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Abstract

We propose an algorithm
 SoftPOSIT
 for automatic model�to�image registration This algorithm
combines two techniques
 �	� a solution to the correspondence problem by an iterative technique
called Softassign
 and ��� a solution to the pose problem by an iterative technique called POSIT
These two techniques are combined into a single iteration loop The present report focuses on
the description of the algorithm Results of a performance evaluation obtained from Monte Carlo
simulations under a variety of levels of clutter
 occlusion
 and image noise will be presented in a
forthcoming report
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� Introduction

One of the goals of this research is to automatically update city models using cameras mounted
on vehicles Examples of useful city model updates would be the automatic addition of texture
maps to simple wireframe models
 or the update of damaged buildings after earthquakes This
task requires a very accurate alignment between real�life images and synthetic images from the
city model
 ie a very accurate camera pose estimate Otherwise
 updates obtained from video
streams would result in the deterioration of the original city model instead of its improvement
With a typical �� degree camera �eld of view
 an error of � degrees in the estimate of the
camera rotation would create a shift of around �� pixels between what we expect to see from
the city model and what we actually see An approximate camera pose can be measured by
navigation sensors A GPS sensor can provide two horizontal translation components of the
camera The pan angle of the camera can be estimated from the motion direction of the vehicle
along a trajectory obtained by tracing the GPS positions This pan estimate can be improved
by a compass measurement The roll and tilt angles of a vehicle camera are a�ected by braking
and acceleration
 road pro�le �including potholes�
 and passenger load variations Pan
 tilt and
roll estimates can be estimated by inertial navigation systems �INS� comprising gyroscopes and
accelerometers
 but such systems are subject to drift and must be periodically reset to accurate
absolute measurements These measurements can be obtained using an automatic registration
between video stream data and synthetic data from the city model This registration task is the
focus of this report
Other applications of this research include autonomous navigation in urban environments

when a model of the city is available
 and
 importantly
 object recognition
Automatic registration of �D models to images is a di�cult problem The main reason is that

registration comprises two coupled problems
 the correspondence problem and the pose problem

each easy to solve only if the other has been solved �rst�

	 Solving the correspondence problem consists of �nding matching image features and model
features If the camera pose is known
 one can relatively easily determine the matching
features Looking at the model from the point of view de�ned by the camera pose
 one
de�nes as matching features the model features that are observed to be close to the features
of the new image from that point of view

� Solving the pose problem consists of �nding the rotation and translation of the camera with
respect to the model Given matching image and model features one can easily determine
the pose that best aligns those matches

The classic approach to solving these two coupled problems has been a hypothesize�and�test
approach
 in which �a� guesses are made about matches between a few image features and a few
model features
 �b� the camera pose is computed using these matches
 and �c� the remaining
model features are projected on the image and a measure of the quality of their superposition
with image features is computed This process is repeated for all reasonable groups of matching
guesses
 and the correct camera pose and superposition are chosen from among those that provide
the highest measure of superposition �	�� However
 this type of approach is combinatorial and
generally expensive for complex models and images

	



The SoftPOSIT algorithm combines two techniques to simultaneously solve the correspon�
dence and pose problems�

	 a solution to the correspondence problem by an iterative technique called Softassign de�
veloped by Gold
 Rangarajan and others �		� and having its roots in improvements of the
original Hop�eld�Tank neural network framework�

� a solution to the pose problem by an iterative technique called POSIT �Pose from Orthog�
raphy and Scaling with ITerations� developed by DeMenthon and Davis ���
 who showed
that the pose problem for perspective projection can be solved by iteratively re�ning the
pose computed for scaled orthographic projection

These two techniques are combined into a single iteration loop A global objective function
is de�ned that captures the nature of the problem in terms of both pose and correspondence
and combines the formalisms of both iterative techniques The correspondence and the pose are
determined simultaneously by minimizing this global objective function This objective function
is minimized when both the correct pose and an optimal correspondence are found The expres�
sions for this objective function and its minimization are closely related to those proposed by
Gold et al �		� when they successfully solved the correspondence and pose problem for matching
two images or two �D models However
 their work does not address the more di�cult problem
of registration between a �D model and its perspective image Solving this problem is the subject
of this report In the remainder of this introduction
 we give an overview of the steps of our
method

��� Correspondence Problem

Following the framework introduced in �		�
 the correspondence between image features and
model features in the global objective function is expressed as a correspondence matrix M� in
which each term mjk is a weight for the match between an image point pj and a model point Pk
This weight is a function of the distance djk between the scaled orthographic projection of the
model point Pk and the scaled orthographic projection after that model point Pk is displaced
onto the line of sight of image point pj �for a camera pose that is re�ned during the iteration
process� This weight is equal to one if Pk falls on the line of sight of pj 
 and less than one
otherwise There are additional weights in a slack column and a slack row which can become
equal to one in case of no�match for image points or model points At the beginning of the
iteration
 the matrix M� is a fuzzy correspondence matrix which permits partial matches
 with
all weights lower than one
 but with the sums of the weights always adding up to one in each
row and each column The degree of fuzziness is controlled by a parameter � As the iteration
proceeds
 the correspondence matrix is hardened into an assignment matrix M by a deterministic
annealing process obtained by increasing the parameter � In this assignment matrix
 the weight
for one match has become equal to one for each column and for each row
 and the other weights
have become zero
 in a winner�take�all manner The winning match for point pj at row j is the
point Pk with the smallest distance djk

�



��� Pose Problem

Scaled orthographic projection �SOP� is an approximation of perspective projection that has
become popular in the computer vision community because it allows one to solve the pose
problem with linear algebra and with fewer unknowns than with projective geometry However

with this approximation
 parallel lines in a model will always produce parallel lines in images
When the size of an object or a scene is large compared to its distance from the camera
 strong
convergence of parallel lines can be observed in the image
 and registration results between a
model of the world and its image are di�cult with this approximation
The POSIT algorithm preserves the computational simplicity of the pose problem with the

SOP model of projection
 while obtaining the correct pose corresponding to full perspective
projection This result is achieved by observing that pose computation using an SOP model
can provide an exact pose
 provided it uses image points obtained by SOP Therefore
 after an
approximate pose has been found for the image frame using SOP
 the locations of the image
points can be �corrected� into points close to SOP image points to o�set the errors of this linear
solution at the next iteration step

��� Merging Correspondence and Pose Computations

The proposed global objective function expresses the sum of the squared distances between all
corrected image feature points and all SOP projections of the feature points of the model
 as seen
from the �unknown� camera pose
 each distance being weighted by the qualities of the matches
between image and model points These weights are the terms of the correspondence matrix
This objective function is positive or null
 with a minimum at zero only when all the weighted
distances are zero This function is minimized by an iteration loop Each iteration step of the
loop comprises three phases�

	 The correspondence variables of the objective function are optimized assuming the pose to
be �xed

� The pose variables are optimized assuming the correspondence variables to be �xed

� The positions of the image feature points are corrected in a way that will o�set the e�ects
of the SOP approximation at the next iteration step

Fig 	 shows an example of a computation result obtained by SoftPOSIT for a 	��point model
One point of the model was not detected in the image
 and two detected image points were noise
Fig � shows the evolution of the projections of a cube as its pose computation evolves toward
the correct pose
In the following sections
 we examine each step of the method in detail� we then provide

pseudocode for the algorithm In the appendix
 we present a Matlab implementation and an
example of input and output

�



Figure 	� Evolution of perspective projections for a 	��point object �solid lines� being aligned by
the SoftPOSIT algorithm onto an image�dashed lines� with one missing point and two clutter
points
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�a� �b�

�c� �d�

Figure �� Evolution of the perspective projections of a cube starting from random initial poses
�small cube with solid lines� onto an image with one missing point �dashed lines� The two left
images show intermediary cube projections as they move toward the image points The two
right images show the trajectories of the projections of the cube vertices as they move toward
the image points
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� A Projective Geometry Formulation of POSIT

One of the building blocks of the new algorithm is the POSIT algorithm
 �rst described in ���
 and
presented in detail in ��� and in projective geometry form in ��� We summarize this algorithm
below
 and then present a variant of the algorithm using the closed form minimization of an
objective function It is this objective function which is modi�ed to analytically characterize the
global pose�correspondence problem in a single equation
Consider a pinhole camera of focal length f and an image feature point p with its two

Euclidean coordinates x and y and its three homogeneous coordinates �wx�wy�w� This point
p is the perspective projection of the �D point P with homogeneous coordinates �X�Y�Z� 	� in
the frame of reference of an object
In our problem
 there is an unknown coordinate transformation between the object and

the camera
 represented by a rotation matrix R � �R� R� R��T and a translation vector T �
�Tx� Ty� Tz�� Pc � R P�T
 where P and Pc correspond to the same point expressed in the object
and the camera coordinate systems
 respectively The vectors RT

�

 RT

�

 RT

�
are the row vectors of

the rotation matrix� they are the unit vectors of the camera coordinate system expressed in the
model coordinate system The translation vector T is the vector from the center of projection O
of the camera to the origin P� of the object expressed in the camera coordinate system Therefore
the coordinates of the perspective projection p are related to the coordinates of the world point
P by
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where P�P � �X�Y�Z� The homogeneous image point coordinates are de�ned up to a mul�
tiplicative constant� therefore the validity of the equality is not a�ected if we multiply all the
elements of the perspective projection matrix by the same term 	�Tz We also make use of the
scaling factor s � f�Tz �the reason for this appellation becomes clear below� We obtain�

wx
wy

�
�

�
sRT

� sTx
sRT

� sTy

� �
P�P

	

�
� �	�

with

w � R��P�P�Tz � 	� ���

In the expression for w the dot product R��P�P represents the projection of the vector P�P

�from the origin of the model to its point P � onto the optical axis of the camera Indeed
 in
the world coordinate system where P is de�ned
 R� is the unit vector of the optical axis When
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the depth range of the model along the optical axis of the camera is small with respect to the
model distance
 R��P�P is small with respect to Tz
 and therefore w is close to one In this case

perspective projection gives results that are similar to the following transformation�

�
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�
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�
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� sTy

� �
P�P

	

�
� ���

This expression de�nes the scaled orthographic projection p� of the �D point P  The factor
s is the scaling factor of this scaled orthographic projection If s � 	
 note that this equation
expresses �	� a transformation of world point components from a world coordinate system to a
camera coordinate system
 and ��� the use of two of the three world point coordinates as image
coordinates� this is the de�nition of a pure orthographic projection With a factor s di�erent from
one
 this image is scaled and approximates a perspective image because the scaling is inversely
proportional to the distance Tz from the camera center of projection to the object origin P�
�s � f�Tz�
Returning to the general perspective equations �	
 ��
 we can rewrite the �rst equation as

h
X Y Z 	

i � sR� sR�

sTx sTy

�
�
h
wx wy

i
� ���

Assume that for each image point p with coordinates x and y the corresponding homogeneous
coordinate w has been computed at a previous computation step and is known Then we are
able to calculate wx and wy
 and the previous equation expresses the relationship between the
unknown pose components sR�
 sR�
 sTx
 sTy
 and the known image components wx and wy
and known world coordinates X
 Y 
 Z If we know K world points Pk and their K corresponding
image points pk and their homogeneous components wk
 we can then write two linear systems of
equations
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This set of two linear systems can be solved for the unknown components of vectors sR�
 sR�

and the unknowns sTx and sTy
 provided the rank of the matrix of world point coordinates is at
least � Thus
 at least four of the points of the model for which we use the image points must
be noncoplanar If this is the case
 we can �nd a least square solution for the set of unknowns
by using the pseudoinverse A� of the matrix A of model points�

�
sR� sR�

sTx sTy

�
� A�

�
�����
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with

A �

�
�����
X� Y� Z� 	
X� Y� Z� 	





XK YK ZK 	

�
����� ���

We call A the object matrix
 as it depends only on the point con�guration in the �D model
The pseudoinverse A� of A can be precomputed when the model is given
After the unknown sR� and sR� are obtained
 we can extract s
 R� and R�
 by imposing the

condition that R� and R� must be unit vectors Then we can obtain R� as the cross�product of
R� and R��

s � �jsR�j jsR�j�
��� �geometric mean�� ���

R� � �sR���s� ���

R� � �sR���s� �	��

R� � R� �R�� �		�

Tx � �sTx��s� Ty � �sTy��s� Tz � f�s� �	��

An additional intermediary step that improves performance and quality of results consists of
using the unit vectors R�

� and R�

� that are mutually perpendicular and closest to R� and R� in
the least square sense These vectors can be found by Singular Value Decomposition �see Matlab
code in the appendix�
How can we compute the wk components required to compute the right�hand side rows

�wkxk� wkyk� corresponding to image point pk �	 � k � K�� Setting wk � 	 for every point is
a good �rst step because it amounts to solving the problem with a scaled orthographic model
of projection as we saw above Once we have the pose result for this �rst step
 we can compute
better estimates for wk as

wk � R��P�Pk�Tz � 	� �	��

as shown by Eq ��� Then we can solve the linear systems of Eq ��� again to obtain a re�ned
pose This process is repeated
 and the iteration is stopped when the process becomes stationary
We now look at a geometric interpretation of this method in order to propose a variant using

an objective function Consider �Fig �� the center of projection O of the camera
 its axis Oz
 and
its image plane � at distance f from O The image center �principal point� is called c Consider
an object
 the origin P� of its coordinate system
 a point P of this object
 and a corresponding
image point p The line of sight corresponding to the image point p is called L The goal of pose
calculation when correspondence is known is to move the object so as to place all the points P
on the object as close as possible to the lines of sight L of the corresponding image points p
A plane �� parallel to the image plane � is chosen to pass through the origin P� of the object

coordinate system This plane cuts the camera axis in H �OH � Tz� The point P projects on
plane �� in P �
 and the image of P � on the image plane � is called p�

�
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Figure �� Geometric interpretation of POSIT computation The image point p�
 scaled ortho�
graphic projection of world point P 
 is computed by one side of the POSIT equations The image
point p��
 scaled orthographic projection of point PL on the line of sight of p
 is computed by
the other side of the equation The equations are satis�ed when the two points are superposed

which requires that world point P be on the line of sight of image point p The plane of the
�gure is chosen to contain the plane of the optical axis and the line of sight L The points P�

P 
 P � and p� are generally out of that plane

�



A plane ��� also parallel to the image plane � passes through point P and cuts the line of
sight L at PL The point PL projects onto the plane �� at P ��
 and the image of P �� on the image
plane � is called p��
The plane de�ned by line L and the camera axis is chosen as the plane of the �gure Therefore


the image points p and p�� are also in the plane of the �gure Generally P� and P are out of the
plane of the �gure
 and therefore p� is also out of the plane of the �gure
Consider again the equations of perspective �Eqs �	
 ����

�
wx
wy

�
�

�
sRT

�
sTx

sRT
�

sTy

� �
P�P

	

�
� �	��

with w � R��P�P�Tz � 	 We can see that cp� � s�R� �P�P � Tx�R� �P�P� Ty� Indeed the
terms in parentheses are the x and y camera coordinates of P and therefore also of P �
 and the
scaling factor s scales down these coordinates to those of the image p� of P � In other words
 the
column vector of the right�hand side of Eq �	�� represents the vector cp� in the image plane
On the other hand
 cp�� � �wx�wy� � wcp Indeed the z�coordinate of P in the camera

coordinate system is R��P�P � Tz
 ie wTz It is also the z�coordinate of PL Therefore
OPL � wTzOp�f  The x and y camera coordinates of PL are also those of P ��
 and the scaling
factor s � f�Tz scales down these coordinates to those of the image p�� of P �� Thus cp�� � wcp
In other words
 the column vector of the left�hand side of Eq �	�� represents the vector cp�� in
the image plane The image point p�� can be interpreted as a correction of the image point p
from a perspective projection to a scaled orthographic projection of a point PL located on the
line of sight at the same distance as P 
When P is on the line of sight L of p
 P and PL are superposed
 the image points p� and p��

are superposed
 cp�� � cp�
 and Eq �	�� is satis�ed Conversely
 if Eq� 	�� is satis�ed
 then
cp�� � cp�
 P and PL are superposed
 and therefore P is on the line of sight of the image p
When we try to match the points Pk of an object to the lines of sight Lk of image points pk


it is unlikely that all or even any of the points will fall on their corresponding lines of sight
 or
equivalently that cp��k � cp�k or p

�

kp
��

k � � The solution to the linear systems of Eqs ��� is a
least square optimization of the set of constraints p�kp

��

k � �
Alternatively
 we can minimize a global objective function E equal to the sum of the squared

distances d�k � p
�

kp
���

k between image points p
�

k and p
��

k�

E �
X
k

d�k �
X
k

��M � Sk �wkxk�
� � �N � Sk �wkyk�

��� �	��

where we introduce the vectors M
 N
 and Sk with four homogeneous coordinates to simplify
the subsequent notation

M � �M��M��M��M�� � s�R�� Tx��

N � �N�� N�� N�� N�� � s�R�� Ty��

Sk � �P�Pk� 	��

We callM and N the pose vectors

	�



Note
 referring again to Fig �
 that p�p�� � sP�P�� � sPPL Therefore minimizing this
objective function consists of minimizing the scaled sum of distances of model points to lines of
sight
 when distances are taken along directions parallel to the image plane
This objective function is minimized iteratively Initially
 the wk are all set to one Then the

following two operations take place at each iteration step�

	 Optimize the pose vectors M and N assuming the terms wk are known 

� Compute the correction terms wk using the pose vectorsM and N just computed �Eq����

We now focus on the optimization of the pose vectorsM and N The pose vectors that will
minimize the objective function E at a given iteration step are those for which all the partial
derivatives of the objective function with respect to the coordinates of these vectors are zero
This condition provides �� � linear systems for the coordinates ofM and N whose solutions are

M � �
X
k

SkS
T
k �

���
X
k

wkxkSk�� �	��

N � �
X
k

SkS
T
k �

���
X
k

wkykSk�� �	��

The matrix L �
P

k SkS
T
k is a �� � matrix that can be precomputed

With either method
 the point p�� can be viewed as the image point p �corrected� for scaled
orthographic projection using w computed at the previous step of the iteration The next itera�
tion step �nds the pose such that the scaled orthographic projection of each point P is as close
as possible to its corrected image point

� Pose Calculation with Unknown Correspondences

When correspondences are unknown
 each image feature point pj can potentially match any of
the model feature points Pk
 and therefore must be corrected using the value of w speci�c to the
coordinates of Pk�

wk � R��P�Pk�Tz � 	� �	��

Therefore for each point pj and each point Pk we generate a corrected image point p��jk
 aligned
with the image center c and with pj 
 and de�ned by

cp��jk � wkcpj� �	��

We make use of the squared distances between these corrected image points p��jk and the scaled
orthographic perspective projections p�k of the points Pk whose positions are provided by

cp�k �

�
M � Sk

N � Sk

�
� ����

These squared distances are

		



d�jk � �p
��

jkp
�

k�
� � �M � Sk � wkxj�

� � �N � Sk � wkyj�
�� ��	�

where xj and yj are the image coordinates of the image point pj 
 Sk is the vector �Sk�� Sk�� Sk�� Sk�� �
�P�Pk� 	�
 andM and N are pose vectors introduced in the previous section and recomputed at
each iteration step The term wk is de�ned by Eq �	��
The simultaneous pose and correspondence problem can be formulated as a minimization of

the global objective function

E �
JX

j��

KX
k��

mjk d
�

jk �
JX

j��

KX
k��

mjk��M � Sk � wkxj�
� � �N � Sk � wkyj�

��� ����

where the mjk are weights for each of the squared distances d�jk
 and J and K are the number
of image and model points
 respectively They are correspondence variables and de�ne the
assignments between image and model feature points Note that when all the assignments are
well�de�ned
 this objective function becomes equivalent to the objective function de�ned in
Eq �	��
This objective function is minimized iteratively
 with the following three operations at each

iteration step�

	 Optimize the correspondence variables assuming everything else is �xed �Section ���

� Optimize the pose vectors M and N assuming everything else is �xed �Eqs �� and �� in
Section �	�

� Compute the correction terms wk using the pose vectorsM and N just computed �Eqs 	�
and ��	��

��� Pose Problem

We now focus on the optimization of the pose vectorsM and N As in the previous section
 the
pose vectors that will minimize the objective function E at a given iteration step are those for
which all the partial derivatives of the objective function with respect to the coordinates of these
vectors are zero This condition provides � � � linear systems for the coordinates of M and N
whose solutions are

M � �
KX
k��

m�

kSkS
T
k �

���
JX

j��

KX
k��

mjkwkxjSk�� ����

N � �
KX
k��

m�

kSkS
T
k �

���
JX

j��

KX
k��

mjkwkyjSk�� ����

withm�

k �
PJ

j��mjk The terms SkS
T
k are ��� matrices Therefore computingM andN requires

the inversion of a single �� � matrix
 L � �
PK

k��m
�

kSkS
T
k �
 a fairly inexpensive operation Note

that L cannot be precomputed because the term in slack row J�	 can be non�zero and therefore
m�

k �
PJ

j��mjk is not a constant

	�



��� Correspondence Problem

We optimize the correspondence variablesmjk assuming that the parameters d�jk in the expression
for the objective function E are known and �xed Our aim is to �nd a zero�one assignment matrix

M � fmjkg
 that explicitly speci�es the matchings between a set of J image points and a set of
K model points
 and that minimizes the objective function E This assignment matrix M has
one row for each of the J image points pj and one column for each of the K model points Pk A
slack row J � 	 and a slack column K � 	 are added A one in the slack column K � 	 at row
j indicates that image point pj has not found any match among the model features A one in
the slack row J � 	 at column k indicates that the model point Pk is not seen in the image and
does not match any image feature The objective function E will be minimum if the assignment

matrix M matches image and model points with the smallest distances d�jk This problem can be
solved by the iterative Softassign technique �		� The iteration for the assignment matrix M is
started with a matrix M� in which each element m�

jk is exp����d
�
jk � ���
 with � very small


and all elements in the slack row and slack column are set to one The parameter � acts as a
threshold
 determining when to select no match �slack assignment� over a match with distance
djk See �		� for an analytical justi�cation The continuous matrix M� converges toward the
discrete matrix M due to two mechanisms that are used concurrently�

	 First
 a technique due to Sinkhorn �	�� is applied When each row and column of a square
correspondence matrix is normalized �several times
 alternatingly� by the sum of the ele�
ments of that row or column respectively
 the resulting matrix has positive elements with
all rows and columns summing to one

� The term � is increased as the iteration proceeds As each term of a row or column ofM� is
normalized by the sum of the terms of that row or column by the Sinkhorn technique
 the
terms m�

jk corresponding to the smaller d
�
jk of the row or column tend to converge to one

as � is increased
 while the other terms converge to zero This is a deterministic annealing
process �	�� known as Softmax ��� This is a desirable behavior
 since we in fact want to
assign the correspondence to the match that has the smallest distance in a row or column

This combination of deterministic annealing and Sinkhorn�s technique in an iteration loop was
called Softassign by Gold and Rangarajan �		� and was �rst used in �	�� The matrixM resulting
from an iteration loop that comprises these two substeps is the assignment that minimizes the
global objective function E �

PJ
j��

PK
k��mjk d

�
jk As the following pseudocode shows
 these two

substeps are grafted into the iteration loop of SoftPOSIT
 along with the substeps that optimize
the pose and correct the image points by scaled orthographic distortions

��� Pseudocode for SoftPOSIT

The SoftPOSIT algorithm can be summarized as follows�
Inputs�

	 A list of image feature points pj � �xj� yj�

� A list of world points Sk � �Xk� Yk� Zk� 	� � �P�Pk� 	� in the object

	�



Initialize slack elements of assignment matrix M to one
 � to �� ��� around ������ if nothing
is known about the pose
 �� larger if an initial pose can be guessed�
Initialize pose vectors M and N using expected pose or a random pose within expected range
Initialize wk � 	
Do A until � � �final ��final around ��� �Deterministic annealing loop�

� Compute the squared distances d�jk � �M � Sk � wkxj�� � �N � Sk � wkyj��

� Compute m�
jk � exp����d

�
jk � ���

� Do B until �M small �Sinkhorn�s method�

� Update matrix M by normalizing across all rows� m�
jk � m�

jk�
PK��

k�� m
�
jk

� Update matrix M by normalizing across all columns� m�
jk � m�

jk�
PJ��

j�� m
�
jk

� End Do B

� Compute � � � matrix L � �
PK

k��m
�

kSkS
T
k � with m

�

k �
PJ

j��mjk

� Compute L��

� Compute pose vector M �L���
PJ

j��

PK
k��mjkwk xjSk�

� Compute pose vector N �L���
PJ

j��

PK
k��mjkwk yjSk�

� Compute s � j�M�� M�� �M��j � R� � �M��M��M���s� R� � �N�� N�� N���s� R� �
R� �R�

� Compute wk � R��P�Pk�Tz � 	

� � � �update� ��update around 	�����

End Do A

Outputs� A rotation matrix R � �R� R� R��T 
 a translation vector T � �Tx� Ty� Tz�
 and an
assignment matrix emM � fmjkg between the list of image points and the list of world points
of the input

� Related Work

This work was directly inspired by recent work of Gold et al �		�
 who demonstrated the power
of the Softassign approach on two related but simpler problems  matching sets of �D points
using an a�ne transform �to allow for skew�
 and matching sets of �D points while recovering
a rigid body motion They did not address the more complex problem of perspective mapping
between �D objects and �D images that we consider here This problem has remained the subject
of very active research in two areas
 automatic registration of �D site models to images of scenes
for detection of unusual activity or photogrammetry
 and object recognition

	�



E�orts on automatic registration of video images and site models have mostly aimed at images
in which camera distances are large compared to variations in elevation within the site
 so that
the site can be assumed to be planar ��� The proposed approach is complementary to these
e�orts and will work best with images taken at relatively close range with full perspective e�ects
due to variations in terrain elevations and di�erences in building levels
The problem addressed here is one that is encountered when taking a model�based approach

to the object recognition problem �the other main approach being the appearance�based ap�
proach in which multiple views of the object are compared to the image�
 and as such has
received considerable attention Baird�s original tree�pruning method �	� was of exponential time
complexity for unequal point sets The alignment method of ���� is O�J�K� logK� Geometric
hashing �	�
 	�� applied to a�ne transforms is very slow for large data sets
 being of high�order
polynomial complexity
Many methods hypothesize the model pose from the correspondences of a small number of

model and image points
 and then verify the pose by projecting the remaining model features
and trying to match them to image features In ��� we proposed a di�erent approach using a
binary search by bisection of pose boxes in two �D spaces
 extending the research of �	
 �
 ��
on a�ne transforms
 but it had high�order complexity The approach taken by Jurie �	�� was
inspired by our work and belongs to the same family An initial volume of pose space is guessed

and all the correspondences compatible with this volume are �rst taken into account Then the
pose volume is recursively reduced until it can be viewed as a single pose As a Gaussian error
model is used
 boxes of pose space are pruned not by counting the number of correspondences
that are compatible with the box as in ���
 but on the basis of the probability of having an object
model in the image within the range of poses de�ned by the box
All the methods mentioned so far settle for a�ne approximations of perspective Few re�

searchers have addressed the full perspective problem Among them
 Wunsch and Hirzinger ��	�
formalize the abstract problem in a way similar to the approach advocated here as the opti�
mization of an objective function combining correspondence and pose constraints However
 the
correspondence constraints are not represented analytically Instead
 each model feature is ex�
plicitly matched to the line of sight closest to it The closest �D point on the line of sight is
found
 and the pose that brings each model feature closest to that �D point is selected
 an easier
�D to �D pose problem The process is repeated until a minimum is reached for the objective
function Good results are presented

� Conclusions

In this report we have given a detailed description of a new algorithm
 SoftPOSIT
 for matching
a model and an image using a full perspective model This algorithm
 unlike most previous
algorithms for this problem
 does not have to hypothesize small sets of matches and then verify
the remaining image points Instead
 all possible matches are treated identically throughout
the search for an optimal pose The algorithm appears to have time complexity O�JK�
 an
encouraging characteristic The goal of this report was to give a detailed enough description so
that the reader can implement SoftPOSIT from the provided pseudocode In addition
 Matlab
code is presented in the Appendix

	�



The SoftPOSIT algorithm is currently being evaluated with large�scale Monte Carlo simu�
lations under a variety of levels of clutter
 occlusion
 and image noise Preliminary results are
good Full results of our experiments will be presented and discussed in a forthcoming report
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APPENDIX

Matlab Implementation of the SoftPOSIT Algorithm

�������������������������������������������������������������������������

�������������������������������������������������������������������������

������������������������������ SoftPOSIT ��������������������������������

��� Copyright ����� Daniel F� DeMenthon and University of Maryland ����

�������������������������������������������������������������������������

function �rot� trans� assignMat� newImage� foundPose� � ���

softPOSIT	imagePts� worldPts� beta�� initRot� initTrans� ���

focalLength� center


�

� USAGE�

� �rot� trans� assignMat� newImage� foundPose� � ���

� softPOSIT	imagePts� worldPts� beta�� initRot� initTrans�

� focalLength� center


�

� Return the rotation and translation of the world object given

� uncorresponded world points and image points� World and image coordinates

� are homogeneous coordinates represented as row vectors�

� If the center is not given� assume the image coordinates are

� w�r�t� centered image reference 	i�e�� w�r�t� the point in the image

� through which the optic axis passes
� This version uses an assignment

� matrix first set to the identity�

� beta� defines the initial fuzziness of the correspondence matrix�

� If we know that our initial pose is close to the actual pose� then

� beta� should be close to ��� so that the correspondence matrix is not

� completely fuzzy� otherwise� if the pose is completely unknown� beta�

� should be close to ������ so that all possibilities of correspondence

� are possible in the beginnning�

�

� EXAMPLE�

� Inputs�

� cube � � � � �� �� � �� �� �� �� � �� �� � � ��� �� � ��� �� �� ���

� � �� ���

� truncCube � � � � �� �� � �� �� �� �� � �� �� � � ��� �� � ��� �� �� ���

� truncCube� � � � � �� �� � �� �� �� �� � �� �� � � ��� �� � ���

� cubeImage � �� �� � ���� ��� ���� �� ��� �� ���� �� ��� ��� ��� ��� ����

� focalLength � ���

� approxTrans � �������������� � this cube projects far from original

� approxRot � eye	�
�

�

� �rr�tt�MM�im� � softPOSIT	cubeImage� truncCube� ��������� approxRot�

� approxTrans� ���


�

� Outputs�

� rr � ������ ������� �������� �������� �������� ������

� ������� ������� ���������

	�



� tt � ��������� ������� ����������

� MM � �� � � � � � � � ��

� � � � � � � � � ��

� � � � � � � � � ��

� � � � � � � � � ��

� � � � � � � � � ��

� � � � � � � � � ��

� � � � � � � � � ��

� � � � � � � � � ��

� � � � � � � � � ���

��������������������������������������������������������������������������������

� Check input�

��������������������������������������������������������������������������������

msg � nargchk	�� �� nargin
�

if 	�isempty	msg



error	strcat	�ERROR��� msg

�

end

clear msg�

if nargin �� � � image coordinates are already centered� center is not given

center � ��� ���

end

��������������������������������������������������������������������������������

� Initialize�

��������������������������������������������������������������������������������

alpha � ���

betaFinal � ���� � Best for � points�

betaUpdate � ������ � Very good�

epsilon� � ����� � Used to initialize assignement matrix�

maxCount � ��

maxRandomPoseCount � ���

minBetaCount � ���

maxBetaCount � �����

maxDelta � ��� � Standard deviation error�

nbImagePts � size	imagePts� �
� � Number of image points 	M below
�

nbWorldPts � size	worldPts� �
� � Number of world points 	N below
�

minNbPts � min	�nbImagePts�nbWorldPts�
�

� Convert to normalized image coordinates� With normalized coordinates� 	���


	�



� is the point where the optic axis penetrates the image� and the focal length

� is ��

centeredImage	���
 � 	imagePts	���
 � center	�

�focalLength�

centeredImage	���
 � 	imagePts	���
 � center	�

�focalLength�

centeredImage

imageOnes � ones	nbImagePts� �
� � Column M�vector�

� The homogeneous world points �� append a � to each ��vector� An Nx� matrix�

worldOnes � ones	nbWorldPts� �
� � Column N�vector�

wk � worldOnes� � Initialized depths of world points�

homogeneousWorldPts � �worldPts� worldOnes��

� Initial rotation and translation as passed into this function�

rot � initRot�

trans � initTrans�

� Draw a picture of the cube on the original image plane�

newImage � world�Image	worldPts� rot� trans� focalLength
�

� plotPts	imagePts� newImage
�

� plotCube	imagePts� newImage
�

� plotTrunc�	imagePts� newImage
�

plotBldgs	imagePts� newImage
�

� Rows of the camera matrices 	for both perspective and SOP
� Note�

� the scale factor is s � f�Tz � ��Tz since f � �� These are column ��vectors�

r�T � �rot	���
�trans	�
� trans	�
�trans	�
���

r�T � �rot	���
�trans	�
� trans	�
�trans	�
���

betaCount � ��

poseConverged � ��

assignConverged � ��

beta � beta��

� The assignment matrix includes a slack row and slack column�

assignMat � ones	nbImagePts���nbWorldPts��
 � epsilon��

��������������������������������������������������������������������������������

� Deterministic annealing loop�

��������������������������������������������������������������������������������

while beta � betaFinal � �assignConverged

� while betaCount � ���

� while beta � betaFinal � �poseConverged

� while beta � betaFinal

� while beta � betaFinal � �poseConverged � �assignConverged

����������������������������������������������������������������������������

� Given the current pose and w�i�� compute the distance matrix� d�j�k��

� d�j�k� is the squared distance between the j�th corrected SOP image

� point and the SOP projection of the k�th scene point�

��



����������������������������������������������������������������������������

� SOP 	weak perspective projection
 of world points�

projectedU � homogeneousWorldPts � r�T� � Column N�vector�

projectedV � homogeneousWorldPts � r�T� � Column N�vector�

� MxN matrices with identical rows equal to the X 	replicatedProjectedU


� and Y 	replicatedProjectedV
 SOP projections of the world points� The

� number of rows M is equal to the number of image points�

replicatedProjectedU � imageOnes � projectedU��

replicatedProjectedV � imageOnes � projectedV��

� For all possible pairings of image to world points� map the

� perspective image point into the corrected SOP image point using

� the world point�s current estimate of w�i�� Here� j is the index of

� an image point and k is the index of a world point� wkxj is an

� MxN matrix where the j�th�k�th entry is w�k��x�j��f� wkyj is an

� MxN matrix where the j�th�k�th entry is w�k��y�j��f�

wkxj � centeredImage	���
 � wk��

wkyj � centeredImage	���
 � wk��

� distMat�j�k� � d�j�k���� The focalLength�� term here maps the distances

� back to the original 	unnormalized
 image� so distances are in terms

� of original pixels�

distMat � focalLength�focalLength�		replicatedProjectedU � wkxj
��� � ���

	replicatedProjectedV � wkyj
���
�

����������������������������������������������������������������������������

� Use the softAssign algorithm to compute the best assignment of image to

� world points based on the computed distances� The use of alpha

� determines when to favor assignments instead of using slack�

����������������������������������������������������������������������������

prevAssignMat � assignMat�

assignMat	��nbImagePts� ��nbWorldPts
 � exp	�beta�	distMat � alpha

�

� assignMat � sinkhornSlack	assignMat
 � Do not normalize slack row and col�

assignMat � sinkhornImp	assignMat
� � Improved Sinkhorn normalization� see below

����������������������������������������������������������������������������

� Use POSIT to calculate the pose that minimizes the objective function

� 	equation 	�
� the weighted sum of the differences between corrected

� image points and SOP�s of the corresponding world points
� given the

� current assignment� The pose parameters and the w�i� are iteratively

� updated until some convergence criterion is satisfied�

����������������������������������������������������������������������������

� Compute Sum�k���N�	m��k�S�k�S�k��T
 �� this is used in equations 	��
 and

� 	��
 in the paper� and below in the POSIT loop� to compute an optimal

� pose� In the paper� L �� sumSkSkT�

� First� compute the sum of the elements w�in each column�

� ignoring the slack row and column� This is a row N�vector�

summedByColAssign � sum	assignMat	��nbImagePts� ��nbWorldPts
� �
�

�	



� Now� compute the �x� matrix L�

sumSkSkT � zeros	�� �
�

for k � ��nbWorldPts

sumSkSkT � sumSkSkT � summedByColAssign	k
 � ���

homogeneousWorldPts	k��
� � homogeneousWorldPts	k��
�

end

objectMat � inv	sumSkSkT
� � Inv	L
� a �x� matrix�

poseConverged � �� � Initialize for POSIT loop�

count � ��

� POSIT loop� We put a cap on number of steps here� so at first it does

� not converge� We currently do just one iteration of POSIT� When the

� annealing temperature is low enough� one iteration of POSIT is

� sufficient since the assigments and pose will converge simultaneously�

� while �poseConverged � count � maxCount

� Compute the term in the equation for the optimal pose vectors 	M and

� N in equations 	��
 and 	��
 in the paper
 that depends on the current

� assigment and the w�i�� These are Sum�all j�k�	m�j�k�w�k�x�j�S�k�
 and

� Sum�all j�k�	m�j�k�w�k�y�j�S�k�
� Here� 	w�k�x�j��w�k�y�j�
 is our

� best estimate of the SOP of the k�th scene point whose homogeneous

� perspective image coordinate is 	x�j��y�j�
�

weightedUi � zeros	���
� � column vector

weightedVi � zeros	���
� � column vector

for j � ��nbImagePts

for k � ��nbWorldPts

weightedUi � weightedUi � assignMat	j�k
 � wk	k
 � ���

centeredImage	j��
 � homogeneousWorldPts	k��
��

weightedVi � weightedVi � assignMat	j�k
 � wk	k
 � ���

centeredImage	j��
 � homogeneousWorldPts	k��
��

end � for k

end � for j

� Compute the pose vectors� M � s	R��Tx
 and N � s	R��Ty
 where the

� scale factor is s � f�Tz� and f � �� These are column ��vectors�

r�T� objectMat � weightedUi� � M

r�T � objectMat � weightedVi� � N

� Compute the rotation matrix and translation vector corresponding to

� the computed pose vectors�

if �

disp	� ��� Renormalization of rotation matrix ����
�

�U� S� V� � svd	�r�T	���
�� r�T	���
���
�

A � U � �� �� � �� � �� � V��

r� � A	���
�

r� � A	���
�

r� � cross	r��r�
�

Tz � � � 	S	���
 � S	���

�

Tx � r�T	�
 � Tz�

Ty � r�T	�
 � Tz�

��



r�T� �r�� Tz��

else

� Standard calculation of R and T� The rotation matrix may not be

� orthonormal� The object must distort when the rotation matrix

� is not orthonormal�

r�TSquared � r�T	�
�r�T	�
 � r�T	�
�r�T	�
� r�T	�
�r�T	�
�

r�TSquared � r�T	�
�r�T	�
 � r�T	�
�r�T	�
� r�T	�
�r�T	�
�

Tz � sqrt	��	r�TSquared�r�TSquared

� � Chang � Tsai�s suggestion�

r�N � r�T�Tz� � Column ��vectors� 	R��Tx
�

r�N � r�T�Tz� � 	R��Ty
�

r� � r�N	���
� � Three rows of the rotation matrix�

r� � r�N	���
�

r� � cross	r��r�
�

r�T� �r�� Tz�� � Column ��vector� 	R��Tz
�

Tx � r�N	�
�

Ty � r�N	�
�

end � if

� Compute updated estimates for the w�i� 	the third homogeneous

� coordinate of the perspective image points
� The improved w�i� are

� used above to map 	correct
 the perspective image coordinates into

� the corresponding scaled orthographic projection image coordinates�

wk� homogeneousWorldPts � r�T �Tz�

� Determine if the pose as computed by POSIT has converged�

� The pose is considered to have converged when the sum of the

� weighted distances between the corrected SOP image points and

� the SOP�s of the world points is less than some threshold�

� This distance is in terms of pixels in the original image

� coordinate frame�

delta � sqrt	sum	sum	assignMat	��nbImagePts���nbWorldPts
 ���

�� distMat

�minNbPts
�

delta

poseConverged � delta � maxDelta

count � count � �� � Number of POSIT iterations�

� end � of POSIT loop

����������������������������������������������������������������������������

� Updates for deterministic annealing and checks for convergence�

����������������������������������������������������������������������������

� Update the ��annealing temperature�� and determine if the assignments

� have converged�

beta � betaUpdate � beta

betaCount � betaCount � � � Number of deterministic annealing iterations�

assignConverged � poseConverged � betaCount � minBetaCount

� Form the best estimates for the translation vector and rotation matrix�

trans � �Tx� Ty� Tz��

��



rot � �r��� r��� r����

� Has the pose converged 

foundPose � 	delta � maxDelta � betaCount � minBetaCount
�

end � of Deterministic annealing loop

��������������������������������������������������������������������������������

� Print the answer that will be returned by this function�

��������������������������������������������������������������������������������

rot

trans

assignMat

��������������������������������������������������������������������������������

� End of softPOSIT

��������������������������������������������������������������������������������

��������������������������������������������������������������������������������

��������������������������������������������������������������������������������

�

� Sinkhorn algorithm for matrices with slack row and column�

�

� Normalize across rows and columns to find an assignment matrix 	a

� doubly stochastic matrix
�

�

� This version treats the slack row and column differently from other rows

� and columns� the slack values are not normalized with respect to other

� slack values� only with respect to the nonslack values� This may work

� better than the original Sinkhorn algorithm which treats all rows and

� columns identically� This is true primarily when there needs to be more

� than one assignment to a slack row or column� I�e�� when there are two

� or more missing image points or model points�

�

� DSD returns a vector of the doubly�stochastic distances of the matrix

� throughout the sinkhorn iteration�

�

������������������������������������������������������������������������������

function �normalizedMat� dsd� � sinkhornSlack	M


iMaxIterSinkhorn���� � In PAMI paper

fEpsilon� � ������ � Used in termination of Sinkhorn Loop�

iNumSinkIter � ��

�nbRows� nbCols� � size	M
�

fMdiffSum � fEpsilon� � �� � Set !difference! from last M matrix above

� the loop termination threshold

��



dsd	�
 � dsdist	M��
� � Measure of doubly stochasticness�

while	abs	fMdiffSum
 � fEpsilon� � iNumSinkIter � iMaxIterSinkhorn


Mprev � M� � Save M from previous iteration to test for loop termination

� Col normalization 	except outlier row � do not normalize col slacks

� against each other


McolSums � sum	M� �
� � row vector

McolSums	nbCols
 � �� � don�t normalize slack col terms against each other

McolSumsRep � ones	nbRows��
 � McolSums �

M � M �� McolSumsRep�

� Row normalization 	except outlier row � do not normalize col slacks

� against each other


MrowSums � sum	M� �
� � column vector

MrowSums	nbRows
 � �� � don�t normalize slack row terms against each other

MrowSumsRep � MrowSums � ones	�� nbCols
�

M � M �� MrowSumsRep�

iNumSinkIter�iNumSinkIter���

fMdiffSum�sum	abs	M	�
�Mprev	�


�

dsd	iNumSinkIter��
 � dsdist	M��
� � Measure of doubly stochasticness�

end �Sinkhorn

� iNumSinkIter

normalizedMat � M�

return

������������������������������������������������������������������������������

������������������������������������������������������������������������������

�

� Phil�s improve Sinkhorn algorithm for matrices with slack row and column�

�

� normalizedMat � sinkhornImp	M


�

� Apply an improved Sinkhorn algorithm to map matrix M to a doubly

� stochastic matrix�

�

� The Sinkhorn algorithm modified for slack rows and columns treats the

� slack row and column differently from other rows and columns� the slack

� values are not normalized with respect to other slack values� only with

� respect to the nonslack values� This may work better than the original

� Sinkhorn algorithm which treats all rows and columns identically�

� This is true primarily when there needs to be more than one assignment

� to a slack row or column� I�e�� when there are two or more missing

� image points or model points�

�

� A problem with this modified Sinkhorn algorithm is the following�

� Suppose all rows except the slack row are normalized� It is possible that

��



� a nonslack value which was previously maximum in its row and column to now

� have a value that is less than the slack value for that column� 	This

� nonslack value will still be greater than the slack value for that

� row�
 The same sort of thing can happen when columns are normalized�

� Intuitivitly� this seems like a bad thing� nonslack values that start

� off as maximum in their row and column should remain maximum in their

� row and column throughout this iteration� The current algorithm

� attempts to prevent this from happening as follows� After performing

� row normalizations� the values in the slack row are set so that their

� ratio to the nonslack value in that column which was previously maximum

� is the same as this ratio was prior to row normalization� A similar

� thing is done after column normalizations�

�

� DSD returns a vector of the doubly�stochastic distances of the matrix

� throughout the sinkhorn iteration�

�

������������������������������������������������������������������������������

function �normalizedMat� dsd� � sinkhornImp	M


iMaxIterSinkhorn���� � In PAMI paper

fEpsilon� � ������ � Used in termination of Sinkhorn Loop�

iNumSinkIter � ��

�nbRows� nbCols� � size	M
�

fMdiffSum � fEpsilon� � �� � Set !difference! from last M matrix above

� the loop termination threshold

� Get the positions and ratios to slack of the nonslack elements that

� are maximal in their row and column�

�posmax� ratios� � maxPosRatio	M
�

dsd	�
 � dsdist	M��
� � Measure of doubly stochasticness�

while	abs	fMdiffSum
 � fEpsilon� � iNumSinkIter � iMaxIterSinkhorn


Mprev � M� � Save M from previous iteration to test for loop termination

� Col normalization 	except outlier row � do not normalize col slacks

� against each other


McolSums � sum	M� �
� � Row vector�

McolSums	nbCols
 � �� � Don�t normalize slack col terms against each other�

McolSumsRep � ones	nbRows��
 � McolSums �

M � M �� McolSumsRep�

� Fix values in the slack column�

for i � ��size	posmax��


M	posmax	i��
�nbCols
 � ratios	i��
�M	posmax	i��
�posmax	i��

�

end

� Row normalization 	except outlier row � do not normalize col slacks

� against each other


��



MrowSums � sum	M� �
� � Column vector�

MrowSums	nbRows
 � �� � Don�t normalize slack row terms against each other�

MrowSumsRep � MrowSums � ones	�� nbCols
�

M � M �� MrowSumsRep�

� Fix values in the slack row�

for i � ��size	posmax��


M	nbRows�posmax	i��

 � ratios	i��
�M	posmax	i��
�posmax	i��

�

end

iNumSinkIter�iNumSinkIter���

fMdiffSum�sum	abs	M	�
�Mprev	�


�

dsd	iNumSinkIter��
 � dsdist	M��
� � Measure of doubly stochasticness�

end

normalizedMat � M�

return�

��������������������������������������������������������������������������������

��������������������������������������������������������������������������������

��������������������������������������������������������������������������������

��


