
In Proceedings of the 16th International Conference on Extending Database Technology (EDBT’13),

pages 717–720, Genoa, Italy, March 2013.

An Efficient Layout Method for a Large Collection of
Geographic Data Entries

∗

Sarana Nutanong Marco D. Adelfio Hanan Samet

Center for Automation Research, Institute for Advanced Computer Studies,
Department of Computer Science, University of Maryland

College Park, MD 20742, USA
{nutanong, marco, hjs}@cs.umd.edu

ABSTRACT

Many spatial applications require the ability to display locations of
geographic data entries on an online map. For example, an online
photo-sharing service may wish to display photos (as thumbnails)
according to where they were taken. Since displaying geographic
data entries as thumbnails or icons on a map requires some amount
of space, displayed entries can overlap each other. As a result, we
may wish to discard less popular or older entries (based on a given
measure of importance) so that these more popular or newer en-
tries become more distinct. A straightforward solution is to apply
a spatial database extension such as PostGIS (i) to retrieve entries
within a given display window; (ii) to discard entries in proximity
of a more important one. In this paper, we demonstrate our method
for efficiently selecting distinct entries from a large geographical
point set. Specifically, our demonstration software presents a vot-
ing system built upon an ensemble of interrelated indexes, which
is the main novelty of our query processing method. This allows
us to efficiently determine the degree of distinctiveness of all en-
tries within a query window using simple index traversal opera-
tions rather than expensive spatial operations. The effectiveness of
our method in comparison to a traditional spatial query is shown by
our experimental results using a real dataset of over 9 million loca-
tions. These experimental results show that our proposed method is
capable of consistently producing subsecond response times, while
the spatial query-based method takes more than 10 seconds on av-
erage in a low spatial selectivity setting.
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1. INTRODUCTION
In this paper we demonstrate our solution [8] for displaying lo-

cations of data entries on an online map where a user manipulates
the display window and the zoom level to specify an area of in-
terest. This task arises in many applications built by us that use
a map query interface to access spatial and nonspatial data (e.g.,
NewsStand [11, 14, 19], TwitterStand [16], QUILT [13, 18], and
the SAND Browser [3, 12]) for both location-based and feature-
based queries [1].

This paper presents a demonstration of our efficient solution [8]
for displaying the locations of data entries on an online map where
a user manipulates the display window and the zoom level. One ex-
ample application can be given as: an online photo-sharing service
displaying photos (as thumbnails) according to where they were
taken and to allow its users to browse these images through an on-
line mapping interface. Since many photo entries can occupy the
same area in a display window, we may choose to display only a
representative subset instead. These entries can be laid out based
on a scoring system denoting their importance, which can be de-
rived, for example, from how recently each image was taken and
the number times it has been viewed. We present a demonstration
application which showcases the usefulness of our layout solution
and exposes its internal logic.

The structure of this paper is given as follows. Section 2 presents
a background discussion. Section 3 provides a query definition.
Section 4 explains the proposed demonstration application. Sec-
tion 5 concludes the paper.

2. BACKGROUND
Our problem can be formally described as finding an appropriate

layout for a collection of spatial data entries in a display window
(could result from a spatial join [5]). Specifically, given a large ge-
ographic dataset S and a geographic query window W , select a
subset T of data entries from S that fall within W . Figure 1(a)
shows the locations of all data entries from an example database
that fall within a sample query window W . Only the outlines of
image thumbnails are displayed, in order to expose the differences
in density of images around the map. Figure 1(b) shows a set T
of entries selected using our method on a geotagged collection of
images [4, 15]. Notice that the selected entries do not result in
large overlaps, and are distributed throughout the query window.
In particular, we want the way in which the data entries (e.g., im-
age thumbnails or icons) in T are selected to satisfy the following
design objectives.

(i) Minimize overlaps. Displaying or labeling any entry from S
on a map requires some amount of display space. If multiple prox-
imate data entries are selected, their representations or labels may
overlap, resulting in reduced legibility and less data clarity than is
desired. In some spatial sampling applications, overlap between en-
tries of T must be avoided completely. Assume that each data entry
is represented as an image thumbnail with a size of (ǫ× ǫ). We can
completely avoid overlaps by ensuring that no two data entries in



In Proceedings of the 16th International Conference on Extending Database Technology (EDBT’13),

pages 717–720, Genoa, Italy, March 2013.

T have a chessboard distance smaller than a proximity threshold
ǫ. In applications where a slight overlap between pairs of entries is
acceptable, this proximity threshold can be relaxed.

(ii) Respect relative importance of entries. Consider geographic
datasets that include an importance measure for each entry
(e.g., [6]). When two data entries are in proximity and one of them
must be discarded, we should keep the more important one and
discard the other entry. In other words, T should include the most
important entry for different regions inW .

(iii) Maximize spatial fullness. The subset T should cover most
of the area that is covered by all entries of S within W . That is,
if one geographic region within W contains far more entries than
others, then we still expect to see entries in all regions of W that
contain entries in S.

(iv) Provide panning/zooming consistency. If a geographic win-
dow W contains a region R, and another geographic window W ′,
obtained by panning the map, also containsR, then the spatial sam-
ple within R should be identical in both cases. Similarly, zooming
consistency requires that entries selected within W should also be
selected withinW ′, when W ′ is obtained by zooming in from W .

(v) Enable efficient sampling. Even with millions of candidate
entries of S within W , we still desire a fast response time to se-
lect the subset T . Note that this property restricts us from using
standard map labeling algorithms that provide super-linear running
time (with respect to the number of entries in W ) for the selection
and placement of non-overlapping map labels. This goal precludes
the use of traditional map labeling solutions [2, 20] which require
considering all candidate entries.

(vi) Support filtering conditions. Allow feature-based filters to
guide the spatial sampling process, so that T does not contain any
data entries that are filtered out. The filters may vary in their selec-
tivity, in the sense that some filters could remove many data entries
from being selected into T , while others may have little effect on
T because they do not exclude many of the entries. This goal (in
combination with the spatial fullness property) precludes the use of
some precomputation-based approaches [17].

(a) Outlines of all images

(b) Distinct images selected using the MRSD query

Figure 1: Selecting images from a set of overlapping thumbnails
obtained from a geotagged collection of images.

In order to fully appreciate the challenges of designing a solution
to satisfy these properties, we describe three sample approaches
(based on the spatial window query) and their drawbacks. One ap-
proach is to randomly sample a subset of n entries within W , and
iteratively select elements from the subset that do not overlap pre-
viously selected entries. This approach can be implemented effi-

ciently (using a spatial index) and avoids overlaps, but does not
fulfill the spatial fullness or panning/zooming consistency proper-
ties, nor does it respect entry relevance. A second approach is to se-
lect the most important n entries within W , and then to iteratively
select elements from this subset that do not overlap with previously
selected entries. This can be done efficiently and avoids overlaps,
but again does not fulfill the spatial fullness or panning/zooming
consistency properties. A third approach is to start with all entries
within W , and then iteratively select entries that do not overlap
with more important ones in W . This is optimal for minimizing
overlaps, achieves spatial fullness, and respects relative importance
of entries. However, it can be very inefficient to consider all ele-
ments in W (when W is large or S is dense within W ) and pan-
ning/zooming consistency will be violated in border areas.

We model this layout problem as a problem of selecting “dis-
tinct” data entries based on a measure of importance where a data
point is considered distinct if there are no other nearby data en-
tries with a greater importance. Our solution is motivated by the
SELECT DISTINCT query used in relational database manage-
ment systems (RDBMS) which provides a way of selecting repre-
sentative data entries by (i) grouping identical values from a given
column; (ii) selecting one representative/distinct data entry from

each group based on a set of ordering criteria. 1 This query can
be efficiently processed using an appropriate index. Since grouping
works for only discretized attributes, one way to adapt the SELECT
DISTINCT query to our layout problem is to partition the data
space into a grid where the grid cell size is given by a proximity
threshold ǫ. We can then group data entries according to the grid
cells in which they reside. However, when two data entries are sep-
arated by a grid boundary, this method considers them as being
in two different groups regardless of how close they are. If these
two data entries are represented as image thumbnails with a geo-
graphic size of ǫ × ǫ, then they can overlap significantly. It is also
important to point out that a user may change the zoom level while
the pixel size of thumbnails remain unchanged, which effectively
changes the proximity threshold relative to the map area. Hence,
our solution needs to be able to handle queries when the proximity
threshold ǫ changes according to the zoom level.

The demonstration application discussed in this paper illustrates
the usefulness of our recently proposed query which we term the
Multiresolution Select-Distinct Query (MRSD) [8] and an associ-
ated query processing method, which satisfy the stated design ob-
jectives. The basis of our method is a quadtree-like decomposition
of space where all objects are treated on the display screen as hav-
ing the same size while internally they are treated as points identi-
fied by their geographic location (somewhat analogous to the rela-
tionship between a medial axis transform and a skeleton [9]). In our
experimental studies (Figure 2), we compare MRSDwith a window
query-based (WQB) method, which embodies the third approach
described earlier, since it produces results comparable to MRSD
(unlike the other two approaches). Our experiments [8] show that
MRSD significantly outperforms the window query-based (WQB)
method in a low spatial selectivity setting (a large query area).

3. QUERY DEFINITION
We can view the layout problem as one of selecting a set of

spatial representatives from a collection of geographic data entries
based on a given measure of importance. In other words, we want
to select spatially distinct entries p such that p is not within a prox-
imity threshold of more important entries. We formulate the MRSD
query as providing the extent of distinctiveness of each data entry

1The syntax for selecting a single representative from each row
group identified by a SELECT DISTINCT query varies between
SQL implementations. In this paper, we use PostgreSQL’s SELECT
DISTINCT ON (attribute) syntax in order to emphasize
that we are selecting “distinctive” data entries, however, similar re-
sults can also be obtained using standard SQL:2008 syntax.
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Table 1: Data entries (from Figure 3) where each point is associated with an importance score (imp) and Morton codes from 9
different translations. The resultant distinctiveness score (ds) for each data point is given in the right most column.
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(t0) (t1) (t2) (t3) (t4) (t5) (t6) (t7) (t8)

a 0.95 1000 1000 1001 1000 1000 1001 1000 1000 1001 9
b 0.52 1001 1001 1100 1001 1001 1100 1001 1001 1100 3
c 0.47 0010 0010 0011 1000 1000 1001 1000 1000 1001 3
d 0.80 0011 0011 0110 1001 1001 1100 1001 1001 1100 9
e 0.65 0011 0011 0110 0011 0011 0110 1001 1001 1100 1
f 0.45 0011 0011 0110 0011 0011 0110 1011 0011 0110 2
g 0.66 0011 0110 0110 0011 0110 0110 0011 0110 0110 7
h 0.14 0000 0001 0001 0000 0001 0001 0010 0011 0011 8
i 0.90 0001 0100 0100 0001 0100 0100 0011 0110 0110 9

Figure 2: Total response time for selecting distinct entries from
9.96 million POIs using WQB and MRSD. Note that WQB
failed to produce results for the last three bins due to excessive
memory consumption.

(in the query window) according to its relative importance to the
surrounding entries. Figure 3 illustrates our concept of distinctive-
ness using 4 data entries {w,x,y,z} with importance scores of
{45, 95, 85, 10}, respectively. In this example, entries x and z are
considered distinct since x has a higher score than w and y, and
z is the only data entry in its proximity (although its importance
score is much lower than w, x and y). It is also important to note
that y is considered "less distinct" than w due to its proximity to
x, which is a more important entry.

Figure 3: Distinctiveness as relative importance

TheMRSD query accepts a proximity threshold ǫ (e.g., the width
of each image thumbnail) and a query window (x1, y1, x2, y2) and
returns a result set containing data entries residing in the query win-
dow with their respective distinctiveness scores ranging from 1 to
9. The maximum score of 9 guarantees that the corresponding entry
E does not have any other object with a greater importance score
within a chessboard distance of ǫ. In other words, if each entry is
represented as an ǫ × ǫ thumbnail, then E cannot overlap with an-
other entry with a greater importance score. If an entry p has the
minimum the minimum score of 1, then p is severely overlapped
by other entries with a greater importance score.

As shown in Figure 3, the value of ǫ depends on the size of each
thumbnail on the map, which is in turn determined by the pixel
size of each thumbnail and the zoom level. As the zoom level in-

creases, the size of each thumbnail, where the pixel size is fixed,
relative to the total map area decreases exponentially. Most online
mapping applications use a constant magnification factor of 2 for
successive zoom levels. As a result, in our demonstration applica-
tion, the proximity threshold ǫ is reduced by 50% for every zoom
level increment.

The crux of our method is a voting system built upon an ensem-
ble of interrelated indexes, which allows us to efficiently determine
the degree of distinctiveness of all entries within a query window.
Specifically, our indexes are derived from the Morton code repre-
sentations [10] of data entries under multiple translations. For each
data point, we apply x-axis translations of 3 types and y-axis trans-
lations of 3 types providing a total of 9 translation combinations.
The data entries of each translation combination are indexed using
the Morton order.

We treat the distinctiveness score of a data entry as a vote count,
where each vote indicates whether the data entry is considered dis-
tinct in a particular translation. Table 1 shows the results of all
translations of 9 data entries (labeled a-i) in terms of the Mor-
ton code representations of the blocks containing them. The actual
results of two translations of these entries are shown in Figure 3.

Figure 4: Data entries {a, ..., i} under translations t0 and t5
(the other translations can be computed in a similar manner).

The main MRSD query consists of 9 subqueries—one
per translation—that each perform an independent SELECT

DISTINCT operation on one of the translations (ordered by the
data entry’s importance score (IMP)). The result set consists of dis-
tinctiveness scores, which represent the number of translations un-
der which that data entry is the most important (of all entries with
the identical Morton code). Assuming that the columns id, imp,
and t0 to t8 from Table 1 are stored in a relational database table
called table_1, a simple SQL statement for evaluating a MRSD
query is given as follows (where the result is given as the column

ds in Table 1). 2

2Please refer to our earlier work [8] for actual SQL statements used
in our implementation which support queries in multiple resolu-
tions, subregion selection, and efficient indexing and querying.
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(a) MRSD query with only one translation. (b) MRSD query with an ensemble of 9 translations.

Figure 5: MRSD query examples.

SELECT id, COUNT(*) AS ds FROM (

SELECT DISTINCT ON (t0) id FROM table_1

ORDER BY t0 DESC, imp DESC

UNION ALL

...

UNION ALL

SELECT DISTINCT ON (t8) id FROM table_1

ORDER BY t8 DESC, imp DESC

) temp GROUP BY id;

Again, the output of this statement is a list of pairs (id, ds),
i.e., the first and last columns in Table 1. Only the data entries that
appear at least once in the result are returned by the query. The dis-
tinctiveness score ds of an entry x indicates the number of times x
appears in the SELECT DISTINCT results from the subqueries.
Hence the maximum value of ds is 9. Our demonstration applica-
tion discussed in the next section uses this distinctiveness scoring
system to determine whether a data entry should be displayed as
well as the size in which it is displayed.

4. DEMONSTRATION APPLICATION
We have implemented a demonstration application which can be

used to select distinct entries from a database of geographical data
entries ranked according to their importance scores. In addition
to providing a layout for geographic data entries, our demonstra-
tion also exposes the internal logic of our MRSD query processing
method and the indexes.

Users of our system manipulate the mapping interface to specify
an area of interest and a zoom level to see displayed results updated
accordingly. In addition to the standard mapping interface, a user
can run an MRSD query using one of the 9 translations or using
an ensemble of all 9 translations. Note that instead of shifting the
locations of the data entries, we shift the boundaries so that each
data entry is always at its correct location on the map.

Figure 5(a) shows a query example which use translation t0. The
red lines in the figure mark the boundaries corresponding to the
translation. We can see that this query produces thumbnails that
overlap each other.

When using all 9 translations, a user is also able to change the
distinctiveness thresholds to specify the minimum distinctiveness
score of entries that are displayed. Figure 5(b) shows results from
an MRSD query which uses all 9 translations, as a result the max-
imum distinctiveness score in this case is 9. In this particular ex-
ample, we illustrate a case where we choose to display only entries
with a distinctiveness score of 9. We can see that there is no overlap
between thumbnails.

5. CONCLUDING REMARKS
We have described our demonstration application for select-

ing spatially distinct data entries from a large geographic point
set [8]. Our demonstration application illustrates the main novelty
of our method which is an ensemble of interrelated indexes, and
a query algorithm which performs separate SELECT DISTINCT

subqueries on these indexes and combines the results of these sub-

queries to determine the degree of spatial distinctiveness of each
entry in a query window.
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