
Eurographics Conference on Visualization (EuroVis) 2018
J. Heer, H. Leitte, and T. Ropinski
(Guest Editors)

Volume 37 (2018), Number 3

ConcaveCubes: Supporting Cluster-based Geographical
Visualization in Large Data Scale

Mingzhao Li1, Farhana Choudhury1, Zhifeng Bao1, Hanan Samet2 and Timos Sellis3

1RMIT University, Melbourne, Victoria, Australia
2University of Maryland, College Park, Maryland, United States

3Swinburne University of Technology, Hawthorn, Victoria, Australia

Abstract
In this paper we study the problem of supporting effective and scalable visualization for the rapidly increasing volumes of ur-
ban data. From an extensive literature study, we find that the existing solutions suffer from at least one of the drawbacks below:
(i) loss of interesting structures/outliers due to sampling; (ii) supporting heatmaps only, which provides limited information;
and (iii) no notion of real-world geography semantics (e.g., country, state, city) is captured in the visualization result as well
as the underlying index. Therefore, we propose ConcaveCubes, a cluster-based data cube to support interactive visualization
of large-scale multidimensional urban data. Specifically, we devise an appropriate visualization abstraction and visualization
design based on clusters. We propose a novel concave hull construction method to support boundary based cluster map vi-
sualization, where real-world geographical semantics are preserved without any information loss. Instead of calculating the
clusters on demand, ConcaveCubes (re)utilizes existing calculation and visualization results to efficiently support different kinds
of user interactions. We conduct extensive experiments using real-world datasets and show the efficiency and effectiveness of
ConcaveCubes by comparing with the state-of-the-art cube-based solutions.

1. Introduction

In recent years, both the volume and the availability of urban data
related to various social issues, such as real estate, crime, popu-
lation, etc., are rapidly increasing. However, as the scale of data
increases (e.g., over one million data points), existing informa-
tion visualization methods, including directly visualizing individ-
ual data points on a map, suffer not only from large memory con-
sumption, but also have perceptual and interactive scalability prob-
lems [LJH13]. In particular, users’ perceptual and cognitive capac-
ities are overwhelmed by data over-plotting, and users’ interaction
with large-scale datasets can easily lead to high latency.

A straightforward approach is to employ various sampling meth-
ods [DP12] to reduce the data to be displayed. However, they possi-
bly elide interesting structures or outliers, thereby preventing users
from querying the data to cater to their own preference in the data
exploration stage. Therefore, one recent research trend is to de-
sign data cubes and pre-compute possible data aggregations to sup-
port efficient visualization, such as imMens [LJH13], Nanocubes
[LKS13], and Hashedcubes [PSSC17]. As a result, they enable fast
query processing for interactive visualizations of large and multidi-
mensional data.

While these data cube structures are effective for solving the
scalability problem, we observe that they only support heatmaps
[Boj09] based on binned aggregation in terms of visualizing geo-

graphical features. Although Liu et al. [LJH13] have shown that
heatmaps have advantages vis-à-vis sampled symbol maps (e.g.,
heatmaps can show the overall geographical distribution while sam-
pled symbol maps cannot), the information that heatmaps can pro-
vide is often very limited (Example 1 in Section 3.4).

To deal with the limitation of heatmaps, we describe a design
space for geographical visualization based on the result of data
clustering (rather than relational aggregation). Following Tobler’s
First Law of Geography - Everything is related to everything else,
but near things are more related than distant things [Tob70], we
first cluster geographical data points that are close in distance (as-
suming Euclidean distance in contrast to other distances such as
the Hausdorff distance [NJS11]) and share similar features, and
then represent each cluster with a geographical bubble on top
of the map. It is called bubble-based cluster maps as shown in
Figure 2(a). Cluster maps, which is hard to support by existing
data cubes (e.g., imMens [LJH13], Nanocubes [LKS13], Hashed-
cubes [PSSC17]), can provide additional information compared to
heatmaps or binned plots. We compare existing map designs and
discuss why we chose cluster maps, rather than heatmaps or binned
plots, etc. in Section 3.4.

One problem of the existing cluster map design is that each clus-
ter is often visualized based on bubbles, with the size and the colour
(sometimes the shape as well) of each bubble representing differ-
ent features of the data. Although bubble-based cluster maps can

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

Li et al. / ConcaveCubes: Supporting Cluster-based Geographical Visualization in Large Data Scale

present information that heatmaps and binned plots cannot, the lo-
cations of properties in each cluster could not be precisely repre-
sented, i.e., properties actually inside of the circle might not belong
to the cluster (Example 2 in Section 3.4). To solve such problem,
we provide a new map design to represent the geographical bound-
ary of each cluster, i.e., boundary-based cluster maps (similar but
the same as choropleth maps [BMPH97]).

A key question arising for the boundary-based cluster maps is
what is an appropriate choice of the polygons used to present
the boundary of clusters? To answer this question, we reviewed
existing methods (e.g., KNN-based method [MS07], χ-shapes
[DKWG08] and α-Concave Hull [ADM17]) that generate different
polygons (hulls) based on the included geographical points. How-
ever, all of these methods suffer from at least one of the follow-
ing problems: (i) large empty areas inside the hull, (ii) too com-
plex shapes, and (iii) overlaps among the polygons representing the
different clusters (e.g., Figure 3(d)). The problem are explained in
greater detail in Section 4, with a summary of envisioned features
of an appropriate choice in Table 1.

We propose a new concave hull algorithm, which generates a
polygon (hull) to present each cluster based on the geographical
locations of all data points in the cluster. In particular, our algorithm
is based on a global Delaunay triangulation [Sam06], followed by
a separation of points based on the different clusters; thus it is able
to avoid all of the three aforementioned problems.

Following our proposed cluster-based visualization design, a
subsequent challenge is: what kind of a data structure is effi-
cient to support such visualization design and user interactions
on large-scale data? Accordingly, we propose a tree-structured in-
dex called ConcaveCubes, which organizes the pre-computed hi-
erarchical clustering result in data cubes. Compared to state-of-
the-art visualization-driven cube structures, (i) ConcaveCubes sup-
ports cluster maps which existing structures cannot; (ii) Con-
caveCubes exploits real-world geographic semantics (e.g., country,
state, city) rather than using grid-based aggregations; (iii) instead
of calculating the clusters on demand, it utilizes existing calcula-
tion and visualization results to efficiently support different kinds of
user interactions, such as zooming & panning, filtering, and granu-
larity control.

To summarize, we make the following contributions.

1. We present a cluster-based visualization abstraction of geograph-
ical data (Section 3).

2. We propose an algorithm to efficiently generate concave hulls
that include geographical points in each cluster as compactly as
possible. As a result, it is able to avoid large empty areas inside
the hull, complex shapes and overlaps among different clusters
(Section 4).

3. We propose a cluster-based data cube (ConcaveCubes) to effi-
ciently support interactive response to users’ visualized explo-
ration on large-scale geographic multidimensional data (Section
5).

4. We conduct extensive experiments using real-world datasets, and
compare ConcaveCubes with state-of-the-art cube-based data
structures to verify the efficiency and effectiveness of Concave-
Cubes (Section 6).

2. Related Work

In this section, we review the literature on large-scale data visual-
ization (with a focus on that in geographic related data), which can
be broadly classified into two categories: (1) data reduction meth-
ods; (2) visualization methods. It is worth noting that many studies
exploit techniques in both categories to achieve a scalable solution.

2.1. Data reduction methods

We refer to data reduction methods as those techniques that aim
to reduce the size of the data before the data enters the visual ren-
dering process. We consider three main directions in reducing the
scale of data for different scenarios or purposes.

Sampling & filtering methods. Traditional data reduction meth-
ods such as sampling [DP12] & filtering [AS94] are widely used
to select a smaller subset of data before applying standard visu-
alization techniques. However, as argued by Lins et al. [LKS13],
sampling & filtering might elide interesting structures or outliers,
and usually cannot provide an overview of the data distribution.

Approximate query processing methods. Several approximate
algorithms (M4 [JJHM14], VDDA [JJHM16], etc.) are proposed
by exploiting the fact that a display has a limited number of pixels
based on its resolution [Kei96]. These algorithms return approx-
imate results that rasterize to the same image as the exact query
result would. However, they can only be applied to a very limited
number of visualization methods, e.g., line charts and scatter plots.

Data cube aggregation methods. Data cubes [GCB∗97] have
been intensively studied in the area of data warehouses. In this
technique, aggregation results of the raw data are pre-computed
on predefined dimensions to support data exploration. However, a
complete data cube is often too large to fit in memory and query in
real-time. One recent research direction is to design visualization-
constrained data cubes that are constrained by the number of pixels
used in visualization [Kei96]. Different methods have been pro-
posed to reduce the size of the data cubes for information visualiza-
tion based on binned aggregation [CLNL87]. Lins et al. [LKS13]
have suggested a design principle that scalability should be limited
by the chosen resolution of the visualization data, not the number
of records. Based on this principle, they proposed imMens, which
decomposes the full cube into sub-cubes to minimize data mem-
ory usage and thus reduce the query latency. However, imMens can
only support brushing and linking [Kei02] scenarios with at most
four dimensions. Nonocubes [LKS13], on the other hand, support
an arbitrary number of dimensions; but it might suffer from query
latency and has a high memory cost, since it uses a large amount
of binned aggregation. GaussianCubes [WFW∗17] and TopKube
[MLKS18] extend the idea of Nanocubes by supporting more types
of queries, but still suffer from the high query latency as the num-
ber of dimensions increases. Hashedcubes [PSSC17] sorts data in
advance based on judiciously selected pivots, thereby on-the-fly ag-
gregation computation can be supported and the storage cost is re-
duced significantly.

Our proposed ConcaveCubes is in line with the data cube meth-
ods. As compared to state-of-the-art imMens [LJH13], Nanocubes
[LKS13], and Hashedcubes [PSSC17], our ConcaveCubes distin-

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Li et al. / ConcaveCubes: Supporting Cluster-based Geographical Visualization in Large Data Scale

guishes from them in three aspects. First, instead of storing indi-
vidual geographic points, ConcaveCubes first clusters those data
items that are close in distance and share similar features, and then
builds indexes based on the clusters, i.e., cluster-based data cubes.
Therefore, ConcaveCubes supports the visualization of clusters on
top of the map, while existing methods only support heatmaps.
Second, ConcaveCubes exploits real-world geographic semantics
(e.g., country, state, city) rather than using grid-based aggrega-
tions. Third, instead of calculating everything on demand, Con-
caveCubes utilizes existing calculation and visualization results
to efficiently support different kinds of user interactions, such as
zooming, panning and filtering.

2.2. Visualization reduction methods

Different techniques are proposed to address the perceptual and in-
teractive scalability problem at the visualization end. In particular,
the following three types of methods are proposed.

Visual reduction. Since the screen solution is limited, retinal vari-
ables to represent different attributes in a large dataset will easily
clutter visually. To this end, researchers have proposed a number
of methods, such as pixel-oriented visualization methods [Kei96],
alpha blending [JS98], spatial displacement methods [TGC03], and
dimension re-ordering [PWR04] for parallel coordinates. However,
all of these techniques still need to scan and draw each data item,
which will cause interactive scalability problem.

Progressive methods. Progressive visual analytics [SPG14]
presents visualization results in a progressive way, so that the sys-
tem will be responsive to users’ interactions immediately. The
method is also associated with approximate query processing tech-
niques, which provide query result estimations with bounded er-
rors [GCZ∗17]. However, experiments conducted by Turkay et al.
[TKBH17] have shown that possible wrong judgments are easily
made before rendering is finished. Even with uncertainty in esti-
mates [Fis11] reported during the progressive rendering, the result
remains unconvincing until the whole progress is completed.

Predictive methods. Predictive visual analytics [LGH∗17] often
use query pre-fetching techniques, where the performance depends
on the level of predictability of future queries. For example, the
Atlas system [CXGH08] stores large historical time-series data, al-
lows six directions of exploration (pan left/right, scroll up/down,
and zoom in/out). The algorithm is based on the observation that a
sense of momentum is associated with the direction of exploration.
However, these techniques only work well in those domains where
user interactions are naturally limited.

Cluster-based VIS Abstraction

(Section 3)
Task/Data Abstraction

(Section 3.1)

Baseline Clustering

(Section 3.2)

Design Justi�cation

(Section 3.4)

Bubble-based

cluster maps

Boundary-based

cluster maps

Cluster Maps

How to generate the boundary

for each cluster?

How to address the scalability

problem at large data scale?

Visualization Design

(Section 3.3)

Proposed Concave Hull Algorithm

(Section 4)

Proposed ConcaveCubes

(Section 5)User Interactions

Figure 1: An overview of our solution in Sections 3, 4 & 5.

3. Cluster-based Visualization Abstraction

Figure 1 presents the structure of this section, and how it is linked
with Section 4 and Section 5.

3.1. Data and task abstraction

For ease of explanation, we describe our work using Australia’s real
estate data as an example of multidimensional urban data. The real
estate data include five profiles, i.e., basic profile, census profile,
education profile, facility profile, and transportation profile (de-
tailed in our previous work [LBS∗18]). Each property is associ-
ated with its geo-spatial information (latitude and longitude), cate-
gorical dimensions (e.g., property type), and numerical dimensions
(e.g., price).

We follow Shneiderman’s visual information-seeking mantra
[Shn96] to define our tasks, i.e., overview first, zoom and filter, then
details-on-demand. We illustrate the abstraction of tasks based on a
series of real-life questions: (1) What is the difference of the prop-
erty prices in different suburbs of Victoria (overview)? (2) What
if the user only concerns about 3-bedroom houses (filtering)? (3)
What is the difference between the houses in blocks of the same
suburb (zooming & granularity control)? (4) Based on the user-
selected attributes, how do the houses in a block differ from the rest
of the houses in the same suburb, or the rest of the houses in that
entire state (details-on-demand, highlighting & linking)?

3.2. A baseline solution

Before describing our cluster-based visualization design, we intro-
duce a baseline clustering solution. Here, we first subdivide differ-
ent dimensions into four main types based on (i) whether they are
directly linked to locations, and (ii) whether they directly affect the
clustering result.

• Geo-dependent dimensions: including geographical locations
represented by latitude and longitude, and geo-semantics such as
state, suburb. These dimensions are directly linked to geography,
and will directly affect the clustering result.

• Additional geo-dependent measures: e.g., the distance to the
nearest train station, the median income of the region, etc. These
dimensions are directly related to geography. However, once a
group of real estates is close in distance, they share similar values
of the other dimensions. Therefore, it is not necessary to consider
those dimensions in the clustering process.

• Geo-independent dimensions: e.g., price, property type, bed-
room number. They are major factors in the clustering process
which are not directly linked to the geo-locations.

• Additional geo-independent measures: e.g., number of park-
ing spots, whether containing air conditioning, etc. Users may
want to check these factors for individual houses but they are not
important enough to be considered in the clustering process.

Now we present the steps of a straightforward method to cluster
the properties that are close in distance while also sharing similar
features: (i) We group properties based on geo-independent dimen-
sions, e.g., group all 3-bedroom houses with price between 0.9-
1million. (ii) We further group the properties based on one level
of geo-semantics (geo-dependent dimensions), e.g., all 3-bedroom
houses in the same suburb will be grouped together. (iii) For each

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Li et al. / ConcaveCubes: Supporting Cluster-based Geographical Visualization in Large Data Scale

group, we apply DBScan [EKSX96] to divide the properties into
different clusters based on the geo-locations, e.g., the properties
within the same group after step 2 and close in distance (e.g.,
<150m) will be in the same cluster.

3.3. Visualization design

To support the visualization tasks (Section 3.1), we design two
map-based views and a linked multidimensional view. In the map-
based views, we visualize the clusters on top of the map. When a
cluster is highlighted in the map-based view, a linked multidimen-
sional view presents the detailed information of the cluster based on
user-selected measures. Justification of using cluster maps instead
of other map designs (e.g., heatmaps that existing visualization-
based data cubes support) will be presented in Section 3.4.

Map-based view 1: bubble-based cluster maps. A straightfor-
ward visual encoding to visualize clusters is to use bubble maps.
Comparing to heatmaps that Nanocubes [LKS13] and Hashedcubes
[PSSC17] support, bubble maps have at least one more retina vari-
able (i.e., the size of the bubble) to encode an extra dimension (an-
other variable is the shape). An example is shown in Figure 2(a),
where the colour of each bubble represents the average price of
properties in each cluster, and the size of the bubble represents the
total number of properties in the cluster. We also use alpha blend-
ing [JS98] to reduce visual cluttering for intersecting bubbles.

Map-based view 2: boundary-based cluster maps. As bound-
aries are important measurements of the geographic information,
our second map-based view draws concave hull (a polygon that
covers a group of points) [MS07] on top of the map to illustrate
positions of the properties in each cluster (Figure 2(b)). How to
generate a concave hull based on a group of geographical points
is presented in Section 4. The colour of the concave hull is based
on an aggregated value of user-defined dimensions for all the prop-
erties in each cluster. This is done as follows: suppose that a user
selects m dimensions, and there are n clusters. Let x̃i, j be the me-
dian value of all properties in cluster c j (j ∈ [0,n−1]) at dimension
i (i ∈ [0,m−1]). The aggregated value of a cluster c j is computed
as a weighted sum:

aggrc j =
m−1

∑
i=0

wi · N(x̃i, j) /
m−1

∑
i=0

wi (1)

where, N(x̃i) corresponds to the normalized value of x̃i, j between
[0,1] and computed as: N(x̃i, j) = (x̃i, j −min j x̃i, j)/(max j x̃i, j −
min j x̃i, j), where wi is the weight of the i-th dimension and is de-
fined by the user. In our implementation, the weight of each dimen-
sion is generated using the Random Weighted Genetic Algorithm
(RWGA) [MI95] after the user gives the importance rank of all di-
mensions. In particular, when the user selects only one dimension
(e.g., price), the colour is mapped based on the selected dimension.

Multidimensional view: line charts + histograms. We design a
linked multidimensional view to visualize the statistical informa-
tion of a selected (highlighted) cluster and compare it with oth-
ers. For example, in Figure 2(b), after the user selects a cluster in
Brighton, the statistical information of this cluster based on seven
user-defined dimensions is shown as seven histograms in the multi-
dimensional view; also, the information in the entire state (Victoria)

on this seven dimensions are shown as seven line charts for com-
parison.

Interaction design. Based on our task abstraction, we support the
following user interactions:

• Zooming & panning: we support zooming & panning on map.
• Filtering: we support filtering data values on each dimension.

The cluster will be re-calculated as a result of filtering. Filtering
is performed using the selection panel shown in the top right con-
ner of Figure 2(b) that consists of sliders and drop-down menus.

• Granularity control. We support map-based visualization in
multi-granularity scales. In our implementation, after users zoom
in/out on top of the map, the granularity level will also be
changed. However, users can also change to a finer or coarser
level of granularity by selecting from the selection panel while
staying at the same zooming level.

• Other interactions, such as highlighting & linking (i.e., select-
ing and highlighting a cluster on the map and linking the infor-
mation in the multidimensional view).

3.4. Design justification: why cluster-based visualization?

There are various map designs to visualize geographical data, in-
cluding symbol maps, heatmaps, bubble maps, cluster maps, etc.
We observe that, existing visualization-driven data cube struc-
tures (e.g., imMens [LJH13], Nanocubes [LKS13], Hashedcubes
[PSSC17]) only support heatmaps or dot maps based on binned ag-
gregation. Although Liu et al. [LJH13] have shown that heatmaps
have advantages in comparison to sampled symbol maps (e.g.,
heatmaps can show the overall geographical distribution while sam-
pled symbol maps cannot), the information that heatmaps can pro-
vide is still very limited, as illustrated in Example 1.

Example 1 Figures 3(a) and 3(b) show a visualization of Mel-
bourne’s real estate data using heatmap and binned plots (a vari-
ation of heatmaps), respectivelty. Heatmap, which is the only form
of visualization supported by existing cube structures, can only
present the density of real estates in different regions (by colour).
Binned plots, which can be supported by the existing methods by
slight adjustments, can provide price distribution (by colour) (Fig-
ure 3(b)); however, the plots are not easy to interpret as each binned
block does not have real-life semantic meanings. For example, the
real estates in a binned block may not be in the same suburb and/or
may have different key features (e.g., they may belong to different
school zones).

On the other hand, cluster maps, which are difficult to support
by existing data cubes, provide more information (with semantic
meanings) in comparison to heatmaps or binned plots: Example 2.

Example 2 We visualize Melbourne’s real estate data using bubble-
based cluster maps (Figure 3(c)). Each bubble represents a group
of real estate properties which are clustered based on both geo-
locations and two other features (corresponding to suburbs & sec-
ondary school zones). The colour and size of each bubble represent
the median price and total number of properties in each cluster, re-
spectively. Compared to heatmaps and binned plots, bubble-based
cluster maps (i) represent one more dimension, and (ii) have a real
semantic meaning of the visual mark - each bubble represents a
group of houses that are in the same suburb and school zone as
well as close in distance.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Li et al. / ConcaveCubes: Supporting Cluster-based Geographical Visualization in Large Data Scale

Figure 2: Illustration of our visualization design. (a) map view 1: bubble-based cluster map; (b) map view 2: boundary-based cluster map,
and the multidimensional view with a cluster highlighted (properties in the selected cluster is compared to that of the entire state based on 7
user-selected measures (sold price, personal income, rent price, household income, distance to CBD, nearest hospital and nearest doctor.

Figure 3: A comparison of 4 geographical visualizations based on the real estate data in Melbourne. (a) Heatmaps and (b) binned plots, which
imMens [LJH13], Nanocubes [LKS13] and Hashedcubes [PSSC17] support; (c) bubble-based cluster maps and (d) boundary-based cluster
maps that our proposed ConcaveCubes supports.

Although traditional bubble-based cluster maps can present in-
formation that heatmaps and binned plots cannot, the locations of
properties in each cluster are not precisely represented, i.e., prop-
erties actually inside a circle might not belong to the cluster. Our
proposed boundary-based cluster maps aims to solve this problem,
as shown in Example 3.

Example 3 We visualize the same data using boundary-based clus-
ter maps (Figure 3(d)). Each cluster is represented by a colour-
encoded hull (boundary of the cluster). Compared to the heatmaps
or binned plots in Figure 3(a & b), boundary-based cluster maps
present geographical information with semantic meanings. Com-
paring to our baseline bubble-based cluster maps which present one
more measure using the size of each bubble, the boundary-based
cluster maps present more precise location information.

4. Algorithm for Generating Boundary-based Cluster Maps

In this section, with the clusters as the input, we present our algo-
rithm to generate the boundary of each cluster that best represents
the group of geographical points that are physically located in it. In
particular, we first outline the desired features (from the perspective
of visual perception) of a boundary generation algorithm. Next, we
show that the concave hull based representation is the most suitable

choice. Third, we propose a novel concave hull construction algo-
rithm that meets all of these desired features. Finally, we compare
the visualization result and the time complexity of our proposed
algorithm with the existing methods.

4.1. An outline of desired features

We envision four features for an ideal cluster map: (1) no overlap
between the visualization of any two clusters, (2) complex shapes
should be minimized to enhance user’s cognitive capability, (3)
empty areas of each hull [GD06] (i.e., the area inside a hull that
does not contain any real estate properties) should be minimized,
(4) parameter tuning for boundary generation should be avoided.

Generating hulls (polygons) to represent the geographical
boundary of each cluster is one of the approaches to achieve these
features. We first review existing hull generation algorithms. Ebert
et al. [EBN15] classify hulls into five different categories: (i) rect-
angular hull, (ii) orthogonal convex hull, (iii) convex hull, (iv) con-
cave hull, and (v) concave hull for several groups. Since our target
is to represent each cluster with a single polygon, concave hull for
several groups (representing one cluster) is not appropriate in our
case. Among the other categories, the concave hull is recognized as
presenting the most precise shape recognition of an area [EBN15].

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Li et al. / ConcaveCubes: Supporting Cluster-based Geographical Visualization in Large Data Scale

Figure 4: The result of an existing concave hull algorithm [PO12] (representing all the concave hull methods in Table 1) [Red - overlaps,
black - complex shapes] and the result of using our proposed algorithm: (a) using the method in [PO12] with a threshold of 100m; (b) using
the method in [PO12] with a threshold of 800m; (c) using our proposed concave hull construction approach.

Table 1: A comparison between our proposed algorithm and 7 existing hull construction algorithms.

Overlaps Complex Shape Empty Area Parameter Needed Complexity

Convex Hull Graham Scan [Jar73] Yes No Yes No O(nlogn)

Convave Hull

χ-shapes [DKWG08] Yes Yes No Yes O(nlogn)
KNN-based method [MS07] Yes Acceptable No Yes O(n3)
α-Concave Hull [ADM17] Yes Yes No Yes O(nhlogn)
Jin et al. [PO12] Yes Yes No Yes O(nhlogn)

Others Alani et al. [AJT01] No No Yes No O(nlogn)
Arampatzis et al. [AvKR∗06] No No Yes No O(nlogn)

Our proposed concave hull algorithm No No No No O(nlngn)

Therefore, we opt for a concave hull based representation for the
positions of properties in each cluster.

Table 1 shows a comprehensive list of limitations of seven ma-
jor hull construction algorithms. Although the convex hull algo-
rithm does not generate complex shapes, it usually results in large
empty areas and will easily cause overlaps. While concave hulls
generated by χ-shapes [DKWG08] and the KNN-based method
[MS07] can reduce empty areas, they either have overlaps or com-
plex shapes. The Voronoi-based [AJT01] and the triangulation-
based [AvKR∗06] concave hull method fully partition the whole
space, thus a huge empty area can be generated inside each hull.

Moreover, concave hulls are usually not unique, i.e., the con-
structed concave hulls can be different in different algorithms
and/or with different parameters. Although different algorithms
have been proposed to generate a concave hull, there is no standard-
ization on the effectiveness of the concave hull, i.e., determining
which concave hull algorithm generates a region that best repre-
sents a group of points is inconclusive [GD06]. Even with the same
algorithm, determining the parameter settings is a difficult problem.

Figures 4(a & b) illustrate the common limitations of the exist-
ing Concave hull methods with real-life data. We have implemented
two existing methods [PO12, MS07] and applied them to our real
estate dataset, where each cluster includes properties in a postal
area. The algorithm by Jin et al. [PO12] first constructs a convex
hull, and then execute a “digging” process (progressively replace
an outer edge with two close inner edges) to get a concave hull.
The only parameter here is a threshold that controls when to termi-
nate. We visualize the results on Google Maps, and observe that:
a larger threshold as shown in Figure 4(a), may cause lots of over-
laps in dense areas (e.g., CBD areas which have more properties);
while a smaller threshold will result in very complex shapes in the
less dense area and users may fail to recognize the shapes (Fig-

Algorithm 1: CONCAVE_HULL (P)
1.1 Input: A set P of geographical points, each p ∈ P has attributes {latitude,

longitude, cluster}.
1.2 Output: A list of concave hull boundaries for each cluster.
1.3 DELAUNEY_TRIANGULATION(P)
1.4 T E← Set of resulting triangulation edges
1.5 for each edge e = 〈p1, p2〉 ∈ T E do
1.6 if p1.cluster 6= p2.cluster then
1.7 delete e from T E
1.8 Delete all inner edges from T E
1.9 while ∃p : degree(p) = 1 do

1.10 p1← the node that p connects;
1.11 if degree(p1) = 1 then
1.12 delete 〈p, p1〉 from T E;
1.13 while ∃p : ∃∠p′pp′′ where p′ and p′′ do not form a loop do
1.14 Ap← All outer angles created at p;
1.15 ∠p′pp′′← The smallest angle in Ap;
1.16 if 〈p, p′〉 is not an exposed line then
1.17 delete 〈p, p′〉 from T E;
1.18 if 〈p, p′′〉 is not an exposed line then
1.19 delete 〈p, p′′〉 from T E;
1.20 add 〈p′, p′′〉 to T E;
1.21 c_edges← BOUNDARY_EDGES_GROUP_BY_CLUSTERS(T E)
1.22 RETURN c_edges

ure 4(b)). We also implemented the KNN-based method [MS07],
which does not generate too complex shapes, but cause significant
overlaps similar to Figure 4(a).

4.2. Our concave hull construction approach

To address the limitation of existing concave hull generation meth-
ods, we propose a novel algorithm to meet all the four envisioned
features. The pseudocode of our proposed approach is presented
in Algorithm 1 and illustrated in Figure 5. The input of the al-
gorithm is a set of geographical points, P. Each point p ∈ P has

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Li et al. / ConcaveCubes: Supporting Cluster-based Geographical Visualization in Large Data Scale

p

p
3

p
5

p
6 p

1

p

p
3

p
6 p

1

pp
4

p
3

p
5

p
6

p
4

p
2

p
1

‘‘‘

p
2

‘

p
2

‘

p
1

‘‘‘

p
2

p
2

p
5

p
4

p

p
3

p
1

p
2

p
5

p
4

p

p
3

p
1

p
2

p
5

p
4

p
1

pp
5

p
6

p
4

p
2

p
1

p

p
3

p
5

p
6

p
4

p
2

p
1

p
3

p

p
3

p
5

p
6

p
4

p
2

p
1

p
6

p
6

p
1

‘‘‘

p
2

‘

p
3

‘

p
4

‘

p
5

‘

p
1

p
2

p
3

p
4

p
5

p
6

p
1

‘‘‘

p
2

‘

p
3

‘

p
4

‘

p
5

‘

p
1

p
2

p
3

p
4

p
5

p
6

(a) (b)

smaller angle smaller angle

√ × ×√

(c)

(p’)

(p’’)

(p’)

(p’’)

Figure 5: Illustration of the proposed Concave hull algorithm. (a)
the process of separating clusters after a global triangulation; (b-
c), two examples of non-Jordan boundaries: how the boundary is
formed and how we eliminate it.

three attributes, where latitude and longitude jointly represent its
geographical location, and cluster p.cluster indicates the cluster in
which the point belongs. The output of the algorithm is a set of
concave hulls. Each concave hull corresponds to a unique cluster
ID, and its boundary should be a Jordan curve. The Jordan curve
restriction is commonly used in all the methods in Table 1. The
reason for adopting this restriction in our cases is quite straight-
forward: the boundary for each cluster should be a plane simple
closed curve that divides the whole space into exactly two regions
- the one inside the cluster, and the one outside it.

At a high level, the steps of the algorithm are: (i) Generate a De-
launay triangulation for P. (ii) To reduce overlaps, separate clusters
by deleting edges that connect two nodes in different clusters. (iii)
Remove the inner edges to get the outer boundary of the cluster,
which ensures no additional empty area is included. (iv) If a non-
Jordan curve is generated in this process, then apply our proposed
novel edge replacement technique to remove such complex shapes.

We now describe the details of our algorithm. The terms ‘point’
and ‘node’ are used interchangeably for the rest of the algorithm.

As shown in Line 1.3 of Algorithm 1, we first generate a Delau-
nay triangulation for all the points in P. Next, we delete the edges
that connect two nodes in different clusters to seperate the clus-
ters (Line 1.5-1.7). We further detect the outer edges by deleting all
edges that appear twice in the triangulation result (Line 1.8). As il-
lustrated in Figure 5 (a), a concave hull would be generated for each
cluster in most cases. However, since the triangulation is generated
based on all points, after we separate the clusters, there could exist
exposed lines (explained later), e.g., 〈p, p2〉 in Figure 5(b) or point
connections [GD06] (e.g., p in Figure 5(c)), which make the hull a
non-Jordan boundary.

Eliminating non-Jordan boundaries. The degree of each node
of a Jordan boundary must be equal to 2 where the nodes form a
closed loop. Therefore, if the resulting concave hull of a cluster in
the previous step is a non-Jordan boundary, that implies there must
be at least two nodes with degree not equal to 2.

We denote an edge as an ‘exposed line’ if the edge is not part of

any loop (e.g., 〈p, p2〉 in Figure 5(b)). Let an angle ∠pi pp j created
at node p be denoted as an ‘outer angle’ where the other points pi
and p j do not form a closed loop with each other (i.e., they are ei-
ther involved in two different loops - ∠p1 pp2 or ∠p5 pp6 in Figure
5(c), or at least one of them is connected with an exposed line -
∠p1 pp2 or ∠p2 pp3 in Figure 5(b)). According to the properties of
a Jordan curve, where the nodes of a cluster should form a single
loop, there must not be any such outer angle. Thus we transform
the problem of obtaining a Jordan curve from a non-Jordan one to
the problem of eliminating any outer angles. We present the steps
of our technique in the following:

Let p be a node such that at least one outer angle is created at
p. We find the set A of all the outer angles created at p. We find
the smallest angle from A (we will explain why we deal with the
smallest angle in Example 4). Let that angle be ∠p′pp′′ (Lines 1.14
- 1.15). As the nodes p′ and p′′ of an outer angle do not form a
closed loop with each other, we create an edge by adding p′ and
p′′ (Line 1.20). Then, if the edge 〈p′, p〉 was not an exposed line,
we remove 〈p′, p〉 (as the degree of p′ was at least 2, and its degree
got increased by 1 because of the new edge). Similarly, if the edge
〈p, p′′〉 was not an exposed line, we remove 〈p, p′′〉 as well (Lines
1.16 - 1.19). We continue this process until there is no node left
with any outer angle, i.e., the Jordan curve is obtained. We present
the steps of eliminating non-Jordan boundaries in Lines 1.9 - 1.20
in Algorithm 1. There is a special case where there are only two
nodes in a cluster. In such case, we disconnect them by removing
the edge (Lines 1.9 - 1.12).

Example 4 Figures 5(b & c) present two examples of how the outer
angles are formed and how we eliminate them. In Figure 5(b),
since the red points and the blue points belong to different clus-
ters, after we remove the gray edges to separate the two clusters
(Lines 1.5-1.7), 〈p, p2〉 becomes an exposed line. There are two
ways to eliminate the exposed line by dealing with either of the
two outer angles ∠p1 pp2 or ∠p2 pp3. We choose to deal with the
smaller angle ∠p1 pp2 (rather than ∠p2 pp3) by replacing pp1 with
p1 p2, which will generate a smaller interior angle (the interior an-
gle ∠p2 pp3 < ∠p1 pp2 in the final hull). Based on the complexity
function defined in [BKSB95], a smaller interior angle will reduce
the chance of notches, which will also reduce the complexity of
the concave hull. Similarly in Figure 5(c), dealing with the smaller
outer angle ∠p1 pp2 will also generate a less complex hull.

Time complexity. The time complexity of the proposed algorithm
is mainly affected by the triangulation process, which is O(nlogn)
[DKWG08], where n is the number of points in P. The process
of separating clusters and deleting all inner edges (Lines 1.5-1.8)
depend on the number of edges in the triangulation result which is
proved to be no larger than 3n [Sei95]. The complexity of the core
algorithm loop (Lines 1.9-1.20) is based on the number of special
cases - outer angles (s). In real case, s� h� n, where h is the
number of points that lie on the final hull boundaries. Therefore,
the overall complexity of the algorithm is O(nlogn).

The result. Figure 4(c) presents the result of concave hulls using
our proposed algorithm (with the same real estate data as in Fig-
ure 4(a & b)). Our proposed algorithm, which does not need any
parameters, is able to avoid all three problems: overlaps, complex
shapes, and empty areas.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Li et al. / ConcaveCubes: Supporting Cluster-based Geographical Visualization in Large Data Scale

5. ConcaveCubes: Cluster-based Data Cubes index

In this section, we propose ConcaveCubes to support the visualiza-
tion design (Section 3.3) on large-scale data from a data reduction
perspective. We first give an overview of ConcaveCubes followed
by an example, and then describe how we construct ConcaveCubes.
Finally, we discuss how different user interactions are supported.

ConcaveCubes is a data cube structure that precomputes clusters
to support visualization and user interactions. ConcaveCubes ad-
dresses the scalability issue from the data reduction perspective as:
(i) the hierarchical structure supports accessing only the data points
necessary for the current view during visualization and user interac-
tions (explained in Section 5.3); (ii) the precomputed aggregations
are used to reduce the on-the-fly computation without accessing the
actual data points.

5.1. An example of ConcaveCubes

ConcaveCubes has a hierarchical structure with multiple levels, and
each level corresponds a specific dimension type: recall the baseline
clustering method defined in Section 3.2, we have subdivided di-
mensions into four types based on whether they are directly linked
to geo-locations and whether they are going to affect the clus-
tering result. To generate ConcaveCubes, each level of Concave-
Cubes corresponds to one type of dimensions: as geo-independent
dimensions, geo-semantics and geo-locations.

Figure 6 presents an example of ConcaveCubes with Australia’s
real estate data. The data is first sorted in the first 4 levels. The
nodes at the last geo-semantic level will be split if they belong to
different clusters at the next level. For example, the highlighted
node (in orange) at level 4 contains all 2-bedroom units in Mel-
bourne, Victoria. It is split into two nodes (C1 & C2) based on the
clustering function at level 5, and C1 is further split into two nodes
based on a finer clustering function at level 6. For each node in level
5 & 6, we store the statistical information of the properties in each
cluster (shown as [i, j] in Figure 6, where i and j indicate the start
and end index of properties, respectively).

Figure 6: An example of ConcaveCubes with the real estate data.

5.2. Construction of ConcaveCubes

As shown in Figure 7, ConcaveCubes is constructed in four main
steps: (1) data pre-processing, (2) a multi-criteria sorting on the cat-
egorical and geo-semantic dimensions, (3) hierarchical clustering,
and (4) cluster-based calculations.

Data pre-processing. Before generating ConcaveCubes, we pre-
process the raw data as follows: (i) for each geo-independent di-
mension and each geo-semantic level, we set an ordering of the di-
mensions; (ii) we divide the value of geo-independent dimensions

Dimension ordering

Geo-independent
data mapping

Geo-semantic
mapping

D
at

a
p

re
-p

ro
ce

ss
in

g Geo-independent dimension 1

M
u

lt
i-

cr
it

e
ri

a
So

rt
in

g Clustering
level 1

H
ie

ra
rc

h
ic

al
 c

lu
st

e
ri

n
g

Geo-semantic 1

Geo-semantic n

Geo-independent dimension n Clustering
level 2

Clustering
level n

Concave Hull
Computation

C
lu

st
e

r-
b

as
e

d
 c

al
cu

la
ti

o
n

s

Statistical
Calculation

+

+

Figure 7: The procedure of constructing ConcaveCubes.

based on specific values or ranges, which convert them into cat-
egorical values; (iii) we map each data point to its corresponding
geo-semantic region (e.g., a property might be mapped to Australia
→ Victoria→Melbourne).

Multi-criteria sorting. Similar to Hashedcubes, our Concave-
Cubes also needs a multi-criteria sorting. Note that, our geograph-
ical level is different from that in state-of-the-art data cubes. In
Nanocubes and Hashedcubes, the geographical features are pro-
cessed based on the Quadtree, a grid-based hierarchical spatial data
structure that recursively divides the space into four regions based
on either its interior [ST86] or its boundary [SW84]. Such a struc-
ture is effective for querying on the geographical dimension, but
might not preserve the geographical semantics. For example, if
we partition the data based on geo-locations of properties using
a Quadtree, in one of the middle levels, two properties from two
different states may belong to the same grid, while they have no
semantic relationship. Therefore, we design the geographical level
of ConcaveCubes based on real-world geographical hierarchy, such
as country, state, city, etc.

Hierarchical clustering. After the multi-criteria sorting, all prop-
erties having the same values in geo-independent dimensions and
in the same geo-semantic area will be grouped together. However,
properties in the same group can still be quite different. For exam-
ple, in Figure 2(b), houses that are close to the beach are more
expensive than others even when they are in the same suburbs.
Therefore, we apply hierarchical clustering [Mur83] after the multi-
criteria sorting to further divide the data into different groups. In
our implementation, we use a hierachical DBScan [CMS13] by de-
ceasing the threshold of the algorithm in a lower level. For example,
at level 5 in Figure 6, we apply DBScan [EKSX96] with a threshold
of 400m to cluster the properties based on Euclidean distance. Then
at level 6, we re-apply DBScan with a smaller threshold (100m in
our demonstration) to possibly divide some of the original clusters
into multiple smaller clusters.

Cluster-based concave hull calculation. We calculate a concave
hull for each cluster in ConcaveCubes based on the algorithm de-
fined in Section 4 to support the boundary-based cluster maps.
Since out proposed concave hull method is based on a global tri-
angulation, we apply the proposed algorithm on a group of clusters
that share a parent-node. Instead of storing the locations for all data
points, we store the concave hull boundaries. At last, for each clus-
ter that has a concave hull (clusters with less than three points will
not have a hull), we calculate the statistical information based on
each geo-dependent and geo-independent measures (Section 3.2)
and store them in the database. The statistical (aggregated) infor-
mation is stored as views in the database, so that when a cluster
is highlighted, the information of the selected dimension measures
will be efficiently loaded to visualize.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Li et al. / ConcaveCubes: Supporting Cluster-based Geographical Visualization in Large Data Scale

5.3. Index operations

In this subsection, we illustrate the operations that Concave-
Cubes provides to support the visualization design and user inter-
actions defined in Section 3.3.

5.3.1. Initialization

The initialization of the visualization is a query on Con-
caveCubes with four parameters, a default map window, geo-
independent dimensions (e.g., 3-bedroom houses), a default clus-
tering granularity (e.g., a 400m DBScan), and a focused measure
(e.g., price). Based on the default settings, ConcaveCubes is tra-
versed from the root and the following steps are executed: (i) the
nodes matching the geo-independent dimensions are scanned, (ii)
the nodes in geographic semantic levels within the map window
are accessed, and (iii) the clusters at the default granularity level
are obtained.

5.3.2. User interactions

The key idea for ConcaveCubes to support different user interac-
tions is to reuse existing calculations and visualizations while up-
dating for user interactions.

Interaction 1: zoom-in, zoom-out, panning. Zooming and pan-
ning directly influence the map window (w). The change of w cor-
responds to the level of geographic semantics in ConcaveCubes.
Therefore, after users apply zooming in/out or panning, we cal-
culate a set subtraction between the current (w_c) and previous
(w_p) map windows, and then refresh the visualization based on the
subtraction result. Since the boundary of a semantic geographical
node often contains many geo-points, we store a minimum bound-
ing rectangle for each geo-boundary. If the map window covers the
entire rectangle, we include all the clusters in the lower level; oth-
erwise, the next geographic semantic level is accessed.

Interaction 2: filtering. Filtering, i.e., selections, would affect the
level of categorical dimensions. For example, if previously only 3-
bedroom units in Melbourne are shown on the map, and the user
selects to include 3-bedroom houses as well, then the correspond-
ing clusters at level 5 will be added to the visualization result while
the previous result remains. Note that, having multiple selections
might result in some intersecting concave hulls. For each concave
hull, we store a minimum bounding rectangle that covers it, so that
we can effectively detect intersections and compute the union of
the intersected concave hulls at runtime.

Interaction 3: granularity control. For example, in Figure 6, if
the user changes the current granularity level from Level 5 to Level
6, the clusters that are not split will stay in the map window, but
they will fall into multiple smaller clusters. For example, C1, C5
and C6 at level 5 will be replaced by their child clusters at level 6.

6. Experiments

In this section, we present an experimental evaluation of Con-
caveCubes using several real-life datasets. We first describe the
datasets and schemas, and report the storage and construction time
of ConcaveCubes. We then present several visualization results,
and compare our result with the result generated based on existing
visualization-based data cubes. Finally we report the query time
based on a set of real-world queries.

6.1. Datasets and schemas

We have collected five datasets that include two real estate datasets,
a census dataset, and two location-based social network datasets.
We summarize all of the schema variations and datasets in Table 2.

• Real estate dataset. We have crawled and cleaned the real estate
data in Australia using the data profiles defined in our previous
work [LBSY16]. We include two schemas in our experiments as
shown in Table 2. The geo-semantic levels are based on ASGS
(Australian Statistical Geography Standard [ABo16a]). Both the
schemas include six levels of a hierarchical DBScan.

• Location-based social network datasets. Brightkite and
Gowalla are two social network datasets with users’ check-in
locations [CML11]. For Brightkite, we build ConcaveCubes us-
ing three different schemas: two of them share the same cate-
gorical dimensions with imMens [LJH13], Nanocubes [LKS13],
and Hashedcubes [PSSC17]. The geo-semantics are all mapped
based on GADM (Database of Global Administrative Areas
[Are12]).

• Australian census dataset. It includes four levels of geo-
semantics based on ASGS. We simulated n data points which be-
long to each of the 57,523 SA1s (the smallest area for the release
of census data [ABo16a]), where n is the population in each area.
As a result, we generated 24.5 million data (the total number
of Australian population at the 2016 census report [ABo16b]).
Then, we select 100 features (including median age, income,
etc.) from the 2016 census data of Australia.

We report the memory usage and construction time of Concave-
Cubes in Table 2. Although the construction time of Concave-
Cubes is much higher than that of Nanocubes and Hashedcubes,
ConcaveCubes is much more memory efficient than the other two
methods. On the one hand, for the construction time, the bottle-
neck of our construction process includes (i) geo-semantic map-
ping, (ii) hierarchical DBScan computation, and (iii) Concave hull
calculation. The construction time of ConcaveCubes is proportional
to the number of objects, and the number of hierarchical clus-
tering levels. However, with more categorical dimensions or geo-
semantics levels, the data entering the hierarchical DBScan pro-
cess will be divided into more sub-groups, which results that the
construction time of ConcaveCubes could possibly decrease. On
the other hand, as examples of the memory efficiency of Con-
caveCubes, it requires less than 30MB of memory for both the
Brightkite and Gowalla datasets, where HashedCubes and requires
more than 300MB [PSSC17] and Nanocubes needs more than 1GB
[LKS13]. The reason behind this is that, we store the geo-semantic
information for the geographic dimensions which are different with
Nanocubes and Hashecubes, which use Quad-trees; as a result,
much fewer data aggregations will be needed in the bottom layers
of ConcaveCubes.

6.2. Visualization results

In addition to the visualization of real estate data shown in the
previous sections (Figure 2 & 3) and demonstrated in [LBCS18],
here we present visualization results based on the other datasets
and compare them with existing methods.

Based on the Brightkite dataset, Figure 8 compares the visual-

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Li et al. / ConcaveCubes: Supporting Cluster-based Geographical Visualization in Large Data Scale

Table 2: Overall summary of the relevant information for building ConcaveCubes.

dataset objects (#) clusters (#) memory time geo-scope geo-semantics categorical dimensions h-clustering measures (#)

Real_estate_VIC 667k 50k 23.4MB 04m:16s Victoria 3 levels pro_type, bedroom 6 levels 36
Real_estate_AU 1.41m 104k 49.9MB 09m:08s Australia 4 levels pro_type, bedroom, year 6 levels 36

Brightkite 4.5m
489k 98.4MB 00m:58s World 3 levels hour, day, week1 - 1
570k 117.3MB 01m:27s World 3 levels month, hour, day2 - 1
33k 4.2MB 25m:00s World 6 levels - 3 levels 1

Gowalla 6.4m 37k 4.5MB 48m:03s World 6 levels - 3 levels 1
Census_AU 23.4m 57k 7.9MB 00m:35s Australia 4 levels - - 100

1 categorical dimensions used in Nanocubes and Hashedcubes; 2 categorical dimensions used in imMens and Hashedcubes.

ization results supported by ConcaveCubes with the visualization
supported by Nanocubes, Hashedcubes, and imMens. The two vi-
sualizations present both global patterns (e.g., an overview of the
check-ins across the United States) and local features (e.g., inter-
state highway travel). However, the boundary-based cluster maps,
which ConcaveCubes supports, present important geo-semantic in-
formation which are missed in Heatmaps. For example, each poly-
gon (cluster) in Figure 8(a) represents a group of data points within
the same county and close in distance.

Figure 8: Visualization of the Brightkite dataset. (a) cluster maps
(with a cluster selected) supported by our proposed ConcaveCubes:
colour represents no. of check-ins; (b) heatmaps supported by
Nanocubes, Hashedcubes, and imMens (screenshot is taken from
the online demo of Nanocubes).

As shown in Figure 9(a), we generate a cluster map based on
a group of simulated data points at each geo-semantic level in the
Australia census data. ConcaveCubes is able to provide an effi-
cient approximate solution of cholepleth map [BMPH97] by sim-
ulating geographic points in each region and calculating approxi-
mate boundaries based on the simulated points: comparing to the
original dataset which takes more than 200MB to store the geo-
graphic boundaries, ConcaveCubes needs only 7.9MB of memory.

Figure 9: Visualization of the Australian census data: Concave-
Cubes is efficient to support cluster maps (a), which could be an
approximate solution of the traditional cholepleth maps (b).

6.3. Query time

We report the query time based on the real usage of the system. A
total of 6,317 query requests were collected on the public Concave-
Cubes web site [LCB∗18], in which users performed different user
interactions based on the real estate data in Victoria. To evaluate
the query efficiency in a fixed environment, we recorded the query
related to each user interaction and re-executed it in Google chrome
on a quad-core i7-5500U CPU (2.4GHz) with 8GB RAM. Figure
10 shows the result based on six different types of user interactions.

Comparing to Hashedcubes which have only about 2% of the
queries taking longer than 40ms (as stated in [PSSC17]), most of
the queries in ConcaveCubes are responded within 25-50ms. The
reason of why ConcaveCubes might take a slightly longer time is
that: we exploit geo-semantic information in ConcaveCubes and
display the boundaries for each cluster, while Hashedcubes do not
need to deal with the boundaries. Nevertheless, all of our queries
(from the experiments) are returned within 0.1s, which satisfies
the perceptual processing time constant defined by Card et al.
[CRM91]. Among all different types of user interactions, highlight-
ing & linking is the most efficient operation: it retrieves the aggre-
gation information of that cluster from ConcaveCubes directly and
then displays them, so no additional calculation is required; gran-
ularity control takes slightly longer time than the other operations,
since users might select a finer granularity in a high zoomed level,
which means several levels of hierarchical clustering levels might
need to be accessed.

Figure 10: Query latency per type of user interactions based on the
real estate dataset.

6.4. Discussion

Based on the experimental results, we have demonstrated that Con-
caveCubes supports both bubble-based and boundary-based clus-

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Li et al. / ConcaveCubes: Supporting Cluster-based Geographical Visualization in Large Data Scale

ter maps, which is not straightforward to be supported by existing
methods (e.g., imMens, Nanocubes, Hashedcubes). Compared to
heatmaps and binned plots, bubble-based cluster maps present ad-
ditional information (with the color and the size of each bubble),
and our proposed boundary-based cluster maps present more pre-
cise geographical information with semantic meanings.

Situations where cluster maps are most applicable. Our pro-
posed boundary-based cluster maps can be regarded as a general-
ization of choropleth maps: the surface of each single color ele-
ment is not directly the representation of an explicit surface delim-
itation (district limits for instance), but the result of the aggrega-
tion/clustering of data. Our methods are mostly suitable to apply
when geo-referencing is just point-based or when the query needs
to go beyond known space delimitations such as districts (real es-
tate and social network examples). From the example of Census
data, we also demonstrate that, even when the boundary of geo-
semantics is given, ConcaveCubes can provide an approximate yet
more efficient solution of the traditional choropleth maps.

Limitation of cluster maps. While cluster maps that the pro-
posed ConcaveCubes support have advantages over other map de-
signs, the method also has its limitations. For examples, bubble-
based cluster maps lack of precise geographic information, and
boundary-based ones might not present density information. One
future research direction is to conduct a proper user study to com-
pare different types of map designs (including the above-mentioned
ones and some other map designs such as dot maps and cartogram
maps) based on different visualization tasks.

Limitation of dimensions supported by ConcaveCubes. Apart
from the disadvantages of the supported cluster maps, another main
limitation of the proposed ConcaveCubes is the number of dimen-
sions that it supports, which is a common problem for cube-based
data structures. Similar to Nanocubes and Hashedcubes, Concave-
Cubes can support at most 5-10 categorical dimensions. It is worth
noting that, besides the geographic dimensions and categorical di-
mensions, ConcaveCubes is able to support temporal dimensions
using the same method defined in [PSSC17] by converting the tem-
poral dimensions into categorical dimensions.

Supporting dynamic data. Although ConcaveCubes is pre-
defined in all the experiments, one possible extension of our work is
to adapt the method with dynamic data. To insert, update or delete
a data item in ConcaveCubes after it is already constructed, we
only need to change the affected nodes in the hierarchical struc-
ture. For example, to insert a new 2-bedroom unit at Melbourne
to the ConcaveCubes shown in Fig. 6, we need to find the cor-
responding nodes in Levels 1-4 that the new property belongs to
(the highlighted nodes); then based on whether the new property
is within the concave hull boundary of any existing clusters (C1 or
C2), we update the corresponding node, or add a new node (if the
new property does not belong to either of the clusters).

7. Conclusion

In this paper, we proposed ConcaveCubes, a data cube based scal-
able approach to support interactive visualization of large-scale
multidimensional data with geographic semantic captured. In par-
ticular, we first presented a visualization abstraction for the ge-

ographical data based on clusters and proposed a visualization
design of two map-based views (bubble-based as a baseline and
boundary-based cluster maps as our desired map view) and a linked
multidimensional view. For an effective boundary-based cluster
map view, we proposed a novel concave hull construction algo-
rithm, which addresses the limitation of existing methods by elimi-
nating empty areas, complex shapes, and overlaps among different
clusters. The ConcaveCubes utilizes the existing calculations based
on the categorical and geo-semantic dimensions of the clusters and
visualization results to efficiently support various types of user in-
teractions. Extensive experiments on real-world datasets verified
the efficiency and effectiveness of our proposed ConcaveCubes.

Acknowledgement

This work was partially supported by ARC DP170102726,
DP170102231, DP180102050, and National Natural Science Foun-
dation of China (NSFC) 61728204, 91646204. Zhifeng Bao is sup-
ported by a Google Faculty Award. Hanan Samet is supported in
part by the National Science Foundation of the US under grant
IIS-13-20791. The authors would also like to thank the anonymous
EuroVis reviewers for their valuable comments and suggestions to
improve the quality of the paper.

References
[ABo16a] ABO S.: Australian statistical geography standard (asgs): vol-

ume 1—main structure and greater capital city statistical areas. Can-
berra: Australian Bureau of Statistics (2016). 9

[ABo16b] ABO S.: Census of population and housing: Nature and con-
tent, australia. Australian Bureau of Statistics (2016). 9

[ADM17] ASAEEDI S., DIDEHVAR F., MOHADES A.: α-concave hull, a
generalization of convex hull. Theoretical Computer Science 702 (2017),
48–59. 2, 6

[AJT01] ALANI H., JONES C. B., TUDHOPE D.: Voronoi-based region
approximation for geographical informaton retrieval with gazetteers. In-
ternational Journal of Geographical Information Science 15, 4 (2001),
287–306. 6

[Are12] AREAS G. A.: Gadm database of global administrative areas,
2012. 9

[AS94] AHLBERG C., SHNEIDERMAN B.: Visual information seeking:
tight coupling of dynamic query filters with starfield displays. In SIGCH
(1994), pp. 313–317. 2

[AvKR∗06] ARAMPATZIS A., VAN KREVELD M., REINBACHER I.,
JONES C. B., VAID S., CLOUGH P., JOHO H., SANDERSON M.: Web-
based delineation of imprecise regions. Computers, Environment and
Urban Systems 30, 4 (2006), 436–459. 6

[BKSB95] BRINKHOFF T., KRIEGEL H.-P., SCHNEIDER R., BRAUN
A.: Measuring the complexity of polygonal objects. In International
Workshop on Advances in Geographic Information Systems (1995),
pp. 109–117. 7

[BMPH97] BREWER C. A., MACEACHREN A. M., PICKLE L. W.,
HERRMANN D.: Mapping mortality: evaluating color schemes for
choropleth maps. Annals of the Association of American Geographers
87, 3 (1997), 411–438. 2, 10

[Boj09] BOJKO A. A.: Informative or misleading? heatmaps decon-
structed. In HCI International (2009), Springer, pp. 30–39. 1

[CLNL87] CARR D. B., LITTLEFIELD R. J., NICHOLSON W., LITTLE-
FIELD J.: Scatterplot matrix techniques for large n. Journal of the Amer-
ican Statistical Association 82, 398 (1987), 424–436. 2

[CML11] CHO E., MYERS S. A., LESKOVEC J.: Friendship and mo-
bility: user movement in location-based social networks. In SIGKDD
(2011), pp. 1082–1090. 9

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Li et al. / ConcaveCubes: Supporting Cluster-based Geographical Visualization in Large Data Scale

[CMS13] CAMPELLO R. J., MOULAVI D., SANDER J.: Density-based
clustering based on hierarchical density estimates. In PAKDD (2013),
Springer, pp. 160–172. 8

[CRM91] CARD S. K., ROBERTSON G. G., MACKINLAY J. D.: The
information visualizer, an information workspace. In SIGCHI (1991),
pp. 181–186. 10

[CXGH08] CHAN S.-M., XIAO L., GERTH J., HANRAHAN P.: Main-
taining interactivity while exploring massive time series. In VAST
(2008), pp. 59–66. 3

[DKWG08] DUCKHAM M., KULIK L., WORBOYS M., GALTON A.:
Efficient generation of simple polygons for characterizing the shape of a
set of points in the plane. Pattern Recognition 41, 10 (2008), 3224–3236.
2, 6, 7

[DP12] DROSOU M., PITOURA E.: Disc diversity: result diversification
based on dissimilarity and coverage. Proceedings of the VLDB Endow-
ment 6, 1 (2012), 13–24. 1, 2

[EBN15] EBERT T., BELZ J., NELLES O.: Interpolation and extrapola-
tion: Comparison of definitions and survey of algorithms for convex and
concave hulls. In IEEE Symposium on Computational Intelligence and
Data Mining (2015), pp. 310–314. 5

[EKSX96] ESTER M., KRIEGEL H.-P., SANDER J., XU X.: A density-
based algorithm for discovering clusters in large spatial databases with
noise. In SIGKDD (1996), pp. 226–231. 4, 8

[Fis11] FISHER D.: Incremental, approximate database queries and un-
certainty for exploratory visualization. In IEEE Symposium on Large
Data Analysis and Visualization (2011), pp. 73–80. 3

[GCB∗97] GRAY J., CHAUDHURI S., BOSWORTH A., LAYMAN A.,
REICHART D., VENKATRAO M., PELLOW F., PIRAHESH H.: Data
cube: A relational aggregation operator generalizing group-by, cross-tab,
and sub-totals. Data mining and knowledge discovery 1, 1 (1997), 29–
53. 2

[GCZ∗17] GALAKATOS A., CROTTY A., ZGRAGGEN E., BINNIG C.,
KRASKA T.: Revisiting reuse for approximate query processing. Pro-
ceedings of the VLDB Endowment 10, 10 (2017), 1142–1153. 3

[GD06] GALTON A., DUCKHAM M.: What is the region occupied by a
set of points? In GIScience (2006), pp. 81–98. 5, 6, 7

[Jar73] JARVIS R. A.: On the identification of the convex hull of a finite
set of points in the plane. Information Processing Letters 2, 1 (1973),
18–21. 6

[JJHM14] JUGEL U., JERZAK Z., HACKENBROICH G., MARKL V.:
M4: a visualization-oriented time series data aggregation. In Proceed-
ings of the VLDB Endowment (2014), pp. 797–808. 2

[JJHM16] JUGEL U., JERZAK Z., HACKENBROICH G., MARKL V.:
Vdda: automatic visualization-driven data aggregation in relational
databases. The VLDB Journal 25, 1 (2016), 53–77. 2

[JS98] JERDING D. F., STASKO J. T.: The information mural: A tech-
nique for displaying and navigating large information spaces. TVCG 4,
3 (1998), 257–271. 3, 4

[Kei96] KEIM D. A.: Pixel-oriented visualization techniques for explor-
ing very large data bases. Journal of Computational and Graphical
Statistics 5, 1 (1996), 58–77. 2, 3

[Kei02] KEIM D. A.: Information visualization and visual data mining.
TVCG 8, 1 (2002), 1–8. 2

[LBCS18] LI M., BAO Z., CHOUDHURY F., SELLIS T.: Supporting
large-scale geographical visualization in a multi-granularity way. In
WSDM (2018), pp. 767–770. 9

[LBS∗18] LI M., BAO Z., SELLIS T., YAN S., ZHANG R.: Homeseeker:
A visual analytics system of real estate data. Journal of Visual Languages
& Computing 45 (2018), 1–16. 3

[LBSY16] LI M., BAO Z., SELLIS T., YAN S.: Visualization-aided ex-
ploration of the real estate data. In Australian Database Conference
(2016), pp. 435–439. 9

[LCB∗18] LI M., CHOUDHURY F., BAO Z., SAMET H., SELLIS T.:
ConcaveCubes online demo system. http://115.146.89.158/
ConcaveCubes/, 2018. 10

[LGH∗17] LU Y., GARCIA R., HANSEN B., GLEICHER M., MA-
CIEJEWSKI R.: The state-of-the-art in predictive visual analytics. 539–
562. 3

[LJH13] LIU Z., JIANG B., HEER J.: imMens: real-time visual querying
of big data. Computer Graphics Forum 32, 3 (2013), 421–430. 1, 2, 4,
5, 9

[LKS13] LINS L., KLOSOWSKI J., SCHEIDEGGER C.: Nanocubes for
real-time exploration of spatiotemporal datasets. TVCG 19, 12 (2013),
2456–2465. 1, 2, 4, 5, 9

[MI95] MURATA T., ISHIBUCHI H.: MOGA: multi-objective genetic al-
gorithms. In IEEE International Conference on Evolutionary Computa-
tion (1995), pp. 289–294. 4

[MLKS18] MIRANDA F., LINS L., KLOSOWSKI J., SILVA C.: Topkube:
a rank-aware data cube for real-time exploration of spatiotemporal data.
TVCG 24, 3 (2018), 1394–1407. 2

[MS07] MOREIRA A., SANTOS M. Y.: Concave hull: a k-nearest neigh-
bours approach for the computation of the region occupied by a set of
points. In International Conference on Computer Graphics Theory and
Applications (2007), pp. 61–68. 2, 4, 6

[Mur83] MURTAGH F.: A survey of recent advances in hierarchical clus-
tering algorithms. The Computer Journal 26, 4 (1983), 354–359. 8

[NJS11] NUTANONG S., JACOX E. H., SAMET H.: An incremental
Hausdorff distance calculation algorithm. PVLDB 4, 8 (August 2011),
506–517. 1

[PO12] PARK J.-S., OH S.-J.: A new concave lull algorithm and con-
caveness measure for n-dimensional datasets. Jounral of Information
Science and Engineering 28 (2012), 587–600. 6

[PSSC17] PAHINS C. A., STEPHENS S. A., SCHEIDEGGER C., COMBA
J. L.: Hashedcubes: simple, low memory, real-time visual exploration
of big data. TVCG 23, 1 (2017), 671–680. 1, 2, 4, 5, 9, 10, 11

[PWR04] PENG W., WARD M. O., RUNDENSTEINER E. A.: Clutter
reduction in multi-dimensional data visualization using dimension re-
ordering. In InfoVis (2004), pp. 89–96. 3

[Sam06] SAMET H.: Foundations of multidimensional and metric data
structures. Morgan Kaufmann, 2006. 2

[Sei95] SEIDEL R.: The upper bound theorem for polytopes: an easy
proof of its asymptotic version. Computational Geometry 5, 2 (1995),
115–116. 7

[Shn96] SHNEIDERMAN B.: The eyes have it: a task by data type tax-
onomy for information visualizations. In IEEE Symposium on Visual
Languages (1996), pp. 336–343. 3

[SPG14] STOLPER C. D., PERER A., GOTZ D.: Progressive visual ana-
lytics: user-driven visual exploration of in-progress analytics. TCVG 20,
12 (2014), 1653–1662. 3

[ST86] SAMET H., TAMMINEN M.: An improved approach to connected
component labeling of images. In CVPR (Miami Beach, FL, June 1986),
pp. 312–318. 8

[SW84] SAMET H., WEBBER R. E.: On encoding boundaries with
quadtrees. TPAMI 6, 3 (May 1984), 365–369. 8

[TGC03] TRUTSCHL M., GRINSTEIN G., CVEK U.: Intelligently re-
solving point occlusion. In InfoVis (2003), pp. 131–136. 3

[TKBH17] TURKAY C., KAYA E., BALCISOY S., HAUSER H.: Design-
ing progressive and interactive analytics processes for high-dimensional
data analysis. TVCG 23, 1 (2017), 131–140. 3

[Tob70] TOBLER W. R.: A computer movie simulating urban growth in
the detroit region. Economic geography 46, sup1 (1970), 234–240. 1

[WFW∗17] WANG Z., FERREIRA N., WEI Y., BHASKAR A. S., SCHEI-
DEGGER C.: Gaussian cubes: real-time modeling for visual exploration
of large multidimensional datasets. TVCG 23 (2017), 681–690. 2

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

http://115.146.89.158/ConcaveCubes/
http://115.146.89.158/ConcaveCubes/

