IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. XX, XXXXXXX 2010

Query Processing Using Distance Oracles
for Spatial Networks

Jagan Sankaranarayanan, Member, IEEE, and Hanan Samet, Fellow, IEEE

Abstract—The popularity of location-based services and the need to do real-time processing on them has led to an interest in
performing queries on transportation networks, such as finding shortest paths and finding nearest neighbors. The challenge here is
that the efficient execution of spatial operations usually involves the computation of distance along a spatial network instead of “as the
crow flies,” which is not simple. Techniques are described that enable the determination of the network distance between any pair of
points (i.e., vertices) with as little as O(n) space rather than having to store the n? distances between all pairs. This is done by being
willing to expend a bit more time to achieve this goal such as O(logn) instead of O(1), as well as by accepting an error ¢ in the accuracy
of the distance that is provided. The strategy that is adopted reduces the space requirements and is based on the ability to identify
groups of source and destination vertices for which the distance is approximately the same within some e. The reductions are achieved
by introducing a construct termed a distance oracle that yields an estimate of the network distance (termed the c-approximate
distance) between any two vertices in the spatial network. The distance oracle is obtained by showing how to adapt the well-separated
pair technique from computational geometry to spatial networks. Initially, an e-approximate distance oracle of size O(%) is used that is
capable of retrieving the approximate network distance in O(logn) time using a B-tree. The retrieval time can be theoretically reduced
further to O(1) time by proposing another s-approximate distance oracle of size O(%) that uses a hash table. Experimental results
indicate that the proposed technique is scalable and can be applied to sufficiently large road networks. For example, a 10-percent-
approximate oracle (¢ = 0.1) on a large network yielded an average error of 0.9 percent with 90 percent of the answers having an error
of 2 percent or less and an average retrieval time of 68 i seconds. The fact that the network distance can be approximated by one value
is used to show how a number of spatial queries can be formulated using appropriate SQL constructs and a few built-in primitives. The
result is that these operations can be executed on almost any modern database with no modifications, while taking advantage of the
existing query optimizers and query processing strategies.

Index Terms—Road networks, distance oracle, query processing.

<+

1 INTRODUCTION

THE popularity of web-based mapping applications such
as Mapquest, Yahoo Maps, and the subsequent en-
hancements available in Google Maps and Microsoft Live
Search, as well as the increasing pervasiveness of GPS-
enabled devices such as PDAs, have led to an expectation of
real-time execution for queries on transportation networks,
such as computing shortest paths and finding nearest
objects from a set R (e.g., restaurants, department stores,
and gas stations). For example, suppose that we found the
shortest distance from gas station A to the nearest
restaurant B, which serves Italian food, and we wish to
determine how much farther it is to go to another
restaurant C, which serves Chinese food.

The challenge is that these operations involve the
computation of distance along a spatial network instead of
“as the crow flies,” which is not simple. Our overall goal is to
be able to determine the network distance between any pair
of points (i.e., vertices) without having to store the
n? distances between all pairs. We are willing to expend a

o The authors are with the Center for Automation Research, Institute for
Advanced Computer Studies, Department of Computer Science, University
of Maryland, Bldg 116, College Park, MD 20742.

E-mail: {jagan, hjs}@cs.umd.edu.

Manuscript received 15 May 2009; revised 30 Sept. 2009; accepted 12 Nov.
2009; published online 20 Apr. 2010.

For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number
TKDESI-2009-05-0435.

Digital Object Identifier no. 10.1109/TKDE.2010.75.

1041-4347/10/$26.00 © 2010 IEEE

bit more time to achieve this such as O(log n) instead of O(1)
as well as accept an error ¢ in the accuracy of the distance
that is provided. The strategy that we follow reduces the
space requirements to as low as O(%), and is based on the
ability to identify groups of source and destination vertices
for which the distance is approximately the same within
some e. In particular, the O(%) space comes at a cost of
O(logn) execution time, while greater reductions in the
execution time to O(1) can be achieved at a cost of
O™ lgf”) space, which is shown in [1]. Of course, we could
always obtain an answer in O(1) time and no extra space by
simply approximating the network distance by using the
euclidean distance (i.e., as the crow flies) which can be
calculated on the fly; but the error is generally unacceptable.
In addition, these operations must be capable of being
executed in an interoperable database environment which,
at the minimum, means that they be accessed in a standard
manner. Currently, SQL is the most commonly adopted
interface to a database, and thus any solution that we
propose must support the formulation of the operations
using SQL.

Moreover, the requirement that these distances be
computed in real-time precludes the use of conventional
graph-based algorithms (e.g., the INE and IER methods [2]
and improvements on them [3], and hierarchical graph
methods [4], [5]) which usually incorporate Dijkstra’s
shortest path algorithm in at least some parts of the solution
[6]. It is well known that the problem with Dijkstra’s

Published by the IEEE Computer Society

algorithm is that although it reports the shortest path from a
starting vertex w to every other vertex v in increasing order
of distance from v, it must visit every vertex that is closer to
w via the shortest path from w than the vertices associated
with the desired objects in R. Thus, it ends up visiting a
very large number of the vertices, even though the shortest
paths to the objects in R do not pass through them. Methods
such as the transit node routing of Bast et al. [7] and the
landmark approach of Golberg and Harrelson [8] can
significantly speedup shortest path computations on large
road networks, up to several orders of magnitude com-
pared to Dijkstra’s algorithm. However, there are significant
differences between distance oracles and these shortest path
finding methods. Distance oracles are unique in the sense
that they completely abstract away the graph properties of
spatial networks. Thus, finding the network distance
between two vertices is a simple lookup (select operator)
on a relation in a database system. Methods such as [7], [8]
still involve searches on graphs during runtime, which are
hard to perform in the context of a database system as
shortest path finding on a graph cannot be expressed easily
using relational operators, which makes it hard to imple-
ment these algorithms inside a database system. Moreover,
the real utility of the distance oracle lies in its ability to
perform a variety of queries on a spatial network and its use
in complex query scenarios; approximate network distance
query being just one of them.

A drastic alternative to the use of Dijkstra’s algorithm is
to precompute and store the shortest paths between all
possible vertices in the spatial network. The drawback of
this approach is that, for n vertices, the amount of storage
could be as high as O(n?). The necessary storage can be
reduced to O(n?) by taking advantage of the fact that the
shortest paths from vertex u to all remaining vertices can
be decomposed into subsets based on the first edges on the
shortest paths to them from w [9], [10], [11]. The cost is a
slower process of retrieving the shortest path which makes
use of a sequence of point location operations (e.g., [6]). We
have shown that the storage necessary for these subsets can
be reduced substantially further to O(n'?) [9], [10], [12] by
noting the spatial coherence of the subsets and represent-
ing them using a shortest path quadtree, which is a variant
of the region quadtree, where the blocks are decomposed
until all vertices in the block are in the same subset. Note
that the use of the quadtree in that context is primarily to
take advantage of its dimension-reducing property [13] to
decrease the storage requirements.

The above algorithms exploit the spatial coherence of the
destination vertices of the spatial network to reduce the
storage requirements of the collection of precomputed
shortest paths from a specified source vertex. In this paper,
we continue our work [9] by showing how to also take
advantage of the spatial coherence of the source vertices to
further reduce the space requirements. In particular, we
observe that given a set of source vertices A and a set of
destination vertices B such that A and B are sufficiently far
away from each other, while the vertices comprising them
are close to one another, then the shortest paths between
them may share common vertices, which in turn implies
that the network distance between any source vertex in A to

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. XX,

XXXXXXX 2010

Fig. 1. The 30,000 shortest paths between all pairs of vertices in sets A
and B in the spatial network of Silver Spring, MD, are marked in a darker
shade. These network distances can be approximated by a single value
as their shortest paths have many vertices in common.

any destination vertex in B will more or less be the same.
Fig. 1 is an example of such a configuration where all the
30,000 shortest paths between vertices in A and in B have
many vertices in common, while the network distances
between them can be approximated by a single value.

The techniques that we develop in this paper are based
on our inference that given our assumptions on the
proximity of the vertices that comprise A and those that
comprise B, and the lack of proximity between A and B,
that the network distance to the vertices in A from the
vertices in B will more or less be similar and can be
approximated by a single value (termed the path coherence
property [9], [10], [14]). The novelty of our approach is that in
the case of the computation of the distance between two
vertices, we show how to correlate the extent of this
reduction of the space requirements with the approximation
error in the value of the distance that is obtained. This is
achieved via the introduction of a more general construct,
termed an approximate distance oracle for spatial networks,
that is capable of responding to network distance queries
between any two vertices of the spatial network with a
specified approximation e—that is, given a start vertex u
and a destination vertex w in spatial network G, the
network distance S:(u,w) produced by the oracle S. is no
more or less than an e fraction of the actual network
distance dg(u,w) between u and w in G.

The use of a single value to approximate these distances is
based on our observation that the distance distortion (i.e., the
ratio of the network distance to the spatial distance between
two vertices in a spatial network) decreases as the separation
between the vertices increases and our demonstration that it
has a reasonable bound. Assuming d-dimensional data
(usually d = 2), the latter, coupled with the path coherence
property, enable us to devise an O(%) size oracle represented
using a B-tree that is capable of retrieving the e-approximate
network distance in O(logn) time with a deterministic
guarantee on the error. An alternative oracle that can reduce
the retrieval time further to O(1) with an increase in space to
O(™2%:") using a hash table is possible [1]. Regardless of the
size of the oracle that is used, we take advantage of the fact
that the network distance can be approximated by one value
to show how a number of spatial queries can be formulated
using appropriate SQL constructs and a few built-in
primitives. The result is that these operations can be
executed on almost any modern database with no modifica-
tions, while taking advantage of the existing query optimi-
zers and query processing strategies.

SANKARANARAYANAN AND SAMET: QUERY PROCESSING USING DISTANCE ORACLES FOR SPATIAL NETWORKS 3

We achieve our results by showing how to efficiently
represent the network distance between the spatially coher-
ent collections of source vertices and the spatially coherent
collections of destination vertices. This is done by showing
how to adapt the notion of a well-separated decomposition
of a point set, originally proposed by Callahan and Kosaraju
[15] for a point set and used by others (e.g., [16], [17]), to a
spatial network.

One way of evaluating the significance of our work lies
in determining the extent to which we can improve on the
storage costs that we obtained in our earlier work [9]
where we represent the spatially coherent destination
vertices by a shortest path quadtree, which had a factor
of O(n%9). Clearly, if we choose ¢ to be very small, then our
space requirements, which, although appearing to be linear
(ie., O(n/e?)), will become sufficiently large to counteract
any advantage drawn from the use of this linear-size
oracle. However, the execution time of the distance
computation process is also quite low when using the
linear-size oracle as the shortest path quadtree method [9]
does not explicitly store the distances between the vertices
(instead, it stores distance intervals), and thus whenever it
needs to compute the distance between a pair of vertices, it
must compute the shortest path between them (with a
possible halt once the required approximation error
threshold is attained). This usually involves a large number
of refinement operations, which can be slow.

At this point, we mention a few related methods, but we
first present a few definitions. A spatial network can be
abstracted to form an equivalent graph representation
G = (V,E), where V is the set of vertices, E is the set of
edges, n = |V|, and m = |E|. Given e € E, w(e) > 0 denotes
the distance along that edge. In addition, for every ve V,
p(v) denotes the spatial position of v with respect to S, a
spatial domain, also referred to as an embedding space (i.e., a
reference coordinate system). We define the network distance
dc(u,v) to be the distance along the shortest path between u
and v in the spatial network. Similarly, we define the spatial
distance dg(u,v) to be a function of the position of the
vertices u and v on the embedding plane. For example, in
the case of a road network the network distance between
two vertices is the shortest distance in miles, or the time
taken to travel the road network, while the spatial distance
(e.g., “crow flying” distance) is a function of latitude/
longitude positions of the vertices.

Furthermore, we assume that for some spatial networks
(e.g., the road networks), the network distance between any
two vertices is bounded from above and below by two
constants v, vy (presumably large), such that

L < M < ym; YLy > 0.
S (’U,, U)
The constants v;,vy are termed the minimum and max-
imum distortions of G. Narasimhan and Smid [18] provide a
simple technique for estimating the value of vy for euclidean
networks which is easy to adapt to spatial networks. Our
experiments show vy to be large for road networks.

The technique that we propose is similar to the RNE
technique of Shahabi et al. [19] and an improvement to it
by Kriegel et al. [20] who apply a Lipschitz embedding [21]
to spatial networks. The RNE technique embeds the vertices
of the spatial network in a high-dimensional vector space,

so that vertices of the spatial network are now points in a
high-dimensional vector space. A simpler distance mea-
sure (e.g., L., metric) between these high-dimensional
vector space points approximates the network distance
between the corresponding vertices in the spatial network.
The RNE technique uses O(n+/n) storage, has a distortion
of O(logn) and an approximate network distance query
takes O(y/n) time. On the other hand, our linear-size oracle
can also be viewed as an embedding technique with the
difference that the vertices are retained in their original
embedding space (i.e., two-dimensional for road net-
works), while having superior space and execution times
and a distortion that lies between (1 — ¢) and (1 + ¢). This
bounded distortion, instead of being a function of n, is
what leads to the linear size of our oracle in contrast to
RNE’s O(n+/n) storage requirements. Another difference
between our proposed method and that of Shahabi et al.
[19] and Kriegel et al. [20] is that our distance oracle
decouples the spatial network from the objects that lie on it.
Thus, once an approximate distance oracle of a spatial
network has been computed, it can be reused for any data
set lying on the spatial network, which is not the case for
the other methods.

The concept of an approximate distance oracle has been
proposed for a variety of graph networks. Thorup and
Zwick [22] show that it is possible to construct an
approximate oracle of size O(kn'*#) for general graphs that
can answer approximate distance queries in O(1) time. The
distortion of the approximate oracle of Thorup and Zwick
lies between 1 and (2k—1), where k£ >1 is an integer.
Gudmundsson et al. [17] construct an approximate oracle of
size O(nlogn) for geometric t-spanner graphs, such that the
shortest path queries can be performed in O(1) time with a
distortion of (1+¢). Gao and Zhang [16] propose an
approximate oracle of size O(nlogn) for unit-disk graphs
that can retrieve approximate network distance in
O(1) time, with a distortion of (1+¢). Our work goes
beyond the work of Gudmundsson et al. [17] on geometric
t-spanners and Gao and Zhang [16] on unit-disk graphs by
dealing with spatial networks, while taking advantage of
the spatial positions of the vertices to provide efficient
search structures, such as B-trees, and hash tables, to the
oracle.

The rest of this paper is organized as follows: Section 2
reviews the well-separated pairs technique. Sections 3 and
4 describe oracles of unit, O(%), and O(&%’”) sizes,
respectively. Section 5 discusses strategies to integrate the
distance oracle into a database system, while Section 6
shows how to optimize queries involving distance oracles.
Finally, Section 7 contains the results of experiments, while
concluding remarks are drawn in Section 8.

2 WELL-SEPARATED PAIRS

Given a set of points A, the diameter of A is the maximum
possible distance between any two points belonging to A.
Similarly, given two sets of points A and B, the separation
distance between A and B is the distance between a point in
A and a point in B, both of which are chosen at random.
Two sets of points A and B are said to be well separated if the
separation distance between A and B is at least s - r, where
s > 0 is a separation factor and r is the larger diameter of the

L
1 0 %a 1%
d a d O
Z
c L_|IP m— ce CJ —
M M
0 N 0 WV
dhe b e UL
a oQ l a aQ
a b [d e ab c d e

(a) (b)

Fig. 2. Example of a well-separated pair decomposition (WSPD) of a
one-dimensional point set containing five points. The separation factors
for the decompositions are (a) s =1 and (b) s = 0.25.

two sets. The pair (4, B) is termed a well-separated pair
(WSP). A WSPD of a point set R, decomposes R into pairs of
subsets (A4, B), such that Vp,q € S, p # ¢, there exists exactly
one WSP (A, B), such that p € A, ¢ € B. The simplest WSPD
of a point set R of n points contains n - (n — 1) pairs of
singleton element subsets (p,q) Vp,q € S,p # q. The key
motivation for using WSPD is that for data of dimension d,
and a separation factor s, we can always construct a WSPD
containing O(ns?) pairs in O(nlogn + ns?) time [23], which
can be further reduced to O(n) time [24] under some
conditions. Thus, the number of pairs is reduced to O(n) as
s is usually a fairly small constant independent of n.

As an example, consider the set of five one-dimensional
points a, b, ¢, d, and e at positions 1.5. 3.5, 9.5, 12.5, and 14.5,
respectively. There are a number of possible WSPDs for this
data set. Letting s =1, one decomposition consists of
M = ({d,e},{c}), N=({cd e} ,{ab}), O=({a} {b})P =
({a,b},{c,d,e}), Q@ = ({b},{a}), R=({c},{d,e}), T = ({e},
{d}), and U = ({d},{e}). This decomposition can be
visualized by treating the individual pairs that make up
the WSPD as rectangles in a two-dimensional space, where
the axes correspond to the elements that make up the two
sets involved in the WSP. For example, Fig. 2a illustrates the
WSPD described above for s =1, while Fig. 2b illustrates
another decomposition for the same points with s = 0.25.
Notice that from the figure, we can see that any vertical (or
horizontal) line L through one of the points, say p (e.g., b in
Fig. 2a), will cut the disjoint rectangles through which it
passes so that the projection of their constituent points onto
the y (or z) axis covers all of the points in R with the
exception of p which means that, given any point p/,p’' # p,
in the data set, there is exactly one WSP A, B in the WSPD
such that p € 4 and p' € B. Also observe that just because
the WSP (A4, B) is a member of a WSPD does not necessarily
mean that the symmetric pair (B, A) need be a member of
the same WSPD. For example, consider the WSPD in Fig. 2b
where the symmetric pairs of Z = ({a,b,c},{d e}),
M = ({d,e},{c}), and V = ({d, e}, {a, b}) are not present.

3 ORACLES OF UNIT SIzE

We first assume that the ratio, termed distortion, between
the network and spatial distances between any source
and destination vertices in spatial network G is bounded
both from above and below. Next, we show how these
bounds can be computed. Note that given any finite
spatial network G, the upper and lower bounds on the
distortions are finite as well.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. XX, XXXXXXX 2010

Assumption 1. Given s,t € V, v < (s <7

~vu > 0, albeit large.

Y, where vy, and

Given a spatial network G(V, E), Lemma 3.1 provides a
simple method to determine the minimum ~;, distortion of G.
Lemma 3.1. The minimum -y, distortion of a spatial network

G(V,E) contumzng m edges sutzsfymg Assumption 1,

given by: v; = min" {7 ol :r‘,ﬂ;:jl }, where <m;,miy1> s the

ith edge in G.

Proof. Let 7 be a shortest path of length p in G. Let 7; be the
ith vertex in 7, such that 7 is the source vertex and 7,1
is the destination vertex. Suppose that the distortion v =
y= % of 7 is the minimum possible distortion

among the O(n?) shortest paths in G. Now, let 7} be the

distortion of the ith edge ¢; = (m;, m;4;) in ™ comprising
the shortest path 7. We know that

Z% ds(mi, miz1), (1)

dG(ﬂ-la 7Tp+1) deb 1, 7rp+l

M=

ds(m1, mpe1) = %"dg(m, Tir1)- (2)

i=1
Note that in (2), from our initial assumption, /’, > 1. From
the triangle inequality, we have that

p
ds(m1,mpe1) < da(mi, misa). (3)
i=1

Combining (2) and (3), we get

P P
7
d 7Tl,7fp+1 Z; 7Tz,7Ti+1) < st(ﬂi,ﬁz‘+1)«
i=1 =1

Hence, v=17 =7 =73~ =7,. This means that 7,

can be estimated by simply examining the minimum

distortion value of the m edges in E. In other words,

L = min]", 5; 1’;: } such that <m;, 71> is the ith

edge in E. O

Narasimhan and Smid [18] provide an algorithm that is
based on a WSPD of vertices for estimating an upper bound
on the maximum distortion of a spatial network. We omit
the description of the algorithm in this paper and provide a
lemma below which captures their result.

Lemma 3.2. Given a spatial network G, we can compute an
upper bound ~j of the maximum distortion vy of G in
O(nlogn) time such that ~;; < (1 +6)yy and 6, 0 < 6 < 3,
is the desired approximation [18].

We define a simple approximate distance oracle that uses
the values of v, and vy to provide an approximate network
distance between two vertices, though with a large
approximation error.

Theorem 3.3. Given a spatial network G(V, E) with minimum
v and maximum ~g distortions, S. = {yp,yu} is an
e-approximate distance oracle of unit size such that the
approximate network distance between a source vertex u and a
destination vertex v is given by S.(u,v) =L dg(u,v),

where ¢ < jH +f, which can be computed in O(1) time.

SANKARANARAYANAN AND SAMET: QUERY PROCESSING USING DISTANCE ORACLES FOR SPATIAL NETWORKS 5

The drawback of the above oracle is that the resulting
error is dependent on the nature of the input spatial
network G as the values of v;, and vy may vary for different
G. Moreover, vy can be quite large which means that the
resulting error of the distance oracle is also very large, close
to 100 percent. Hence, S, is unsuitable for any meaningful
query processing on spatial networks.

Distortion spectrum. The behavior of the unit size oracle
in Theorem 3.3 can be improved by noting that the
minimum and the maximum distortion values of a spatial
network depend on the spatial distance between a given
source s and destination u. That is, usually for small spatial
distances on G, the distortion values are large. However,
distortion values quickly decrease as the spatial distance
between the source and the destination increases. We can
capture this relationship between the spatial distance and
the distortion using a distortion spectrum, which provides the
minimum and the maximum distortion values for different
ranges of values of the spatial distances on G. The idea in
capturing the distortion spectrum of a spatial network,
instead of just computing the minimum ~; and maximum
~u distortion values of G, is that the resulting oracle while
still taking O(1) space and answering queries in O(1) time,
will provide better approximations, at least for large spatial
distances on G.

Given a spatial network G, we first compute the spatial
distance between the closest d. and the farthest d; pairs
(diameter) of vertices in V. We then break up the spatial
distance interval [d,, d] into [arbitrary subintervals. Now for
each of the [distance intervals, the minimum and maximum
distortion values are computed using an algorithm similar to
that of Narasimhan and Smid [18], except that we prune
away WSPs that do not lie inside the specified spatial
distance interval. The distortion spectrum of G stores
[spatial distance intervals and their corresponding mini-
mum and maximum distortion values. Our experimental
analysis confirms our earlier hypothesis that large distor-
tions occur at small spatial distances. Moreover, the distor-
tion values quickly reduce to smaller values as the sources
and destinations get farther. An approximate distance oracle
S. defined using the distortion spectrum of G would provide
better approximation, at least when s and u are far apartin G.

4 O(Z) DISTANCE ORACLE

Given a source vertex u and a destination vertex w, an
¢-approximate distance oracle S. provides an e-approx-
imate network distance S:(u,w) such that:

(1—=e)-S(u,w) <dg(u,w) < (1+¢)-S:(u,w).

S: takes advantage of the path coherence in spatial
networks which states that shortest paths from proximal
sources to proximal destinations share common vertices.
This can be seen in Fig. 1 and was discussed in Section 1.
We define a distance oracle S; of a spatial network as
follows: S. ={(Z4,Zp,d.)|Zs,Z5 C V,d. € R"}. That is,
we partition V into triples of the form (Z4,Zp,d.) such
that Z4 is a set of source vertices, Zp is a set of destination
vertices, and d. is a value that approximates the network
distances of all the shortest paths from sources in Z, to

destinations in Zp. The partitioning of the vertices into
appropriate subsets of source and destination vertices is
achieved by appealing to the well-separated pair decom-
position [23]. This section specifies conditions under which
it is satisfied for a spatial network.

The e-approximate network distance between a source u
and a destination w is obtained by searching S, which is
indexed by a B-tree, for a triple (Z4, Zp,d.) such that Z4
contains u and Zp contains w, in which case, d. is the
g-approximation of the network distance between u and w. In
this section, we develop such a distance oracle S; thatis linear
in the number of vertices in G, and can produce an
e-approximate network distance in O(logn) time using a
B-tree.

4.1 Preliminaries

Given a point set R in a d-dimensional space, there are
many ways of constructing a WSPD on R. In essence, we do
so by finding the well-separated pairs of blocks resulting
from building a PR quadtree [6], [25] T on R. For simplicity,
we assume that R is contained in a unit [0, 1] d-dimensional
hypercube. This hypercube forms the root block of the PR-
quadtree 7" on R. The PR-quadtree is obtained by
recursively decomposing the block into 2¢ congruent
children blocks. The process continues until each block
contains at most one point. Unfortunately, if two points in R
are close to one another, it may lead to a long path of trivial
blocks of which only one block would form an internal
node. This problem is avoided in Callahan and Kosaraju’s
construction [15] as they used a fair-split tree which is a
data-dependent decomposition, very much in the spirit of
the point quadtree [6]. Fischer and Har-Peled [26] avoid this
problem by using a variant of a path-compressed quadtree
which is obtained from the PR-quadtree by compressing
such trivial paths into one compressed link. The advantage
of the path-compressed quadtree over the PR-quadtree is
that its use yields a tree with a total of O(n) blocks.

In this paper, we restrict our discussion to a spatial
network that is embedded in a two-dimensional space (e.g.,
road networks) where the objects are points specified by their
location in terms of, say, latitude and longitude. Never-
theless, many of the definitions apply to d-dimensional data
and hence our discussion is often in terms of d. The usual
implementation of a quadtree makes use of an access
structure in the form of a tree of out degree C' = 2¢ (four in
two dimensions), which implies the existence of a pointer-
based explicit search hierarchy. Such a structure, which uses
memory-based pointers, is not suitable for disk-based
quadtree data structures. There are a number of alternative
access structures to the pointer-based tree structure. The one
that we use represents the quadtree as a collection of the leaf
nodes (i.e., blocks) that comprise it. The basic idea is that each
leaf is encoded by a pair of numbers. The first corresponds to
the depth of the tree at which its corresponding node appears
(also referred to as its level), while the second is a base 4
number corresponding to a sequence of digits whose values
are directional codes that locate the leaf along a path from the
root of the quadtree. Assuming a two-dimensional square
universe of side length 2" (i.e., containing 2™ x 2" unit-sized
elements called pixels), it is analogous to taking the binary
representation of the interleaved values of the z and y

0 1|45 16[17[20]21
2 3|6 |7 |18]19|22]23
8 9 |12]13]24]25| 2829
1011|1415 | 26|27 | 30 |31
321333637 | 48] 49| 52|53
34]35|38 39|50 |51 54|55
404144 /45| 56(57 |60 |61
424346 4758|5962 |63

Fig. 3. Example of the Morton code mapping for the two-dimensional
grid [0:7,0:7].

coordinates of a designated pixel in the block (e.g., the one at
the upper left corner when the origin is at the upper left
corner of the 2 x 2™ universe) and interleaving them (i.e.,
alternating the bits for each coordinate value), with the result
called a Morton code. We can simplify the representation by
combining the depth (level) with the base 4 number
corresponding to the path so that the depth is at the left to
yield what is termed a Morton block, say t whose components
are referenced by LEVEL(¢) and CODE(t), respectively.

What we have done above is to construct a mapping from
the multidimensional space containing the quadtree blocks
to a one-dimensional space. We now show how to apply the
same type of mapping to points. Without loss of generality,
we assume that the points are drawn from R, the unit [0, 1]*
square. Scaling the universe to be alarge square of side length
2™, for each point p in R, we can obtain its Morton code Z(p)
by using the following mapping Z(p) : R — N. Letting, p;
be the ith dimension of p, we have that B(p;) = p; * 2™ is bit
representation of p; of length m. We define an integer dilation
function E, such that E(B(p;)) spreads the bits of B(p;) apart
with d — 1 zeros. For example: for d =2, E(111) = 10101,
where 111 and 10101 are binary numbers. The Morton code
of p is obtained by shifting F(B(p;)) by ¢ bits to the left and
adding the shifted results (i.e., 7 (E(B(pi)) < i)). Fig. 3
shows the Morton code mapping for a set of points drawn
from the two-dimensional grid [0:7,0:7], which yields an
ordering of the underlying space. Notice how each point has
been mapped to a unique point in the interval [0:63].

For all practical cases, we restrict the length of the
Morton code to 58 bits (29 each for x and y-dimensions) and
assign 6 bits to encode the level (i.e., depth) of the Morton
code, thereby, yielding a resolution of roughly 7.46 cm at
the Equator of the Earth. This means that the level and the
code that define the Morton block of each leaf block or point
are packed into a single 64 bit-integer, thereby, taking
advantage of the bit-level parallelism in 64 bit machines and
achieved only using bit operations. In addition, we define
another transformation function Z;: (IR? IR?) — N that
transforms a pair of two-dimensional points into a 128 bit
Morton block. In this case, 30 bits are assigned to each of the
four dimensions with 8 bits assigned to storing the level.

Once the Morton blocks of the quadtree is computed,
they are sorted using a Z or Morton ordering [6], [27], [28]
(described in the following paragraphs) and stored on disk.
The Z-order or Morton Order is an example of a space-
filling curve on R, which takes a set of multidimensional
objects and maps them to a one-dimensional space.
Furthermore, given two Morton blocks p and ¢, we can

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. XX, XXXXXXX 2010

arrange p and ¢ based on their relative positions in a Z-
order space-filling curve using the <z operation in O(1)
time. Note that p appears before ¢ in the space-filling curve
only if: p <7 ¢, <= CODE(p) < CODE(q). Note that if p and
q are at different levels, then we first chop off the least
significant bits from the CODE of the longer of p and ¢
before numerically comparing them. Now, two Morton
blocks p and ¢ are said to be equal (i.e., p =z g is true) only if
p contains g, or ¢ contains p. This can be achieved using bit
operations by first making the Morton blocks be at the same
LEVEL and then numerically comparing the CODE fields of p
and ¢ for equality.

When applying the WSPD on the set of vertices V' on a
spatial network, our discussion does not need to resort to the
path-compressed quadtree while still using regular decom-
position because of certain assumptions that we make about
the distribution of the vertices in the embedding space. In
particular, letting A be the ratio of the diameter of the set of
vertices V' to the distance between the closest pair of vertices
in V and letting T be a PR-quadtree on V, the height h of T"is
O(log A). Consequently, given a vertex v in V, the Morton
code of p(v), the spatial position of v, would be O(log A) bits
long. Assuming, without loss of generality, that the closest
pair of vertices are one unit apart and that the embedding
space is two-dimensional, we can pack as many as %2 vertices
into our domain, where each vertex is in a cell of the
appropriate width. Therefore, A is at least O(1/n) so that the
domain is large enough to accommodate at least » points. In
our analysis, we assume that not all of the cells have vertices
associated with them. In particular, we allow for A to be as
large as O(n) (i.e.,, number of possible point positions is
O(n?)), which is not unreasonable as demonstrated by our
experiments with real road networks. To cast this quantity in
terms of n, we note that even if the data are heavily skewed so
that A is O(n), the length of the Morton code representation of
v would still be O(logn). We claim that this assumption fits
closely with the nature of real road networks.

The decomposition of R into WSPs is a realization on T,
i.e., subsets A;, B; of R forming a WSP (4, B;) in R® R are
pairs of blocks in R. The algorithm decomposes R into
WSPs using T' and s (i.e., the separation factor) as inputs.
The algorithm uses a list @) that is initialized to the pair
(T, T) corresponding to the root of the quadtree on R. In
each iteration of the algorithm, a pair (A, B) of blocks in T is
retrieved from Q. If (A, B) is well separated, it is reported as
a WSP. Otherwise, new pairs are obtained by replacing A
and B with their 27 children blocks, which are inserted into
Q. The algorithm terminates when @ is empty.

Suppose that a pair (u,v) is reported as a WSP by the
algorithm. This would indicate that (P(u), P(v)) is not well
separated, where P(b) denotes the parent block of a block b.
Suppose further that the maximum possible diameter of
P(u) (or P(v)) is x. The total number of blocks that are not
well separated from P(u) is bounded by the number of
blocks of diameter = that are contained within a hyper-
sphere of diameter (2s+ 1)z centered at P(u), which
contains a maximum of O(s?) blocks. Since T has
O(n) nodes, the algorithm creates a maximum of O(s%n)
WSPs. This result and proof sketch is due to Callahan and
Kosaraju [15] and we restate it below as Lemma 4.1, which
is referenced in the subsequent discussion.

SANKARANARAYANAN AND SAMET: QUERY PROCESSING USING DISTANCE ORACLES FOR SPATIAL NETWORKS 7

Lemma 4.1. Given a point set R containing n d-dimensional
points, a fixed separation factor s > 2, the WSPD of R, S® S
has O(s%n) WSPs [15].

4.2 Construction of the Oracle

We now describe an algorithm to construct the distance
oracle S, of a spatial network G(V, E). The algorithm takes
a spatial network G(V, E), a PR-quadtree T on the spatial
position of the set of vertices V' as inputs, the desired
approximation ¢, and produces a set L of triples
(Za,Zp,d.), such that Z,,Zp are Morton blocks in 7" and
moreover, Z, and Zp are nonoverlapping. A triple
(Z4, Zp, d.) in the output has the property that the network
distances between source locations in Z4 to destination
locations in Zp can be approximated by d.. The output list L
is initially empty. The value of d. is obtained by choosing a
pair of representative points p4 in Z4 and pp in Zp, such
that d. is the network distance between p, and pg. The
conditions under which d. will provide an e-approximation
of the network distances between Z4 and Zp are discussed
in this section. The algorithm uses a list) of block pairs
drawn from T'. At the start of the algorithm, @ is initialized
with a block pair formed by the root block of 7', as shown in
line 1. The algorithm stops when @ is empty.

At each iteration the algorithm retrieves the first block
pair (A4, B) in Q. If A and B correspond to the same block in
T but are not leaf blocks, then A and B are both split into
their C = 2 children blocks, and the resulting C? block
pairs are inserted into @ as shown in lines 6-9. If A (B)
correspond to the same leaf block, it is simply discarded.

If A and B refer to different blocks in 7T, then the
algorithm examines if the block pair (A,B) is well
separated, which is done as follows: We first choose two
representative points p4 € A, pp € B (line 12) either using a
randomized or some deterministic strategy. We then
estimate the maximum of the network diameters (or an
over-approximation of the network diameters) of A and B,
which is defined as the farthest vertex in A (or B) from p4
(or pp) using a network distance measure (line 14).
Estimating the network diameter r can be done in a number
of ways; a few strategies are discussed in Section 4.3. If the
ratio of the network distance dg(pa,pp) to the network
diameter r is greater than or equal to s = 2, then the block
pairs A, B are well separated, in which case, the triple
{Z(A), Z(B),dc(pa,pp)} is added to L (lines 15 and 16).
Note that we show in Section 4.4 that if A, B are well
separated using a separation factor s > %, then dg(pa, pp) is
indeed an e-approximation of the network distances
between A and B.

If the block pair (A, B) is not well separated, then both A
and B are split into their C children blocks, provided they
are nonleaf, and the resulting pairs are inserted into) as
shown in lines 18-28.

We now briefly show that Algorithm 1 decomposes G
into a set of triples (Z(A),Z(B),d.) that satisfies the
properties of a WSPD. First of all, we distinguish between
block pairs in @ that point to the same block in the PR-
quadtree 7' on V, which are referred to as SINGLETONS, and
those that point to different blocks in 7', which are referred
to as PAIRS. Moreover, we collectively refer to A, B as heads
in the discussion below. The list @ is initialized with the

SINGLETON (ROOTOF(T'), ROOTOF(T)) in line 1 at the start
of the algorithm. During the course of the algorithm, if a
SINGLETON (A4, A) is retrieved from the top of @, then it is
replaced with C' SINGLETONS and C? PAIRS formed by the
children nodes of A (or B). If a PAIR (A, B) is retrieved from
the top of @, then it is replaced with C? PAIRS formed by the
children nodes of A and B. By induction, we can show that
every block in the quadtree is retrieved from @ as a
SINGLETON. To show that the heads of the reported triples
are disjoint (Property 2), we point out that only SINGLE-
TONS have overlapping heads (owing to the fact that
quadtrees are nondisjoint space decompositions), but only
PAIRS are reported as triples. We now show that any vertex
pair u, v is contained in one and only one of the triples in the
output L (Property 3). To do this, we use contradiction.
Assume that v and v are contained in two of the triples in L,
say (A", B',d)) and (4/,B/,d) s.t., i#j, ue A, A, and
v € B!, Bl. Let M be the nearest common ancestor block of
u, v in the quadtree. Before M is retrieved from the top of @
as a SINGLETON, u and v are contained in the same head.
When M is decomposed, v and v are no longer contained in
any SINGLETON, but are present in different blocks, which
may not yet have satisfied the e-approximation guarantees.
After each subsequent decomposition, only one PAIR
contains both » and v. Thus, the nature of our decomposi-
tion process makes it impossible for v and v to be contained
in both (A%, B') and (A7, B) s.t., i # j. Similarly, we can also
show that given a pair of vertices u, v, it is exactly contained
in one of the triples in L. Finally, as every vertex pair is
contained in exactly one of the triples in L, we have also
shown that algorithm captures all the n? network distances
in G. Hence, given a vertex pair u, v, we are guaranteed that
there exists exactly one triple (Z4, Zp,d.) in L, such that Z4
contains v and Zp contains v.

Algorithm 1.

Procedure BUILDORACLE[G, T, €]

Input: G < spatial network G(V, E)

Input: T — PR-quadtree on the spatial positions of
Input: ¢ «— desired approximation; € > 0

Output: L — set of triples (Z4, Zp, d.); initially empty
(* s < 2; separation factor *)

(* @ « list of block pairs; initially empty *)

1. INSERT(Q, ROOTOF(T), ROOTOF(T))

2. while (ISNOTEMPTY(Q)) do

3. (A, B) — TOP(Q)

4. if A = B then

5. (* reject if A (B) is a LEAF block %)

6. if ISNOTLEAF(A) then

7. Split A, B each into C children blocks

8. Insert C? children block pairs of A, B into Q
9. end-if

10. else

11. (* Choose representative points *)

12. ps4 «— CHOOSEREP(A); ps — CHOOSEREP(B)
13. (x Estimate diameter r of A and B)

14. r— MAX(DIAMETER(A), DIAMETER(B))

15, if (%2azs) >) then

16. INSERT(L, {Z1=Z(A), Zp=Z(B),d-=dc(pa,pB)})
17. else

8

18. if ISNOTLEAF(A) then

19. L, <+ {C children blocks of A}
20. else

21. L, — {A}

22. end-if

23. if ISNOTLEAF(B) then

24. Ly — {C children blocks of B}
25. else

26. L, — {B}

27. end-if

28. INSERT pairs in L, x L; into @
29. end-if

30. end-if

31. end-while

32. return L

Finally, we compute the cost of constructing the distance
oracle using Algorithm 1. We have shown above that the
output of the distance oracle is a WSPD of the vertices in a
spatial network, which can be constructed in O(nlogn + s?)
time [15]. We still have to account for the cost in
determining if two subsets of vertices A and B are well
separated using a network distance measure, which
involves a shortest path computation between representa-
tive points p4 of A and pp of B. Note that we assume here
that finding the distance between the representative points
is more expensive than finding the network diameter of a
quadtree block, which is true in practice. In order to
estimate how many shortest path computations are per-
formed by the algorithm, for every block in the quadtree, we
choose an arbitrary vertex as its representative point. As the
number of nodes in the quadtree is O(n), we will end up
with O(n) representative points. Given a block A in the
quadtree, the algorithm would form O(s?) block pairs of the
form (A, B), although note that not of all of these block pairs
will ultimately form WSPs. This means that given a block A,
O(s?) shortest paths are invoked with the representative
point of A as the source vertex. So, the total number of
shortest path computations that will be performed is O(s%n),
which would take O(s?n?logn) time using Dijkstra’s
algorithm. The total cost of constructing a distance oracle
is O(s'n’logn) as the cost of shortest path computation
dominates the cost of constructing a WSPD on the vertices
of a spatial network.

4.3 Estimating Network Diameter

Given a vertex p4 and a block in the PR-quadtree A in T'
corresponding to a set of sources, we define the network
diameter r of A as the farthest vertex from p, in A using a
network distance measure. One simple strategy to comput-
ing the network diameter of A is to obtain the network
distance from p4 to other every vertex in A. The maximum of
those network distance values is the diameter of A.
However, this approach may be expensive to compute and
may not be a scalable solution. Our strategy is to compute an
over-approximation r of the network diameter of A if it is
easier to compute compared to the exact network diameter
of A. However, this strategy has the unfortunate conse-
quence that as r is an over-approximation of the network
diameter of A, Algorithm 1 would have to split the block
pairs much more than necessary in order to make them well
separated. Consequently, there is a trade-off between the
time spent on computing the network diameter of a block

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. XX, XXXXXXX 2010

and the total storage space taken up by the oracle. Below, we
discuss several strategies to compute the network diameter
of a set of vertices contained in block A of the PR quadtree.

1. Given a block pair (A,B), we first obtain the
network distance d¢(pa, pp) between the represen-
tative points p4 € A and pp € B. We then apply an
early terminating variant of Dijkstra’s algorithm
from p4 (pp) that takes advantage of the incremental
nature of Dijkstra’s algorithm. That is, Dijkstra’s
algorithm with p4 (pp) as a starting vertex visits
vertices in G in an increasing order of their network
distance from py (pp). The algorithm terminates
when it encounters a vertex that is farther than
%;‘”) from p4 (pp). We now check to see if all the
vertices in A (B) have already been visited by
Dijkstra’s algorithm. If yes, then A and B are well
separated. Note that this method of determining if a
block pair (A, B) is well separated is only applicable
to spatial networks that are undirected.

2. If 7' is the diameter of the geometric bounding box of
A, the network diameter of A can be over-approxi-
mated by vgr’/, which can be computed using
Theorem 3.3, or using the distortion spectrum of
the spatial network.

3. Use the approach of Goldberg and Harrelson [8]
which first selects a set of vertices, termed landmarks,
at random. The network distance from each of the
landmark vertices to all the vertices in G is pre-
computed. Once precomputed, the diameter of A (B)
can be upper bounded using the triangle inequality
and the network distance to the nearest landmark.

4.4 Analysis

This section provides bounds on the size of the distance oracle
of G by appealing to the equivalence between the decom-
position of a spatial network in Algorithm 1 and the WSPD of
apoint set. We now show how to extend the notion of a WSPD
in terms of a spatial distance to one in terms of a network
distance. This is captured by Lemma 4.2 below.

Lemma 4.2. Given an s-WSPD of the vertices V of a spatial
network G(V,E) based on a spatial distance also yields a
s'-WSPD of V using a network distance with s’ = s - 1.

Proof. Given a WSP, (A, B) on the decomposition of V & V
using the spatial distance measure, the minimum spatial
distance between A and B is at least s - r, where r is the
larger of the diameters of A and B.

Consider two vertices u,v in A (or B). We have
da(u,v) < yp-dg(u,v) <y -7 as ds(u,v) <r by virtue
of r being the diameter of A or B. v/, the maximum
value of dg(u,v), is the diameter of A (and B) using a
network distance measure and we have that v < vy - r.
Therefore, the spatial distance diameter of A (or B) is
scaled by at most a factor of vy to obtain the network
distance diameter 7.

Considering a vertex pair (a,b), such thata € A,b € B,
we have from the WSP condition and Assumption 1 (see
Section 3) that:

fe (CL, b)

s-r<dg(a,b) <—"-+=. (4)
L

SANKARANARAYANAN AND SAMET: QUERY PROCESSING USING DISTANCE ORACLES FOR SPATIAL NETWORKS 9

Replacing r with ;—;I in (4), we obtain s - 7’—1'1 <dg(a,b) <

w . The above relationship between the minimum and
maximum bounds on dg(a,b) can be rewritten as
T sg—: < dg(a,b). Now, letting s’ = s-:/’;:, leads to the
desired result s'-r < dg(a,b), which is equivalent to
saying that A and B are well separated using the network
distance measure with a separation factor of s'. O
We now show that a WSPD of the vertices of a spatial
network is a realization of an approximate distance oracle.

Lemma 4.3. Let (A, B) be a WSP in the s-WSPD of G using a
network distance measure, such that u*,v* are the representa-
tive points of A and B, respectively. The network distance
de(u*,v*) between the representative points is an e =2

approximation of the network distance d¢(u,v) between any
pair of vertices (u,v), such that w € A and v € B.

Proof. Given a pair of vertices (u,v), such that u € A,v € B,
we know from the triangle inequality that
dG(U*7U*) - dG(u7 U‘*) - dG(U*v U) < dG(U, ’U),
de(u,u”) + dg(u”,v") + dg(v*,v) > dg(u,v).
Without loss of generality, we assume that dg(v*,v) >
dc(u, u*). Substituting above, we get
de(u*,v") — 2dg(v*,v) < dg(u,v),
de(u*,v") 4+ 2da(v",v) > dg(u,v),

* % QdG(U*aU)
1-— <
dG(u U)< dg(u*,ﬂ*)) = dG(uvv)a
. 2d¢(v*,v)
>
dg(u*,v)<1 +d@(u*,v*)) dg(u,v)

In line 15 of Algorithm 1, we ensure that the condition

dd(;(gl;; > s is satisfied for all vertices in B. Substituting

it above,

2 2
(1 — —) de(u*,v") < dg(u,v) < (1 +—) de(u*,v").
s s
Substituting, € =2, we get

(1 —e)dg(u*,v") <dg(u,v) < (1+¢)dg(u*,v").
O

At this point, having established that ¢ :%, we now
obtain a bound on the size of the distance oracle.

2

Lemma 4.4. For a given value of € = <, the size of the oracle

produced by Algorithm 1 is no worse than O((;—’;)dn)

Proof. Let (A,B) be a WSP, such that u*,v* are the
representative points of A and B, respectively. We
assume that A (B) is contained in a bounding hyper-
sphere of diameter r. The network diameter of A and B is
bounded by

~vrr < DIAMETER(A) < vyyr
~vrr < DIAMETER(B) < ygr.

As (A, B)isa WSP, dg; (u*, v*) can be similarly bounded by

dg(u*,v") < ygrs.

SVH

The effective separation factor s’ of the WSPD is
Hence, the worse case storage requirement of the oracle
is O((2£)"n). O

YL
This leads us to the final result of this section:

Theorem 4.5. Given a spatial network G(V,E), we can
construct an oracle of size O(%;) to retrieve the c-approximate
network distance between any vertex pair in O(logn) time.

The real utility of the above theorem is to establish the
linear size of our distance oracle. Note that the constants of
proportionality estimated using an empirical analysis were
found to lie, in most cases, between 1.5 and 3 which is much
smaller than the worse case bound of Q_Z)d established in
Lemma 4.4.

5 QUERY PROCESSING

A major data engineering problem in databases is that
spatial networks cannot be easily represented using the
relational model and, furthermore, operations on it cannot
be cast in terms of relational operators, namely selection,
projection, and joins, etc. In this paper, we introduced an
approximate distance oracle which is stored as a relation in
a database system indexed by a B-tree. We now show how
operations on spatial networks can be cast in terms of
relational operations on the distance oracle relation. In
particular, we demonstrate how to perform region search
[6], k-nearest neighbor [29], and spatial joins [30], [31]
using relational operations expressed using SQL language.
Our proposed setup is very desirable from a systems point
of view because, now, all operations can be performed in
the context of a database system. Our work opens up the
use of a commercial database for building interactive
applications (e.g., GIS applications [32]) on spatial net-
works. The real success of our method lies not so much in
being able to succinctly capture the n? network distances in
a spatial network using only O(n) space, but rather in the
ability of our oracle construct to be seamlessly integrated
into a relational database system, indexed using a tradi-
tional indexing scheme (e.g., B-tree), and used in compli-
cated query processing scenarios without making any
significant changes to existing database systems. We now
describe strategies for storing, indexing, and query
processing using an e-approximate distance oracle on a
relational database system.

5.1 Storing the Oracle

The output of Algorithm 1 is a list L of triples (Z4, Zp, d.)
which is stored as database relation O, where Z4 and Zp are
Morton blocks corresponding to sets of sources and
destinations, respectively, such that the network distances
between the sources in Z4 and destinations in Zp are
approximated using d.. In the context of a database, O is a
relation whose attributes are 74, Zp, and d.. Moreover, each
tuple in O is associated with a unique tuple number,
denoted by tid which serves as the primary key of O. Note
that we no longer need to retain the original graph
representation of the spatial networks, or for that matter,
even the positions of the vertices and edges in the spatial
network. Now, query processing using the distance
oracle O, requires efficient indexes on O such that given a

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. XX, XXXXXXX 2010

source location p and a destination location ¢, we can obtain
the e-approximate network distance between p and ¢
efficiently. We can do this by first computing the Morton
block Z(p), Z(q) corresponding to the spatial positions of p
and ¢ with bit operations in O(1) time. Using the indexes on
O, we can obtain a tuple (A, B, d.) in O such that A contains
Z(p) and B contains Z(q) in which case, d. approximates the
network distance between p and ¢. This operation can be
described using an SQL construct which corresponds to
applying a “selection” operator on the oracle relation O.

SELECT O.d. FROM O WHERE 0.Z4 =z Z(p) and
0.Zp =z Z(q)

5.2 Indexing the Oracle

Our goal here is to devise an index that enables accessing
the distance oracle in O(logn) time. Queries on O are
processed differently by the database depending on the
kind of indexes on O. The simplest strategy is to build a pair
of B-tree indexes, one each on Z4 and Zp. Given p,q, the
query processing engine will first use Z(p) as the search key
on the B-tree on Z,4 to obtain a list TZ of tids in O whose Z4
values contain Z(p). Next, using Z(q) as the search key on
the B-tree on Zp, we can obtain a list T, of tids in O whose
Zp values contain Z(g). Now, we need to find the identity of
the common tuple between the lists 7% and T}, whose
d. value approximates the network distance between p and
q. From the property of the WSPD, we are guaranteed that
there will be exactly one tid in common between T% and T}.
The asymptotic complexity of this search process can be
calculated by taking the sum total of the individual steps.
Given any search key Z(p), there are O(s?logn) tuples in O
whose Z4 values contain Z(p). To locate all of these tuples,
can take O((logn + s%) -logn) time in the worse case as it
may need O(logn) searches on the B-tree, each search taking
O(logn + s?) time. Finding the common tid will take
O(s’logn) time because every element in 7% and T} will
have to be examined. Summing all these steps, the cost of
finding an e-approximate network distance between p and
q will take O(log? n). Another alternative is to use a B-tree
on (Z,, Zg) which is essentially a B-tree on Z, whose leaves
are B-trees, called treelets, on Zp for those tuples in O having
the same Z4. Such a situation obviates the need for
intersecting two lists of tids, but does not reduce the cost
of the initial search process. The complexity of the search
process is O(log” n) as we need to perform logn searches,
each search taking logn + d - log s time.

There are several other strategies of indexing (Z4, Zp), but
they still do not provide an O(logn) access time. We can
index (Z4, Zp) using a B-tree where the primary sort is based
on Z4 while Zp is used as a secondary sort key. Using the
level of Z4, we can create two B-tree variants that have
slightly different behavior. The first approach orders objects
based on the ordering imposed by (Z4, LEVEL (Z,), Zp). That
is, the primary sort key is Z4 with the LEVEL of Z 4 serving to
break ties between Morton blocks that overlap one another,
and Zp serving as the secondary sort key. A B-tree using such
a sort comparator leads to a depth-first ordering of the blocks
forming Z4 in the PR-quadtree on V. The desirable property
of such an arrangement is that given a source location p, the
tuples whose Z, attributes contain Z(p) are more or less
clustered together which means that they are stored in nearby

disk pages in the B-tree. On the other hand, the ordering
imposed by (LEVEL(Z4), Z4, Zp) will result in a breadth-first
ordering of the blocks forming Z4. This means that the bulk
of the n? network distances will be captured in the first few
disk pages of the B-tree, which makes it suitable for caching.
Unfortunately, none of these strategies provide an O(logn)
access time because we are imposing an ordering on
(Za, Zp), which is essentially two-dimensional (i.e., Z4 and
Zp), by establishing a primary ordering on Z, and a
secondary ordering of Zp. The resulting structure is similar
to the two-dimensional range tree of Bentley [6], [33] (as is the
treelet structure described earlier), which can answer range
queries in O(log? n + f) time, where f is the number of tuples
in the result set.

The only strategy to obtain an O(logn) access time is to
store the distance oracle as a relation of schema O(Z4p,d.),
which is similar as before except that instead of storing Z4
and Zp as separate attributes, we merge them to form a
single four-dimensional Morton block representation. The
attribute Z 45 in O is indexed using a B-tree. Storing Z4 and
Zp as a single four-dimensional Morton block requires that
initially Z4 and Zp are of the same level (i.e., size). Now,
Algorithm 1 does not always produce blocks Z4 and Zp of
the same level which means that the output L of the
algorithm has to be decomposed further so that Z, and Zp
are made to be the same level. We first show that such a
transformation of L does not change the number of triples
in L, which is given by the following lemma:

Lemma 5.1. The output of Algorithm 1 can be decomposed
further so that Z, and Zp are of the same level without
incurring any additional storage.

Proof. Algorithm 1 breaks up block pairs symmetrically
until one of the blocks is a leaf, in which case, only the
nonleaf block is further subdivided. At the end of the
algorithm, if a block pair (Z4,Zp) has both nonleaf
blocks, then they are of the same level. On the other
hand, if one or both blocks are leaf blocks, then either Z4
or Zp has to be decomposed further to make them the
same level. If Z, is a leaf block but the level of Z4 is less
than Zp, then we keep subdividing Z,4 into its C children
blocks until it is the same level as Zp. Each time we
subdivide Z,4 it results in C — 1 empty blocks which can
be discarded and one nonempty block that contains the
point which is subdivided further. This means that Z,
and Zp can be made the same level without creating any
additional block pair. Next, if Z4 and Zp are both leaf
blocks such that the level of Z, is less than the level of
Zp, we can apply the same strategy as before to make
them the same level without incurring any additional
storage. The more interesting case is when Z, is a
nonleaf block whose level is less than Zz which is a leaf
block. We can show that given that our decomposition
rule in Algorithm 1, this configuration is not possible. If
Z 4 is a nonleaf block whose level is less than that of Zg
which is a leaf would mean that Z was decomposed
more times than Z4, even though Zy4 is not a leaf block,
which is not possible. The other three symmetric cases
with Z4 and Zp interchanged follow a similar argument.
This means that the output of Algorithm 1 can be further
decomposed so that Z, and Zp are at the same level
without incurring any additional storage. 0

SANKARANARAYANAN AND SAMET: QUERY PROCESSING USING DISTANCE ORACLES FOR SPATIAL NETWORKS 11

Given an approximate distance oracle O(Z 45, d.) such that
Z4p is indexed using a B-tree, we can find the approximate
network distance between a source location p and a
destination location ¢, by first computing a four-dimensional
Morton block Z,(p,q) which uses the positions of p and g¢.
Using Z4(p, q) as the search key on the B-tree on Z,5 yields
exactly one tuple in O such that Z, 5 contains Z4(p, q). The cost
of the search is O(logn) as making Z, and Zp the same level
did not increase the size of the distance oracle, which is still
O(n/e?). This leads to a very efficient organization of the
distance oracle and reduces the cost of searching for an
approximate network distance to O(logn), which is an
improvement from before. The SQL query to obtain the
¢-approximate network distance using this schema is given
by the following;:

SELECT O.d. FROM O WHERE O.Z45 = Z4(p, q)

5.3 Queries on the Oracle

We now discuss how to perform spatial queries on a spatial
network using the e-approximate network distance oracle
stored as a relation O(Z4p,d.) of a predefined approxima-
tion. Let us assume the following setup: Let R be a relation
of restaurants with schema (tid, pos, type, price), where pos
is the position of the restaurants given by a two-dimen-
sional point object, type is the type of the cuisine served by
the restaurant, and price is the average cost. Furthermore,
we assume that there is a B-tree on Z(R.pos). We also define
another relation) of movie theaters given by the same
schema (tid, pos, movie_id) where pos is the position of
movie theater, and movie_id is a movie playing in the
theater. Also, Z(Q.pos) is indexed using a B-tree. We
present the following queries on a spatial network:

e-Approximate Network Distance: Given a source p, and
destination ¢, find the e-approximate network distance
between them.

SELECT O.d. FROM O WHERE O.Z5 = Z4(p, q)

Region Search: Given a query location ¢, find all
restaurants in R that are within 10 miles of ¢ that serve
Italian cuisine.

SELECT R.pos, O.d. FROM R, O WHERE
0.Z 45 =z Z4(q, R.pos) and R.type = “Italian”
and O.d. < 10 miles

k-Nearest Neighbor Search: Given a query location ¢,
find the k closest restaurants in R to ¢ that serve I[talian
cuisine.

SELECT R.pos, O.d. FROM R, O WHERE
0.Z 45 =z Z4(q, R.pos) and R.type = “Italian”
ORDER BY O.d. LIMIT k

Distance Join: Find the £ closest pairs of restaurants in R
and movie theaters in Q.

SELECT R.pos, Q.pos, O.d. FROM R, Q, O
WHERE O.Zap =z Z4(R.pos, Q.pos)
ORDER BY O.d. LIMIT k

Each of the above operations are simple relational
operations on the oracle relation that uses a B-tree. A
commercial database can optimize complicated query
processing scenarios involving B-trees. For example, the e-
approximate network distance query and the region search

are simple selection operators using the B-tree index. The
rest of the queries involve simple join operations aided by a
B-tree which can be efficiently handled by a query
optimizer. In short, query processing on spatial networks
can be easily integrated into a traditional database system.
Finally, our strategy relies on the precomputation of a
distance oracle for a prespecified value of €. For example, a
distance oracle for the road network of the US can be
precomputed and commercially distributed. This will then
enable query processing on any spatial data set residing on
the road network of the US using a commercial database.
Moreover, the wide use of such an oracle will justify the
large cost of the precomputation, provided that an appro-
priate value of ¢ is chosen.

6 QUERY OPTIMIZATION

In this section, we discuss how to optimize queries on
spatial networks expressed using SQL statements with an
e-approximate distance oracle. From the above discussion,
we see that expressing operations on a spatial network with
the help of an e-approximate distance oracle is no different
than performing these operations in a euclidean space,
except that operations now involve an additional join with
the distance oracle relation. We now illustrate how a
relational database system efficiently processes some of
these queries expressed as SQL commands.

Any spatial query that is expressed using SQL can be
converted into an operator tree [34], which is a computational
tree made up of spatial and nonspatial relational operators.
Fig. 5a is an example of an operator tree of an SQL query that
performs region search on a spatial network. Note that the
operator tree shown in the figure is just one of many possible
strategies for answering a query. In other words, there are
several ways of arriving at the correct answer and the job of
generating all possible strategies and choosing among them
is typically done by a query optimizer. Note that even
though there are many ways of answering a query, they
typically have different associated costs. The database
system chooses the one with the least cost. Our discussion
on query optimization of queries involving distance oracles
will be limited to the setup described in the previous section.
Moreover, for each query, we only discuss one unoptimized
way of answering it and then, we proceed to describe
strategies for making it more efficient.

Given an SQL tree expressed as an operator tree [34], the
database system has enough knowledge to process these
queries correctly in an efficient manner. However, there are
some difficulties in optimizing queries involving the dis-
tance oracle unless the query optimizer is made aware of
certain additional strategies it can employ to make the
execution of these queries efficient. For example, one
scenario where optimization of queries involving distance
oracles becomes difficult is if the user is only interested in a
small subset of tuples, where the criterion for selecting
relevant tuples is expressed either directly or indirectly in
terms of network distances. We elaborate on this problem
using the following example: Consider a query to find all the
restaurants, given by the relation R, that are closer than
10 miles on a spatial network from an input address (i.e.,
point) g. One way of processing this query is to obtain the

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. XX, XXXXXXX 2010

approximate network distances of every restaurant in R
from ¢ by joining the tuples of R with O, and then
subsequently pruning away all restaurants that are farther
than 10 miles on the spatial network from ¢. Now, it is clear
that this solution strategy is not very efficient, especially if R
is a large relation such as the one containing all the
restaurants in the US. Another variation of this query is if
the user is only interested in the “top k" closest restaurants to
¢ in R, in which case, obtaining the network distances of all
the restaurants in R from g and subsequently retaining the &
closest to ¢ results in wasted work. Both these inefficiencies
occur because we cannot really exclude any restaurant in R
without first determining its network distance from g, which
is not known until R is joined with O. The fundamental
problem is that the network distance, in our setup, is not a
computable quantity but, instead, is retrieved from O. This
means that a join of R with O seems almost inevitable at
runtime as the identity of the query point ¢ (or a relation S in
case of distance joins) is only known at the time of execution
of the query.

The proposed strategy for making query processing
using a distance oracle efficient is to make the query
optimizer aware that the spatial distance between two
objects on a spatial network always lower bounds the
network distance between them. If the query processor uses
this strategy effectively, then it can prune away most of the
tuples in R using this relationship between the spatial and
network distance functions. To briefly illustrate how we can
use this strategy, in the case of the network range query, the
query optimizer can first restrict the output to only contain
those tuples in R whose spatial distance from ¢ is less than
10 miles, which are then joined with distance oracle
relation O, after which it again prunes those restaurants in
R that are farther than 10 miles. In the rest of this section,
we show how a query optimizer can modify the operator
tree suitably so that queries involving the distance oracle
can be processed correctly and efficiently.

Our discussion uses the same database setup as in
Section 5. In particular, we assume that the spatial attributes
on R and S have some spatial indexes on them, but we
place no restriction on their type which can be either a
quadtree (e.g., linear quadtree) [6], [28], an R-tree [35], or
others. We express queries in SQL using an operator tree
whose nodes are made up of algebraic operators, such as
selection, projection, or join. For the sake of clarity, we now
describe a few of the spatial relational operators that are
needed for query processing which are commonly available
on commercial database systems.

Index Scan: A spatial index such as a quadtree is an
ordering of the tuples in a relation based on the space that
they occupy. A spatial index allows for the browsing or
retrieval of the tuples in a relation in many different ways,
which we refer to as an index scan. For example, an index
scan of R can retrieve tuples based on the distance from a
query point ¢ either in an increasing or decreasing order of
distances from g¢. It can even obtain tuples based on
containment or noncontainment within a geometric shape,
or some combination of distance and geometric constraints.
An index scan can also be made incremental, which means
that we need not specify how many tuples are needed
before the start of the query but can keep obtaining more
tuples until all the tuples in R have been exhausted. One

[0)
/ Zpp=2 4 (P9

Fig. 4. Approximate network distance query using a distance oracle.

method for incrementally retrieving tuples in R based on
distances from ¢ is the best first nearest neighbor method of
Hjaltason and Samet [6], [30].

Spatial Select: A spatial select operator, represented by -,
is analogous to its nonspatial variant in the sense that it
allows for the pruning of tuples in a relation based on a set
of spatial constraints. An example of a spatial selection
operation is, given a relation of restaurants in the US, we
wish to obtain only those restaurants that are in New York
city, which is represented by a polygon.

Spatial Join: Given two relations R and S, the distance join
R <45 Sof Rand S generates pairs of tuples (p, ¢) such that p
isdrawn from R and ¢ from S, usually subject to an additional
constraint involving the values of the spatial attributes of R
and S. If the output pairs are ordered either in an increasing
or decreasing order of distances between pand ¢, such ajoin is
referred to as a distance join [30], [36]. Our processing of
spatial network distance join queries uses the incremental
distance join algorithm of Hjaltason and Samet [30].

In order to process SQL queries with LIMIT constraints,
we use two SQL operators—STOP and RESTART. These
operators have been adapted from [37] and are described
briefly below.

STOP: As the name suggests, this operator suspends the
output of an operator subtree once a predetermined condition
is satisfied. The condition can either be specified in terms of a
limit on the numbers of tuples produced by an operator
subtree, or some other constraint determined at runtime.

RESTART: Restarts a previously suspended operator
subtree so that more tuples can be produced. A subtree of
an operator tree is said to be restartable only if it can
produce more tuples without having to recompute all the
previously computed tuples. This is where incremental
approaches in spatial database literature [6], [29], [30] excel
as they are restartable.

At this point, we have defined all the operators required
for our discussion on query processing in spatial networks.
We now show how a query optimizer can optimize queries
on spatial networks using the distance oracle with the aid of
the examples from the previous section.

Approximate Network Distance. Given a source p and a
destination ¢ on a spatial network, obtaining an e-approx-
imate network distance between p and ¢ involves a selection
on O with Z(p,q) as the search key. Fig. 4 shows the
operator tree corresponding to this query. Such a query
involves a simple selection operator on the oracle relation O
with the aid of the B-tree on Z,5.

Region Search. Fig. 5a shows the operator tree corre-
sponding to a query that finds all the Italian restaurants
within 10 miles of a query point ¢. One way of processing
such a query is to first determine the e-approximate
network distance of all the Italian restaurants in R, and
then prune away all the restaurants in the output that are
farther than 10 miles using a select operator. This is an
inefficient approach as the query processing will visit every

SANKARANARAYANAN AND SAMET: QUERY PROCESSING USING DISTANCE ORACLES FOR SPATIAL NETWORKS 13

d < 10 miles and
qH) < 10 miles d <10rmles
i ><1/
GT e ="ltalian"
s Gd qR <10mwles

and Type = "ltalian"

R R
(@) (b)

Fig. 5. (a) Unoptimized and (b) optimized region search query using a
distance oracle.

tuple in R, even the ones that are much further than 10 miles
from ¢ which will result in wasted work.

A more efficient way of performing this query, shown in
Fig. 5b, uses the property that the spatial distance between
any two points on a spatial network always lower bounds
the network distance between them. Our optimized algo-
rithm first performs an index scan on R which is an
incremental retrieval of the restaurants in R based on the
spatial distance from ¢. The index scan stops when we
obtain a restaurant in R whose spatial distance from ¢ is
farther than 10 miles. Among this subset of restaurants, we
choose only those that serve Italian food, which are
subsequently joined with the distance oracle relation O to
yield their network distances from ¢. We select only those
restaurants that are within 10 miles of ¢ in terms of network
distance. The correctness of this approach can be easily seen
by observing that any restaurant in R that was pruned away
because its spatial distance from g was greater than 10 miles
cannot be at a distance of less than 10 miles from ¢ using a
network distance function as the spatial network distance
lower bounds the network distance between them.

Note that it is conceivable that a restaurant r in R that is
at both spatial and network distances that are a bit more
than 10 miles from ¢, while having an e-approximate
network distance from ¢ that is less than 10 miles owing to
the approximation. In this case, our optimized algorithm
will miss reporting r even though its approximate network
distance is less than 10 miles because r would not be in the
initial set of restaurants whose spatial distance from ¢ is
less than 10 miles. We can overcome this problem by
increasing the above spatial distance restriction to (1 +¢) -
10 miles, which would mean that r will now be reported in
the result, but we choose not to do so as r is clearly an
incorrect answer so there is no point to report it. In order
to make the results of both the optimized and unoptimized
versions of the algorithm identical, we need to add an
additional constraint to the select operator in our unopti-
mized algorithm in Fig. 5a to prune away all those
restaurants that are farther than 10 miles in the spatial
distance measure.

k-Nearest Neighbor Search. Fig. 6a shows an unopti-
mized version of a k-nearest neighbor search on a spatial
network which suffers from the same drawback as the
region search in Fig. 5a in the sense that the algorithm ends
up retrieving the network distances of all Italian restaurants
in R, even though we only require a small subset of the
Italian restaurants (i.e., k£ of them) in the result set. In
particular, we first select all tuples in R that are Italian

STOP(K)
STOP(K) /
/ SORT,
S;)RTd [><{
Zpg=: 4 @R
NZAB:’ EACE) /\
SNE RES/TART e}
/GO STOP()
R thps = "ltalian"

Index scan of

(@ (b)

Fig. 6. (a) Unoptimized and (b) optimized nearest neighbor search query
using distance oracle.

restaurants which are then joined with the distance oracle
relation O to yield the network distances of R from ¢q. We
only retain the top k tuples from this set via the use of the
STOP operator which corresponds to the k closest restau-
rants in R to ¢ on the spatial network.

We optimize the k-nearest neighbor query on spatial
networks by obtaining the tuples in R in an increasing order
of network distance from ¢. Our approach follows the INE
algorithm of Papadias et al. [2]. We first obtain the closest k
Italian restaurants to R to ¢ in terms of the spatial distance
function, at which time the query subtree is suspended by
the STOP operator. Now, these k tuples are joined with the
distance oracle relation O to obtain their approximate
network distances from ¢, which are then sorted to yield
an upper bound on the network distance of the k farthest
restaurant in R, which we refer to as d;. Now, we restart
(via RESTART) the earlier suspended query subtree to yield
more tuples incrementally in an increasing order of spatial
distance from ¢, until we obtain a restaurant in R whose
spatial distance to ¢ is greater than d;. These additional
tuples are also joined with O to yield their network
distances, at which point the closest k restaurants to ¢ are
chosen from a pool of restaurants from the initial set of
k restaurants from before application of the STOP operator
and the additional restaurants produced after application of
the RESTART operator.

Distance Join. The distance join works in a similar manner
to the k-nearest neighbor search in the sense that we simply
replace a query point ¢ with a relation (e.g., the coffee shop
S relation in our example). As can be seen from Fig. 7, the
main difference between the operator trees for the nearest
neighbor and the distance join queries is the use of a
distance join operation between R and S using the spatial
distance function. We use an incremental distance join
algorithm [30], which provides us with the ability to
suspend and restart the operator as needed. The strategy
for optimizing distance join queries on spatial networks is
the same as before. It starts with application of the
incremental distance join generating & pairs, whose network
distances are ascertained by a join with O. We compute an
upper bound on the network distance between the
k farthest pair in the output which we refer to as d. Now
the distance join operation is restarted and more pairs are
generated until we obtain a pair whose spatial distance is
farther than d;, at which time, the operator is suspended
once again. After obtaining the network distances of the
additional pairs, we choose the k closest pairs from the

14 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. XX, XXXXXXX 2010

STOP(K)
STOP(K) .
d
SORT,,
/ N Zpg= 4 RQ
>4 2,570 % /\
N RESTART ()
PO

STOP(k
/N P
RQ IS

Index scan of Index scan of

(@) (b)

Fig. 7. (a) Unoptimized and (b) optimized distance join query using
distance oracle.

original k pairs as well as the newly generated pairs.

7 EXPERIMENTAL RESULTS

In this section, we report the results of our experimental
evaluation of the oracles of size O(1) and O(n). We did not
evaluate the O(nlogn)-size and O(1) execution time oracles
as they were presented primarily as a theoretical exercise to
show the interplay between optimal execution time and
space requirements, although, of course, there is really no
justification for their use. The experiments were run on a
Linux (2.4.2 kernel) quad 2.4 GHz Xeon server with one
gigabyte of RAM. We implemented our algorithms using
GNU C++. A number of publicly available road network
data sets were used in the evaluation. These were obtained
from the US Tiger Census [39] and the National Atlas [40]
websites. In particular, we used a data set containing all the
major roads in USA (i.e.,, more than 380,000 vertices and
400,000 edges). Sample random rectangular regions were
drawn from the data set and the road network segments
contained completely within them were extracted to serve as
inputs to the evaluation. By taking the samples at random we
were able to account for variations of road networks such as
rural versus urban, and spatial network configurations that
would lead to different sizes of the oracle.

Fig. 8 shows the maximum distortion vz of spatial
networks obtained by applying the algorithm of Narasim-
han and Smid [18], which is captured by Lemma 3.2, to
spatial networks of varying sizes. The value of v, for all the
input spatial networks was one. Note that this need not
always be the case. For example, if the edge weights are in
terms of the time taken to travel the edge, and spatial
distance is in miles, then the value of y;, would correspond to
distortion of the edge in the spatial network with the lowest
speed limit. From Fig. 8, we see that the value of v for road

10000

@ 1000 |
§ L +';§ +HUr fH—*f +
P rash R
= + ++t ++++++++41- Rans +
I 100 4 g - k!
+
e

20000 30000
Number of Vertices (n)

10000 40000

Fig. 8. Maximum distortion ~ of different road networks.

0.1 1 10 100
Spatial Distance (miles)

Fig. 9. Distortion spectrum of the eastern seaboard road network data
set containing 91,113 vertices.

networks can be very large and ranges between 10 and 1,000.
An O(1)-size oracle, described in Theorem 3.3, that uses 71,
and vy to provide approximate network distances cannot
provide a reasonable answer for query processing as the
resulting error £ = 2= ~ 1(100%) is very large.

Next, we Computed the distortion spectrum of a large
road network data set corresponding to the important
roads in the eastern seaboard states of USA, consisting of
91,113 vertices and 114,176 edges, shown in Fig. 9. As we
can see, the maximum distortion for small spatial distances
(less than 2 miles) can be very large. However, as the
spatial distance between the source and destination
increases (and is greater than 50 miles), the maximum
distortion quickly reduces to a low value. Note that an
approximate distance oracle of size O(1) that uses the
distortion spectrum of a spatial network may be suitable
when the spatial distance between a given source vertex
and destination vertex is large.

We now examine the characteristics of the O(n)-size
oracle that has deterministic guarantees on the quality of
the approximate answers it provides. We built the oracles
by applying Algorithm 1 to the same road networks of
different sizes used to obtain Fig. 8. Fig. 10 shows the effect
of the size of the road networks, in terms of the number of
vertices n, on the size of the resultant distance oracle, which
is measured in terms of the number of Morton blocks
normalized by n/e?. We chose s = 8 and d = 2 for this set of
evaluations. It is easy to see that the size of the oracle does
indeed follow c-n/e?, where c is estimated empirically to
lie between 1 and 6 and in most cases lies between 1.5 and 3
for the road networks used in our experiments. This study
shows the applicability of our technique to large road
networks as the size of the oracle is linear in n and that the
constants involved are small, typically between 1.5 and 3.
The large value of v5 shown in Fig. 8 seems to have little
effect on the size of the oracle.

"Es— s=8

Set + + + +
%4»+++ #+ +++++++"
[S

S ﬁ*mm#ﬁ ,,,,,, Waﬁ#ﬁﬁ#
o

o0

N

(2]

20000 30000
Number of Vertices (n)

10000 40000

Fig. 10. Size of the oracle in terms of the number of Morton blocks,
normalized by n/e?.

SANKARANARAYANAN AND SAMET: QUERY PROCESSING USING DISTANCE ORACLES FOR SPATIAL NETWORKS 15

‘OA uﬁ
w w
=20 t,
& <@
g [*]
Y 9 P g :
9 ! *#* 9 3 eecpenemeeeereemnbe et
5 s 5 3 oot
o ! PN 5
N K
? %)

0.01 o1 -

€ (log scale) ¢ (og scale

(a) (b)

Fig. 11. The size of the oracle in terms of number of Morton blocks,
normalized by n/e? applied to (a) Washington, DC, and (b) eastern
seaboard data sets.

Next, we built O(n)-size oracles on the Washington,
DC, data set containing 12,304 vertices for varying values
of ¢ ranging between 0.50 and 0.0078, ie., s =4 to 256,
which is shown in Fig. 11a. In Fig. 11b, we recorded the
size of the oracles for the eastern seaboard data set
containing 91,113 vertices for values of ¢ ranging between
0.50 and 0.0625, i.e., s =4 to 32. Again, we recorded the
size of the resulting distance oracle in terms of the number
of Morton blocks, normalized by n/e?. We can see that the
constants of proportionality are small values that vary
between 1 and 10.

For each of the distance oracles computed in Figs. 11a
and 11b, we made 100,000 e-approximate distance queries
between a vertex pair chosen at random. We computed the
actual network distance between the pairs, and recorded
the maximum, average, and the standard deviation of the error
due to the approximation. The resultant error for the oracles
is shown in Fig. 12. We can see that while the maximum
error is within the prescribed bounds, the average and the
standard deviation of the error are much lower than the
actual value of . For example, for the distance oracles on
the Washington, DC, data set shown in Fig. 12a, the average
error, standard deviation, and the maximum error (in
percentage) of the answers provided by the ¢ =0.1
(10 percent error) oracle are 0.5, 2.7, and 9.0 percent,
respectively. In the case of the eastern seaboard data set,
shown in Fig. 12b for € = 0.1, the corresponding average
error, standard deviation, and the maximum error (in
percentage) values are 0.9, 1.8, and 7.3 percent, respectively.
These low average errors (i.e., less than 1 percent) mean
that, in practice, the quality of the answers provided by this
oracle is very close to the exact network distance.

Fig. 13a tabulates the resulting errors in the answers
provided by the distance oracles as a percentage of the

% Error (log scale)
% Error (log scale)

0.01 0.1 0.5
€ (log scale)

0.15 0.2
€ (log scale)

(a) (b)

03 04 05

Fig. 12. The maximum, average, and the standard deviation errors for
100,000 network distance queries on the various oracles in Fig. 11 on
(a) Washington, DC, and (b) eastern seaboard data sets.

40
30

20 B

M wA NO
OOOO00000

ora3588
Peombkkt

mmmm oo, m

% Queries (log scale)
% Error (log scale)

1.5
0 2 4 6 8 10 12 0.08 0.1

% Error

0.15 0.2 03 04 05
€ (log scale)

(a) (b)

Fig. 13. (a) Percentages of queries along with their associated errors
and (b) maximum error of 90 percent of the queries, for the oracles in
Fig. 11b.

total number of queries for the 100,000 queries on the
eastern seaboard data set of Fig. 11b. For example, Fig. 13a
shows that for ¢ =0.25 (i.e.,, 25 percent approximation),
12.9 percent of the queries are provided with more or less
exact answers (i.e., less than 0.5 percent error). Moreover,
90 percent of the queries have errors of less than 5 percent
as can be seen from Fig. 13b, which tabulates the maximum
error of 90 percent of the queries. We note from our data
(not shown here) that while the maximum possible error of
the oracle is 25 percent, less than 1 percent of the answers
to queries have errors of more than 10 percent.

We also computed the average time taken to retrieve
an e-approximate network distance for some of the
oracles in Fig. 1la. Figs. 14a and 14b show that the
average time taken to compute an e-approximate network
distance is on the order of tens of microseconds with
maximums of 100 microseconds for the Washington, DC,
data set in Fig. 14a, and 86 microseconds for the eastern
seaboard data set in Fig. 14b. Note that this time can be
further reduced by using a more efficient implementation
of the B-tree structure.

In the remainder of this section, we discuss the use of
distance oracles for performing region search and nearest
neighbor queries on spatial networks. Our goal here is
twofold. First, we show that an approximate distance oracle
used in performing region and nearest neighbor queries
yields answers that are generally of a good guality, which
makes distance oracles applicable to general query proces-
sing on large spatial networks. Next, we examine the kind
of speedup that can be obtained by adopting some of the
strategies developed in Section 6. To measure quality of the
results produced for the region and nearest neighbor
queries with the distance oracles, we use the precision and
recall scores. In particular, precision records how many of

1000
12
100 2 a0
270
10 =

0.1

Retrieval Time (u sec)

30
0.08 0.15 0.2 0.3 0.4 0.5
€ (log scale)

0.2 0.3 0.4 0.5
€ (log scale)

(a) (b)

Fig. 14. Average time to retrieve an s-approximate network distance for
values of ¢ between (a) 0.1 and 0.5 for Washington, DC, and (b) 0.08
and 0.5 for the eastern seaboard data set.

16 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. XX, XXXXXXX 2010

P
-
|

|

XX :-t‘l

Precision
°
o
&
L
Lo o

SO6550

RO I

Recall

o
@

Boone o
PTEERRT
oW
Go3h33
fof IES S

Bmmm e
TETTWT
cocoooo

0.7 0.8 :
0.005 001 0.02 005 0.1 0.005 001 0.02 005 0.1
Cardinality Ratio (log scale) Cardinality Ratio (log scale)

(@) (b)

Fig. 15. Average (a) precision and (b) recall scores for region queries on
spatial networks for varying cardinality ratio values.

the objects in the result set produced with the aid of a
distance oracle are indeed the correct answers, while recall
measures what fraction of the correct answers appear in the
result set produced by the oracle. All of our experiments
use the eastern seaboard data set but vary the ¢ to better
understand its effect on the quality of the answers produced
by the distance oracle. For both the region and nearest
neighbor queries, we make use of a data set of objects R.
The size of R is denoted using the cardinality ratio [2], which
is defined as the ratio of the number of objects in R to the
number of vertices n in a spatial network. In our
experiments, we vary the cardinality ratio of R between
0.0005 and 0.1 and ¢ between 0.5 and 0.01.

The first set of experiments evaluate the performance of
the region search query in terms of the quality of the output
as well as the speedup owing to the optimization strategies
discussed in Section 6. In our experiments, we are interested
in obtaining all objects in R that are within 40 km in terms
of network distance of query point ¢q. We vary both the
cardinality ratio of R as well as use a variety of distance
oracles with different ¢ values.

Figs. 15a and 15b examine the average precision and
recall values, respectively, for region search queries on a
spatial network as the cardinality ratio values of R vary
between 0.0005 and 0.1. We repeated the experiments for
100 query points which were chosen at random and
tabulated the average precision and recall values. Further-
more, we varied the value of € between 0.5 (50 percent) and
0.01 (1 percent). We can see that for a 10 percent distance
oracle, the precision and recall scores are at least 0.9 or
more, which means that the resulting errors in using a
distance oracle are quite low.

Next, we estimated the resulting speedup in using an
optimized version (OP) of our region search algorithm
when compared to its analogous unoptimized (NP) variant.
We measure performance of our algorithms in terms of time
taken to process the query as well as the savings in distance
computations. Fig. 16a shows that the optimized algorithm
is at least an order of magnitude faster than the unopti-
mized one. Moreover, the savings in distance computations
given in Fig. 16b, which are shown as a percentage of the
total distance computations performed by the unoptimized
algorithm, indicates that the optimized algorithm only
performs a fraction of the distance computations compared
to the unoptimized algorithm. Therefore, it is easy to see
that the optimized algorithm is much faster than the
unoptimized algorithm.

The second set of experiments analyzes the performance
of the k-nearest neighbor finding algorithm, which given a

1000 83

< —~ 82! *
o & S 825
g + =92 82
3 100 # Jops]
A Sc 815
g g 33
= gL 8t
g o 8g s
0 g 8 0 80
E ; * %_g 79.5 3‘+
- -
2 o8 7 "*
IS NP + % s N
OP %

78
0.0001 0.001 0.01 0.1 1
Cardinality Ratio (log scale)

0.1
0.0001 0.001 0.01 0.1 1
Cardinality Ratio

(@) (b)

Fig. 16. Improvements in (a) time and (b) distance computations in using
an optimized (OP) region search algorithm over an unoptimized (NP)
variant for varying input size.

query point ¢ finds the k-nearest neighbors to g from objects
drawn from R. In the experiment described below, we
examine the quality of the answers produced by the
distance oracles as well as measure the resulting speedup
in using some of the optimizations developed in Section 6.

Fig. 17a shows the average precision and recall scores for
k-nearest neighbor queries for 100 query points chosen at
random on a data set R residing on a spatial network with a
cardinality factor of 0.01 for varying values of k£ between 1
and 200. Note that in the case of nearest neighbor search,
the precision and recall values are always of the same value
as we compare the first £ neighbors obtained from using the
distance oracle with the correct set of k neighbors. Next,
Fig. 17b examines the average precision and recall values,
respectively, as we varied the cardinality ratio values of R
between 0.0005 and 0.1 while keeping £ fixed at 10.

Fig. 17a records the precision and recall scores for
varying values of ¢ ranging between 0.5 (50 percent) and
0.01 (1 percent). As we can see, the quality of the answers
produced by the distance oracles is, on the average, quite
high. A 10 percent distance oracle consistently produces an
answer that is more than 0.95 on both the precision and
recall measures, which is quite satisfactory for many
application. In Fig. 17b, we varied the cardinality ratio of
R between 0.005 and 0.1, while keeping % at 10. We can see
that for a 10 percent distance oracle the precision and recall
scores are at least 0.9 or more again indicating the
applicability of distance oracles to this problem.

Finally, we show how large savings in time and distance
computations can be achieved by using the optimization
strategies discussed in Section 6. Fig. 18a shows the time
taken to perform nearest neighbor searches for values of k

Precision-Recall

TETTRE
ooo000
Soivmn
So3888
OmmkXx+

1 2 5 10

No of Neighbors (k) (log scale)

(@)

Fig. 17. Average precision and recall scores of nearest neighbor
queries for varying values of (a) k£ with the cardinality ratio of R at 0.01

3050 100200

Precision-Recall

09t ™

0.85

0.8

0.75 £

5
.3
.2
.2
1
.0¢

om e m
SO6060 -
Go35h33
Ommkx+

0.7
0.005 0.01 002 0.05

0.1

Cardinality Ratio (log scale)

(b)

and (b) cardinality ratio values with k= 10.

SANKARANARAYANAN AND SAMET: QUERY PROCESSING USING DISTANCE ORACLES FOR SPATIAL NETWORKS 17

30 T e e e

Time (msec)
Savings (Percentage)

Distance Computation

30

12 510 éoéo 160260
No of Neighbors (k) (log scale)

(b)

5 10 slo 50 160 2loo
No of Neighbors (k) (log scale)

(@)

Fig. 18. Improvements in (a) time and (b) distance computations in using
an optimized (OP) nearest neighbor algorithm over an unoptimized (NP)
variant.

between 1 and 200 on a data set of points R of cardinality
ratio of 0.01. We can see that the optimized variant (denoted
by “OP”) is almost an order of magnitude faster than the
unoptimized version (denoted by “NP”). These savings,
however, decrease as the value of k gets larger as by then k&
becomes a significant fraction of R. For even larger values of
k, which is not shown here, the unoptimized variant of the
algorithm becomes a feasible option. Next, Fig. 18b shows
the savings in distance computations as a percentage of the
number distance computations performed by the unopti-
mized nearest neighbor algorithm. We can see from the
figure that the optimized algorithm only performs a fraction
of the distance computations of the unoptimized algorithm.

8 CONCLUDING REMARKS

In this paper, we presented three approximate oracles for
spatial networks that can answer approximate network
distance queries. Our first oracle took unit space and could
answer approximate network distance queries in O(1) time.
The drawback of this oracle was that the resulting error was
large and dependent on the characteristics of the given spatial
network. This led us to propose an oracle of size O(%) that
took advantage of the path coherence in spatial networks by
decomposing the spatial network into sets of coherent source
vertices and coherent destination vertices such that the
network distances between them are represented by a single
value that approximates them. Such an oracle could answer
queries in O(logn) time using a B-tree. We also presented a
theoretical analysis of a third variant that took O(%) space,
but which could retrieve approximate network distances in
O(1) time with the aid of a hash table. Experiments performed
on the O(n)-size oracle confirmed its linear storage require-
ments, while enabling us to answer approximate network
distance queries in the order of tens of microseconds.
Moreover, our experiments also demonstrated that the
average and the standard deviation of the approximation
error were low and, in fact, on the average, the error was much
lower than the theoretical maximum ¢ value. For example, in
the case of an oracle with ¢ = 0.1 (10 percent approximation)
on the eastern seaboard data set, our average error was just
around 0.9 percent with 90 percent of the queries making less
than 2 percent errors which is negligible. This means that our
oracle can be used as an efficient construct to provide near
exact network distances in real time. Finally, we showed how
to integrate our distance oracle with a relational database
system and demonstrated strategies for making queries

involving distance oracles efficient. Future work will explore
a general strategy for query processing using a distance
oracle, which can optimize complicated query scenarios
involving data sets residing on a spatial network. Additional
future work will address how to deal with updates due to
events such as road closure, traffic congestion, etc.

ACKNOWLEDGMENTS

The authors have been benefited greatly from discussions
with Houman Alborzi. This work was supported in part by
the US National Science Foundation under Grants EIA-08-
12377, CCF-08-30618, and IIS-07-13501, as well as NVIDIA
Corporation, Microsoft Research, Google, the E.T.S. Walton
Visitor Award of the Science Foundation of Ireland, and the
National Center for Geocomputation at the National
University of Ireland at Maynooth.

REFERENCES
[1]

J. Sankaranarayanan and H. Samet, “Distance Oracles for Spatial
Networks,” Proc. IEEE Int’l Conf. Data Eng. (ICDE), pp. 652-663,
Apr. 2009.

D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao, “Query
Processing in Spatial Network Databases,” Proc. Conf. Very Large
Data Bases (VLDB), pp. 802-813, Sept. 2003.

H.-J. Cho and C.-W. Chung, “An Efficient and Scalable Approach
to CNN Queries in a Road Network,” Proc. Conf. Very Large Data
Bases (VLDB), pp. 865-876, Sept. 2005.

N. Jing, Y.-W. Huang, and E.A. Rundensteiner, “Hierarchical
Encoded Path Views for Path Query Processing: An Optimal
Model and Its Performance Evaluation,” IEEE Trans. Knowledge
and Data Eng., vol. 10, no. 3, pp. 409-432, May 1998.

S. Jung and S. Pramanik, “An Efficient Path Computation Model
for Hierarchically Structured Topographical Road Maps,” IEEE
Trans. Knowledge and Data Eng., vol. 14, no. 5, pp. 1029-1046, Sept./
Oct. 2002.

H. Samet, Foundations of Multidimensional and Metric Data
Structures. Morgan-Kaufmann, 2006.

H. Bast, S. Funke, D. Matijevic, P. Sanders, and D. Schultes, “In
Transit to Constant Time Shortest-Path Queries in Road Net-
works,” Proc. Workshop Algorithm Eng. and Experiments (ALENEX),
pp- 34-43, Jan. 2007.

A.V. Goldberg and R.F. Werneck, “Computing Point-to-Point
Shortest Paths from External Memory,” Proc. Workshop Algorithm
Eng. and Experiments (ALENEX), Jan. 2005.

H. Samet, J. Sankaranarayanan, and H. Alborzi, “Scalable Net-
work Distance Browsing in Spatial Databases,” Proc. ACM
SIGMOD, pp. 43-54, June 2008.

J. Sankaranarayanan, H. Alborzi, and H. Samet, “Efficient Query
Processing on Spatial Networks,” Proc. ACM Int’l Workshop
Geographic Information Systems (GIS), pp. 200-209, Nov. 2005.

D. Wagner and T. Willhalm, “Geometric Speed-Up Techniques for
Finding Shortest Paths in Large Sparse Graphs,” Proc. European
Symp. Algorithms (ESA), pp. 776-787, Sept. 2003.

J. Sankaranarayanan, H. Alborzi, and H. Samet, “Enabling Query
Processing on Spatial Networks,” Proc. IEEE Int’l Conf. Data Eng.
(ICDE), p. 163, Apr. 2006.

G.M. Hunter and K. Steiglitz, “Operations on Images Using Quad
Trees,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 1,
no. 2, pp. 145-153, Apr. 1979.

J. Sankaranarayanan, H. Samet, and H. Alborzi, “Path Oracles for
Spatial Networks,” Proc. Conf. Very Large Data Bases (VLDB), vol. 2,
no. 1, pp. 1210-1221, Aug. 2009.

P.B. Callahan and S.R. Kosaraju, “Faster Algorithms for Some
Geometric Graph Problems in Higher Dimensions,” Proc. ACM-
SIAM Symp. Discrete Algorithms (SODA), pp. 291-300, Jan. 1993.
J. Gao and L. Zhang, “Well-Separated Pair Decomposition for the
Unit-Disk Graph Metric and Its Applications,” Proc. Ann. ACM
Symp. Theory of Computing (STOC), pp. 483-492, July 2003.

J. Gudmundsson, C. Levcopoulos, G. Narasimhan, and M. Smid,
“Approximate Distance Oracles for Geometric Graphs,” Proc.

(2]

(3]

4

(5]

(o]

[

(8]

%]

(10]

(1]

(12]

(13]

(14]

[15]

[10]

(171

Q3

Q4

(18]

[19]

(20]

(21]

(22]

(23]

[24]

(23]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]
[30]
(37]
(38]

(39]

(40]

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. XX, XXXXXXX 2010

ACM-SIAM Symp. Discrete Algorithms (SODA), pp. 828-837, Jan.
2002.

G. Narasimhan and M. Smid, “Approximating the Stretch Factor
of Euclidean Graphs,” SIAM |. Computing, vol. 30, no. 3, pp. 978-
989, 2000.

C. Shahabi, M.R. Kolahdouzan, and M. Sharifzadeh, “A Road
Network Embedding Technique for k-Nearest Neighbor Search in
Moving Object Databases,” Geolnformatica, vol. 7, no. 3, pp. 255-
273, Sept. 2003.

H.-P. Kriegel, P. Kroger, M. Renz, and T. Schmidt, “Hierarchical
Graph Embedding for Efficient Query Processing in Very Large
Traffic Networks,” Proc. Int’l Conf. Scientific and Statistical Database
Management (SSDBM), pp. 150-167, July 2008.

N. Linial, E. London, and Y. Rabinovich, “The Geometry of
Graphs and Some of Its Algorithmic Applications,” Combinatorica,
vol. 15, pp. 215-245, 1995.

M. Thorup and U. Zwick, “Approximate Distance Oracles,” Proc.
Ann. ACM Symp. Theory of Computing (STOC), pp. 183-192, 2001.
P.B. Callahan and S.R. Kosaraju, “A Decomposition of Multi-
dimensional Point Sets with Applications to k-Nearest-Neighbors
and n-Body Potential Fields,”]. ACM, vol. 42, no. 1, pp. 67-90, Jan.
1995.

T.M. Chan, “Well-Separated Pair Decomposition in Linear Time?”
Information Processing Letters, vol. 107, no. 5, pp. 138-141, Aug.
2008.

J.A. Orenstein, “Multidimensional Tries Used for Associative
Searching,” Information Processing Letters, vol. 14, no. 4, pp. 150-
157, June 1982.

J. Fischer and S. Har-Peled, “Dynamic Well-Separated Pair
Decomposition Made Easy,” Proc. Canadian Conf. Computational
Geometry (CCCG), pp. 235-238, Aug. 2005.

G.M. Morton, “A Computer Oriented Geodetic Data Base and a
New Technique in File Sequencing,” technical report, IBM Ltd.,
1966.

L. Gargantini, “An Effective Way to Represent Quadtrees,” Comm.
ACM, vol. 25, no. 12, pp. 905-910, Dec. 1982.

G.R. Hjaltason and H. Samet, “Ranking in Spatial Databases,”
Proc. Int’l Symp. Advances in Spatial Databases (SSD), pp. 83-95,
Aug. 1995.

G.R. Hjaltason and H. Samet, “Incremental Distance Join Algo-
rithms for Spatial Databases,” Proc. ACM SIGMOD, pp. 237-248,
June 1998.

J. Sankaranarayanan, H. Alborzi, and H. Samet, “Distance Join
Queries on Spatial Networks,” Proc. ACM Int’l Workshop Geo-
graphic Information Systems (GIS), pp. 211-218, Nov. 2006.

H. Samet, H. Alborzi, F. Brabec, C. Esperanca, G.R. Hjaltason, F.
Morgan, and E. Tanin, “Use of the SAND Spatial Browser for
Digital Government Applications,” Comm. ACM, vol. 46, no. 1,
pp- 63-66, Jan. 2003.

J.L. Bentley, “Decomposable Searching Problems,” Information
Processing Letters, vol. 8, no. 5, pp. 244-251, June 1979.

S. Chaudhuri, “An Overview of Query Optimization in Relational
Systems,” Proc. Symp. Principles of Database Systems (PODS),
pp- 34-43, June 1998.

A. Guttman, “R-Trees: A Dynamic Index Structure for Spatial
Searching,” Proc. ACM SIGMOD, pp. 47-57, June 1984.

H. Shin, B. Moon, and S. Lee, “Adaptive Multi-Stage Distance Join
Processing,” Proc. ACM SIGMOD, pp. 343-354, May 2000.

M.J. Carey and D. Kossmann, “On Saying ‘Enough Already!” in
SQL,” Proc. ACM SIGMOD, pp. 219-230, May 1997.

S. Har-Peled, “Geometric Approximation Algorithms,” Collection
of Lecture Notes, Nov. 2008.

U.S. Census Bureau, “TIGER/Line Files, Census 2000,” http://
www.census.gov/geo/www /tiger /tiger2k /tiger2000.html, Oct.
2001.

USGS, “Major Roads of the United States,” http:/ /nationalatlas.
gov/atlasftp.html, Nov. 1999.

Jagan Sankaranarayanan received the PhD
degree in computer science from the Univer-
sity of Maryland in 2008 under the guidance of
Prof. Hanan Samet. He is an assistant
research scientist at the Center for Automation
Research (CfAR), University of Maryland. He
is the recipient of the Best Paper Awards at
the SIGMOD 2008 and ACM SIGSPATIAL
GIS 2008 conferences and the Best Journal
Paper of 2007 Award by the Computers &
Graphics Journal. He is a member of the IEEE.

Hanan Samet received the BS degree in
engineering from the University of California,
Los Angeles, and the MS degree in operations
research and the MS and PhD degrees in
4 computer science from Stanford University,
California. His PhD dissertation was the first
work in the field of compiler translation validation.
He is a fellow of the IEEE, the ACM, and the
International Association for Pattern Recognition
(IAPR), and was also elected to the ACM Council
in 1989-1991 where he served as the capital region representative. He is
the recipient of the 2009 UCGIS Research Award, the 2010 University of
Maryland College of Computer, Mathematical and Physical Sciences
Board of Visitors Distinguished Faculty Award, and the Science
Foundation of Ireland (SFI) Walton Visitor Award at the Centre for
Geocomputation at the National University of Ireland at Maynooth
(NUIM). In 1975, he joined the Computer Science Department at the
University of Maryland, College Park, where he is now a professor. He is a
member of the Computer Vision Laboratory of the Center for Automation
Research and also has an appointment in the University of Maryland
Institute for Advanced Computer Studies. At the Computer Vision
Laboratory, he leads a number of research projects on the use of
hierarchical data structures for geographic information systems. His
research group has developed the QUILT system which is a GIS based
on hierarchical spatial data structures such as quadtrees and octrees, the
SAND system which integrates spatial and nonspatial data, the SAND
Browser (http://www.cs.umd.edu/brabec/sandjava) which enables
browsing through a spatial database using a graphical user interface,
the VASCO spatial indexing applet (found at http://www.cs.umd.edu/hjs/
quadtree/index.html), a symbolic image database system, and the
STEWARD system for spatiotextual retrieval of documents on the web
as well as the NewsStand and TwitterStand systems for news and Twitter
tweets, respectively. He is the founding chair of the ACM Special Interest
Group on Spatial Information (SIGSPATIAL). He has served as the
cogeneral chair of the 15th ACM International Conference on Advances
in Geographic Information Systems (ACMGIS’07) and the 16th ACM
SIGSPATIAL International Conference on Advances in Geographic
Information Systems (ACMGIS’08). His research interests include data
structures, computer graphics, geographic information systems, compu-
ter vision, robotics, and database management systems, and he is the
author of more than 300 publications on these topics. He is the author of
the recent book titled Foundations of Multidimensional and Metric Data
Structures (http://www.cs.umd.edu/hjs/multidimensional-book-flyer.pdf)
published by Morgan-Kaufmann, an imprint of Elsevier, in 2006, an
award winner in the 2006 best book in Computer and Information Science
competition of the Professional and Scholarly Publishers (PSP) Group of
the American Publishers Association (AAP), and of the first two books on
spatial data structures titled Design and Analysis of Spatial Data
Structures, and Applications of Spatial Data Structures: Computer
Graphics, Image Processing, and GIS, both published by Addison-
Wesley in 1990. He is an area editor of the Graphical Models, and on the
editorial board of the Image Understanding, the Journal of Visual
Languages, and the Geolnformatica. He received best paper awards in
the 2008 SIGMOD Conference, the 2008 SIGSPATIAL ACMGIS'08
Conference, and the 2007 Computers & Graphics Journal. His paper at
the 2009 IEEE International Conference on Data Engineering (ICDE) was
selected as one of the best papers for publication in the IEEE
Transactions on Knowledge and Data Engineering.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

