric for esti-
mating cache misses. Computing a coherent mesh layout is reduced
to a combinatorial optimization problem. We designed and imple-
mented an out-of-core multilevel minimization algorithm and tested
its performance on unstructured meshes composed of tens to hun-
dreds of millions of triangles. Our layouts can significantly reduce
the number of cache misses. We have observed 2−20 times speedups
in view-dependent rendering, collision detection, and isocontour ex-
traction without any modification of the algorithms or runtime appli-
cations.

1 Introduction
Over the last few years, advances in model acquisition, computer-
aided design, and simulation technologies have resulted in massive
databases of complex geometric models. Meshes composed of tens
or hundreds of millions of triangles are frequently used to represent
CAD environments, terrains, isosurfaces, and scanned models.

Efficient algorithms for processing large meshes utilize the com-
putational power of CPUs and GPUs for interactive visualization and
geometric applications. A major computing trend over the last few
decades has been the widening gap between processor speed and
main memory speed. As a result, system architectures increasingly
use caches and memory hierarchies to avoid memory latency. The
access times of different levels of a memory hierarchy typically vary
by orders of magnitude. In some cases, the running time of a pro-
gram is as much a function of its cache access pattern and efficiency
as it is of operation count [Frigo et al. 1999; Sen et al. 2002].

Our goal is to design cache efficient algorithms to process large
meshes. The two standard techniques to reduce cache misses are:

1. Computation Reordering: Reorder the computation to im-
prove program locality. This is performed using compiler opti-
mizations or application specific hand-tuning.

2. Data Layout Optimization: Compute a cache-coherent layout
of the data in memory according to the access pattern.

In this paper, we focus on data layout optimization of large meshes
to improve cache coherence. A triangle mesh is represented by linear
sequences of vertices and triangles. Therefore, the problem becomes
one of computing a cache efficient layout of the vertices and trian-
gles.

Many layout algorithms and representations have been proposed
for optimizing the cache access patterns for specific applications.
The representations include rendering sequences (e.g. triangle strips)

∗sungeui@cs.unc.edu

Figure 1: Scan of Michelangelo’s St. Matthew: We precompute a cache-oblivious
layout of this 9.6GB scanned model with 372M triangles. Our novel metric results in
a cache-oblivious layout and at runtime reduces the vertex cache misses by more than
a factor of four for interactive view-dependent rendering. As a result, we improve the
frame rate by almost five times. We achieve a throughput of 106M tri/sec (at 82 fps) on
an NVIDIA GeForce 6800 GPU.

that are used to improve the rendering performance of large meshes
on GPUs. Recent extensions include processing sequences (e.g.
streaming meshes), which work well for applications that can access
the data in a fixed order. Some algorithms for image processing and
visualization of large datasets use space filling curves as a heuristic
to improve cache coherence of a layout. These algorithms work well
on models with a regular structure; however, they do not take into ac-
count the topological structure of a mesh and are not general enough
to handle unstructured datasets.
Main Results: We present a novel method to compute cache-
oblivious layouts of large triangle meshes. Our approach is general in
terms of handling all kinds of polygonal models and cache-oblivious
as it does not require any knowledge of the cache parameters or block
sizes of the memory hierarchy involved in the computation.

We represent the mesh as an undirected graph G = (V, E), where
|V | = n is the number of vertices. The mesh layout problem reduces
to computing an optimal one-to-one mapping of vertices to positions
in the layout, ϕ : V → {1, ..., n}, that reduces the number of cache
misses. Our specific contributions include:

1. Deriving a practical cache-oblivious metric that estimates the
number of cache misses.

2. Transforming the layout computation to an optimization prob-
lem based on our metric.

3. Solving the combinatorial optimization problem using a multi-
level minimization algorithm.

We also extend our graph-based formulation to compute cache-
oblivious layouts of bounding volume and multiresolution hierar-
chies of large meshes.

We use cache-oblivious layouts for three applications: view-
dependent rendering of massive models, collision detection between
complex models, and isocontour extraction. In order to show the
generality of our approach, we compute layouts of several kinds of
geometric models including CAD environments, scanned models,
isosurfaces, and terrains. We use these layouts directly without any

29

modification to the runtime application. Our layouts significantly
reduce the number of cache misses and improve the overall perfor-
mance. Compared to a variety of popular mesh layouts, we achieve
on average:

1. Over an order of magnitude improvement in performance for
isocontour extraction.

2. A five time improvement in rendering throughput for view-
dependent rendering of multi-resolution meshes.

3. A two time speedup in collision detection queries based on
bounding volume hierarchies.

This extended abstract provides summary of our results on cache-
oblivious layouts of polygonal meshes. More details on cache-
oblivious mesh layouts and layouts of bounding volume hierarchies
are available at [Yoon et al. 2005] and [Yoon and Manocha 2005]
respectively.

2 Related Work
In this section we briefly review related work on cache-efficient al-
gorithms, out-of-core techniques, mesh sequences, and layouts.
2.1 Cache-Efficient Algorithms
Cache-efficient algorithms have received considerable attention over
last two decades in theoretical computer science and compiler litera-
ture. These algorithms include theoretical models of cache behavior
[Vitter 2001; Sen et al. 2002], and compiler optimizations based on
tiling, strip-mining, and loop interchanging; all of these can mini-
mize cache misses [Coleman and McKinley 1995].

At a high level, cache-efficient algorithms can be classified as ei-
ther cache-aware or cache-oblivious. Cache-aware algorithms uti-
lize knowledge of cache parameters, such as cache block size [Vitter
2001]. On the other hand, cache-oblivious algorithms do not assume
any knowledge of cache parameters [Frigo et al. 1999]. There is
a considerable amount of literature on developing cache-efficient al-
gorithms for specific problems and applications, including numerical
programs, sorting, geometric computations, matrix multiplication,
FFT, and graph algorithms. Most of these algorithms reorganize the
data structures for the underlying application, i.e., computation re-
ordering. More details are given in recent surveys [Arge et al. 2004;
Vitter 2001]. There exists relatively little work on computing cache-
coherent layouts for a wide variety of applications.
2.2 Mesh Sequences and Layouts
The order in which a mesh is laid out can affect the performance of
algorithms operating on the mesh. Several possibilities have been
considered.
Rendering and Processing Sequences: In order to maximize
the benefits of vertex buffers for fast rendering, triangle reordering
for rendering sequences is necessary [Deering 1995]. Hoppe [1999]
casts the triangle reordering as a discrete optimization problem with
a cost function relying on a specific vertex buffer size. There are also
a few methods to improve cache-coherency of view-dependent sim-
plified meshes [Bogomjakov and Gotsman 2002; Karni et al. 2002].
Isenburg and Gumhold [2003] propose processing sequences as an
extension of rendering sequences to large-data processing. A pro-
cessing sequence represents a mesh as an interleaved ordering of in-
dexed triangles and vertices that can be streamed through main mem-
ory [Isenburg and Lindstrom 2004]. However, global mesh access is
restricted to a fixed traversal order.
Space Filling Curves: Many algorithms use space filling curves
[Sagan 1994] to compute cache-friendly layouts of volumetric grids
or height fields. These layouts are widely used to improve perfor-
mance of image processing [Velho and Gomes 1991] and terrain or
volume visualization [Pascucci and Frank 2001; Lindstrom and Pas-
cucci 2001]. A standard method of constructing a layout is to em-
bed the meshes or geometric objects in a uniform structure that con-
tains the space filling curve. Therefore, these algorithms have been

Figure 2: Double Eagle Tanker: We compute a cache-oblivious layout of the tanker
with 82M triangles and more than 127K different objects. This model has an irregu-
lar distribution of primitives. We use our layout to reduce vertex cache misses and to
improve the frame rate for interactive view-dependent rendering by a factor of two; we
achieve a throughput of 47M tri/sec (at 35 fps) on an NVIDIA GeForce 6800 GPU.

Figure 3: Vertex layout for a mesh: A mesh consisting of 5 vertices is shown with two
different orderings obtained using a local permutation of v4 and v5. We highlight the
span of each edge based on the layout. The ordering shown on the right minimizes cache
misses according to our cache-oblivious metric.

used for objects or meshes with a regular structure (e.g. images and
height fields). Methods based on space filling curves do not con-
sider the topological structure of meshes. It is unclear whether these
approaches would extend to large CAD environments with an irreg-
ular distribution of geometric primitives. Moreover, if an application
needs to access the mesh primitives based on connectivity informa-
tion, space filling curves may not be useful. Algorithms have also
been proposed to compute paths on constrained, unstructured graphs
as well as to generate triangle strips and finite-element mesh layouts
[Heber et al. 2000; Oliker et al. 2002; Bartholdi and Goldsman 2004;
Gopi and Eppstein 2004].
Sparse Matrix Reordering: There is considerable research on
converting sparse matrices into banded ones to improve the perfor-
mance of various matrix operations [Diaz et al. 2002]. Common
graph and matrix reordering algorithms attempt to minimize one of
three measures: bandwidth (maximum edge length), profile (sum of
maximum per-vertex edge length), and wavefront (maximum front
size, as in stream processing). These measures are closely connected
with MLA and layouts for streaming, and generally are more appli-
cable to stream layout than cache-oblivious mesh layout.

3 Mesh Layout and Cache Misses
In this section, We represent a mesh as a graph to capture access
patterns of applications and extend our approach to layouts of multi-
resolution and bounding volume hierarchies of a mesh.

3.1 Mesh Layout
A mesh layout is a linear sequence of vertices and triangles of the
mesh. We construct a graph in which each vertex represents a data
element of the mesh. An edge exists between two vertices of the
graph if their representative data elements are likely to be accessed
in succession by an application at runtime.

For single-resolution mesh layout, we map mesh vertices and
edges to graph vertices and edges. A vertex layout of an undirected
graph G = (V, E) is a one-to-one mapping of vertices to positions,

30

ϕ : V → {1, . . . , n}, where |V | = n. Our goal is to find a mapping,
ϕ, that minimizes the number of cache misses during accesses to the
mesh.

3.2 Layouts of Multiresolution Meshes and Hierarchies
Hierarchical data structures are widely used to speed up computa-
tions on large meshes. Two types of hierarchies are used for ge-
ometric processing and interactive visualization: bounding volume
hierarchies (BVHs) and multi-resolution hierarchies (MRHs). The
BVHs use simple bounding shapes (e.g. spheres, AABBs, OBBs) to
enclose a group of triangles in a hierarchical manner. MRHs are used
to generate a simplification or approximation of the original model
based on an error metric. In order to compute a layout of a hierarchy,
we construct a graph that captures cache-coherent access patterns
to the hierarchy. We add extra edges to our graph that capture the
spatial locality and connectivity locality within the hierarchy. More
details on parent-child locality and spatial localities of BVHs are also
available [Yoon and Manocha 2005].

4 Cache-Oblivious Layouts
In this section we present a novel algorithm for computing a cache-
coherent layout of a mesh. We make no assumptions about cache
parameters and compute the layout in a cache-oblivious manner.

4.1 Terminology
We use the following terminology in the rest of the paper. The edge
span of the edge between vi and vj in a layout is the absolute dif-
ference of the vertex indices, |i− j| (see Fig. 3). We use El to
denote the set that consists of all the edges of edge span l, where
l ∈ [1, n − 1]. The edge span distribution of a layout is the his-
togram of spans of all the edges in the layout. The cache miss ratio
is the ratio of the number of cache misses to the number of accesses.
The cache miss ratio function (CMRF), pl, is a function that relates
the cache miss ratio to an edge span, l. The CMRF always lies within
the interval [0, 1]; it is exactly 0 when there are no cache misses, and
equals 1 when every access results in a cache miss. We alter the
layouts using a local permutation that reorders a small subset of the
vertices. The local permutation changes the edge span of edges that
are incident to the affected vertices (see Fig. 3).

4.2 Cache-Coherent Access Pattern
If we know the runtime access pattern of a given application a priori
and the CMRFs, we can compute the exact number of cache misses.
However, we make no assumptions about the application and instead
use a probabilistic model to estimate the number of cache misses.
Our model approximates the edge span distribution of the runtime
access pattern of the vertices with the edge span distribution of the
layout. Based on this model, we define the expected number of cache
misses of the layout as:

ECM =

n−1∑

i=1

|Ei|pi (1)

where |Ei| is the cardinality of Ei and is a function of the layout, ϕ.

4.3 Assumptions
Our goal is to compute a layout, ϕ, that minimizes the expected num-
ber of cache misses for all possible cache parameters. We present a
metric that is used to check whether a local permutation would re-
duce cache misses. We make two assumptions with respect to CM-
RFs: invariance and monotonicity.
Invariance: We assume that the CMRF of a layout is invariant be-
fore and after a local permutation. Since a local permutation affects
only a small region of a mesh, the changes in CMRF due to a local
permutation are very small.
Monotonicity: We assume that the CMRF is a monotonically non-
decreasing function of edge span. As we access vertices that are
farther away from the current vertex (i.e. the edge spans increase),

Figure 4: Puget Sound contour line: This image shows a contour line (in black) ex-
tracted from an unstructured terrain model of the Puget Sound. The terrain is simplified
down to 143M triangles. We extracted the largest component (223K edges) of the level
set at 500 meters of elevation. Our cache-oblivious layouts improve the performance of
the isocontour extraction algorithm by more than an order of magnitude.

Figure 5: Edge span distributions: The edge span histogram of the dragon model with
871K triangles and 437K vertices. We show the histogram of the original model rep-
resentation (red), spectral sequencing (green), and our cache-oblivious metric (black).
In the original layout, a large number of edges have edge spans greater than 600. Intu-
itively, our cache-oblivious metric favors edges that have small edge spans. Therefore,
our layouts reduce cache misses.

the probability of having a cache miss increases, until eventually lev-
eling off at 1.

4.4 Cache-Oblivious Metric
Our cache-oblivious metric is used to decide whether a local permu-
tation decreases the expected number of cache misses, which due to
the invariance of pi is true if the following inequality holds:

n−1∑

i=1

(|Ei|+ ∆|Ei|)pi <

n−1∑

i=1

|Ei|pi ⇔
m∑

j=1

∆|El(j)|pl(j) < 0 (2)

Here ∆|Ei| is the signed change in the number of edges with edge
span i after a local permutation and n− 1 is maximum edge span for
a mesh with n vertices. Furthermore, we let m denote the number of
sets (among E1, E2, . . . , En−1) whose cardinality changes because
of the permutation, and let l(j) denote the edge span associated with
the jth such set, with l(j) < l(j + 1) and m � n− 1.
Constant Edge Property: The total number of edges in a layout
is the same before and after the local permutation. Hence

m∑

j=1

∆|El(j)| = 0 (3)

Parameterization of cache miss ratio: We parameterize each
cache miss ratio, pl(j), by introducing a parametric variable, xj ,
which due to the monotonicity of pl(j) is monotonically non-
decreasing with j. This is represented as:

pl(j) = xjpl(1) (4)

31

where 1 ≤ j ≤ m and

1 = x1 ≤ x2 ≤ · · · ≤ xm−1 ≤ xm ≤
1

pl(1)
(5)

pl(1) is the cache miss ratio of the first edge, and 0 ≤ pl(1) ≤ 1.
The leftmost constraint of Eq. (5) is obvious because

pl(1) = x1pl(1). The rightmost constraint is computed from
pl(m) = xmpl(1) ≤ 1, because all the cache miss values are less than
or equal to 1.

By substituting the parameterization of cache miss ratios shown
in Eq. (4) into Eq. (2) and canceling the constant pl(1), we have:

m∑

j=1

∆|El(j)|xj < 0. (6)

This is our exact cache-oblivious metric.
4.5 Geometric Formulation
We reduce the computation of the expression in Eq. (6) to a geomet-
ric volume computation in an m dimensional hyperspace. Geomet-
rically, the parameterization domain represented in Eq. (5) defines a
closed hyperspace in R

m. Eq. (6) defines a closed subspace within
the domain of Eq. (5). Moreover, we define V+ to be the volume of
the subspace represented in Eq. (6) and V− to be the volume of its
complement within the closed domain.
Volume Computation: Intuitively speaking, the volume V+ cor-
responds to the set of cache configurations parameterized by {xj}
for which we expect a reduction in cache misses. Since we assume
all configurations to be equally likely, we probabilistically reduce
the number of cache misses by accepting a local permutation when-
ever V+ is larger than V−. Unfortunately, the complexity of the vol-
ume computation in m dimensions is very high [Lasserre and Zeron
2001].
4.6 Fast and Approximate Metric
Given the complexity of exact volume computation, we use an ap-
proximate metric to check whether a local permutation would reduce
the expected number of cache misses. In particular, we use a single
sample point as an estimate of {xj} and compute an approximate
metric with low error.

By using the single sample point, we obtain our fast and approxi-
mate metric as the following:

m∑

j=1

∆|El(j)|j < 0 (7)

If inequality (7) holds, we allow the local permutation. Based on this
metric, we compute a layout, ϕ, that minimizes the number of cache
misses. More detail on our approximate metric and its derivation is
available at [Yoon et al. 2005].

5 Layout Optimization
Given the cache-oblivious metric, our goal is to find the layout, ϕ,
that minimizes the expected number of cache misses, defined in Eq.
(1). This is a combinatorial optimization problem for graph layouts
[Diaz et al. 2002]. Finding a globally optimal layout is NP-hard
[Garey et al. 1976] due to the large number of permutations of the set
of vertices. Instead, we use a heuristic based on multilevel minimiza-
tion that performs local permutations to compute a locally optimal
layout.
Multilevel Minimization: Our multilevel algorithm consists of
three main steps. First, a series of coarsening operations on the graph
are computed. For coarsening operations, we perform clustering via
a graph partitioning [Karypis and Kumar 1998]. Next, we compute
an ordering of vertices of the coarsest graph. We list all possible
orderings of the vertices and compute the costs based on the cache-
oblivious metric from Eq. (7). We choose a vertex ordering that

Model Type Vert. (M) Tri. (M) Size (MB) Layout Comp. (min)

Dragon s 0.4 0.8 33 0.25

Lucy s 14.0 28.0 520 8

Double Eagle c 77.7 81.7 3, 346 56

Puget Sound t 67.0 134.0 1, 675 58

St. Matthew s 186.0 372.0 9, 611 176

Table 1: Layout Benchmarks: Model complexity and time spent on layout computation
are shown. Type indicates model type: s for scanned model, i for isosurface, c for CAD
model, and t for terrain model. Vert. is the number of vertices and Tri. is the number of
triangles of a model. Layout Comp. is time spent on layout computation.

Model Double Eagle Isosurface St. Matthew

PoE 3 5 1

Frame rate 35 30 82

Rendering throughput(million tri./sec.) 47 90 106

Avg. Improvement 2.1 4.5 4.6

Table 2: View-Dependent Rendering This table highlights the frame rate and rendering
throughput for different models. We improve the rendering throughput and frame rates
by 2.1− 4.6 times.

has the minimum cost. Finally, we recursively expand the graph by
reversing the coarsening operations and refine the ordering by per-
forming local permutations.
Local Permutation: We compute local permutations of the ver-
tices during the ordering and refinement steps. A local permutation
affects only a small number of vertices in the layout and changes the
edge spans of those edges that are incident to these vertices. There-
fore, we can efficiently recompute the cost associated with the met-
ric. For efficiency we restrict each coarsening operation to merge no
more than k = 5 vertices at a time.

6 Implementation and Performance
In this section we describe our implementation and use cache coher-
ent layouts to improve the performance of three applications: view-
dependent rendering of massive models, collision detection between
complex models, and isocontour extraction.

6.1 View-dependent rendering
View-dependent rendering and simplification are frequently used for
interactive display of massive models. These algorithms precompute
a multiresolution hierarchy of a large model (e.g. a vertex hierarchy).
At runtime, a dynamic simplification of the model is computed by
incrementally traversing the hierarchy until the desired pixels of error
(PoE) tolerance in image space is met.

We use a clustered hierarchy of progressive meshes (CHPM) rep-
resentation [Yoon et al. 2004] for view-dependent refinement. We
computed layouts for three massive models including a CAD envi-
ronment of a tanker with 127K separate objects (Fig. 2), a scanned
model of St. Matthew (Fig. 1) and an isosurface model . The details
of these models are summarized in Table 1.
Results: Table 2 highlights the benefit of COL over the simplifi-
cation layout (SL), whose vertex layout and triangle layout are com-
puted by the underlying simplification algorithm. We are able to
increase the rendering throughput by a factor of of 2.1-4.6 times by
precomputing a COL of the CHPM of each model. We obtain a ren-
dering throughout of 106M triangles per second on average, with a
peak performance of 145M triangles per second.

6.2 Collision Detection
Many collision detection algorithms use bounding volume hierar-
chies to accelerate the interference computations [Lin and Manocha
2003]. In particular, we compute layouts of OBB-trees [Gottschalk
et al. 1996] and use them to accelerate collision queries within a dy-
namic simulator. We have tested the performance of our collision de-
tection algorithm in a rigid body simulation where 20 dragons (800K
triangles each) drop on the Lucy model (28M triangles). The details
of these models are shown in Table 1. Fig. 6 shows a snapshot
from our simulation. We compared our cache-oblivious layout with
a depth-first layout (DFL) of OBB-trees. We chose DFL because it

32

Figure 6: Dynamic Simulation: Dragons consisting of 800K triangles are dropping on
the Lucy model consisting of 28M triangles. We obtain 2 times improvement by using
COL on average.

preserves the spatial locality within the bounding volume hierarchy.
Results: We are able to achieve 2 times improvement in perfor-
mance over the depth-first layout on average. This is mainly due
to reduced cache misses, including main memory page faults. We
would like to point out that we further improve the performance of
collision detection by separately considering two different localities
in an algorithm [Yoon and Manocha 2005]. We are able to achieve
up to 5 times improvement by using this new algorithm as compared
to the DFL layout.

6.3 Isocontour Extraction
The problem of extracting an isocontour from an unstructured dataset
frequently arises in geographic information systems and scientific vi-
sualization. We use an algorithm based on seeds sets [van Kreveld
et al. 1997] to extract the isocontour of a single-resolution mesh. The
running time of this algorithm is dominated by the traversal of the tri-
angles intersecting the contour itself. We compare the performance
of the isocontouring algorithm with five different layouts includ-
ing our cache-oblivious layouts, geometric X/Y/Z orders (vertices
sorted by their position along the corresponding coordinate axis) and
in spectral sequencing order [Diaz et al. 2002].
Comparison with other layouts: The empirical data shows that
our cache-oblivious layout minimizes the worst case cost of generic
coherent traversals. The three layouts that are sorted by geomet-
ric direction along the X , Y , and Z axis show that the worst case
performance is at least one order of magnitude slower than the best
case, which is achieved by the layout that happens to be perfectly
aligned along the query direction. The spectral sequencing layout
also does not perform well since the geometric query is unlikely to
follow its streaming order. Our cache-oblivious layout consistently
exhibits good performance (up to 20 times speedup) compared to
other layouts.

6.4 Limitations
Our metric and layout computation algorithm has several limitations.
The assumptions we make about invariance and monotonicity of
CMRFs may not hold for all applications, and our minimization al-
gorithm does not necessarily compute a globally optimal solution.
Our cache-oblivious layouts result in good improvements primarily
in applications where the running time is dominated by data access.

Acknowledgments
This work was supported in part by ARO Contracts DAAD19-02-1-
0390 and W911NF-04-1-0088, NSF awards 0400134 and 0118743,
DARPA/RDECOM Contract N61339-04-C-0043 and Intel. Some
of the work was performed under the auspices of the U.S. Depart-
ment of Energy by the University of California, Lawrence Liver-
more National Laboratory under Contract No. W-7405-Eng-48. The
St. Matthew, Lucy, and Atlas models are courtesy of the Digital
Michelangelo Project at Stanford University. The isosurface model
is courtesy of the LLNL ASCI VIEWS Visualization project and the
Double Eagle tanker is courtesy of Newport News Shipbuilding. We
would like to thank Martin Isenburg, Brandon Lloyd, Brian Salomon,
Avneesh Sud, Dawoon Jung, and the members of UNC Walkthrough

and Gamma group for their feedback on an earlier draft of the paper
and technical discussions.

References
ARGE, L., BRODAL, G., AND FAGERBERG, R. 2004. Cache oblivious data structures.

Handbook on Data Structures and Applications.
BARTHOLDI, J., AND GOLDSMAN, P. 2004. Multiresolution indexing of triangulated

irregular networks. In IEEE Transaction on Visualization and Computer Graphics,
484–495.

BOGOMJAKOV, A., AND GOTSMAN, C. 2002. Universal rendering sequences for trans-
parent vertex caching of progressive meshes. In Computer Graphics Forum, 137–
148.

COLEMAN, S., AND MCKINLEY, K. 1995. Tile size selection using cache organiza-
tion and data layout. SIGPLAN Conference on Programming Language Design and
Implementation, 279–290.

DEERING, M. F. 1995. Geometry compression. In SIGGRAPH 95 Conference Proceed-
ings, Addison Wesley, R. Cook, Ed., Annual Conference Series, ACM SIGGRAPH,
13–20. held in Los Angeles, California, 06-11 August 1995.

DIAZ, J., PETIT, J., AND SERNA, M. 2002. A survey on graph layout problems. ACM
Computing Surveys 34, 313–356.

FRIGO, M., LEISERSON, C., PROKOP, H., AND RAMACHANDRAN, S. 1999. Cache-
oblivious algorithms. Symposium on Foundations of Computer Science, 285–297.

GAREY, M. R., JOHNSON, D., AND STOCKMEYER, L. 1976. Some simplified np-
complete graph problems. Theoretical Computer Science 1, 237–267.

GOPI, M., AND EPPSTEIN, D. 2004. Single-strip triangulation of manifolds with arbi-
trary topology. In EUROGRAPHICS, 371–379.

GOTTSCHALK, S., LIN, M., AND MANOCHA, D. 1996. OBB-Tree: A hierarchical
structure for rapid interference detection. Proc. of ACM Siggraph’96, 171–180.

HEBER, G., BISWAS, R., AND GAO, G. 2000. Self-avoiding walks over adaptive
unstructured grids. In Concurrency: Practice and Experience, 85–109.

HOPPE, H. 1999. Optimization of mesh locality for transparent vertex caching. Proc.
of ACM SIGGRAPH, 269–276.

ISENBURG, M., AND GUMHOLD, S. 2003. Out-of-core compression for gigantic poly-
gon meshes. In ACM Trans. on Graphics (Proc. of ACM SIGGRAPH), vol. 22, 935–
942.

ISENBURG, M., AND LINDSTROM, P. 2004. Streaming meshes. Tech. Rep. UCRL-
CONF-201992, LLNL.

KARNI, Z., BOGOMJAKOV, A., AND GOTSMAN, C. 2002. Efficient compression and
rendering of multi-resolution meshes. In IEEE Visualization, 347–354.

KARYPIS, G., AND KUMAR, V. 1998. Multilevel k-way partitioning scheme for irreg-
ular graphs. Journal of Parallel and Distributed Computing, 96–129.

LASSERRE, J. B., AND ZERON, E. S. 2001. A laplace transform algorithm for the
volume of a convex polytope. Journal of the ACM, 1126–1140.

LIN, M., AND MANOCHA, D. 2003. Collision and proximity queries. In Handbook of
Discrete and Computational Geometry.

LINDSTROM, P., AND PASCUCCI, V. 2001. Visualization of large terrains made easy.
IEEE Visualization, 363–370.

OLIKER, L., LI, X., HUSBANDS, P., AND BISWAS, R. 2002. Effects of ordering
strategies and programming paradigms on sparse matrix computations. In SIAM
Review, 373–393.

PASCUCCI, V., AND FRANK, R. J. 2001. Global static indexing for real-time explo-
ration of very large regular grids. Super Computing, 225–241.

SAGAN, H. 1994. Space-Filling Curves. Springer-Verlag.
SEN, S., CHATTERJEE, S., AND DUMIR, N. 2002. Towards a theory of cache-efficient

algorithms. Journal of the ACM 49, 828–858.
VAN KREVELD, M., VAN OOSTRUM, R., BAJAJ, C., PASCUCCI, V., AND SCHIKORE,

D. R. 1997. Contour trees and small seed sets for isosurface traversal. In Proceedings
of the 13th International Annual Symposium on Computational Geometry (SCG-97),
ACM Press, New York, 212–220.

VELHO, L., AND GOMES, J. D. 1991. Digital halftoning with space filling curves. In
Computer Graphics (SIGGRAPH ’91 Proceedings), T. W. Sederberg, Ed., vol. 25,
81–90.

VITTER, J. 2001. External memory algorithms and data structures: Dealing with mas-
sive data. ACM Computing Surveys, 209–271.

YOON, S.-E., AND MANOCHA, D. 2005. Cache-Oblivious Layouts of Bounding Vol-
ume Hierarchies. Tech. rep., University of North Carolina-Chapel Hill.

YOON, S.-E., SALOMON, B., GAYLE, R., AND MANOCHA, D. 2004. Quick-VDR:
Interactive View-dependent Rendering of Massive Models. IEEE Visualization, 131–
138.

YOON, S.-E., LINDSTROM, P., PASCUCCI, V., AND MANOCHA, D. 2005. Cache-
Oblivious Mesh Layouts. To appear in Proc. of ACM SIGGRAPH.

33

34

Sorting points from IRk into Hilbert order

Yuanxin Liu
liuy@cs.unc.edu

Ajith Mascarenhas
ajith@cs.unc.edu

Jack Snoeyink
snoeyink@cs.unc.edu

Department of Computer Science
Campus Box 3175, Sitterson Hall

UNC-Chapel Hill
Chapel Hill, NC 27599-3175, USA

ABSTRACT

There are a number of orderings of the entries of a matrix or
cells of a regular grid that try to improve locality of reference
by keeping spatially nearby cells close in the linear order:
examples include Morton or Z order, Gray code order, and
Hilbert curve order. Of these, only Hilbert curves preserve
adjacency.

There are a couple of ways to transform grid coordinates
to Hilbert order number sand vice versa: The basic defi-
nition leads to a slow, top-down recursive procedure that
maintains state; faster implementations on the web use dif-
ficult to understand boolean operations suggested by Butz
(1971). In our applications we want to permute large sets
of points into Hilbert order by incorporating the generation
into an out-of-core sorting method.

We give a notation for Hilbert curves that allows use to
explain Butz’s algorithm, and to create a fast procedure
for permuting large sets of points into Hilbert order. This
can serve as the basis for subsequent out-of-core processing
based on spatial locality.

35

36

Computing Pfafstetter Labelings I/O-Efficiently
(abstract)

Lars Arge∗

Department of Computer Science, University of Aarhus
Aabogade 34, DK-8200 Aarhus N, Denmark

large@daimi.au.dk

Andrew Danner†

Department of Computer Science, Duke University
P.O.Box 90129, Durham, NC 27708-0129, USA

adanner@cs.duke.edu

Herman Haverkort‡

Dept. of Computer Science, University of Aarhus
Aabogade 34, DK-8200 Aarhus N, Denmark

cs.herman@haverkort.net

Norbert Zeh§

Faculty of Computer Science, Dalhousie University
6050 University Ave, Halifax, NS B3H 1W5, Canada

nzeh@cs.dal.ca

ABSTRACT

We present an I/O-efficient algorithm that decomposes a
grid-based terrain model into a hierarchy of watersheds.
Each watershed gets a unique label, a Pfafstetter label, and
each grid cell is labeled with the labels of all (nested) wa-
tersheds it belongs to. The algorithm runs in O(sort(T))
I/Os, where T is the total length of the computed cell la-
bels. Our algorithm is simple and practical. We substantiate
these claims by presenting experimental results that verify
the performance of our algorithm.

1. INTRODUCTION

Over millions of years, rainfall has been slowly etching net-
works of rivers into the terrain. Today, studying these river
networks is important for managing drinking water supplies,
tracking pollutants, creating flood maps, and more. Hy-
drologists can use large-scale raster-based digital elevation
models, or DEMs, of the terrain along with a Geographic In-
formation System, or GIS, to automate much of these stud-
ies. Often it is not necessary to study the entire terrain
or river network at once. People are typically interested in
regions that are downstream of a particular river, or the
upstream areas that contribute flow to a particular river.
By decomposing the terrain into a set of disjoint hydrologic
units—regions where all water flows towards a single, com-
mon outlet—users can quickly identify areas of interest with-
out having to examine the entire terrain. The Pfafstetter la-
beling method described by Verdin and Verdin [10] defines a
hierarchical decomposition of a terrain into such units, each
with a unique id, or Pfafstetter label. These labels can be
computed automatically, given a network of rivers and their
drainage area. Pfafstetter labels encode topological proper-
ties such as upstream and downstream neighbors, making it

∗Supported in part by the US National Science Foundation
through RI grant EIA–9972879, CAREER grant CCR–9984099,
ITR grant EIA–0112849, and U.S.-Germany Cooperative Re-
search Program grant INT–0129182, by the US Army Research
Office through grant W911NF-04-1-0278, and by a Ole R/omer
Scholarship from the Danish National Science Research Council.
Part of this work was done while the author was at Duke Univer-
sity.
†Supported in part by the US National Science Foundation
through grant CCR–9984099.
‡Supported by a grant from the Danish National Science Research
Council.
§Supported by the Natural Sciences and Engineering Research
Council of Canada and the Canadian Foundation for Innovation.

possible to automatically identify hydrological units of in-
terest based on the Pfafstetter id alone.

Existing algorithms for computing hydrological units on
grid-based terrain models typically use either local filters to
identify terrain features [7, 9] or model flow over the en-
tire terrain [8] and then extract watersheds. Most of these
algorithms are not designed to handle large data sets.

In this paper, we show how to compute Pfafstetter la-
bels efficiently on grid-based DEMs that are too large to fit
into the main memory of a computer and must therefore re-
side on disks, which are larger, but also considerably slower.
To our knowledge, this paper provides the first algorithmic
analysis and experimental running times of Pfafstetter label
computation.

1.1 Pfafstetter labeling on grids

Conceptually, the definition of Pfafstetter labeling is inde-
pendent of the representation of the terrain, but for con-
creteness, we give a definition tailored to a grid-based ter-
rain model. A planar orthogonal grid or raster is a pattern
of horizontal and vertical lines that divide the plane into iso-
metric rectangular cells. In geographic information systems,
we use grids to model properties of the Earth’s surface: we
project a grid onto the surface and store the value of the
property of interest for each cell (for example, the eleva-
tion of the cell’s center). The Pfafstetter labeling of a grid-
based terrain model is defined by the flow directions and the
drainage areas of the cells. Each cell u in the grid has eight
neighbors that share at least one vertex with u. The flow
direction of u is a pointer to the neighbor cell to which water
that falls on or flows through u is assumed to flow. The grid
can thus be seen as a flow graph that has a node for each cell
in the grid, and in which there is a directed edge (u, v) if and
only if the flow direction of u points to neighbor v. A cell w
drains through u if there is a path in the graph, following the
flow directions, from w to u. The drainage area of a cell u is
the total area of the cells–including u–that drain through u.
Flow graphs without cycles and corresponding drainage ar-
eas can be computed from digital elevation models using a
few easy-to-use GIS tools. The TerraFlow software pack-
age [4] in particular computes these grids efficiently on large
elevation models.

For simplicity, we assume that our input consists of a grid
representing the river basin of a single river. This means
that there is one unique cell ρ, the mouth of the river, whose
flow direction points to a cell that is not among the cells in
our input. The flow graph must therefore be a single tree T

37

flow

direction

ρ

v2

p2

s2

p4

v4

s4

p6

v6

v8

s8

1

3

4

2

5

6

8

7

9

52

54

56

58

51

53

55

57

59

s6,p8

Figure 1. A flow graph T with the main river path (‘blue’ cells, shown
here as circles) and mouths of tributaries (black dots). Removing
the eight bold edges creates nine subtrees, each with the Pfafstetter
label shown in bold type. Each of these subtrees will be subdivided
and labeled recursively.

with root ρ.1 The main river path, R0, of T is a path that
starts at the root ρ and, at each cell, continues, against the
flow direction, to the child with highest drainage area, until
it ends in a leaf. Imagine that all cells of R0 are colored
blue and all other cells are currently black. For simplicity,
we assume that each blue cell has at most one black child.2

We define a subtree of T to be a tributary basin if the root
of the subtree, v, is black, but the parent of v is blue. We
call v a tributary mouth.

Consider the four tributary mouths v2, v4, v6, v8 with the
largest drainage area, where for i < j, the mouth vi flows
into the main river downstream of vj . Let pi and si denote
the parent and the sibling of vi, respectively. Consider the
nine subtrees resulting from the removal of the eight edges
(vi, pi) and (si, pi), for i ∈ {2, 4, 6, 8}, from T . Four of these
subtrees are tributary basins, they are rooted at v2, v4, v6,
and v8. The Pfafstetter label for a cell in a subtree rooted at
vi is i. The remaining subtrees are called interbasins and are
rooted at ρ, s2, s4, s6 and s8. All cells in the subtree rooted
at ρ, the root of T , have label 1. For a cell in a subtree
rooted at si the Pfafstetter label is i+1. See Figure 1 for an
example decomposition. In the case where a flow graph has
0 < k < 4 tributary mouths, we proceed as above but do not
assign the labels 2k+2 through 9. Each of the (at most) nine
subtrees is labeled recursively by applying the definition just
given and appending the resulting labels to the existing label
of the subtree—see, for example, interbasin 5 in Figure 1.
The recursive labeling stops when each subtree is a single
root-leaf path.

1.2 I/O Model

Because on large data sets, the efficiency of an algorithm
tends to be dominated by the time spent on transferring
1Grids with multiple basins are in fact quite easy to handle, but
they would complicate the exposition in this paper unnecessarily.
2We could enforce this by expanding each blue cell into a number
of consecutive blue nodes, one for each child.

data between main memory and disk, we analyse our algo-
rithms under the standard I/O-model proposed by Aggarwal
and Vitter [1]. In this model, computation only occurs on
data located in a main memory with a capacity of M ele-
ments. An I/O transfers a block of B consecutive elements
between main memory and a disk of conceptually infinite
capacity. The complexity measure of an algorithm in this
model is the number of I/Os it performs. Algorithms with
low complexity under this model are called I/O-efficient and
perform well even on large data sets. Trivially, the complex-
ity of scanning N elements is scan(N) = Θ(N

B
). Aggarwal

and Vitter showed that the complexity of sorting N ele-
ments is sort(N) = Θ(N

B
logM/B

N
B

). Note that sort(N) is
typically much smaller than N . In the past decades, a num-
ber of I/O-efficient data structures have been described, in-
cluding stacks on which N operations can be performed in
O(scan(N)) I/Os and priority queues on which N insertions
and extractions can be performed in O(sort(N)) I/Os [2, 5].

1.3 Our results

In this paper, we present an I/O-efficient algorithm that
computes the Pfafstetter labels of the cells in a grid-based
terrain model inO(sort(T)) I/Os, where T is the total length
of the computed labels. In practice, we are only interested
in the O(1) most significant digits of the labels, so that each
label can be truncated and encoded in O(1) bytes. Then
the computations take only O(sort(N)) I/Os, where N is
the number of grid cells.

When the input, the output, and some O(N)-size auxil-
iary data structures fit in internal memory, we can compute
the labeling in O(T) time (or O(N), if we are only interested
in the O(1) most significant digits of the labels).

The remainder of the paper is structured as follows. As
a first step towards a solution, we define a simpler problem
in Section 2, namely the computation of Pfafstetter labels
on a flow graph that represents a single river whose trib-
utary basins consist of only one cell each. We describe a
data structure known as the Cartesian tree and show how
to use it to compute Pfafstetter labels on such a river. In
Section 3, we discuss how to decompose a grid model of a
general river basin with flow directions and drainage areas
into a tree of tributaries, each of which can be labeled with
a local Pfafstetter label independently using the algorithm
in Section 2. We conclude the description and analysis of
our algorithm with Section 4, where we describe how to
label a complete river basin by combining the local Pfaf-
stetter labels into complete labels for each cell in the river
basin. We present some experimental results showing the
scalability and performance of our algorithm in Section 5,
and give some concluding remarks in Section 6. We omit
internal-memory algorithms and the analysis for truncated
labels from this abstract.

2. COMPUTING PFAFSTETTER
LABELS ON A SINGLE RIVER

In this section, we consider a flow graph as defined in Sec-
tion 1.1 where each subtree attached to the main river con-
sists of a single leaf. These leaves do not need to have the
same drainage areas. Refer to Figure 2 for an example. We
will show how to compute the Pfafstetter labels as defined
earlier on such a pruned flow graph.

As before, let the cells on the main river be colored blue,
while the remaining cells are colored black. We assume that
the cells are given as a list L such that the blue cells are
ordered from mouth to source, and each black cell is placed
between its parent and its sibling. Our goal is to compute

38

2312 85 12367812131524252834

t2

t4

t6

t8

C1 C3 C5 C7 C9

L

C(L)

flow direction

Figure 2. Bottom figure: a flow graph that consists of a single
river, where each subtree not on the main river is a single leaf. The
numbers are the drainage areas of the cells. List L contains the cells
of the flow graph from left to right. Top figure: the Cartesian tree on
L, with its four heaviest nodes and the five subtrees between them.

the Pfafstetter label for each element in L. To this end,
we scan L to compute an augmented Cartesian tree on the
elements of L, as explained in Section 2.1; then we process
this tree recursively to compute the labels for all elements
in the tree, as explained in Section 2.2.

2.1 Cartesian Tree

Let A = (a1, a2, . . . , aN) be a sequence of N distinct weights.
The Cartesian tree [6], C(A), of the sequence A is defined
as follows: if A is empty, C(A) is empty. For N > 0, let
ai be the largest element in A. The Cartesian tree of A
consists of a root v that contains av := ai, a left subtree
that is the Cartesian tree C((a1, ..., ai−1)) of the elements
to the left of ai, and a right subtree that is the Cartesian
tree C((ai+1, ..., aN)) of the elements to the right of ai. The
internal-memory algorithm for the construction of a Carte-
sian tree takes O(N) time [6]. When implemented carefully
using two stacks that hold the nodes of the tree under con-
struction, the algorithm is I/O-efficient, taking O(scan(N))
I/Os to output the nodes of the tree in post-order3.

To be able to label a river with Pfafstetter labels as ex-
plained in the next subsection, we store with every node in
the Cartesian tree the four heaviest elements among its de-
scendants (including itself). The four heaviest elements be-
low every node can be determined by a straightforward post-
order traversal of the tree. Because the tree is constructed
incrementally in post-order, we can perform this post-order
traversal while the tree is being constructed, without in-
creasing the number of I/Os by more than a constant factor.
We omit the details from this abstract.

2.2 Labeling a river

Recall that a single river is represented by a list L consisting
of a main river of blue cells and a set of black tributary cells
each of which is stored between its blue parent and its blue
sibling. We build an augmented Cartesian tree on these cells
as described above, where the weight of a cell is defined as
follows: A black cell’s weight is equal to its drainage area,
while every blue cell has weight zero. When cells of equal
weight need to be compared, the cell that appears first in
the list is considered to have the highest weight. With each
cell we store not only its position in the list and its weight,
but also its location in the grid.

When the river has at least one tributary (black cell),
the root of the tree now stores the tributary t with biggest
drainage area, along with the three next-biggest tributaries

3A post-order listing of a binary tree is a list of its nodes that
consists of the post-order listing of the left subtree of the root,
followed by the post-order listing of the right subtree of the root,
followed by the root.

(if they exist); the left child of the root is a Cartesian tree on
the cells that lie in or flow into the main river downstream
of t (excluding t itself), while the right child is a Cartesian
tree on the cells upstream of t’s parent.

Observation 1 The four weights stored in the root of the
augmented Cartesian tree C are the weights of the nodes in
a connected subgraph of C that includes the root.

We can now label the complete list L recursively as fol-
lows. Each recursive call is parameterized with a node of
C and the Pfafstetter label of an interbasin. The recursion
starts by calling the algorithm on the root of the tree with
an empty label.

When called on a node v, we find node v in C and examine
v for the four heaviest cells in the tree rooted at v. If all
of them have weight zero, the tree rooted at v represents a
stretch of river without black cells, that is, without conflu-
ences with tributaries. We then label all nodes under v with
the given interbasin label from right to left in the order in
which they appear in L.

Otherwise, we order the heaviest cells under (and includ-
ing) v from left to right according to their position in L
into a list t2, t4, t6, t8. Assume for the moment that all four
heaviest nodes exist and have positive weight, that is, they
represent black cells. Because by Observation 1, these four
nodes together form a tree with three edges, and because the
Cartesian tree is a binary tree, these nodes together have at
most five children other than t2, t4, t6 and t8. These children
are the roots of the five subtrees C1, C3, C5, C7, C9 that would
be obtained by removing the nodes of t2, t4, t6 and t8 from
the Cartesian tree—see Figure 2 for an example. C1 contains
all cells that lie on or flow into the main river downstream
of t2 (excluding t2). For i ∈ {3, 5, 7}, subtree Ci contains all
cells that lie on or flow into the main river upstream of the
parent of ti−1 and downstream of ti+1 (excluding ti+1). C9

contains all cells that lie upstream of t8’s parent. We now
proceed as follows. We label C9 recursively by recursing on
the root of C9 with the interbasin label equal to the given
interbasin label plus the digit “9”. For i = 8, 6, 4, 2 (going
in downstream order), we label ti (which is stored in v) with
the given interbasin label plus the digit i, and then recurse
on the root of Ci−1 with the given interbasin label plus the
digit i− 1.

If v has k < 4 black descendants, we order them by their
position in L into a list t2, t4, . . . , t2k: subtrees C2k+3, . . . , C9

do not exist and are not labeled.

Lemma 1 The Pfafstetter labels for the N cells in a list L
that represents a single river can be computed and output
from right to left in O(scan(T)) I/Os, where T is the total
size of the computed labels.

Proof. We implement the above algorithm by first comput-
ing a post-order listing of a Cartesian tree on L as explained
in Section 2.1. This costs O(scan(N)) I/Os.

When the recursive labeling algorithm visits a node u, it
always visits it before any descendants of u, and it visits any
descendants in the right subtree of u before any descendants
in the left subtree of u. The algorithm thus visits the nodes
of the Cartesian tree in the reverse order of left-to-right post-
order (skipping nodes that are the second-, third- or fourth-
heaviest nodes below nodes that have already been visited).
The nodes to recurse on can thus be obtained in O(scan(N))
I/Os in total by putting the post-order listing of the tree on
a stack and popping nodes from it as needed.

Outputting the labels of all cells in L takes O(scan(T))
I/Os, where T is the total size of the computed labels.

We omit further details from this abstract.

39

3. DECOMPOSING A TERRAIN
INTO RIVERS

Above we explained how to label a single riverRi when given
as a list Li of blue cells ordered from mouth to source, with
tributary mouths placed as black cells between their parents
and their siblings. In this section we show that we can ef-
ficiently decompose a grid-based terrain model into a set of
rivers and construct such a list for each river. Moreoever,
our decomposition constitutes a hierarchy of tributaries, a
tributary tree, where each vertex stores a river Ri repre-
sented by a list Li, and where Ri is a child of Rj if and only
if Ri flows directly into Rj , that is, the mouth of Ri is a
black cell in Lj . We consider the children of each node Rj

in this tree to be ordered from left to right according to the
ordering of their mouths in Lj .

Recall the flow graph T of Section 1.1 shown in Figure 1.
Without loss of generality, we assume that the minimum
drainage area of any cell in T is one. The first river in
our decomposition is a root-leaf path, R0 of T defined by
starting at the root and, at each cell, continuing to the child
with highest drainage area. The list L0 forR0 is the list of all
cells along the path R0 in order from mouth to source, along
with the remaining children of those cells. The remaining
rivers are defined by applying the definition recursively to
each tributary of R0, that is, to each subtree rooted at a
node v such that the parent of v is on R0, but v is not. This
defines a set of rivers, each represented by a list of cells in
that river (blue cells) and mouths of tributaries (black cells).
Each cell in T appears in one or two such lists: once as a
blue node in the list of the river that flows through that cell,
and, if the cell is the mouth of a river Ri 6= R0, once as a
black node in the list of the river to which Ri is a tributary.

The above definition could be translated in a straightfor-
ward way into a depth-first traversal of T that generates all
river lists and produces a pre-order listing of the nodes of
the tributary tree in O(N) CPU operations. However, when
the input does not fit in internal memory and I/O-efficiency
determines the running time, we need another approach.

We compute the decomposition into rivers by processing
the flow graph T from the root to the leaves, constructing
each river’s list incrementally from the mouth to the source.
We do not construct the rivers one by one, but in parallel: at
each point in the process, there may be several rivers under
construction. To organize this process, we assign each river
a unique integer id as soon as the parent of its mouth in
T is visited, and maintain each river’s state as a quintuple
(RID ,RLen, v,TID−,TID+), where:

• RID is the id of the river;
• RLen is the number of elements that were already ap-

pended to its list LRID ;
• v is the next cell to append to LRID ;
• {TID−, ...,TID+} are ids that are reserved to be as-

signed to tributaries of river RRID .
The river states are kept in a priority queue, where highest
priority is given to the river whose next cell has highest
drainage area, with ties broken arbitrarily. Initially we set
up a priority queue with one river state that is the state of
the main river R0 before any cells have been added to its
list—more precisely, this river state is initialized as (RID =
0,RLen = 0, v = ρ,TID− = 1,TID+ = ∞), where ρ is the
root of T , that is, the mouth of R0.

We copy the flow graph T and store with each cell a copy
of its children, sort the cells by decreasing drainage area
(with ties broken in the same way as in the priority queue),
and put them on a stack of cells still to be processed. The
cell with highest drainage area, which must be the mouth of
the main river, is put on top of stack.

We now repeat the following until the stack is empty. We
pop a cell v from the stack of cells to be processed. The first
time we do this, v is the mouth of the main river, and the
state of the main river is the only river state in the priority
queue. Every other time, v has a parent, which has bigger
drainage area and therefore must have been popped from
the stack and dealt with before. Therefore the mouth of the
river R that contains v must have been found already, and
the state of R must be in the priority queue. Furthermore,
since v is the unprocessed cell with highest drainage area,
river R must have highest priority. We extract the river
state with highest priority from the priority queue, and thus
obtain the id RID of R, the length RLen of the list LRID

of R, and the minimum and maximum id TID− and TID+

available to name tributaries. We now process v as follows.

We first increase RLen by one and append v as element
number RLen to LRID , colored blue (we will discuss later
how to do this I/O-efficiently). Then we look at v’s children.

If v has no children, we are done with v: river R ends
here and there are no tributaries to discover, so we proceed
to processing the next cell on the stack.

If v has one child, it must be the next cell vblue up-
stream on R. The current state of R is thus described by
(RID ,RLen, vblue ,TID−,TID+). We insert that state into
the priority queue and proceed to processing the next cell
on the stack.

If v has two children, the one with biggest drainage area
is, by definition, the next cell vblue upstream on R, and the
other one must be the mouth vblack of a tributary to R. We
increase RLen by one again, and append vblack as element
number RLen to LRID , colored black. Since the cell v we
are visiting is the parent of tributary mouth vblack , we must
now give that tributary an id and insert its state into the
priority queue. We assign it id TID−, initialize its state to
(TID−, 0, vblack ,TID−+1,TID−+drainageArea(vblack)−1),
and insert it into the queue. Thus we reserve ids TID− + 1
through TID− + drainageArea(vblack) − 1 for tributaries of
the newly discovered river RTID− . The state of R is now de-
scribed by (RID ,RLen, vblue ,TID− + drainageArea(vblack),
TID+). We insert that river state into the priority queue,
and proceed to processing the next cell on the stack.

Lemma 2 InO(sort(N)) I/Os a grid-based elevation model
can be decomposed into a pre-order listing of the rivers in
the tree of tributaries, such that each Ri is returned as a
list Li that contains the cells in the river from mouth to
source, with tributary mouths placed between their parents
and their siblings in the flow graph.

Proof. We implement the above algorithm as follows. We
run Terraflow [4] on the input elevation grid to get a flow
direction and a drainage area for each cell in O(sort(N))
I/Os. We scan the flow direction and drainage area grid
with a 3x3 window in O(scan(N)) I/Os to create a list of
all cells in the grid, where each cell stores not only its own
drainage area, but also the drainage areas of all of its chil-
dren in T . Then we sort this list by decreasing drainage
area in O(sort(N)) I/Os and put it on a stack of unpro-
cessed cells, the cell with highest drainage area on top. The
processing of each cell v requires one stack operation, one
extraction from the priority queue, inspecting the drainage
areas of the children of v (which are stored with v), up to
two insertions into the priority queue, and up to two addi-
tions to a river list. Using I/O-efficient stacks and priority
queues, all O(N) stack and queue operations can be carried
out in O(sort(N)) I/Os [2, 5]. We implement the additions
to the river lists by maintaining one big list L∗ with elements
of the form (v,RID ,ROff , color), where v is a grid cell with

40

its drainage area and grid location, RID is the id of the river
that contains v, ROff is the position of v in the list LRID

of river RID , and color is the color of the cell in that list
(blue or black). When we append a cell v with color color
as element number ROff to list LRID , we simply append
(v,RID ,ROff , color) to L∗. When the complete algorithm
is done, we sort L∗ by RID and ROff in O(sort(N)) I/Os
to obtain the lists per river. Thus the total number of I/Os
needed to obtain the lists for all rivers in a given watershed
is O(sort(N)). The way in which the river ids are assigned
guarantees that sorting by river id automatically gives a
pre-order listing of the rivers in the tree of tributaries.

We omit the correctness proof from this abstract.

4. LABELING A COMPLETE BASIN
Consider the main river R0 of the flow graph T represented
by a list L0. Each cell in T is either a blue cell in L0 or
is part of some subtree whose root r is a black cell in L0.
For each blue cell u in L0, the Pfafstetter label is simply the
label of u in L0 as assigned by the algorithm of Section 2.
The Pfafstetter label for a cell in a subtree rooted at a black
cell v in L0 is the label of v in L0 concatenated with the
recursive labeling of the subtree rooted at v.

We can thus label all cells in the terrain as follows. We
decompose the terrain into a pre-order listing of a tree of
tributaries, each represented by a list of blue and black cells,
as explained in Section 3. We initialize an empty stack of la-
bel prefixes and push an empty label on it. Then we process
the rivers in the tree of tributaries one by one in pre-order.
For each river Ri, we pop a prefix from the stack and label
the cells in its list Li with the algorithm from Section 2,
while prefixing all labels with the prefix popped from the
stack. We append the labeled blue cells to a list of labeled
cells. We push the labels for the black cells on the stack in
the reverse order in which they appear in Li, to be used as
prefixes for the child rivers in the tributary tree. When we
have labeled all rivers, we sort the labeled blue cells by lo-
cation to arrange them in a grid. The following now follows
in a straightforward way from Lemma 1 and Lemma 2:

Theorem 1 The Pfafstetter labels of all cells of a grid-
based elevation model can be computed in O(sort(T)) I/Os,
where T is the total length of the computed labels.

5. EXPERIMENTAL RESULTS
We implemented the algorithms in this paper in C++ using
tpie [3], a library that provides support for implementing
I/O-efficient algorithms and data structures. In particular,
all sorting steps in our algorithm are done by simply call-
ing a TPIE function. For the priority queue, we used the
implementation from Terraflow [4], also based on tpie.

We ran preliminary tests on grids of varying size. The
biggest data set contains 396.5 million grid cells. It is an
elevation model of the Neuse basin in North Carolina at a
resolution of 20 feet, and is publicly available from ncflood-
maps.com. The other data sets come from the National El-
evation Dataset (NED) from the United States Geological
Survey and model parts of Tennessee at a resolution of one
arc second (approximately 30 m). These data are publicly
available at seamless.usgs.gov. The experiments were run
on a Dell Precision Server 370 running Linux 2.6.11 with
1 GB of physical memory, a Pentium 4 3.40 GHz processor
with hyperthreading enabled, and three 400 GB SATA disk
drives. We used a single disk for temporary storage and set
the software memory limit to 258 MB. We preprocessed all
data sets with Terraflow to obtain grids of flow directions
and drainage areas, and then ran the algorithm described in

this paper. This resulted in the following running times (ex-
cluding the running time of Terraflow).

input size (MB) 17 116 150 713 5,819
size (mln cells) 2.7 21.7 30.8 147.0 396.5
running time 0m30 6m51 10m29 58m10 187m43
spent on:

importing data 16% 9% 8% 7% 16%
sorting input cells 12% 16% 16% 15% 13%
tracing rivers 43% 30% 31% 34% 30%
sorting river lists 9% 19% 19% 20% 19%
computing labels 5% 8% 7% 6% 6%
sorting labeled cells 8% 13% 14% 13% 12%
exporting data 6% 4% 5% 4% 5%

6. CONCLUDING REMARKS
In this paper, we presented an I/O-efficient algorithm that
computes the Pfafstetter labeling of a river basin on a grid-
based terrain model in O(sort(T)) I/Os, where T is the total
length of the computed labels.

Once the Pfafstetter labeling is computed, the watershed
boundaries yield a hierarchical decomposition of ridge lines
of the terrain. When overlaid with the stream lines gener-
ated by Terraflow, we could get a decomposition of the
terrain into hill slopes at multiple levels of detail. This could
be a starting point for terrain simplification algorithms that
preserve hydrological properties of the terrain.

References
[1] A. Aggarwal and J. S. Vitter. The Input/Output com-

plexity of sorting and related problems. Communica-
tions of the ACM, 31(9):1116–1127, 1988.

[2] L. Arge. The buffer tree: A technique for design-
ing batched external data structures. Algorithmica,
37(1):1–24, 2003.

[3] L. Arge, R. Barve, D. Hutchinson, O. Pro-
copiuc, L. Toma, D. E. Vengroff, and R. Wick-
remesinghe. TPIE User Manual and Reference (edi-
tion 082902). Duke University, 2002. The manual
and software distribution are available on the web at
http://www.cs.duke.edu/TPIE/.

[4] L. Arge, J. Chase, P. Halpin, L. Toma, D. Urban,
J. S. Vitter, and R. Wickremesinghe. Flow computation
on massive grid terrains. GeoInformatica, 7(4):283–313,
2003.

[5] G. S. Brodal and J. Katajainen. Worst-case efficient
external-memory priority queues. In Proc. Scandina-
vian Workshop on Algorithms Theory, LNCS 1432,
pages 107–118, 1998.

[6] H. N. Gabow, J. L. Bentley, and R. E. Tarjan. Scal-
ing and related techniques for geometry problems. In
Proc. of 16th ACM Symposium on Theory of Comput-
ing, pages 135–143, 1984.

[7] S. Jenson and J. Domingue. Extracting topographic
structure from digital elevation data for geographic in-
formation system analysis. Photogrammetric Engineer-
ing and Remote Sensing, 54(11):1593–1600, 1988.

[8] J. F. O’Callaghan and D. M. Mark. The extraction of
drainage networks from digital elevation data. Com-
puter Vision, Graphics and Image Processing, 28, 1984.

[9] T. K. Peucker. Detection of surface specific points by lo-
cal parallel processing of discrete terrain elevation data.
Computer Graphics and Image Processing, 4:375–387,
1975.

[10] K. L. Verdin and J. P. Verdin. A topological system for
delineation and codification of the Earth’s river basins.
Journal of Hydrology, 218:1–12, 1999.

41

42

Out-of-Core Multi-Tessellation

Emanuele Danovaro, Leila De Floriani, Enrico Puppo
Department of Computer and Information Sciences (DISI) – University of Genova

Hanan Samet
Department of Computer Science – University of Maryland at College Park

1. Introduction

Thanks to improvement in simulation, high resolu-
tion scanning facilities and multidimensional medical
imaging, the size of geometrical dataset is rapidly in-
creasing, and huge datasets are commonly available.
Such datasets may be hard to manipulate at their
full resolution. Level-Of-Detail (LOD) techniques have
been developed in the literature to help concentrating
the resolution only where and when it is necessary.

Since the size of many datasets easily exceeds pri-
mary memory, LOD techniques, in order to be effective,
must be implemented out-of-core and data exchange
between primary and secondary memory must be op-
timized.

In [16, 6] we have proposed a LOD model, called
Multi-Tessellation, which provides a general framework
for many of the models developed in the literature. In
this paper, we analyze different techniques for devel-
oping an out-of-core implementation of such a model,
aimed at handling arbitrary large datasets either with
explicit or implicit encoding of modifications.

2. The Multi-Tessellation

The Multi-Tessellation (MT) is a variable-resolution
continuous LOD model which can represent multireso-
lution simplicial meshes in arbitrary dimensions [16, 6].

Let Σ denote a simplicial complex, a modification is
an operation that replaces a sub-complex u− of Σ with
another sub-complex u+. The interesting case is when
u− and u+ are approximations at two different resolu-
tions of the same (portion of a) shape. We represent
a modification as a pair u = (u−, u+). Given a set of
modifications acting on a base complex Σ, we say that
a modification ui directly depends on another modifica-
tion uj (and, thus, uj directly blocks ui) if and only if ui

removes some of the simplices introduced by uj . Fig-
ure 1 shows a sequence of modifications and the corre-
sponding dependency relation.

0

1

2

3

2

3

1

0

(a) (b)

Figure 1. A sequence of modifications (a), and
the corresponding MT with direct dependencies
represented with arrows (b).

The major issue here is that the relation which de-
fines the dependencies among the modifications in a
multi-resolution model is a partial order, which cannot
be described by a tree, but rather by a Directed Acyclic
Graph (DAG). Some data structures have been pro-
posed in the literature, which can encode dependen-
cies via binary trees plus suitable numbering mecha-
nisms, for specific structures that are special cases of
the MT [10]. However the general model needs to be
managed by using a DAG.

The queries performed on the DAG are essentially
aimed at extracting meshes with a given LOD, which
can be variable over the domain. A mesh is associated
to a cut in the DAG, and it is obtained by applying
all modifications above the cut, in a consistent order,
to the base mesh. A mesh is extracted by adjusting
the position of the cut in the DAG according to LOD
parameters: the cut is moved upwards to coarsen the
mesh and downwards to refine it. Corresponding algo-
rithms are not based on classical graph traversal tech-
niques, but they are specific to multi-resolution mod-
eling.

43

3. Related work

Several techniques have been proposed in the lit-
erature for multi-resolution representation of triangle
meshes.

Lindstrom and Pascucci [12, 13] present a multi-
resolution technique for representing large terrain
datasets described as a triangle bintree in exter-
nal memory. DeCoro and Pajarola in [7] propose a
technique to store and query multi-resolution mod-
els built through half-edge collapse. El-Sana and
Chiang [9] develop a data structure based on the clus-
tering of the view-dependent tree presented in [10], as
well as a simplification and a selective refinement al-
gorithms operating in external memory. El-Sana and
Bachmat [8] propose an alternative out-of-core mul-
tiresolution data structure based on a spatial subdivi-
sion imposed over the view-dependent tree. Lindstrom
[11] describes an out-of-core multiresolution model
based on an octree built through the out-of-core sim-
plification technique developed in [14].

Cignoni et al. [5] describe an out-of-core technique
for large multi-resolution triangle meshes based on a
domain decomposition as a hierarchy of tetrahedra.
Leaves of such hierarchy are associated with portions
of the mesh at full resolution, while internal nodes are
associated with simplified patches made of triangles.
Each patch is subdivided with strips and stored in sec-
ondary memory with a compact encoding.

Very recently, an out-of-core technique has been de-
veloped based on the Multi-Triangulation [4]. In this
approach, an MT with updates of large size is consid-
ered. Under this assumption, the DAG describing the
MT fits in main memory, while the meshes forming the
updates are organized into triangle strips and stored in
external memory independently.

4. Out-of-core MT

Our purpose is to maintain and query a two- or
three-dimensional MT having a size that exceeds main
memory. Here we investigate a general out-of-core ap-
proach, independent of the simplification strategy used
to generate the LOD model.

Our approach is based on clustering nodes of the
DAG and filling disk pages with clusters. We devoted
a considerable effort in defining, implementing and ex-
perimenting a large number of clustering techniques
based on DAG traversal and on spatial partitioning
and grouping. Out-of-core representation of the depen-
dency relation can be coupled with different represen-
tations for the modifications in the model.

We have first analyzed the I/O operations per-
formed by the basic selective refinement algorithms and
designed and implemented a simulation environment
which allows us to evaluate a large number of data
structures for out-of-core encoding. We have designed
and developed more than sixty clustering techniques
for the modifications in a multi-resolution model, which
take into account their mutual dependency relations
and their spatial arrangement. We are currently im-
plementing an out-of-core prototype system for multi-
resolution modeling which is somehow independent
of the way the single modifications are encoded, and
thus will provide a general-purpose tool for out-of-core
multi-resolution modeling.

Developing a good clustering policy requires some
knowledge about the shape of the multi-resolution
model and its behavior with standard queries. Some
queries, like point location or other queries based on re-
gion of interest, focus on a subset of the domain, usually
at a high resolution. Thus, we are interested in space
partitioning techniques. On the contrary, other queries
are aimed at extracting e mesh at uniform resolution
on the whole domain. Thus, they suggest a subdivision
of the MT in layers. Each layer should guarantee the
reduction of the approximation error. View-dependent
queries are still queries based on a region of interest,
but in this case the error smoothly decreases accord-
ing to the distance from the observer. View-dependent
queries combine somehow space partitioning and error-
driven queries. Queries based on the field value (of a
scalar filed) are strongly dependent on the size and on
the shape of the iso-contours. They can behave like
point-location queries for really small iso-surfaces; on
the contrary, they can be compared to uniform queries
for large iso-surfaces that span over the whole domain.

For this purpose, we have defined several rules that
can be used to sort set of modifications belonging to
an MT:

• random (Rnd): it is implemented just for compar-
ison purposes and is a completely random sorting
of the modifications;

• sequential (Seq): modifications are kept in the
same sequence generated by a top-down simpli-
fication procedure, or in reversed order in case
of bottom-up simplification strategies. Usually the
simplification process is error-driven, but there is
no guarantee that the approximation error associ-
ated with modifications decreases monotonically;

• approximation error (Err): it sorts modifications
according to their approximation error e(u). It can
take into account approximation error (in case of

44

free form surfaces), field or isosurface error (for
scalar fields);

• depth-first (DFS): it sorts modifications according
to a depth-first traversal of the DAG. For modifi-
cations with more than one child, children are vis-
ited in the same order as they are stored;

• breadth-first (BFS): it sorts modifications accord-
ing to a breadth-first traversal of the DAG. As in
the DFS case, in case of modifications with more
than one child, children are visited in the same or-
der they are stored;

• layer (Lyr): modifications are sorted according to
the value of their layer: length of the shortest path
from the root;

• level (Lev): modifications are sorted according to
the value of their level: length of the longest path
from the root;

• distance (Ly2): modifications are sorted according
to the value of their distance: average length of the
paths from the root;

• graph visit - breadth first (GrB): it is similar to a
breadth-first traversal, but before adding a modi-
fication u it checks if its ancestors are in the cur-
rent set of modifications. If they are missing, they
will be added. It simulates a breadth-first selec-
tive refinement algorithm for a query at uniform
resolution;

• graph visit - depth first (GrD): it is a variation of
GrB, based on a depth-first visit.

All rules above take into account only the topologi-
cal structure of the DAG.

However, queries that select a certain region of inter-
est suggest to subdivide the MT according to a space
partitioning technique. In this perspective, we consider
first a common spatial index, that is the Point Region
quadtree (PR quadtree) [15, 17]. It is a spatial index for
points in the two-dimensional Euclidean space, based
on the recursive decomposition of a square domain in
E2, which contains the data points, into four quadrants
obtained by splitting the square block through the mid-
point of the square. The subdivision is performed re-
cursively until a full block that contains just one point.
Thus, the data points are in the leaves of a PR-quadtree
and the internal nodes are just discriminators. A PR-
quadtree can be extended to d-dimensional space. In
this case, each recursive decomposition splits a block
into 2d blocks. But a PR-quadtree suffers the curse of
dimensionality, since in high dimensional spaces a high
percentage of the leaves is empty. In E2, at least 25%
of the leaves are full, while in E4 this percentage de-
creases to 6.25%.

Since the Multi-Tessellation is a data structure that
can handle multiresolution model in arbitrary dimen-
sions, we have considered also other space partitioning
techniques that does not depend on space dimension-
ality, namely Point Region k-d trees (PR k-d trees) [2]
and R* trees [1].

A PR k-d tree is a spatial index based on the re-
cursive subdivision of the domain containing the data
points. At each step the domain is halved. The halving
process cycles through different dimensions in a prede-
fined and constant order. At each step a block is subdi-
vided in its mid-point. We associate each modification
to its centroid, and we construct the PR k-d tree ac-
cording to the coordinates of centroids. We have per-
formed several tests in higher dimensions by adding the
approximation error, or the layer, or the distance from
the root as an additional dimension.

To store a PR k-d tree on disk, we could have used
a technique commonly used for quadtrees and octrees,
which consist of computing the location codes of the
full leaves in the PR k-d tree and storing the location
codes in a B-tree [18]. Such technique has the disadvan-
tage that the boundary of the domain covered by leaves
stored in a node of the B-tree can be arbitrary com-
plex. In general, the domain might be not connected
and, thus, we could loose spatial coherence.

An interesting alternative consists of using a PK-
tree as a grouping mechanism. Originally proposed in
[19], a PK-tree is clustered by a parameter k, called
the instantiation value, which is the minimum num-
ber of nodes in the tree grouped in a cluster. A PK-
tree is constructed by applying a bottom-up grouping
process to the nodes of a tree T . Nodes belonging to
T are grouped into clusters until the minimum occu-
pancy k has been reached. During the grouping pro-
cess empty leaves of the tree T are removed. If the tree
T is an n-ary tree, each node, except the root, has a
minimum of k children or objects and a maximum of
n · (k−1). Since the PR k-d tree is a binary tree, an in-
teresting property of the PR k-d tree grouped accord-
ing to the PK-tree, that we call a PK PR k-d tree, is
that each node has a minimum of k children and a max-
imum of 2 · (k − 1), regardless of the dimensionality of
the space [19]. This guarantees that disk blocks are at
least half-full.

R-trees offer an object-based technique that per-
forms object aggregation [1]. In an R-tree, each object
is defined by its bounding box. The first step aggre-
gates up to k bounding boxes into a box of minimum
size that contains them. This process is repeated re-
cursively until there is just one block left. Each box is
mapped to a disk block. Several extent-based aggrega-
tion techniques have been developed. The main differ-

45

ences among such techniques are related to coverage
and to minimization of overlapping areas. R*-trees [1]
have been shown to be the best extent-based aggrega-
tion technique. They can handle d-dimensional objects,
and minimize domain coverage and rectangle overlap.

We have combined a sorting criteria with a space
partitioning techniques. The idea is to combine a tech-
nique that subdivides the DAG in subsets of modifica-
tions according to their depth, with a technique that
subdivides the space. At a lower resolution, we are in-
terested to have clusters that span the whole domain,
while, as the resolution increases, we are looking for
clusters associated with finer space subdivisions. In or-
der to achieve this goal, we have adopted a technique
that interleaves the effect of a sorting rule and the ef-
fect of a space partitioning rule similar to a PR k-d tree.

Note that a clustering technique which simply sorts
modifications and fills each disk block (or stripe) with
a contiguous set of sorted modifications does not in-
troduce any overhead in storage space. A disk block
is usually at least 4 KBytes. There is no upper bound
in block size, but a block that spans on a whole disk
track bests amortize seek times and latency, and, thus,
there is no need to create larger blocks. This results
in an upper bound equal to 50 to 200 KBytes, accord-
ing to disk radius and density. In a RAID subsystem
with up to 5 disks configured for disk striping, it can re-
sult in up to 200 to 1000 KBytes.

If we consider a 3D MT encoded explicitly (i.e., by
listing all tetrahedra inside each node of the DAG),
each modification requires on average 325 Bytes. This
results in a block transfer size B in a range between
12 and 150-600 modification, if we consider a single
disk architecture and between 60 to 600-3000 with a
large RAID subsystem. The number of modifications
per block can dramatically increase by a compact (im-
plicit) encoding for the modifications (e.g., in case of
MTs built through vertex removal or edge collapse op-
erations).

5. Experimental results

Our tests focused on MT for volume data sets. The
out-of-core MT can be applied to dataset of arbitrary
dimension. Unfortunately, up to now, no out-of-core
simplification tools is available for tetrahedral datasets.
For this reason, we have used the largest model that
can be handled by an in-core, high-quality, simplifica-
tion tool [3]. In order to get reasonable and meaning-
ful results, we have artificially reduced the amount of
available core memory, thus forcing the out-of-core pro-
totype to load only a subset of disk blocks.

We have scored the ratio between the number of
disk accesses required to perform a set of selective re-
finement queries and the number of disk blocks re-
quired to store the model. This allow us to compare re-
sults, independently on model size. Due to the lack of
space, we show only one graph, related to results ob-
tained with queries at uniform resolution on the San
Fernando dataset (courtesy of Quake Project D.R.
OHallaron and J.R. Shewchuk), a 3D scalar field com-
posed of about two million tetrahedra showing a simu-
lation of an earthquake in the region of San Fernando
(CA). However, we made similar experiment also on se-
lective refinement queries, both on this dataset and on
other 2D and 3D datasets, obtaining similar results.

Figure 2 compares performances obtained with dif-
ferent clustering techniques. Besides some of the tech-
niques defined in the previous section (Err, DFS, GrB,
GrD) we show results on the following other tech-
niques: space partitioning on coordinates, and GrB
sorting (SpaGrB); space partitioning on approx-
imation error and coordinates, and GrB sorting
(SpaErrGrB); space partitioning on layer and coor-
dinates, and Err sorting (SpaLyrErr); space parti-
tioning on distance and coordinates, and Ly2 sorting
(SpaLy2Ly2); space partitioning on level and coordi-
nates, and GrB sorting (SpaLevGrB); space partitioning
on approximation error and coordinates, and group-
ing with PK tree (PK PR kd tree + Error); space
partitioning and grouping with an R*-tree built ac-
cording with approximation error and coordinates
(R* tree + Error).

It is easy to notice that GrB outperforms other clus-
tering techniques. It is also interesting to note that,
even with a really small cache, that is about 1% of the
size of the whole model, a clustering technique based on
GrB exhibits really small overhead, compared to load-
ing the whole model.

References

[1] N. Beckmann, H.-P. Kriegel, R. Schneider, and
B. Seeger. The R*-tree: an efficient and robust access
method for points and rectangles. In Proceedings of the
ACM SIGMOD Conference, pages 322–331, June 1990.

[2] J.L. Bentley. Multidimensional binary search trees used
for associative searching. Communications of the ACM,
18(9):509–517, 1975.

[3] P. Cignoni, D. Costanza, C. Montani, C. Rocchini, and
R. Scopigno. Simplification of tetrahedral volume data
with accurate error evaluation. In Proceedings IEEE Vi-
sualization 2000, pages 85–92. IEEE Computer Society,
2000.

46

San Fernando - Uniform resolution

0

5

10

15

20

25

30

35

40

45

50

0.00% 0.03% 0.10% 0.30% 1.00% 3.00% 10.00% 30.00%

Error threshold

I/O
 o

pe
ra

tio
ns

 w
.r

.t.
 m

od
el

 s
iz

e
N

Err
DFS
GrB
GrD
SpaGrB
SpaErrGrB
SpaLyrErr
SpaLy2Ly2
SpaLevGrB
PK PR kd tree + Error
R* tree + Error

Figure 2. Number of I/O operations performing queries at uniform resolution on San Fernando dataset.

[4] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton,
F. Ponchi, and R. Scopigno. Gpu-friendly multi-
triangulation. Technical report, 2005.

[5] Paolo Cignoni, Fabio Ganovelli, Enrico Gobbetti, Fabio
Marton, Federico Ponchio, and Roberto Scopigno.
Adaptive TetraPuzzles – efficient out-of-core construc-
tion and visualization of gigantic polygonal models.
ACM Transactions on Graphics, 23(3), August 2004.
Proceedings SIGGRAPH 2004.

[6] L. De Floriani, E. Puppo, and P. Magillo. A formal ap-
proach to multi-resolution modeling. In W. Strasser,
R.Klein, andR.Rau, editors,GeometricModeling: The-
ory and Practice, pages 302–323. Springer-Verlag, 1997.

[7] C. DeCoro and R. Pajarola. XFASTMESH: Fast view-
dependent meshing from external memory. In Pro-
ceedings IEEE Visualization 2002, pages 263–270. IEEE
Computer Society, October 2002.

[8] J. El-Sana and E. Bachmat. Optimized view-dependent
rendering for large polygonal datasets. In Proceedings
IEEE Visualization 2002, pages 77–84. IEEE Computer
Society, October 2002.

[9] J. El-Sana and Y. Chiang. External memory view-
dependent simplification. Computer Graphics Forum,
19(3):C139–C150, 2000.

[10] J. El-Sana and A. Varshney. Generalized view-
dependent simplification. Computer Graphics Forum,
18(3):C83–C94, 1999.

[11] P. Lindstrom. Out-of-core construction and visualiza-
tion of multi-resolution surfaces. In ACM SIGGRAPH

2003 Symposium on Interactive 3D Graphics, pages 93–
102. ACM Press, April 2003.

[12] P. Lindstrom and V. Pascucci. Visualization of large
terrains made easy. In Proceedings IEEE Visualization
2001, pages 363–370, October 2001.

[13] P. Lindstrom and V. Pascucci. Terrain simplification
simplified: A general framework for view- dependent
out-of-core visualization. IEEE Transactions on Visu-
alization and Computer Graphics, 8(3):239–254, 2002.

[14] P.LindstromandC.T.Silva. Amemory insensitive tech-
nique for large model simplification. In IEEE Visualiza-
tion 2001, pages 121–126, 550, October 2001.

[15] J. A. Orenstein. Multidimensional tries used for as-
sociative searching. Information Processing Letters,
14(4):150–157, 1982.

[16] E. Puppo. Variable resolution terrain surfaces. In Pro-
ceedings Eight Canadian Conference on Computational
Geometry, Ottawa, Canada, pages 202–210, August 12-
15 1996.

[17] H. Samet. The Design and Analysis of Spatial Data
Structures. Addison-Wesley, 1990.

[18] H. Samet. Foundations of Multi-Dimensional Data
Structures. Morgan-Kaufmann, to appear, 2005.

[19] W. Wang, J. Yang, and R. Muntz. PK-tree: a spatial
index structure for high dimensional point data. In
K. Tanaka and S. Ghandeharizadeh, editors, Proceed-
ings of the 5th International Conference on Foundations
of Data Organization and Algorithms (FODO), pages
27–36, November 1998.

47

48

Preprints
”Angewandte Mathematik und Informatik”

10/03 - S G. Alsmeyer, U. Rösler: A stochastic fixed point equation
related to weighted branching with deterministic weights

11/03 - S N. Gantert, M. Löwe, J. Steif: The voter model with
antivoter bonds

12/03 - S M. Löwe, F. Vermet: The storage capacity of the
Blume-Emery-Griffiths neural network

13/03 - S P. Eichelsbacher, M. Löwe: Moderate Deviations
for the overlap parameter in the Hopfield model

14/03 - S H. Knöpfel, M. Löwe: Fluctations in a p-spin
interaction model

15/03 - S H. Kösters: Prophetentheorie bei Mehrfachauswahlen:
Der allgemeine Fall

01/04 - S M. Wrede: Bewertung von Derivaten in zeitdiskreten
Finanzmarktmodellen

02/04 - I H. Blunck, L. Becker, K. Hinrichs, J. Vahrenhold: A Framework
for Representing Moving Objects

03/04 - I T. Ropinski, K. Hinrichs: An image-based algorithm for
interactive rendering of 3D Magic Lenses

04/04 - I J. Lechtenbörger: Computing Unique Canonical Covers
for Simple FDs via Transitive Reduction

05/04 - S A. Janssen, D. Völker: Most powerful conditional tests

06/04 - S D. Völker: Finit optimale nichtparametrische Tests für
Lebensdauerdaten

07/04 - I F. Steinicke, T. Ropinski, K. Hinrichs: Improved Virtual Pointer
Metaphors for Interactive Object Selection in Virtual Environments

08/04 - S S. Alink, M. Löwe, M. Wüthrich: Analysis of the Expected Shortfall
of Aggregate Dependent Risks

09/04 - S M. Löwe, F. Vermet: On the Bit-Error Probability of CDMA Systems
with Optimal Hard Decision Interference Cancellation

10/04 - N A. Arnold, E. Dhamo, C. Manzini: The Wigner-Poisson-Fokker-Planck
system: Global-in-time solutions and dispersive effects

11/04 - N M. Cheney, F. Natterer: Tomographic Reconstruction from Circles

12/04 - S D. Kuhlbusch: Moment Conditions for Weighted Branching Processes

13/04 - N F. Natterer: Finding the Support of a Scatterer from a Single
Incoming Wave

14/04 - N F. Natterer, F. Wübbeling: Scatter Correction in PET Based on
Transport Models

01/05 - S G. Alsmeyer, U. Rösler:

02/05 - I L. Arge, M. de Berg, J. Vahrenhold (Eds.): Workshop on Massive
Geometric Data Sets (Massive2005)

49

