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ABSTRACT
New Peer-to-Peer (P2P) applications like P2P job-
employee seeker networks and P2P virtual cities, for 
application domains such as collaborative urban planning 
and forming virtual communities, are about to emerge. An 
important component in these applications is spatial data, 
i.e., data with locational components. Many requests 
initiated on spatial data involve finding the spatial objects 
that are nearest to a query location. In this paper, we 
propose an efficient algorithm that finds the spatial objects 
that are nearest to a given query location on a P2P network 
in the order of their minimum distance to the query point. 
The proposed algorithm makes use of a distributed spatial 
index that does not rely on the use of a central server. The 
algorithm is designed to be more efficient by utilizing the 
parallel nature of the P2P network. A demonstration of the 
proposed algorithm was implemented as a prototype P2P 
application that finds events and places of interest in a city. 

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications -- 
Spatial databases; C.2.4 [Computer Communication 
Networks]: Distributed Systems -- Distributed 
applications; E.1 [Data Structures]: Distributed Data 
Structures 
 

General Terms 
Algorithms, Management 
 

Keywords  
Geographic Information Systems, Spatial Data, Nearest Neighbor 
Query, Quadtree, Peer-to-Peer Networks 
 

1. INTRODUCTION 
Peer-to-peer (P2P) networks are becoming increasingly 
popular as a powerful means for data exchange. They are 
quite scalable and easy to deploy. Although P2P networks 
attract significant interest, methods for accessing complex 

data such as spatial data on P2P networks are still at their 
infancy. Several future P2P applications like P2P job-
employee seeker networks and P2P virtual cities will need 
to answer queries involving spatial data, i.e., data with 
locational components. Frequently more than one location 
is associated with a spatial object. Hence, it commonly 
differs from conventional point data in that the objects may 
also have extent. For example, lakes can be represented as 
spatial objects whose extent is defined by the space that 
they occupy. There are many ways to describe such objects 
including their boundary, the locations that make up their 
interior, their minimum axis-aligned bounding box, etc. 
Thus a spatial description is more than just a longitude and 
a latitude value. Retrieving such complex data, given a 
query, on a P2P network is a non-obvious task. There is no 
central server or administration that the data is stored. 
Hence, classical indexing methods and querying algorithms 
cannot be easily applied. Yet, efficient solutions to 
querying and locating spatial data on P2P networks can 
enable many government as well as other public domain 
networked applications. For example, from a digital 
government point of view, government agencies can form 
ad hoc virtual environments where they present and 
exchange their data without dedicated servers or can help 
the general public to exchange this data among themselves 
using existing, mostly unused, computational resources 
available at users’ machines.  

Often, given some user data, we need to find its closest 
matches in a large data set. For instance, given a spatial 
data set and a query point, we frequently need to find the 
spatial objects closest to this query point. In our case of a 
P2P network with spatial objects, this nearest neighbor 
(NN) query involves finding the closest spatial objects on a 
large dynamic network. Closeness can be measured by any 
number of similarity measures. In our NN queries, we are 
dealing with finding the nearest spatial objects in the metric 
space using the Euclidean distance between the object and 



the query point.  This can be considered as a specialization 
of the similarity search concept used in databases. 

For example, in a future P2P virtual city, a user may point 
to a location on a spatial layout and request the system to 
find events (such as concerts), restaurants, parks, public 
facilities, or various places of interest that are closest to this 
location, i.e., for a metropolitan area. The efficient 
implementation of NN queries is a mater of interest in 
spatial databases for some time. In P2P networks, the issue 
of handling spatial data and queries has just started to 
surface. In this paper, we propose an efficient algorithm to 
find the spatial objects that are nearest to a query point in a 
P2P system by making use of an index that provides 
distributed hashing of spatial data. The algorithm is 
designed to be more efficient by utilizing the parallel nature 
of the P2P network. A demonstration of the proposed 
algorithm was implemented as a prototype P2P application 
that finds events and places of interest in a city.  

The rest of this paper is organized as follows. Section 2 
reviews the related work in spatial databases and in P2P 
systems. In Section 3 we present our early work in P2P 
spatial data management. Section 4 introduces our NN 
algorithm and describes the details of the algorithm using a 
distributed quadtree index. Section 5 presents the analysis 
of our algorithm. Section 6 describes our prototype P2P 
implementation. Section 7 states our concluding remarks 
and describes our future work.  

2. RELATED WORK 
Hjaltason and Samet (2003) present a comprehensive 
analysis of various similarity search algorithms in metric 
spaces. Their main contribution to field is through a 
priority queue based ranking algorithm that can find the 
results of a ranking query in an incremental fashion. 
Formally, ranking is a more general case of the NN query 
where a user can ultimately retrieve all the objects of a 
database in the order of their distance from a query point. 
The algorithm works on many classical spatial indexing 
methods including R-trees and quadtrees (for these data 
structures Samet 1990 and 2005 contain very detailed 
presentations). The entries of the priority queue consist of 
spatial objects as well as the blocks of the space that the 
underlying spatial data structure uses. The first entry in the 
queue is the root of the data structure. This entry is 
retrieved in the first iteration of the algorithm and the 
children of the root are then inserted back to the priority 
queue using their distance from the query point. The next 
iteration of the algorithm retrieves the new highest priority 
child/block or object. Hence, in this fashion, at each 
iteration of the algorithm, the element with the smallest 
distance is taken out and visited and its children are 
inserted into the queue (it is important to note that 
eventually all the spatial objects will be retrieved as they 
are also inserted into the queue by the previous iterations). 
We use the same incremental approach in our P2P NN 
algorithm. Unfortunately, this sequential algorithm is not 
designed for the distributed nature of the P2P networks. 

NN queries have become the topic of interest in distributed 
data processing in recent years. A NN algorithm, using R-
trees, in sensor networks, is presented by Demirbas and 

Ferhatosmanoglu 2003. NN queries are performed in a 
distributed fashion using a self-stabilizing P2P indexing 
structure called the peer-tree in their work. They also 
mention the importance of parallelizing the NN search with 
the main limiting constraint being the power consumption 
on sensors for their case. Unfortunately, they do not present 
a detailed and general solution for this issue in their work. 

Very recently, Batko et al. August 2004 study the problem 
of executing P2P NN queries on metric spaces using a 
distributed data structure. They use the data structure called 
GHT (Generalized Hyperplane Tree) introduced in their 
previous work (Batko et al. June 2004). This data structure 
is mainly for non-spatial data and hence cannot be directly 
applied to the spatial domain. Nevertheless, they also 
mention that exploiting the parallel nature of P2P networks 
is an issue and their NN algorithm proposes a parallel 
approach. They state that the priority queue approach that 
we described earlier cannot be easily adapted for 
parallelism for their case. Hence, they use a radius 
estimation-based approach to create an ever-increasing 
search circle. They parallelize this front. In our work, we 
parallelize the priority queue based NN work described in 
Hjaltason and Samet 2003.  

Banaei-Kashani and Shahabi 2004 present a family of 
access methods for similarity search in P2P networks. They 
name this family SWAM. They use a Voronoi diagram 
based scheme for indexing the spatial data. Accessing the 
first NN is especially very trivial using the neighboring 
cells of a Voronoi diagram. Although they do not mention 
the parallelism of their algorithms, their work is already 
tuned for similarity search and hence they easily can 
maintain a high level of efficiency. We think that our 
parallel approach can be applied for ranking in their indices 
too. Yet, Voronoi diagrams are harder to maintain in high 
dimensional data than other classical indices such as 
quadtrees and R-trees. Also, as they do not have a 
hierarchical access structure: queries have to traverse a 
planar data structure, in comparison to a hierarchical one, 
starting from a query initiating peer. To address this issue, 
they propose using random graphs. These graphs are 
probabilistic in nature in comparison to classical 
hierarchical spatial data structures.  

Finally, Sahin et al. 2004 introduces a generic content-
based similarity search scheme for documents in P2P 
systems. Their work is also focused on mostly finding 
similar documents over a P2P network and cannot be easily 
applied to spatial data.   

3. BACKGROUND WORK 
We use a distributed quadtree index that we recently 
developed to demonstrate our algorithm although other 
indices can be utilized as well, e.g., emerging spatial 
indices such as P2P R-trees (Mondal et al. 2004). We now 
describe this indexing mechanism (Harwood and Tanin 
2003; Tanin et al. 2004) that can facilitate spatial data on 
P2P networks.   

Our P2P index uses distributed hash tables (DHTs) and 
specifically the Chord (Stoica et al. 2003) method at its 
base although any similar key-based lookup method can 



easily be utilized. In Chord, a hash function is used to map 
arbitrary data strings (or keys) onto a logical name space. 
The Chord method also maps, along with these keys (e.g., 
file names), the peer addresses (i.e., IP addresses) in the 
P2P network to this logical name space. It then partitions 
the space among the peers. It presents an efficient way to 
hop between the peers to route towards the desired peer, 
i.e., to the peer that contains the file that the user is looking 
for given a file name. It is shown that Chord can find this 
file in O(log n) time with high probability for n peers. 

For two-dimensional spatial data, the data space can be 
recursively subdivided into four regions, i.e., using a 
quadtree (Samet 1990, 2005). Our index makes use of a 
specific version of the quadtree concept to assign the 
responsibilities for regions of space to the peers of a P2P 
network. We use MX-CIF quadtrees (Kedem 1982; Sevcik 
and Koudas 1996) although other quadtree types can easily 
be used within our framework. In the MX-CIF quadtree, 
each object is associated with the smallest block of space 
that contains the entire object that is indexed. In our index, 
each quadtree block is uniquely identified by its centroid, 
named as a control point. The control points are hashed 
using their coordinate values (as a string key) with the 
Chord method to associate each of these keys with a peer. 
With a good hash function one can achieve a good level of 
load-balance among the peers of the network. Each control 
point generates a unique key. Then, objects associated with 
a quadtree block can be stored in the owner peer of that 
quadtree block. Hence, we use control points like buckets 
to store data. Queries can run from the root to the leaves of 
the quadtree using the Chord routing algorithms that 
facilitate efficient jumps from one peer to another peer on 
the P2P network. The traversal of the quadtree can be 
optimized by using caching of the peer addresses rather 
than solely relying on the Chord routing methods.  

In order to avoid the single point of failure had all tree 
operations begun at the peer that stores the root control 
point, we introduced the concept of a fundamental 
minimum level, fmin , and also further balanced the load in 
the system. The concept of fmin forces objects to be stored 
and query processing to start at a level l �  fmin.. If the value 
of fmin is 0, then this is equivalent to using the standard 
MX-CIF quadtree. A fundamental maximum level  fmax is 
also used to avoid objects being stored at a level greater 
than fmax. If the value of fmin and fmax are the same, then the 
index will look like a grid instead of a tree. 

4. A P2P NEAREST NEIGHBOR 
ALGORITHM  
Using our P2P quadtree index (Harwood and Tanin 2003; 
Tanin et al. 2004), we now present our priority queue based 
NN algorithm for P2P networks. We use the base concepts 
from Hjaltason and Samet 2003. Yet, a direct 
implementation of it has disadvantages on a P2P platform. 
Primarily, we do not need to run the algorithm in a 
sequential manner as we do not have to have a single thread 
of control in a P2P setting. For a networked system, the 
delays per contact to a peer and in a sequential manner can 
add up to a significant amount.  

For P2P settings, in theory, we can send a message to all of 
the peers in the P2P network to find the NNs 
simultaneously. But realistically, if other peers take the 
same approach for their queries then we will be creating an 
all-to-all communication mechanism in our P2P network. 
The bandwidth required to send millions of messages from 
a single peer for a large system will also be problematic. 
Hence, for a system with millions of peers, sending 
messages to all the peers in the network is not a practical 
approach. So, the question is what is a reasonable amount 
of parallelism that we can harvest from the independent 
peers of a P2P network? 

Our heuristic that aims at this objective is to maintain a 
query processing front of all those control points, hence 
blocks of the spatial data structure that are in the priority 
queue, that still have the possibility of returning a closer 
object than the current block that is at the top of the priority 
queue. So rather than a priority queue with a single point of 
entry, we maintain a front of multiple entries that are being 
processed in parallel. This heuristic attempts to maximize 
the parallelism that we can harvest on a P2P network from 
a single peer's point of view, while avoiding a single peer 
to send messages to many peers that would be redundant 
for a NN computation. 

A NN query is first initiated on a single peer in the P2P 
network. This peer maintains the priority queue of quadtree 
blocks (mapping to a control point each) that are being 
processed for the query. To process a block, we have to 
contact from this query initiating peer to the peer that owns 
that block, i.e., the control point. Hence, in our parallel 
algorithm, we contact, rather than just the top entry of the 
priority queue, a multiple number of these peers. Assuming 
that fmin = 0, the query starts at the root and initially there is 
only the root block in the priority queue. Hence, we contact 
the peer that has the root block (control point) and wait for 
a response. In the case of our MX-CIF quadtree, this block 
may contain objects (the ones that lie on the subdivision 
lines for the blocks of the next level) and hence the closest 
one to the query point can be the first nearest object. So 
objects can be returned back to the query initiating peer. 
Also, the peer that is responsible for the root block knows 
how many objects the child blocks do have (see Tanin et al. 
2004). This information is used to return the children that 
has objects and hence can contribute to the NN query. 
Next, the query initiating peer inserts these blocks into the 
priority queue along with any objects that are returned and 
proceeds with the next iteration of the algorithm.  

In the next iteration, rather than contacting only one peer, 
all those blocks and hence the peers that maintain them that 
still have the chance of returning a closer neighbor have to 
be contacted. The decision for selecting which ones should 
be contacted is important and guides the behavior of the 
algorithm. Hence, in comparison to the original priority 
queue based algorithm by Hjaltason  and Samet 2003, there 
is an additional criterion that controls the flow, namely the 
Worst Case. Abbreviated as WC, this criterion is used to 
ensure that the relevant peers that can still help finding a 
closer neighbor for the next nearest neighbor are contacted. 
This algorithm works, without any alterations, for even fmin 



> 0, where there are many blocks in the queue as soon as 
the algorithm starts. 

Our algorithm, assuming the current nearest neighbor is at 
distance m (i.e., the first spatial object in the priority 
queue), instead of removing elements from the priority 
queue one at a time for processing, computes the maximum 
distance MaxDist(q, t) at which an object can be found in 
the top element t of the priority queue and then processes 
all elements e in the priority queue whose distance Dist(q, 
e) from query point q is less than Min(MaxDist(q, t), m).  
This is the WC criterion. Hence, with this criterion we look 
at two pieces of information: i) the first spatial object in the 
priority queue that, in the worst case, can be the next NN 
(this object can be held in a separate buffer or a pointer to 
this object can be utilized for efficiency) ii) the maximum 
possible distance from the query point to an object in the 
top element of the priority queue.  

Alternatives for the subcondition (ii) are stated for 
sequential algorithms in the literature for various spatial 
data structures and they can be easily used with our 
algorithm to parallelize the NN search. For example, an 
alternative (ii) can be, which might yield a tighter criterion 
when the elements in the priority queue are minimum 
bounding boxes, the maximum distance MaxNearestDist(q, 
t) at which a nearest neighbor of q can be found in the 
bounding box t of the top element in the priority queue.  
This metric is called the MinMaxDist by Roussopoulos et 
al. 1995 and MaxNearestDist by Samet 2003.  In general, 
the difference between the methods of Roussopoulos et al. 
and Samet is that the former is only useful for depth-first 
nearest neighbor finding and for just one neighbor, whereas 
the latter is useful for both depth-first and best-first nearest 
neighbor finding for arbitrary values of k (i.e., k-th nearest 
neighbor).  

When a NN query is initiated at a peer, the peer calls 
NNQuery(). This method, shown below, inserts all the 
blocks (control points) at the fmin level into the priority 
queue. In our prototype, the queue is implemented as a 
sorted linked list that also enables parallel access to the rest 
of the queue, rather than just to the top element of the 
queue. Other, more efficient, implementations of this in-
memory data structure on the query initiating peer are also 
possible but probably unnecessary as the time spent on 
sending messages among the peers is several orders of 
magnitude more than the time for the in-memory 
operations. The order in the list is based on the distance of 
the quadtree block associated with each control point from 
the query point.  

As we do not want to contact all the peers with these 
control points at once, the peer that the query point q lies in 
is contacted along with all the others within the initial WC 
distance to start the algorithm. In the beginning, this is 
equal to the maximum distance between the query point 
and the borders of the block that contains the control point 
that q lies in. 

When a peer receives a NN query operation that was 
initiated on another peer, it calls DoNNQuery() which 
determines whether it has any objects and also checks 
whether any of the child control points have any objects. 

Finally a message is sent back to the query initiating peer 
containing the objects and the valid children, if any. 

At the query initiating peer, ReceiveMessage() is used to 
handle messages that are returned by other peers in a 
mutually exclusive manner. If a peer returns objects or its 
child control points then, these are inserted into the sorted 
list corresponding to the priority queue and they are 
accessed in the next iteration. It is important to note that the 
messages from different peers can return in a sequence that 
is different than the original sequence and the algorithm 
would still work in the initially intended manner. 

SendMessagesWithin() is the method used to contact all 
control points from whom we are not already waiting for a 
message and that fall within the new WC distance. 
Obviously, elements of the priority queue that are not 
control points/blocks but just spatial objects are returned to 
the user when they become the top element. We can wait 
for a user command to continue with the next iteration 
when a nearest object is found. This makes the algorithm a 
truly incremental ranking algorithm from the user’s point of 
view. 

UpdateWCDist() is the method used to update the distance 
of WC when a message is received. This is done by 
examining the current top element in the priority queue 
(and the first spatial object available in the queue if one 
exists). 

NNQuery(Query_Point q) { 

PQueue = GetControlPoints(q, fmin)  

 c = FindControlPoint(q, fmin) 

WCDist = MaxDist(q, c) 

SendMessagesWithin(WCDist) 

} 

DoNNQuery(Control_Point u)  { 

m = CreateReplyMessage() 

m.Put(u.GetLocalObjects()) 

 for each Child v of u do  

if (v.HasObjects()) then m.Put(v) 

SendMessageBack(m) 

} 

Synchronized ReceiveMessage(Message m) { 

for each Object o in m do  

PQueue.add(o) 

for each Control_Point u in m do  

PQueue.add(u) 

PQueue.remove(SenderOf(m)) 

WCDist = UpdateWCDist() 

SendMessagesWithin(WCDist) 

} 
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Figure 1 shows how a NN query proceeds using our 
algorithm. The dark dots in the figure represent the 16 fmin 
level control points for fmin = 2. Three objects X, Y, and Z 
are represented by shaded rectangles. According to the 
rules defining the MX-CIF quadtree and with fmin = 2, 
object X is stored at level 2 with control points – BA, BB, 
BC, and BD. Object Y is stored at level 2 with control point 
AD and object Z is stored at level 3 with control point 
DDA. The fmin level control point containing the query 
point q is CC. We show two WC distances that are 
computed by the algorithm. This is because the first control 
point cannot locate any objects and reports that its children 
also do not have any objects. In general, the WC criterion 
should present a shrinking behavior when new, smaller and 
closer blocks are investigated until an object is retrieved 
from the top of the queue. But it can also expand without 
requiring a change from our algorithm. This facilitates the 
continuation of the algorithm for ranking. But expansions 
for this criterion has an additional benefit for P2P systems. 
As we cannot lock the whole P2P quadtree for a single NN 
query, it is possible that while we traverse the quadtree, a 
delete request can remove the spatial objects for a block 
that has been previously inserted into the priority queue, 
creating a need for expansions in the WC distance. 

5. ANALYSIS 
In this section, we compare our approach with the 
sequential algorithm presented by Hjaltason and Samet 

2003 for a P2P setting. To simplify the analysis, we assume 
that: 
a) We have a perfect MX-CIF quadtree with height h, 

i.e., all leaves are at the same level, 
b) The caching algorithm presented in Tanin et al. 2004 

does not encounter any misses and hence, we do not 
need to use the Chord methods for control point look-
ups, i.e., during the tree traversals, 

c) The user runs the ranking process until completion,  
d) Message passing is our main concern and in-memory 

operations are negligible, 
e) Messages are small and hence latency, rather than 

message bandwidth is the main issue, 
f) The latency is a constant to all the peers from any 

given query initiating peer, 
g) fmin = 0 (and fmax = h), 
h) There is only one spatial object per leaf and there are 

no spatial objects in the internal nodes, 
i) The quadtree is formed over a square region, i.e., the 

bounding box of the data is a square. 
 
We believe that this analysis provides an insight as to how 
the original and the new algorithms (for P2P settings) 
differ. Yet, for a real-life comparison and for observing the 
full benefits of the new algorithm, we need to run realistic 
experiments with our work (which is stated as future work 
on which we are currently focusing our efforts).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Spatial objects, control points, query point, and two WC fronts in a quadtree with fmin = 2. 



Given our assumptions, the sequential version of the 
algorithm (if implemented directly on the P2P quadtree 
index presented in Tanin et al. 2004) will have to visit 
every node of the tree in a sequential manner to rank all the 
objects in the P2P system. Therefore this process has a 
complexity of O(4h).  

For our parallel algorithm, the closest NN will be found in 
O(h) while each level will be visited in parallel. The 
algorithm starts at the root and gradually focuses on one 
part of the tree while restricting the WC incrementally. 
Eventually we will reach to the leaves. The difference from 
the sequential algorithm is that at every step of the descent 
in the traversal of the tree, from one level to another, many 
nodes will be visited in parallel, and many intermediate 
nodes will have already been inserted into the priority 
queue. These nodes will be used later on for ranking, i.e., 
finding the remaining objects in the order of their distance 
to the query point. In fact, the blocks that contain the next 
few NNs, given our assumptions, may have already been 
visited while processing the current NN and the spatial 
objects that they contain may have already been inserted 
into the priority queue. When we process the objects and 
blocks that have not been visited, all other blocks within a 
WC will also be automatically visited, again in parallel. 
This, given our initial assumptions for a perfect quadtree, 
will lead to a wave of parallel expansions of the quadtree 
blocks from the query point. This wave moves discretely 
and there will be O(4h/2) increments. This is because there 
are as many increments as there are number of leaves on 
one dimension of the quadtree. At each increment, we will 
need to process only a single level of the quadtree to reach 
to the neighboring leaves. Hence, the overall complexity of 
our algorithm will be O(2h). This is O(2h) faster than the 
sequential algorithm if it was directly implemented on the 
P2P network. 

6. AN APPLICATION PROTOTYPE 
We have implemented a two-dimensional prototype 
application to demonstrate our algorithm. The application 
facilitates insertion, deletion, range (or window queries as 
they are commonly called in spatial databases or in GIS), 
and NN queries for spatial data. It functions as a P2P 
lookup service for a virtual city. Users can find events and 
places of interest on this P2P application. The range queries 
are implemented in a similar manner as they are described 
in Harwood and Tanin 2003 where the P2P quadtree index 
was introduced. NN queries, the focus of this paper, are 
implemented using the NN algorithm presented above. The 
user interface of the application consists of a map for a city 
that comes with the application itself. We also have two 
text boxes and some control functionality, e.g., query 

buttons. The map is used to define rectangular objects (i.e., 
marking places in the city) to insert data into the P2P 
network (e.g., events and locations of interest). For each 
inserted object, a description text can also be entered into a 
text box. For each query, feedback is given through another 
text box. Only the original owner of an object can delete 
the object while everyone in the P2P network can query or 
insert objects. Screenshots of this P2P application are 
shown in Figures 2 and 3. Figure 2 shows all the inserted 
spatial objects as a result of a range query for an entire 
district in a city after zooming in (as it is seen by one peer 
in the network). To perform a NN query, the graphical user 
interface allows the user to select a query point by selecting 
a position on the map. Pressing the Neighbor Query button 
retrieves the first spatial object that is nearest to the query 
point. A screenshot of a NN query and a result is shown in 
Figure 3. Many other features of this application are not 
shown in this paper such as object insertions, retrieval of 
details for a resultant object, etc.  

 7. CONCLUSIONS AND FUTURE 
WORK 
Performing NN queries on spatial data is an important 
operation. In many future P2P applications these queries 
will require efficient algorithms to run on distributed data 
structures. We have developed an efficient algorithm that 
facilitates NN queries on spatial data in P2P networks. The 
algorithm uses a P2P index that we developed in our earlier 
work to find the spatial objects that is nearest to a query 
point. Mainly by organizing a communication scheme for 
the peers that can or cannot aid in executing the current NN 
query, we restrict the number of messages passed between 
the peers of the network while still continuing to utilize the 
parallel processing power of the P2P network. At any 
iteration of the algorithm, we basically maintain a parallel 
front of viable nodes that can still contribute to the NN 
query and hence we adapt the priority queue based solution 
presented in Hjaltason and Samet 2003 for distributed 
environments. Our algorithm has been implemented in a 
prototype P2P application that provides a lookup service 
for a P2P virtual city. Although the implementation has 
been in a two-dimensional setting, it can be easily extended 
to higher dimensions. In addition to this, although it is 
implemented on a P2P quadtree index, the algorithm can 
easily accommodate a P2P R-tree index. We are currently 
in the process of experimenting with our work. A 
comparison of different versions of the algorithm using 
various different parallel front metrics and indices will be a 
fundamental contribution to the area of distributed 
computing and spatial data management. 

 



 
Figure 2. Screenshot of a range query for a region after zooming  in to a certain district in a city; showing all existing 

spatial objects in the P2P network for that district (the three dark rectangles). 

 

 

Figure 3. Screenshot of a NN query (the cross represents the query point and the rectangle represents the nearest spatial 
object; further clicks on the “Neighbor Query” butt on can be used to continue to rank other hits to a query).  
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