

An Efficient Nearest Neighbor Algorithm for P2P

Settings1

1 This work was supported in part by the US National Science Foundation under Grant EIA-00-91474 and Microsoft Research.

Egemen Tanin
Dept. of Computer Science &

Software Engineering
NICTA Victoria Laboratory

University of Melbourne
Victoria, Australia

egemen@cs.mu.oz.au

Deepa Nayar
Dept. of Computer Science &

Software Engineering
University of Melbourne

Victoria, Australia
dnayar@cs.mu.oz.au

Hanan Samet
Dept. of Computer Science

Center for Automation
Research

Institute for Advanced
Computer Studies

University of Maryland
Maryland, USA

hjs@cs.umd.edu

ABSTRACT
New Peer-to-Peer (P2P) applications like P2P job-
employee seeker networks and P2P virtual cities, for
application domains such as collaborative urban planning
and forming virtual communities, are about to emerge. An
important component in these applications is spatial data,
i.e., data with locational components. Many requests
initiated on spatial data involve finding the spatial objects
that are nearest to a query location. In this paper, we
propose an efficient algorithm that finds the spatial objects
that are nearest to a given query location on a P2P network
in the order of their minimum distance to the query point.
The proposed algorithm makes use of a distributed spatial
index that does not rely on the use of a central server. The
algorithm is designed to be more efficient by utilizing the
parallel nature of the P2P network. A demonstration of the
proposed algorithm was implemented as a prototype P2P
application that finds events and places of interest in a city.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications --
Spatial databases; C.2.4 [Computer Communication
Networks]: Distributed Systems -- Distributed
applications; E.1 [Data Structures]: Distributed Data
Structures

General Terms
Algorithms, Management

Keywords
Geographic Information Systems, Spatial Data, Nearest Neighbor
Query, Quadtree, Peer-to-Peer Networks

1. INTRODUCTION
Peer-to-peer (P2P) networks are becoming increasingly
popular as a powerful means for data exchange. They are
quite scalable and easy to deploy. Although P2P networks
attract significant interest, methods for accessing complex

data such as spatial data on P2P networks are still at their
infancy. Several future P2P applications like P2P job-
employee seeker networks and P2P virtual cities will need
to answer queries involving spatial data, i.e., data with
locational components. Frequently more than one location
is associated with a spatial object. Hence, it commonly
differs from conventional point data in that the objects may
also have extent. For example, lakes can be represented as
spatial objects whose extent is defined by the space that
they occupy. There are many ways to describe such objects
including their boundary, the locations that make up their
interior, their minimum axis-aligned bounding box, etc.
Thus a spatial description is more than just a longitude and
a latitude value. Retrieving such complex data, given a
query, on a P2P network is a non-obvious task. There is no
central server or administration that the data is stored.
Hence, classical indexing methods and querying algorithms
cannot be easily applied. Yet, efficient solutions to
querying and locating spatial data on P2P networks can
enable many government as well as other public domain
networked applications. For example, from a digital
government point of view, government agencies can form
ad hoc virtual environments where they present and
exchange their data without dedicated servers or can help
the general public to exchange this data among themselves
using existing, mostly unused, computational resources
available at users’ machines.

Often, given some user data, we need to find its closest
matches in a large data set. For instance, given a spatial
data set and a query point, we frequently need to find the
spatial objects closest to this query point. In our case of a
P2P network with spatial objects, this nearest neighbor
(NN) query involves finding the closest spatial objects on a
large dynamic network. Closeness can be measured by any
number of similarity measures. In our NN queries, we are
dealing with finding the nearest spatial objects in the metric
space using the Euclidean distance between the object and

the query point. This can be considered as a specialization
of the similarity search concept used in databases.

For example, in a future P2P virtual city, a user may point
to a location on a spatial layout and request the system to
find events (such as concerts), restaurants, parks, public
facilities, or various places of interest that are closest to this
location, i.e., for a metropolitan area. The efficient
implementation of NN queries is a mater of interest in
spatial databases for some time. In P2P networks, the issue
of handling spatial data and queries has just started to
surface. In this paper, we propose an efficient algorithm to
find the spatial objects that are nearest to a query point in a
P2P system by making use of an index that provides
distributed hashing of spatial data. The algorithm is
designed to be more efficient by utilizing the parallel nature
of the P2P network. A demonstration of the proposed
algorithm was implemented as a prototype P2P application
that finds events and places of interest in a city.

The rest of this paper is organized as follows. Section 2
reviews the related work in spatial databases and in P2P
systems. In Section 3 we present our early work in P2P
spatial data management. Section 4 introduces our NN
algorithm and describes the details of the algorithm using a
distributed quadtree index. Section 5 presents the analysis
of our algorithm. Section 6 describes our prototype P2P
implementation. Section 7 states our concluding remarks
and describes our future work.

2. RELATED WORK
Hjaltason and Samet (2003) present a comprehensive
analysis of various similarity search algorithms in metric
spaces. Their main contribution to field is through a
priority queue based ranking algorithm that can find the
results of a ranking query in an incremental fashion.
Formally, ranking is a more general case of the NN query
where a user can ultimately retrieve all the objects of a
database in the order of their distance from a query point.
The algorithm works on many classical spatial indexing
methods including R-trees and quadtrees (for these data
structures Samet 1990 and 2005 contain very detailed
presentations). The entries of the priority queue consist of
spatial objects as well as the blocks of the space that the
underlying spatial data structure uses. The first entry in the
queue is the root of the data structure. This entry is
retrieved in the first iteration of the algorithm and the
children of the root are then inserted back to the priority
queue using their distance from the query point. The next
iteration of the algorithm retrieves the new highest priority
child/block or object. Hence, in this fashion, at each
iteration of the algorithm, the element with the smallest
distance is taken out and visited and its children are
inserted into the queue (it is important to note that
eventually all the spatial objects will be retrieved as they
are also inserted into the queue by the previous iterations).
We use the same incremental approach in our P2P NN
algorithm. Unfortunately, this sequential algorithm is not
designed for the distributed nature of the P2P networks.

NN queries have become the topic of interest in distributed
data processing in recent years. A NN algorithm, using R-
trees, in sensor networks, is presented by Demirbas and

Ferhatosmanoglu 2003. NN queries are performed in a
distributed fashion using a self-stabilizing P2P indexing
structure called the peer-tree in their work. They also
mention the importance of parallelizing the NN search with
the main limiting constraint being the power consumption
on sensors for their case. Unfortunately, they do not present
a detailed and general solution for this issue in their work.

Very recently, Batko et al. August 2004 study the problem
of executing P2P NN queries on metric spaces using a
distributed data structure. They use the data structure called
GHT (Generalized Hyperplane Tree) introduced in their
previous work (Batko et al. June 2004). This data structure
is mainly for non-spatial data and hence cannot be directly
applied to the spatial domain. Nevertheless, they also
mention that exploiting the parallel nature of P2P networks
is an issue and their NN algorithm proposes a parallel
approach. They state that the priority queue approach that
we described earlier cannot be easily adapted for
parallelism for their case. Hence, they use a radius
estimation-based approach to create an ever-increasing
search circle. They parallelize this front. In our work, we
parallelize the priority queue based NN work described in
Hjaltason and Samet 2003.

Banaei-Kashani and Shahabi 2004 present a family of
access methods for similarity search in P2P networks. They
name this family SWAM. They use a Voronoi diagram
based scheme for indexing the spatial data. Accessing the
first NN is especially very trivial using the neighboring
cells of a Voronoi diagram. Although they do not mention
the parallelism of their algorithms, their work is already
tuned for similarity search and hence they easily can
maintain a high level of efficiency. We think that our
parallel approach can be applied for ranking in their indices
too. Yet, Voronoi diagrams are harder to maintain in high
dimensional data than other classical indices such as
quadtrees and R-trees. Also, as they do not have a
hierarchical access structure: queries have to traverse a
planar data structure, in comparison to a hierarchical one,
starting from a query initiating peer. To address this issue,
they propose using random graphs. These graphs are
probabilistic in nature in comparison to classical
hierarchical spatial data structures.

Finally, Sahin et al. 2004 introduces a generic content-
based similarity search scheme for documents in P2P
systems. Their work is also focused on mostly finding
similar documents over a P2P network and cannot be easily
applied to spatial data.

3. BACKGROUND WORK
We use a distributed quadtree index that we recently
developed to demonstrate our algorithm although other
indices can be utilized as well, e.g., emerging spatial
indices such as P2P R-trees (Mondal et al. 2004). We now
describe this indexing mechanism (Harwood and Tanin
2003; Tanin et al. 2004) that can facilitate spatial data on
P2P networks.

Our P2P index uses distributed hash tables (DHTs) and
specifically the Chord (Stoica et al. 2003) method at its
base although any similar key-based lookup method can

easily be utilized. In Chord, a hash function is used to map
arbitrary data strings (or keys) onto a logical name space.
The Chord method also maps, along with these keys (e.g.,
file names), the peer addresses (i.e., IP addresses) in the
P2P network to this logical name space. It then partitions
the space among the peers. It presents an efficient way to
hop between the peers to route towards the desired peer,
i.e., to the peer that contains the file that the user is looking
for given a file name. It is shown that Chord can find this
file in O(log n) time with high probability for n peers.

For two-dimensional spatial data, the data space can be
recursively subdivided into four regions, i.e., using a
quadtree (Samet 1990, 2005). Our index makes use of a
specific version of the quadtree concept to assign the
responsibilities for regions of space to the peers of a P2P
network. We use MX-CIF quadtrees (Kedem 1982; Sevcik
and Koudas 1996) although other quadtree types can easily
be used within our framework. In the MX-CIF quadtree,
each object is associated with the smallest block of space
that contains the entire object that is indexed. In our index,
each quadtree block is uniquely identified by its centroid,
named as a control point. The control points are hashed
using their coordinate values (as a string key) with the
Chord method to associate each of these keys with a peer.
With a good hash function one can achieve a good level of
load-balance among the peers of the network. Each control
point generates a unique key. Then, objects associated with
a quadtree block can be stored in the owner peer of that
quadtree block. Hence, we use control points like buckets
to store data. Queries can run from the root to the leaves of
the quadtree using the Chord routing algorithms that
facilitate efficient jumps from one peer to another peer on
the P2P network. The traversal of the quadtree can be
optimized by using caching of the peer addresses rather
than solely relying on the Chord routing methods.

In order to avoid the single point of failure had all tree
operations begun at the peer that stores the root control
point, we introduced the concept of a fundamental
minimum level, fmin , and also further balanced the load in
the system. The concept of fmin forces objects to be stored
and query processing to start at a level l � fmin.. If the value
of fmin is 0, then this is equivalent to using the standard
MX-CIF quadtree. A fundamental maximum level fmax is
also used to avoid objects being stored at a level greater
than fmax. If the value of fmin and fmax are the same, then the
index will look like a grid instead of a tree.

4. A P2P NEAREST NEIGHBOR
ALGORITHM
Using our P2P quadtree index (Harwood and Tanin 2003;
Tanin et al. 2004), we now present our priority queue based
NN algorithm for P2P networks. We use the base concepts
from Hjaltason and Samet 2003. Yet, a direct
implementation of it has disadvantages on a P2P platform.
Primarily, we do not need to run the algorithm in a
sequential manner as we do not have to have a single thread
of control in a P2P setting. For a networked system, the
delays per contact to a peer and in a sequential manner can
add up to a significant amount.

For P2P settings, in theory, we can send a message to all of
the peers in the P2P network to find the NNs
simultaneously. But realistically, if other peers take the
same approach for their queries then we will be creating an
all-to-all communication mechanism in our P2P network.
The bandwidth required to send millions of messages from
a single peer for a large system will also be problematic.
Hence, for a system with millions of peers, sending
messages to all the peers in the network is not a practical
approach. So, the question is what is a reasonable amount
of parallelism that we can harvest from the independent
peers of a P2P network?

Our heuristic that aims at this objective is to maintain a
query processing front of all those control points, hence
blocks of the spatial data structure that are in the priority
queue, that still have the possibility of returning a closer
object than the current block that is at the top of the priority
queue. So rather than a priority queue with a single point of
entry, we maintain a front of multiple entries that are being
processed in parallel. This heuristic attempts to maximize
the parallelism that we can harvest on a P2P network from
a single peer's point of view, while avoiding a single peer
to send messages to many peers that would be redundant
for a NN computation.

A NN query is first initiated on a single peer in the P2P
network. This peer maintains the priority queue of quadtree
blocks (mapping to a control point each) that are being
processed for the query. To process a block, we have to
contact from this query initiating peer to the peer that owns
that block, i.e., the control point. Hence, in our parallel
algorithm, we contact, rather than just the top entry of the
priority queue, a multiple number of these peers. Assuming
that fmin = 0, the query starts at the root and initially there is
only the root block in the priority queue. Hence, we contact
the peer that has the root block (control point) and wait for
a response. In the case of our MX-CIF quadtree, this block
may contain objects (the ones that lie on the subdivision
lines for the blocks of the next level) and hence the closest
one to the query point can be the first nearest object. So
objects can be returned back to the query initiating peer.
Also, the peer that is responsible for the root block knows
how many objects the child blocks do have (see Tanin et al.
2004). This information is used to return the children that
has objects and hence can contribute to the NN query.
Next, the query initiating peer inserts these blocks into the
priority queue along with any objects that are returned and
proceeds with the next iteration of the algorithm.

In the next iteration, rather than contacting only one peer,
all those blocks and hence the peers that maintain them that
still have the chance of returning a closer neighbor have to
be contacted. The decision for selecting which ones should
be contacted is important and guides the behavior of the
algorithm. Hence, in comparison to the original priority
queue based algorithm by Hjaltason and Samet 2003, there
is an additional criterion that controls the flow, namely the
Worst Case. Abbreviated as WC, this criterion is used to
ensure that the relevant peers that can still help finding a
closer neighbor for the next nearest neighbor are contacted.
This algorithm works, without any alterations, for even fmin

> 0, where there are many blocks in the queue as soon as
the algorithm starts.

Our algorithm, assuming the current nearest neighbor is at
distance m (i.e., the first spatial object in the priority
queue), instead of removing elements from the priority
queue one at a time for processing, computes the maximum
distance MaxDist(q, t) at which an object can be found in
the top element t of the priority queue and then processes
all elements e in the priority queue whose distance Dist(q,
e) from query point q is less than Min(MaxDist(q, t), m).
This is the WC criterion. Hence, with this criterion we look
at two pieces of information: i) the first spatial object in the
priority queue that, in the worst case, can be the next NN
(this object can be held in a separate buffer or a pointer to
this object can be utilized for efficiency) ii) the maximum
possible distance from the query point to an object in the
top element of the priority queue.

Alternatives for the subcondition (ii) are stated for
sequential algorithms in the literature for various spatial
data structures and they can be easily used with our
algorithm to parallelize the NN search. For example, an
alternative (ii) can be, which might yield a tighter criterion
when the elements in the priority queue are minimum
bounding boxes, the maximum distance MaxNearestDist(q,
t) at which a nearest neighbor of q can be found in the
bounding box t of the top element in the priority queue.
This metric is called the MinMaxDist by Roussopoulos et
al. 1995 and MaxNearestDist by Samet 2003. In general,
the difference between the methods of Roussopoulos et al.
and Samet is that the former is only useful for depth-first
nearest neighbor finding and for just one neighbor, whereas
the latter is useful for both depth-first and best-first nearest
neighbor finding for arbitrary values of k (i.e., k-th nearest
neighbor).

When a NN query is initiated at a peer, the peer calls
NNQuery(). This method, shown below, inserts all the
blocks (control points) at the fmin level into the priority
queue. In our prototype, the queue is implemented as a
sorted linked list that also enables parallel access to the rest
of the queue, rather than just to the top element of the
queue. Other, more efficient, implementations of this in-
memory data structure on the query initiating peer are also
possible but probably unnecessary as the time spent on
sending messages among the peers is several orders of
magnitude more than the time for the in-memory
operations. The order in the list is based on the distance of
the quadtree block associated with each control point from
the query point.

As we do not want to contact all the peers with these
control points at once, the peer that the query point q lies in
is contacted along with all the others within the initial WC
distance to start the algorithm. In the beginning, this is
equal to the maximum distance between the query point
and the borders of the block that contains the control point
that q lies in.

When a peer receives a NN query operation that was
initiated on another peer, it calls DoNNQuery() which
determines whether it has any objects and also checks
whether any of the child control points have any objects.

Finally a message is sent back to the query initiating peer
containing the objects and the valid children, if any.

At the query initiating peer, ReceiveMessage() is used to
handle messages that are returned by other peers in a
mutually exclusive manner. If a peer returns objects or its
child control points then, these are inserted into the sorted
list corresponding to the priority queue and they are
accessed in the next iteration. It is important to note that the
messages from different peers can return in a sequence that
is different than the original sequence and the algorithm
would still work in the initially intended manner.

SendMessagesWithin() is the method used to contact all
control points from whom we are not already waiting for a
message and that fall within the new WC distance.
Obviously, elements of the priority queue that are not
control points/blocks but just spatial objects are returned to
the user when they become the top element. We can wait
for a user command to continue with the next iteration
when a nearest object is found. This makes the algorithm a
truly incremental ranking algorithm from the user’s point of
view.

UpdateWCDist() is the method used to update the distance
of WC when a message is received. This is done by
examining the current top element in the priority queue
(and the first spatial object available in the queue if one
exists).

NNQuery(Query_Point q) {

PQueue = GetControlPoints(q, fmin)

 c = FindControlPoint(q, fmin)

WCDist = MaxDist(q, c)

SendMessagesWithin(WCDist)

}

DoNNQuery(Control_Point u) {

m = CreateReplyMessage()

m.Put(u.GetLocalObjects())

 for each Child v of u do

if (v.HasObjects()) then m.Put(v)

SendMessageBack(m)

}

Synchronized ReceiveMessage(Message m) {

for each Object o in m do

PQueue.add(o)

for each Control_Point u in m do

PQueue.add(u)

PQueue.remove(SenderOf(m))

WCDist = UpdateWCDist()

SendMessagesWithin(WCDist)

}

AA AB

AC AD

BA

BC

BB

BD

CA

CC

CB

CD

DA

DC

DB

DD

Object Y

Object X

Object Z

Query
Point q

WC-1, WC-2 distances
distances…

Figure 1 shows how a NN query proceeds using our
algorithm. The dark dots in the figure represent the 16 fmin
level control points for fmin = 2. Three objects X, Y, and Z
are represented by shaded rectangles. According to the
rules defining the MX-CIF quadtree and with fmin = 2,
object X is stored at level 2 with control points – BA, BB,
BC, and BD. Object Y is stored at level 2 with control point
AD and object Z is stored at level 3 with control point
DDA. The fmin level control point containing the query
point q is CC. We show two WC distances that are
computed by the algorithm. This is because the first control
point cannot locate any objects and reports that its children
also do not have any objects. In general, the WC criterion
should present a shrinking behavior when new, smaller and
closer blocks are investigated until an object is retrieved
from the top of the queue. But it can also expand without
requiring a change from our algorithm. This facilitates the
continuation of the algorithm for ranking. But expansions
for this criterion has an additional benefit for P2P systems.
As we cannot lock the whole P2P quadtree for a single NN
query, it is possible that while we traverse the quadtree, a
delete request can remove the spatial objects for a block
that has been previously inserted into the priority queue,
creating a need for expansions in the WC distance.

5. ANALYSIS
In this section, we compare our approach with the
sequential algorithm presented by Hjaltason and Samet

2003 for a P2P setting. To simplify the analysis, we assume
that:
a) We have a perfect MX-CIF quadtree with height h,

i.e., all leaves are at the same level,
b) The caching algorithm presented in Tanin et al. 2004

does not encounter any misses and hence, we do not
need to use the Chord methods for control point look-
ups, i.e., during the tree traversals,

c) The user runs the ranking process until completion,
d) Message passing is our main concern and in-memory

operations are negligible,
e) Messages are small and hence latency, rather than

message bandwidth is the main issue,
f) The latency is a constant to all the peers from any

given query initiating peer,
g) fmin = 0 (and fmax = h),
h) There is only one spatial object per leaf and there are

no spatial objects in the internal nodes,
i) The quadtree is formed over a square region, i.e., the

bounding box of the data is a square.

We believe that this analysis provides an insight as to how
the original and the new algorithms (for P2P settings)
differ. Yet, for a real-life comparison and for observing the
full benefits of the new algorithm, we need to run realistic
experiments with our work (which is stated as future work
on which we are currently focusing our efforts).

Figure 1. Spatial objects, control points, query point, and two WC fronts in a quadtree with fmin = 2.

Given our assumptions, the sequential version of the
algorithm (if implemented directly on the P2P quadtree
index presented in Tanin et al. 2004) will have to visit
every node of the tree in a sequential manner to rank all the
objects in the P2P system. Therefore this process has a
complexity of O(4h).

For our parallel algorithm, the closest NN will be found in
O(h) while each level will be visited in parallel. The
algorithm starts at the root and gradually focuses on one
part of the tree while restricting the WC incrementally.
Eventually we will reach to the leaves. The difference from
the sequential algorithm is that at every step of the descent
in the traversal of the tree, from one level to another, many
nodes will be visited in parallel, and many intermediate
nodes will have already been inserted into the priority
queue. These nodes will be used later on for ranking, i.e.,
finding the remaining objects in the order of their distance
to the query point. In fact, the blocks that contain the next
few NNs, given our assumptions, may have already been
visited while processing the current NN and the spatial
objects that they contain may have already been inserted
into the priority queue. When we process the objects and
blocks that have not been visited, all other blocks within a
WC will also be automatically visited, again in parallel.
This, given our initial assumptions for a perfect quadtree,
will lead to a wave of parallel expansions of the quadtree
blocks from the query point. This wave moves discretely
and there will be O(4h/2) increments. This is because there
are as many increments as there are number of leaves on
one dimension of the quadtree. At each increment, we will
need to process only a single level of the quadtree to reach
to the neighboring leaves. Hence, the overall complexity of
our algorithm will be O(2h). This is O(2h) faster than the
sequential algorithm if it was directly implemented on the
P2P network.

6. AN APPLICATION PROTOTYPE
We have implemented a two-dimensional prototype
application to demonstrate our algorithm. The application
facilitates insertion, deletion, range (or window queries as
they are commonly called in spatial databases or in GIS),
and NN queries for spatial data. It functions as a P2P
lookup service for a virtual city. Users can find events and
places of interest on this P2P application. The range queries
are implemented in a similar manner as they are described
in Harwood and Tanin 2003 where the P2P quadtree index
was introduced. NN queries, the focus of this paper, are
implemented using the NN algorithm presented above. The
user interface of the application consists of a map for a city
that comes with the application itself. We also have two
text boxes and some control functionality, e.g., query

buttons. The map is used to define rectangular objects (i.e.,
marking places in the city) to insert data into the P2P
network (e.g., events and locations of interest). For each
inserted object, a description text can also be entered into a
text box. For each query, feedback is given through another
text box. Only the original owner of an object can delete
the object while everyone in the P2P network can query or
insert objects. Screenshots of this P2P application are
shown in Figures 2 and 3. Figure 2 shows all the inserted
spatial objects as a result of a range query for an entire
district in a city after zooming in (as it is seen by one peer
in the network). To perform a NN query, the graphical user
interface allows the user to select a query point by selecting
a position on the map. Pressing the Neighbor Query button
retrieves the first spatial object that is nearest to the query
point. A screenshot of a NN query and a result is shown in
Figure 3. Many other features of this application are not
shown in this paper such as object insertions, retrieval of
details for a resultant object, etc.

 7. CONCLUSIONS AND FUTURE
WORK
Performing NN queries on spatial data is an important
operation. In many future P2P applications these queries
will require efficient algorithms to run on distributed data
structures. We have developed an efficient algorithm that
facilitates NN queries on spatial data in P2P networks. The
algorithm uses a P2P index that we developed in our earlier
work to find the spatial objects that is nearest to a query
point. Mainly by organizing a communication scheme for
the peers that can or cannot aid in executing the current NN
query, we restrict the number of messages passed between
the peers of the network while still continuing to utilize the
parallel processing power of the P2P network. At any
iteration of the algorithm, we basically maintain a parallel
front of viable nodes that can still contribute to the NN
query and hence we adapt the priority queue based solution
presented in Hjaltason and Samet 2003 for distributed
environments. Our algorithm has been implemented in a
prototype P2P application that provides a lookup service
for a P2P virtual city. Although the implementation has
been in a two-dimensional setting, it can be easily extended
to higher dimensions. In addition to this, although it is
implemented on a P2P quadtree index, the algorithm can
easily accommodate a P2P R-tree index. We are currently
in the process of experimenting with our work. A
comparison of different versions of the algorithm using
various different parallel front metrics and indices will be a
fundamental contribution to the area of distributed
computing and spatial data management.

Figure 2. Screenshot of a range query for a region after zooming in to a certain district in a city; showing all existing

spatial objects in the P2P network for that district (the three dark rectangles).

Figure 3. Screenshot of a NN query (the cross represents the query point and the rectangle represents the nearest spatial
object; further clicks on the “Neighbor Query” butt on can be used to continue to rank other hits to a query).

8. REFERENCES
[1] F. Banaei-Kashani and C. Shahabi. SWAM: A Family

of Access Methods for Similarity-Search in Peer-to-
Peer Data Networks, Proceedings of the Conference
on Information and Knowledge Management - ACM
CIKM, Washington, DC, November 2004, pages 304-
313.

[2] M. Batko, C. Gennaro, P. Savino, and P. Zezula,
Scalable Similarity Search in Metric Spaces,
Proceedings of the DELOS Workshop on Digital
Library Architectures: Peer-to-Peer, Grid, and
Service-Orientation, Edizioni Libreria Progetto,
Padova, Italy, June 2004, pages 213-224.

[3] M. Batko, C. Gennaro, and P. Zezula, A Scalable
Nearest Neighbor Search in P2P Systems, Proceedings
of the 2nd International Workshop on Databases,
Information Systems, and Peer-to-Peer Computing
(held in conjuction with VLDB), Toronto, Canada,
August 2004, pages 64-77.

[4] M. Demirbas and H. Ferhatosmanoglu, Peer-to-Peer
Spatial Queries in Sensor Networks, Proceedings of
the 3rd IEEE International Conference on Peer-to-Peer
Computing, Linkoping, Sweden, September 2003,
pages 32-39.

[5] Harwood and E. Tanin, Hashing Spatial Content over
Peer-to-Peer Networks, Proceedings of the Australian
Telecommunications, Networks, and Applications
Conference - ATNAC, Melbourne, 2003.

[6] G. R. Hjaltason and H. Samet, Index-Driven Similarity
Search in Metric Spaces, ACM Transactions on
Database Systems, December 2003, Vol. 28, No. 4,
pages 517–580.

[7] G. Kedem. The Quad-CIF Tree: A Data Structure for
Hierarchical Online Algorithms, Proceedings of the
19th Design Automation Conference, Las Vegas, NV,
June 1982, pages 352-357.

[8] Mondal, Yilifu, and M. Kitsuregawa, P2PR-tree: An
R-tree-based Spatial Index for Peer-to-Peer
Environments, Proceedings of the International

Workshop on Peer-to-Peer Computing and Databases
(held in conjunction with EDBT), Heraklion-Crete,
Greece, March 2004, pages 516-525.

[9] N. Roussopoulos, S. Kelley, F. Vincent, Nearest
Neighbor Queries, Proceedings of the ACM SIGMOD
Conference, San Jose, CA, May 1995, pages 71-79.

[10] O. D. Sahin, F. Emekci, D. Agrawal, and A. E.
Abbadi, Content-Based Similarity Search over Peer-
to-Peer Systems, Proceedings of the International
Workshop on Databases, Information Systems, and
Peer-to-Peer Computing (held in conjuction with
VLDB), Toronto, Canada, August 2004, pages 46-63.

[11] H. Samet. Foundations of Multidimensional and
Metric Data Structures, Morgan-Kaufmann, San
Francisco, CA, 2005.

[12] H. Samet, Depth-First K-Nearest Neighbor Finding
Using the MaxNearestDist Estimator, Proceedings of
the International Conference on Image Analysis and
Processing, Mantova, Italy, September 2003, pages
486-491.

[13] H. Samet. The Design and Analysis of Spatial Data
Structures, Addison-Wesley, Reading, MA, 1990.

[14] K. Sevcik and N. Koudas. Filter Trees for Managing
Spatial Data over a Range of Size Granularities,
Proceedings of the International Conference on Very
Large Data Bases - VLDB, Mumbai, India, September
1996, pages 16-27.

[15] Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M.
F. Kaashoek, F. Dabek and H. Balakrishnan, Chord: A
Scalable Peer-To-Peer Lookup Protocol for Internet
Applications, IEEE/ACM Transactions on
Networking, February 2003, Vol. 11, No. 1, pages 17-
32.

[16] E. Tanin, A. Harwood, H. Samet, S. Nutanong, and M.
Truong, A Serverless 3D World, Proceedings of the
Symposium on Advances in Geographic Information
Systems - ACM GIS, November 2004, Arlington, VA,
pages 157-165.

