
1 TWO DATA ORGANIZATIONS FOR
STORING SYMBOLIC IMAGES IN A
RELATIONAL DATABASE SYSTEM

Aya Soffer and Hanan Samet

Computer Science Department and
Center for Automation Research and

Institute for Advanced Computer Science
University of Maryland at College Park

College Park, Maryland 20742

aya@umiacs.umd.edu and hjs@umiacs.umd.edu

Abstract: A method is presented for integrating images into the framework of a
conventional database management system (DBMS). It is applicable to a class of images
termed symbolic images in which the set of objects that may appear are known a priori.
The geometric shapes of the objects are relatively primitive and they convey symbolic
information. Both the pattern recognition and indexing aspects of the problem are
addressed. The emphasis is on extracting both contextual and spatial information from
the raw images. A logical image representation that preserves this information is defined.
Methods for storing and indexing logical images as tuples in a relation are presented.
Indices are constructed for both the contextual and the spatial data, thereby enabling
efficient retrieval of images based on contextual as well as spatial specifications. Two
different data organizations (integrated and partitioned) for storing logical images in
relational tables are proposed. They differ in the way that the logical images are stored.
Sample queries and execution plans to respond to these queries are described for both
organizations. Analytical cost analyses of these execution plans are given.

INTRODUCTION

Images (or pictures) serve as an integral part in many computer applications. Examples
of such applications include CAD/CAM (computer aided design and manufacturing)
software, document processing, medical imaging, GIS (geographic information sys-
tems), computer vision systems, office automation systems, etc. All of these applica-

1

2

tions store various types of images and require some means of managing them. The
field of image databases deals with this problem [8]. One of the major requirements
of an image database system is the ability to retrieve images based on queries that
describe the content of the required image(s), termed retrieval by content. An example
query is “find all images containing camping sites within 3 miles of fishing sites”.

In order to support retrieval by content, the images should be interpreted to some
degree when they are inserted into the database. This process is referred to as converting
an image from a physical representation to a logical representation. The logical
representation may be a textual description of the image, a list of objects found in
the image, a collection of features describing the objects in the image, a hierarchical
description of the image, etc. It is desirable that the logical representation also preserve
the spatial information inherent in the image (i.e., the spatial relation between the
objects found in the image). We refer to the information regarding the objects found
in an image as contextual information, and to the information regarding the spatial
relation between these objects as spatial information. Both the logical and the physical
representation of the image are usually stored in the database. An index mechanism
based on the logical representation can then be used to retrieve images based on both
contextual and spatial information in an efficient way.

There are many image database systems (e.g., Virage [18], QBIC [11], Photo-
book [13], FINDIT [17] as well as others [2, 5, 6, 12]). Most systems treat the image
as a whole, and index the images based mainly on color and texture. A few systems
try to recognize individual objects in an image. These systems do not, however, ad-
dress the issues of spatial relationship between the objects. Other systems deal with
indexing tagged images (images in which the objects have already been recognized
and associated with their semantic meaning) in order to support retrieval by image
content.

In our work, we have chosen to focus on images where the set of objects that may
appear are known a priori. In addition, the geometric shapes of these objects are
relatively primitive and they convey symbolic information. Our application is the map
domain where many graphical symbols are used to indicate the location of various
sites such as hospitals, post offices, recreation areas, scenic areas etc. We call this class
of images symbolic images. Other similar terms found in the literature are graphical
documents, technical documents, and line drawings. Limiting ourselves to symbolic
images simplifies object recognition enabling using well-known methods in document
processing.

In this paper, we present methods for integrating symbolic images into a conven-
tional database management system (DBMS). In our application, we make use of a
relational DBMS although our ideas are applicable to other DBMS’s. These methods
offer solutions for both the pattern recognition and indexing aspects of the problem.
We describe how to incorporate the results of these methods into an existing spatial
database based on the relational model. Our emphasis is on extracting both contextual
and spatial information from the raw images. The logical image representation that we
define preserves this information. The logical images are stored as tuples in a relation.
Indices are constructed on both the contextual and the spatial data, thus enabling effi-
cient retrieval of images based on contextual as well as spatial specifications. It is our

DATA ORGANIZATIONS FOR SYMBOLIC IMAGES 3

view that an image database must be able to process queries that have both contextual
and spatial specifications, in addition to any traditional query.

We propose two different data organizations, termed integrated and partitioned, for
storing images in relational tables. They differ in how logical images are stored. All
of the examples and experiments in this paper are from the map domain. However,
images from many other interesting applications fall into the category of symbolic
images. These include CAD/CAM, engineering drawings, floor plans, and more.

The main contribution of this work lies in demonstrating how a traditional DBMS
can be used to store and retrieve images and how partitioning this data effects the
performance of the database. While the database and pattern recognition techniques
that we use are well-known, the novelty of this work is in adapting and integrating
these techniques into one system that provides a comprehensive solution for storing
and retrieving images in a DBMS. We suggest solutions for all of the steps that are
involved in this integration. These steps include: image acquisition, interpretation,
storage, indexing, and retrieval. The main issues that need to be resolved are:

1. finding an image interpretation procedure whose results can be stored as entries
in a traditional database in such a way that both the contextual and spatial
information inherent in the image will be preserved.

2. what data organization is most suitable for the types of queries that are common
in this application.

3. determining what strategies to use when computing answers to queries (i.e., how
to use the double indexing on both contextual and spatial data efficiently).

4. finding ways to compute their costs.

The rest of this paper is organized as follows. We first present definitions as well
as the notation used. Next, we outline the image input system used to convert images
from their physical representation to their logical representation as they are input to the
database. We continue by describing how images are stored in a database management
system using the two data organizations that we propose including schema definitions
and example relations. This is followed by sample queries along with execution plans
and cost estimates for these plans. We conclude with some observations as well as
directions for future research.

DEFINITIONS AND NOTATIONS

Below we define some terms and the notation used in the remainder of the paper.
A general image is a two-dimensional array of picture elements (termed pixels)
p0; p1; : : : ; pn. A binary image is a general image where each pixel has one of
two possible values (usually 0 and 1). One value is considered the foreground and the
other the background. A general image is converted into a binary image by means of a
threshold operation. A symbol is a group of connected pixels that together have some
common semantic meaning. In a given application, symbols will be divided into valid
symbols and invalid symbols. A valid symbol is a symbol whose semantic meaning
is relevant in the given application. An invalid symbol is a symbol whose semantic
meaning is irrelevant in the given application. A class is a group of symbols all of

4

which have the same semantic meaning. All invalid symbols belong to a special class
called the undefined class.

A symbolic image is a general image I for which the following conditions hold: 1)
Each foreground pixel pi in I belongs to some symbol. 2) The set of possible classes
C1; C2; : : : ; Cn for the application is finite and is known a priori. 3) Each symbol
belongs to some class. 4) There exists a function f which when given a symbol s and
a class C returns a value between 0 and 1 indicating the certainty that s belongs to C.

Images can be represented in one of two ways. In the physical image representation,
an image is represented by a two-dimensional array of pixel values. The physical
representation of an image is denoted by Iphys. In the logical image representation,
an image I is represented by a list of tuples, one for each symbol s 2 I. The tuples
are of the form: (C; certainty; (x; y)) where C 6=undefined, (x; y) is the location of s
in I, and 0 < certainty � 1 indicates the certainty that s 2 C.

IMAGE INPUT

Conversion of input images from their physical to their logical representation is per-
formed using methods common in document analysis [9]. These methods use various
pattern recognition techniques that assign a physical object or an event to one of several
pre-specified classes. Patterns are recognized based on some features or measurements
made on the pattern. A library of features and their classifications, termed the training
set library, is used to assign candidate classifications to an input pattern according
to some distance metric. Each candidate classification is given a certainty value that
approximates the certainty of the correctness of this classification.

We have adapted these methods to solve the problem of converting symbolic images
from a physical to logical representation. Figure 1.1 is a block diagram of the image
input system that we have developed for this purpose. It is driven by the symbolic
information conveyed by the image. That is, rather than trying to interpret everything
in the image, it looks for those symbols that are known to be of importance to the
application. Any other symbol found in the image is labeled as belonging to the
undefined class. This system is described in detail in [15]. In this paper we show
how to integrate this system into a DBMS, thus we only give a short overview of the
image input system here. A symbolic image Iphys is input to the system in its physical
representation. It is converted into a logical image by classifying each symbol s found
in Iphys using the training set library. An initial training set library is constructed
by giving the system one example symbol for each class that may be present in the
application. In the map domain, the legend of the map may be used for this purpose.

The system may work in two modes. In user verification mode, users verify the
classifications before being input to the database. The training set is modified to
reflect the corrections that the user made for erroneous classifications. In automatic
mode, classifications are generated by the system and input directly to the database.
The user determines the mode in which the system operates. In general, the system
should operate in user verification mode until the recognition rate achieved is deemed
adequate. Then, the system can continue to process the input images automatically.

The output of applying the conversion process to Iphys is a logical image where
the tuples are of the form (C; certainty; (x; y)) where C 6= undefined, 0 < certainty

DATA ORGANIZATIONS FOR SYMBOLIC IMAGES 5

AND
PREPROCESSING

EXTRACTION

FEATURE USER

LABELING

LIBRARY

CONSTRUCTION

Tile
Legend

MODIFICATION

LIBRARY

VERIFICATION

USER

User Verified
Classifications

LEGEND ACQUISITION PHASE

Classifier Parameters
Initial/Default

System

Classifications
Generated

SEGMENTATION

SYSTEM

SYMBOL CLASSIFICATION PHASE

MAP

IMAGE

INFORMATION

Current Training
Set Library

Initial Training
Set Library

Modified Training
Set Library

YES

NO

Set of
Triplets:

MODE?

VERIFICATION
USER (class,

certainty,
point)EXTRACTION

FEATURE

CLASSIFICATION

OBJECT

Modified Classifier Parameters

PREPROCESSING
AND

SEGMENTATION

Legend
Non-

Tile xy

Tile Image

Figure 1.1 Image input system

� 1 indicating the certainty that s 2 C, and (x; y) is the location of s in Iphys. For
each image, a set of such tuples is inserted into a spatial database as described in the
following section. In addition, the raw image Iphys (i.e., the image in its physical
representation) is also stored.

IMAGE STORAGE

Images and other information pertaining to the application are stored in relational
tables. The database system that we use for this purpose is SAND [1, 3] (denoting
spatial and non-spatial database), developed at the University of Maryland. It is a
home-grown extension to a relational database, in which the tuples may correspond to
geometric entities such as points, lines, polygons, etc. having attributes which may be
both of a locational (i.e., spatial) and a non-locational nature. Both types of attributes
may be designated as indices of the relation. For indices built on locational attributes,
SAND makes use of suitable spatial data structures. Attributes of type image are used
to store physical images. Query processing and optimization is performed following
the same guidelines of relational databases extended with a suitable cost model for
accessing spatial indices and performing spatial operations.

6

We propose two different data organizations for storing the images in relational
tables. They differ in the way logical images are stored. In the integrated organi-
zation, all tuples of the logical images are stored in one relation. In the partitioned
organization, the tuples are partitioned into separate relations resulting in a one-to-one
correspondence between relations and classes of the application. For example, tuples
(C; certainty; (x; y)) of a logical image for which C = C1 are stored in a relation
corresponding to C1. The motivation for the partitioned organization is that many
queries in in an application using symbolic images need to access all symbols that are
assigned the same classification. The part of the query that selects all tuples that belong
to the same classification is repeated each time such a query is posed. The partitioned
organization makes this repetitive selection at query time unnecessary by providing
the option to partition the logical images relation. The partitioned organization is only
suitable for applications in which the number of classes is relatively small, as there is
one relation for each class and a proliferation of relations would make the database
too complex. In the case of symbolic images, this is a reasonable assumption. The
number of different symbols used to convey symbolic information (which corresponds
to the number of classes) will most likely not be very large, otherwise it would be hard
to keep track of or look up the semantic information that is conveyed by each symbol.
For example, in the map domain this information must be contained in the legend of
the map which is limited in space. Hence, the partitioned organization seems to be
reasonable for a database that stores symbolic images. The partitioned organization
also enables efficient use of spatial indices while processing spatial queries by using a
spatial join operator (e.g., [14]).

Integrated Organization

(CREATE TABLE classes

name STRING PRIMARY KEY,

semant STRING,

bitmap IMAGE);

(CREATE TABLE physical_images

img_id INTEGER PRIMARY KEY,

descriptor STRING,

upper_left POINT,

raw IMAGE);
(CREATE TABLE logical_images

img_id INTEGER REFERENCES physical_images(img_id),

class STRING REFERENCES classes(name),

certainty FLOAT (CHECK certainty BETWEEN 0 AND 1),

loc POINT,

PRIMARY KEY (img_id,class,loc));

Figure 1.2 Schemas for the relations classes, physical images, and
logical images.

The schema definitions given in Figure 1.2 define the relations in the integrated
organization. We use an SQL-like syntax. The classes relation has one tuple for
each possible class in the application. The name field stores the name of the class (e.g.,
star), the semant field stores the semantic meaning of the class in this application
(e.g., site of interest). The bitmap field stores a bitmap of an instance of a symbol

DATA ORGANIZATIONS FOR SYMBOLIC IMAGES 7

class semantics bitmap

S harbor

square hotel

scenic scenic view

T customs

R restaurant

P post office

M museum

K cafe

waves beach

triangle camping site

B filling station

arrow holiday camp

cross first aid station

fish fishing site

H service station

inf tourist information

pi picnic site

air airfield

star site of interest

box youth hostel

U sports institution

telephone public telephone

Figure 1.3 Example instance for classes relation.

image id descriptor raw upper left

image 1 tile 003.012 of Finnish road map Fig. 1.5 (6144,1536)

image 2 tile 003.013 of Finnish road map Fig. 1.6 (6656,1536)

Figure 1.4 Example instance for physical images relation.

representing this class. It is an attribute of type IMAGE. The classes relation is
populated using the same data that is used to create the initial training set for the
image input system (i.e., one example symbol for each class that may be present in the
application along with its name and semantic meaning). See Figure 1.3 for an example
instance of the classes relation in the map domain.

The physical images relation has one tuple per image I in the database. The
img id field is an integer identifier given to the image I when it is inserted into the
database. The descriptor field stores an alphanumeric description of the image I

that the user gives when inserting I (this is meta-data). The raw field stores the actual
image I in its physical representation. It is an attribute of typeIMAGE. The upper left

8

Figure 1.5 Example: image 1. Figure 1.6 Example: image 2.

field stores an offset value that locates the upper left corner of image I with respect to
the upper left corner of some larger image J . This is useful when a large image J is
tiled, as in our example map domain. Subtracting this offset value from the absolute
location of s in the the non-tiled image J yields the location of s in the tile I that
contains it. It is an attribute of type POINT. Any additional meta-data that the user may
wish to store about the images such as how they were formed, camera angles, scale,
etc. can be added as fields of this relation. See Figure 1.4 for an example instance of
the physical images relation in the map domain.

The logical images relation stores the logical representation of the images. It
has one tuple for each candidate class output by the image input system for each
valid symbol s in each image I. The tuple has four fields. The img id field is the
integer identifier given to I when it was inserted into the database. It is a foreign
key referencing the img id field of the tuple representing I in the physical images

relation. The class and certainty fields store the name of the class C to which the
image input system classified s and the certainty that s 2 C. The loc field stores the
(x; y) coordinate values of the center of gravity of s relative to the non-tiled image.
See Figure 1.7 for an example instance of the logical images relation in the map
domain for the images given in Figures 1.5 and 1.6.

Constructing Indices Indices are defined on the schemas defined above as follows
(in SQL-like notation):

CREATE INDEX cl_sem ON classes (semant);

CREATE INDEX cl_name ON classes (name);

CREATE INDEX pi_id ON physical_images (img_id);

CREATE INDEX pi_ul ON physical_images (upper_left);

CREATE INDEX li_cl ON logical_images (class certainty);

CREATE INDEX li_loc ON logical_images (loc);

DATA ORGANIZATIONS FOR SYMBOLIC IMAGES 9

image id class certainty location

image 1 M 1 (6493,1544)

image 1 P 0.99 (6161,1546)

image 1 H 0.99 (6513,1566)

image 1 U 1 (6167,1583)

image 1 star 0.99 (6332,1586)

image 1 P 0.99 (6432,1622)

image 1 K 1 (6416,1636)

image 1 fish 1 (6411,1661)

image 1 scenic 0.99 (6630,1662)

image 1 square 1 (6422,1693)

image 1 star 0.99 (6540,1712)

image 1 pi 0.99 (6396,1741)

image 1 triangle 1 (6475,1784)

image 1 star 1 (6474,1814)

image 1 cross 0.79 (6291,1854)

image 1 box 0.74 (6357,1862)

image 1 inf 1 (6226,1937)

image 1 box 1 (6280,2011)

image 2 arrow 0.99 (6861,1544)

image 2 scenic 0.72 (6803,1565)

image 2 pi 0.99 (6849,1756)

image 2 R 0.71 (6849,1756)

image 2 P 0.99 (6858,1771)

image 2 H 0.99 (6827,1775)

image 2 U 0.79 (6827,1775)

image 2 pi 0.99 (6800,1807)

image 2 R 0.99 (6800,1807)

Figure 1.7 Example instance for the logical images relation in the map domain.
The tuples correspond to the symbols in the images of Figures 1.5 and 1.6.

cl sem and cl name are alphanumeric indices. They are used to search the
classes relation by semant and name, respectively. The pi id index is also al-
phanumeric. It is used to search the physical images relation by img id. pi ul is
a spatial index on points. It is used to search the physical images relation by the
coordinates of the upper left corner of the images. li cl is an alphanumeric index. It
is used to search the logical images relation by class. It has a secondary index on
attribute certainty. Thus, tuples that have the same class name are ordered by cer-
tainty value within this index. li loc is a spatial index on points. It is used to search
the logical images relation by location (i.e., to deal with spatial queries regarding
the locations of the symbols in the images such as distance and range queries). The
spatial indices are implemented using a PMR quadtree for points [10].

10

physical_images

C1

C1

C1

C2

C2

C2

Cn

Cn

Cn

I1

Im

I1

I2

Im

class certainty li_tid

I2

location li_tid

li_loc:

(B-trre)

(PMR-tree)
 index on location

class certainty location image_id

li_cl: index on class

image_id descriptor lower_left raw

logical_images

Figure 1.8 File structures for logical and physical images using the integrated organi-
zation.

Observe that the file structures resulting from the integrated organization are very
similar to the file structures used by inverted file methods for storing text [4]. An
inverted file consists of two structures. A vocabulary list which is a sorted list of words
found in the documents,and a posting file indicating for each word the list of documents
that contain it and information regarding its position in the document. The vocabulary
list is actually an index on the posting file, and is used to locate the record of the posting
file corresponding to a given word on disk. In our organization, the logical images

relation corresponds to the posting file. The index li cl on this relation plays the
role of the vocabulary list. The main difference from text is that as we are dealing
with 2-dimensional information rather than 1-dimensional information, we need more
elaborate methods to store and index the locational information. In particular, just
storing the location, as is done for text data, is insufficient. In order to answer spatial
queries efficiently, these locations must be sorted by use of a spatial index. Figure 1.8
illustrates the file structures used following the integrated organization that correspond
to similar file structures used for text data.

DATA ORGANIZATIONS FOR SYMBOLIC IMAGES 11

Partitioned Organization

In the partitioned organization, tuples are partitioned into separate relations resulting
in a one-to-one correspondence between relations and classes of the application. For
example, tuples (C; certainty; (x; y)) of a logical image for which C = C1 are stored
in a relation corresponding to C1. Figure 1.9 gives schema definitions for relations
of the partitioned organization corresponding to the logical images relation of the
integrated organization. Both the classes and physical images definitions are
identical to those in the integrated organization. The only difference between the
organizations is the way the logical images are stored. In the partitioned organization,
there is one relation,cl part for each class cl in the application. Each relationcl part

contains the logical images tuples (C; certainty; (x; y)) for which C = cl . This is
equivalent to the result of a selection operation: SELECT FROM logical images

WHERE class = cl . See Figure 1.10 for example instances of relations star part,
P part, scenic part, and pi part for the images in Figures 1.5 and 1.6.

for each class cl in application

(CREATE TABLE cl_part

img_id INTEGER REFERENCES physical_images(img_id),

certainty FLOAT (CHECK certainty BETWEEN 0 AND 1),

loc POINT,

PRIMARY KEY (img_id,loc));

Figure 1.9 Schemas for the cl part relations in the partitioned organization.

Constructing Indices Indices are defined on the separate class schemas of the par-
titioned organization as follows (in SQL-like notation):

for each class cl in application

CREATE INDEX cl_cert ON cl_part (certainty);

CREATE INDEX cl_loc ON cl_part (loc);

Each instance of the cl part relation has an alphanumeric index on certainty

and a spatial index on loc. The spatial index is used to deal with queries of the type
“find all images with sites of interest within 10 miles of a picnic area” by means of
a spatial join operator. Figure 1.11 illustrates the file structures for the partitioned
organization corresponding to file structures used for text data.

RETRIEVING IMAGES BY CONTENT

As mentioned above, we distinguish between contextual information and spatial in-
formation found in images. Similarly, we distinguish between query specifications
that are purely contextual and those that also contain spatial conditions. A contextual
specification defines the images to be retrieved in terms of their contextual information
(i.e., the objects found in the image). For example, suppose we want to find all images
that contain fishing sites or campgrounds. A spatial specification further constrains the

12

star part:

image id certainty location

image 1 0.99 (6332,1586)

image 1 0.99 (6540,1712)

image 1 1 (6474,1814)

scenic part:

image id certainty location

image 1 0.99 (6630,1662)

image 2 0.72 (6803,1565)

P part:

image id certainty location

image 1 0.99 (6161,1546)

image 1 0.99 (6432,1622)

image 2 0.99 (6858,1771)

pi part:

image id certainty location

image 1 0.99 (6395,1741)

image 2 0.99 (6849,1756)

image 2 0.99 (6800,1807)

Figure 1.10 Example instances of relations star part, scenic part, P part, and
pi part. The tuples correspond to the symbols in the images of Figures 1.5 and 1.6.

required images by adding conditions regarding spatial information (i.e., the spatial
relations between the objects).

In order to describe the methods that we use for retrieving images by content, we
first present some example queries. Next, we demonstrate the strategies used to process
these queries. We conclude by analyzing the expected costs of these strategies (termed
plans) and compare the data organizations (i.e., integrated and partitioned).

Example Queries

The example queries in this section are first specified using natural language. This
is followed by two equivalent SQL-like queries. The first assumes an integrated
organization and the second assumes a partitioned organization.

Query Q1: display all images containing a scenic view .

display PI.raw

DATA ORGANIZATIONS FOR SYMBOLIC IMAGES 13

image_id descriptor lower_left raw

location li_tid

location li_tid

I1

I2

Im

location li_tid

certainty location image_id

certainty location image_id

certainty location image_id

C1_loc

C2_loc

Cn_loc

C1_class

C2_class

Cn_class

physical_images

Figure 1.11 File structures for logical and physical mages using the partitioned orga-
nization.

from logical_images LI, classes C, physical_images PI

where C.semantics = "scenic view" and C.name = LI.class

and LI.image_id = PI.image_id;

display PI.raw

from scenic_part SC, physical_images PI

where SC.image_id = PI.image_id;

Notice that in order to write SQL-like queries for the partitioned organization, the
names of the relations corresponding to each partition must be known. This can easily
be overcome by having the system assign names to these relations. These names are
derived from the class attribute of relation classes. Two functions that perform this
name conversion are provided. get rel name returns the name of a relation given
the class name. get class returns the class name given a relation name. Thus, there
is no need for the user to know the names assigned by the system to these relations.

Query Q2: display all images containing a scenic view within 5 miles of a picnic site.

display PI.raw

from logical_images LI1, logical_images LI2, classes C1,

classes C2, physical_images PI

where C1.semantics = "scenic view"

and C2.semantics = "picnic site"

and C1.name = LI1.class and C2.name = LI2.class

and distance(LI1.location,LI2.location) < 5

and LI1.image_id = LI2.image_id

and LI1.image_id = PI.image_id;

display PI.raw

14

from scenic_part SC, pi_part PIC, physical_images PI

where distance(SC.location,PIC.location) < 5

and SC.image_id = PIC.image_id

and PIC.image_id = PI.image_id;

The function distance takes two geometric objects (e.g., two points) and returns a
floating point number representing the Euclidean distance between them.

Query Processing

The following plans outline how responses to queries Q1 and Q2 are computed using
the two data organizations. These plans utilize the indexing structures available for
each organization. Indices on alphanumeric attributes are capable of locating the
closest value greater than or equal to a given string or number. Indices on spatial
attributes are capable of returning the items in increasing order of their distance from
a given point (this is termed an incremental nearest neighbor operation) [7]. This
operation may optionally receive a maximum distance, D, and it will stop when the
distance to the next nearest neighbor is greater than D. Thus, it returns all neighbors
withinD of a query point in increasing distance. Direct addressing of a tuple within a
relation is possible by means of a tuple identifier (or tid for short). All index structures
have an implicit attribute that stores this tid. The Xth plan, labeled PxI , uses the
integrated organization. The Xth plan, labeled PxP , uses the partitioned organization.

Query Q1: display all images containing a scenic view.

Plan P1I: Search using an alphanumeric index on class.

Get all tuples of logical images which correspond to “scenic view”
(use index li cl)

For each such tuple t
display the physical image corresponding to t

Plan P1P Search the scenic view partition sequentially

For each tuple t of the “scenic view” partition

display the physical image corresponding to t

Query Q2: display all images containing a scenic view within 5 miles of a picnic site.
Finding a suitable plan for query Q2 gives rise to many query optimization issues.
Most of these issues are also applicable to spatial databases (e.g., [1]). To see the
complexity of these issues, we give two different plans for computing an answer to
query Q2 using each organization. The first uses only alphanumeric indices, while the
second uses an alphanumeric index and a spatial index.

Plan P2AI Search picnic tuples and scenic view tuples using the alphanumeric index
on class. For each picnic tuple, check all scenic view tuples to determine
which ones are within the specified distance.

DATA ORGANIZATIONS FOR SYMBOLIC IMAGES 15

get all tuples of logical images corresponding to “picnic”
(use index li cl)

for each such tuple t1
get all tuples of logical images corresponding to “scenic view”

(use index li cl)
for each such tuple t2

if distance between t1 and t2 � 5 miles

and they are in the same image then

display corresponding physical image

Plan P2BI Search for “picnic” tuples using an alphanumeric index on class and
search for “scenic view” tuples using a spatial index on loc.

get all tuples of logical images corresponding to “picnic”
(use index li cl)

for each such tuple t
get all points within 5 miles of t.loc

(using the incremental nearest neighbor operation)

for each one of these points p
if p is a ``scenic view'' and in same image then

display the corresponding physical image

Plan P2AP Search both the picnic and scenic view partitions sequentially.

for each tuple t1 of the “picnic” partition

for each tuple t2 of the “scenic view” partition

if distance between t1.loc and t2.loc � 5 miles

and they are in the same image then

display the corresponding physical image

Plan P2BP Search the picnic partition sequentially, and search the scenic view parti-
tion using the spatial index on loc.

for each tuple t1 of the “picnic” partition

get all points within 5 miles of t1.loc
in the “scenic view” partition

for each one of these points p
if p is in the same image as t1 then

display the corresponding physical image

Cost Analysis

In order to estimate the costs of each plan, we must make assumptions about the
data distributionand the costs of the various operations. Table 1.1 contains a tabulation
of the costs of basic operations used to process queries. The cost of many of these
operations is a function of the relation on which they operate. cx(y) is the cost of
performing operation x on relation or index y. li stands for logical images. The

16

Name Meaning

cr accessing a tuple by tid (random order)
csq accessing a tuple in sequential order
csqf accessing the first tuple of a relation
caf “find first” operation on an alphanumeric index
can “find next” operation on an alphanumeric index
clsf “find nearest neighbor” operation on a location space index
clsn “find next nearest neighbor” operation on a location space index
cfsf “find nearest neighbor” operation on a feature space index
cfsn “find next nearest neighbor” operation on a feature space index
csc string comparison
clsd distance computation in location space
cfsd weighted distance computation in feature space

Table 1.1 Costs of basic operations used in query processing.

cost of accessing the physical images relation to retrieve the result image and the cost
of the “display” operation are not included as it is always the same regardless of the
selected execution plan. Let Npic and Nsv be the number of tuples from class “picnic”
and “scenic view”, respectively. Let Bpic and Bsv be the number of disk blocks
containing tuples from class “picnic” and “scenic view”, respectively.

Equations 1.1, and 1.2 estimate the cost of responding to query 1 using the integrated
and partitioned organizations, respectively.

C1I = caf(li cl) + Nsv � (cr(li) + can(li cl)) (1.1)

C1P = Nsv � csq(sv part) (1.2)

One difference between C1I and C1P is that in the integrated organization, there is an
“alphanumeric find” operation on index li cl that is not necessary in the partitioned
organization. It is required in order to find the first scenic view tuple in this index. In
addition, one more random access is required for each scenic view tuple in order to
get the img id from the logical images relation. The other difference is that there
are Nsv alphanumeric next operations in the integrated organization compared with
Nsv sequential access operations in the partitioned organizations. The reason for this
is that in the partitioned organization, the relation is scanned directly, whereas in the
integrated organization, the index is scanned.

C2AI
= caf(li cl) +Npic � (cr(li) + can(li cl)) + (1.3)

Bpic � [caf(li cl) + Nsv � (cr(li) + can(li cl))] +

Npic �Nsv � clsd

C2AP
= Npic � csq(pi part) + (1.4)

Bpic � [csqf(sv part) +Nsv � csq(sv part)] +

Npic �Nsv � clsd

DATA ORGANIZATIONS FOR SYMBOLIC IMAGES 17

Equations 1.3 and 1.4 estimate the cost of responding to query 2 with plan A using the
integrated and partitioned organizations, respectively. In both equations, the first line
is the cost of reading all pic tuples, the second line is the cost of reading all sv tuples for
each block, and the last line is the cost of checking the distance between each (pic,sv)
pair. NInC2

denotes the average number of tuples in the circular range specified in
query 2 (C2). Nsv InC2

denotes the average number of scenic view tuples in C2.
Assuming a uniform distribution of symbols in space (i.e., there is an equal number of
symbols in any given area), then NInC2

= area(C2)

A
�N , where N is the total number

of tuples in the logical images relation, A is the area covered by these tuples, and
C2 is the circular range specified in query 2. Assuming a uniform distribution of
classifications among the symbols (i.e., there is an equal number of symbols from each
classification in any group of symbols), then Nsv InC2

= area(C2)

A
� N

CL
, where CL

is the number of different classifications in the database.
If these assumptions about the distribution of the classifications among symbols

do not hold, then other methods are required to estimate the number of scenic view
tuples in a given area. The portion of all tuples that belong to each classification
can be recorded when populating the database by checking the class attribute and
tallying the number for each classification. This data can then be used to estimate the
distributionof the classifications among the symbols. Assuming that the distributionof
classifications among any group of symbols is equal to the the total database distribution
(i.e., the portion of tuples from each classification among any given group of symbols
is equal to the portion of tuples from each classification in the entire database), then
Nsv InC2

= area(C2)

A
� svp �N , where svp is the portion of the database tuples that

belong to the “scenic view” class.
Plan P2AC performs a spatial join operation on the results of two selection oper-

ations on relation logical images. The first select operation extracts all tuples of
the relation that are of class “picnic”, while the second select operation extracts all
tuples of the relation that are of class “scenic view”. The results of these two select
operations are then joined according to a predicate based on the loc attribute. In
our implementation of plan P2AC , we perform the select and join operations simul-
taneously using a block nested loop join algorithm as follows. One of the classes is
designated as the inner class, and the other is designated as the outer class. One block
of tuples belonging into the outer class are read into a memory-resident buffer (using
the index on attribute class). All tuples of the inner class are then read (one block at
a time using the index on attribute class) and spatially joined with all tuples of the
outer class that are in memory (by computing the predicate on the spatial attribute).
This process is repeated with the next block of tuples of the outer class, until all tuples
of the outer class have been read.

The main difference between C2AI
and C2AP

is that in the integrated organization
the index is scanned sequentially, whereas in the partitioned organization the relation
corresponding to the scenic view partition is scanned sequentially (as in the case
of query 1). As a result, once again, there are considerably more “random access”
operations in the integrated organization than in the partitioned organization.

18

Equations 1.5 and 1.6 estimate the cost of responding to query 2 with plan B using
the integrated and partitioned organizations, respectively. Again, as in equations 1.3
and 1.4, the first line is the cost of reading all pic tuples, but the second line is the cost
of finding sv tuples in the range (using index li loc) for each pic.

C2BI
= caf(li cl) + Npic � [cr(li) + can(li cl)] + (1.5)

Npic � [clsf(li loc) + NInC2
� (cr(li) + csc + clsn(li loc))]

C2BP
= Npic � csq(pi part) + (1.6)

Npic � clsf(sv loc) +Nsv InC2
� (cr(sv part) + clsn(sv loc))

The main difference between C2BI
and C2BP

is in the number of location-space
“find next” operations and the number of random access operations. In the integrated
organization, all tuples t of any class in circle C2 are retrieved from the spatial
index. The class of t is then retrieved from the logical images relation to see if it
corresponds to a “scenic view”. This requires a random access operation for each tuple
in C2. On the other hand, in the partitioned organization, only tuples of type “scenic
view” are retrieved by the spatial index. Thus, there is no need for an additional
random access to check the class of the tuple. In addition, since only a subset of
the tuples in circle C2 are “scenic view” tuples, the number of items retrieved by the
spatial query in the integrated organization (i.e., NInC2

) is larger than the number of
items retrieved by the spatial query in the partitioned organization (i.e., Nsv InC2

).
Another significant difference between C2BI

and C2BP
is that the spatial index on

which the search is performed is smaller in the partitioned organization since it only
contains “scenic view” tuples (i.e., jsv locj < jli locj). As a result, clsf(sv loc)

and clsn(sv loc) are less than clsf(li loc) and clsn(li loc), respectively. Therefore, the
difference between the total cost of plan P2B in the partitioned organization and
the total cost of plan P2B in the integrated organization is greater than in the case
of plan P2A. The plan for the partitioned organization can be further improved by
implementing a more sophisticated form of the spatial join operation between the two
relations scenic part and pi partwhich correspond to “scenic view” and “picnic”,
respectively. The overall idea is that the join can be computed more efficiently by
traversing both indices in parallel in such a way as to avoid comparing tuples which
cannot satisfy the join condition. This operation has not been implemented in SAND
yet. Once it is added, plan P2BP will be revised accordingly.

It is interesting to compare the costs of answering query 2 for one particular or-
ganization using plans P2A and P2B. For the integrated organization, we compare
equations 1.3 and 1.5. In plan P2AI , both relations are scanned sequentially via the
alphanumeric index li cl. For each picnic tuple, each scenic view tuple is checked
to determine whether or not it is within the specified range. Thus, the total number of
distance computations is Npic �Nsv. In addition, the same number of random access
operations are also required in order to get the locations from the logical images

relations. In plan P2BI, the spatial index is used and thus only tuples that are within
the specified range need to be examined. The cost of this is the overhead involved
in using the spatial index. In this case, this cost is Npic location-space “find first”
operations, and Npic � NInC2

location-space “find next” operations. These spatial
operations involve distance computations as part of the incremental nearest neighbor

DATA ORGANIZATIONS FOR SYMBOLIC IMAGES 19

operation. However, there is no need for any distance computations as part of the plan
itself. Whether plan P2AI or plan P2BI is better depends on the size of the data set,
the portion of these tuples that belong to each classification (termed the contextual
selectivity), and on the portion of all tuples that fall in the range specified by the spatial
component (termed the spatial selectivity). Assuming a high spatial selectivity (i.e.,
that the number of tuples in the spatial range is much smaller than the total number
of tuples in the data set), plan P2BI should prove to be much more efficient than plan
P2AI . However, if the spatial selectivity is low, then plan P2AI may prove to be bet-
ter. Similar observations can be made about the partitioned organization by comparing
equations 1.4 and 1.6. Once a more efficient spatial join operator is implemented, as
mentioned above, the difference will be even greater.

CONCLUDING REMARKS

Two different data organizations (integrated and partitioned) for storing logical images
in relational tables were proposed. They differ in the way that the logical images are
stored. Sample queries and execution plans to answer these queries were described
for both organizations. Analytical cost analyses of these execution plans were given
that indicated that the partitioned data organization is more efficient for queries that
consist of both contextual and spatial specifications. On the other hand, the integrated
organization is better for purely spatial specifications. Both organizations gave similar
results for queries that consist of purely contextual specification.

Our definition of the class of images that we can handle is rather strict. Some
of these restrictions can be relaxed. In particular, the requirement that there exists a
function f which when given a symbol s and a class C returns a value between 0 and
1 indicating the certainty that s belongs toC can be omitted. In this case, we can store
the feature vectors in the database rather than the classifications. For a comparison of
using these two approaches, see [16]. Of course, more elaborate indexing methods are
then required to respond to queries such as those presented in this paper.

ACKNOWLEDGMENTS

This work was supported in part by the National Science Foundation under Grants
CDA-950-3994 and IRI-97-12715. We are grateful to Karttakeskus, Map Center,
Helsinki, Finland for providing us the map data.

References

[1] W. G. Aref and H. Samet. Optimization strategies for spatial query processing.
In Proc. of the 17th Intl. Conf. on Very Large Data Bases, pp. 81–90, Barcelona,
Sept. 1991.

[2] S. K. Chang, E. Jungert, and Y. Li. The design of pictorial databases based
upon the theory of symbolic projections. In Design and Implementation of Large
Spatial Databases — 1st Symp., SSD’89, pp. 303–323, Santa Barbara, CA, July
1989. (Also Springer-Verlag Lecture Notes in Computer Science 409).

[3] C. Esperança and H. Samet. Spatial database programming using SAND. In

20

Proc. of the 7th Intl. Symp. on Spatial Data Handling, vol. 2, pp. A29–A42,
Delft, The Netherlands, Aug. 1996.

[4] C. Faloutsos. Access methods for text. ACM Comp. Surveys, 17(1):49–74, Mar.
1985.

[5] V. Gudivada and V. Raghavan. Design and evaluation of algorithms for image
retrieval by spatial similarity. ACM Trans. Info. Syst., 13(2):115–144, Apr. 1995.

[6] A. Gupta, T. Weymouth, and R. Jain. Semantic queries with pictures: the VIMSYS
model. In Proc. of the 17th Intl. Conf. on Very Large Databases, pp. 69–79,
Barcelona, Spain, Sept. 1991.

[7] G. R. Hjaltason and H. Samet. Ranking in spatial databases. In Advances in
Spatial Databases — 4th Intl. Symp., SSD’95, pp. 83–95, Portland, ME, Aug.
1995. (Also Springer-Verlag Lecture Notes in Computer Science 951).

[8] R. Jain. NSF workshop on visual information management systems. SIGMOD
RECORD, 22(3):57–75, Sept. 1993.

[9] R. Kasturi, R. Raman, and C. Chennubhotla. Document image analysis an
overview of techniques for graphics recognition. In Proc. of the IAPR Workshop
on Syntactic and Structural Pat. Rec., pp. 192–230, Murray Hill, NJ, June 1990.

[10] R. C. Nelson and H. Samet. A consistent hierarchical representation for vector
data. Computer Graphics, 20(4):197–206, Aug. 1986. (Also Proc. of SIG-
GRAPH’86, Dallas, Aug. 1986).

[11] W. Niblack, R. Barber, W. Equitz, M. Flickner, E. Glasman, D. Petkovic, and
P. Yanker. The QBIC project: Querying images by content using color, texture,
and shape. In Proc. of the SPIE, Storage and Retrieval of Image and Video
Databases, vol. 1908, pp. 173–187, San Jose, CA, Feb. 1993.

[12] V. Oria, B. Xu, and M. T. Tamer. VisualMOQL: A visual query language for
image databases. In Proc. of the IFIP 2.6 4th Working Conf. on Visual Database
Systems (VDB-4), pp. 186–191, L’Aquila, Italy, May 1998.

[13] A. Pentland, R. W. Picard, and S. Sclaroff. Photobook: Content-based manipu-
lation of image databases. In Proc. of the SPIE, Storage and Retrieval of Image
and Video Databases II, vol. 2185, pp. 34–47, San Jose, CA, Feb. 1994.

[14] D. Rotem. Spatial join indices. In Proc. of the 7th Intl. Conf. on Data Eng., pp.
500–509, Kobe, Japan, April 1991. IEEE Computer Society Press.

[15] H. Samet and A. Soffer. MAGELLAN: Map acquisition of geographic labels by
legend analysis. Intl. Journal of Document Analysis and Recognition, 1(2):89–
101, June 1998.

[16] A. Soffer and H. Samet. Two approaches for integrating symbolic images into a
multimedia database system: a comparative study. VLDB Journal, to appear.

[17] M. Swain. Interactive indexing into image databases. In Proc. of the SPIE,
Storage and Retrieval for Image and Video Databases, vol. 1908, pp. 95–103,
San Jose, CA, Feb. 1993.

[18] Virage. Virage web site. http://www.virage.com.

