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ABSTRACT
Determining geographic interpretations for place names, or
toponyms, involves resolving multiple types of ambiguity.
Place names commonly occur within lists and data tables,
whose authors frequently omit qualifications (such as city
or state containers) for place names because they expect
the meaning of individual place names to be obvious from
context. We present a novel technique for place name dis-
ambiguation (also known as toponym resolution) that uses
Bayesian inference to assign categories to lists or tables
containing place names, and then interprets individual to-
ponyms based on the most likely category assignments. The
categories are defined as nodes in hierarchies along three
orthogonal dimensions: place types (e.g., cities, capitals,
rivers, etc.), geographic containers, and prominence (e.g.,
based on population).
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1 Introduction
We present an algorithm for automatically categorizing and
interpreting geographic place names (or toponyms) found in
tables and lists. Many datasets and documents include in-
formal references to places using toponyms, rather than ex-
plicit references using geographic coordinates, necessitating
a transformation from toponym to geographic coordinates
before any spatial processing can occur. By interpreting
each place name as a specific geographic entity (a process
known as toponym resolution), the document containing the
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list or table is geotagged with the locations it references. To-
ponym resolution and geotagging are common topics in cur-
rent research but the results can be inaccurate when place
names are not well-specified (that is, when place names are
not followed by a geographic container, such as a country,
state, or province name). Our aim is to utilize the context of
other places named within the table or list to disambiguate
place names that have multiple geographic interpretations.

Geographic references are a very common component of
data tables that can occur in both (1) the case where the
primary entities of a table are geographic or (2) the case
where the primary entities of a table have geographic at-
tributes. In many cases, the geographic references are not
well qualified (for example, when “Paris, Texas, USA” is be-
ing referred to in a list of other towns in northern Texas, it
may simply be presented as “Paris”). In order to resolve the
location references to their intended geographic interpreta-
tions, we must make use of the context, which in this case is
composed of the other toponyms in the same table column.
In this sense, the table geotagging task is differentiated from
the task of geotagging place names that are found in plain-
text documents, as the place names in table columns are
typically more homogeneous. In particular, we expect that
there is an underlying place category which can describe the
toponyms within a single column. Examples of place cate-
gories include “states/provinces in North America”, “large
cities in Bavaria, Germany”, or “airports in Italy”. Figure 1
shows an example list of toponyms and potential place cat-
egories for different geographic interpretations of those to-
ponyms. By identifying likely place categories for toponym
lists, we can reduce the ambiguity of resolving individual
place names.

Our method relies on a category formulation that we call
“combined hierarchical place categories” to geotag tables
that contain ambiguous place names with little or no qual-
ifying context. Our approach uses a Bayesian likelihood
model to assign geographic categories to toponym lists or
individual table columns. This ensures coherence among
the interpretations of toponyms that are expected to have
a consistent theme (called column coherence). For example,
assigning a coherent category to a list improves the odds of
resolving “Washington” to mean “the State of Washington”
when it appears in a list containing the values [Washington,
Idaho, Oregon] (which are all names of American states)
while resolving “Washington” to signify “Washington, DC”
when it appears in a list containing the values [Washington,
New York, San Francisco] (American cities).

At the core of our algorithm, we use a gazetteer (our im-
plementation uses the GeoNames geographical database [4])
to identify possible geographic interpretations for each to-
ponym in a table. For each of these possible interpretations,
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Figure 1: Plausible categories of geographic interpretations for a sample table. Many toponym sets, such as the one shown
here, have several plausible geographic interpretations that fall in distinct place categories, whereas only one describes the
true category of places that was intended by the table’s author. In this case, each toponym has an interpretation as a capital
city in Europe or as a large city in Georgia, USA. Other, less likely categories of geographic interpretations are listed. Our
method assigns likelihood estimates to each category of geographic interpretations based on features of the categories and
how well it fits the toponym list.

the gazetteer provides several descriptive attributes, such as
the place type (e.g., “capital city”), geographic containers
(e.g., the country in which the interpretation is found), and
the population of the place. We create what we call a “cat-
egory taxonomy” that represents all possible combinations
of these three attributes. The values of each attribute are
encoded in a tree where the root can describe all interpreta-
tions found in the gazetteer, whereas lower levels can only
describe subsets of the interpretations. Using the category
taxonomy, we can find all possible categories that describe
an individual place name interpretation by finding each at-
tribute of the interpretation in the attribute trees and taking
the Cartesian product of all possible path prefixes of each
attribute. For example, the city of Washington, DC can be
described as a “place on Earth with population ≥ 0”, but
that is not a very useful category. It could also be described
as a “city in North America with population ≥ 100”, which
is a slightly more discriminating category. There are many
other ways to describe it within our system of categorization
that lead up to the most discriminating category for Wash-
ington, DC, which is “Capital of an independent political
entity, located in the District of Columbia, USA, with pop-
ulation ≥ 100,000”. The key concept is that many categories
within our taxonomy can be used to describe multiple inter-
pretations from our gazetteer, but for a given list or column
of place names, there is one category that is simultaneously
discriminating and broad enough to describe an interpreta-
tion for each place name.

The Bayesian approach of our method involves measur-
ing certain characteristics of a small sample of training data
and using that data to identify characteristics that are more
likely to occur in true categories for a list or table column.
As a concrete example, the statistics taken from our training
data show that interpreting a set of toponyms in a way that
they all have populations greater than 10,000,000 is about
18% more likely to be the expected way of interpreting them,
rather than interpreting them as places that all have popula-
tions greater than 1,000,000, when the population is looked
at as an isolated feature. The algorithm computes several
such likelihood values and combines them for an aggregate
likelihood score that a specific category of interpretations
leads to the expected geotagging results.

The rest of this paper is organized as follows. Section 2
surveys prior geotagging work for unstructured and struc-
tured documents. Section 3 presents the geotagging algo-

rithm, while Section 4 describes experiments showing our
method’s categorization and toponym resolution accuracy.
Section 5 contains some concluding remarks.

2 Related Work
We have done considerable work on indexing spatial and
temporal data [5, 6, 17, 18, 19] and similarity searching in
the serial domain [16, 20, 21], as well as in a distributed
domain [22]. The spatial data can also be expressed textu-
ally. Traditional systems that use geotagging, such as Web-
a-where [2], STEWARD [10], and NewsStand [23], along
with general systems for mapping Web content [13], ac-
cept plain-text documents or web pages as the input for
a geotagging algorithm. Geotagging plain-text documents
involves some level of natural language processing (NLP) to
accurately identify individual toponyms and reason about
the relationships between them. In particular, the geotag-
ging accuracy of these systems improves when incorporating
the assumption of coherence between place names in several
ways. For example, some systems attempt to infer a geo-
graphic focus of individual document sources, known as a
local lexicon that can be used to resolve otherwise ambigu-
ous toponyms [15]. In other work, incorporating the inter-
pretation of toponyms that appear close together in text was
shown to improve toponym resolution accuracy [9]. Addi-
tionally, some work has shown that sentence structure, such
as place names appearing in comma-separated groups, can
be utilized to improve accuracy [12]. However, all of these
methods apply fairly loose definitions of consistency because
plain-text documents are unstructured and heterogeneous.

In contrast to toponyms in plain-text documents, the to-
ponyms that appear within a list or table column are much
more likely to have strong consistency among their types,
geographic containers, or prominence, or a combination of
all three. Several systems support geotagging data from
a spreadsheet or list, such as Google Fusion Tables1 and
Wolfram Alpha2, along with special purpose systems such
as MapAList3 and BatchGeo4. Each of these systems per-
forms well when fed documents with well-specified locations,
such as addresses. But the results are poor for individual to-
1http://tables.googlelabs.com/
2http://www.wolframalpha.com
3http://www.mapalist.com
4http://www.batchgeo.com
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Figure 2: Table with a location column containing L =
[Alexandria, Arlington, Springfield, Vienna], geotagged by
Wolfram Alpha. Wolfram Alpha interprets each toponym as
the most populated place with the name, so “Alexandria”
is associated with “Alexandria, Egypt”, “Vienna” with “Vi-
enna, Austria”, “Arlington” with “Arlington, TX, USA”,
and “Springfield” with “Springfield, MO, USA”.

Figure 3: List L, geotagged by our algorithm, which recog-
nizes that the list of toponyms in L are likely to refer to a
cluster of nearby cities in the American state of Virginia.

ponyms, as shown in Figure 2, which demonstrates the result
of resolving each toponym individually, as done by Wolfram
Alpha. This can be improved by categorizing possible inter-
pretations, as shown in Figure 3. Additionally, there is some
prior work that investigates methods for geotagging spread-
sheets [11], by employing heuristics to determine if a collec-
tion of toponyms can be viewed as either (1) all prominent,
(2) all nearby, or (3) all similar place types. This method
uses thresholds to determine which places were prominent
or nearby, which we aim to eliminate using a probabilistic
Bayesian method.

3 Geotagging Lists and Tables
The table geotagging problem can be formalized as follows.
Given a grid of data cells, each containing a character string,
determine which cells contain geographic references (the to-
ponym recognition task) and provide the most likely geo-
graphic interpretation for each selected cell (toponym reso-
lution) in the context of the other cells in the grid.

Our method is motivated by the following model of how
table authors construct lists and tables that contain geo-
graphic information. First, the author recognizes that one
or more geographic locations are associated with each en-
tity in the table. The entity for each row may itself be a
geographic entity, but this situation need not be treated
as a special case. After deciding on the geographic entities
that will appear in the table, the author includes a column
with the most descriptive geographic references for each en-
tity. In some cases, the author includes multiple columns
per geographic reference, with the additional columns pro-
viding geographic containers for entities in the primary ge-

ographic column. In other cases, the author assumes the
contrast of nearby values can be used to disambiguate the
toponyms [24]. In the table setting, the context comes in
the form of coherent categories of toponyms within the geo-
graphic columns, such as “provinces in Canada”, or “parks
in Texas” or “prominent cities in Europe”. There are mul-
tiple dimensions to these categories: the feature type, geo-
graphic container, and feature prominence.

Unfortunately, many places share names, a well-known
geotagging challenge known as entity-entity ambiguity [14]
or geo-geo ambiguity [2, 3]. Some place names, such as “Vic-
toria”, “Rome”/“Roma”, and “San Antonio”, are reused for
hundreds of places in dozens of countries. Additionally, even
within a small geographic area, a name can be used to de-
scribe a variety of places, such as “Rappahannock”, which
describes a county, cemetery, mountain, and river in the
American state of Virginia. The process of resolving this
ambiguity is known as toponym resolution [2, 11] and in
this section we describe a method for toponym resolution
in the context of tables. This is in contrast to the related
problem of toponym recognition [8], where we are interested
in determining whether a reference is to be interpreted as a
toponym or not (i.e., is “Jordan” the name of a person or a
location).

3.1 Problem Definition
We are given a data table D from a spreadsheet or HTML
document that includes one or more columns of place names.
The table contains a two-dimensional grid of data values,
where di,j represents the character string in the i-th column
and j-th row of the data values. A gazetteer G is used to
identify place names from the table. Each geographic entity
gi ∈ G is associated with several attributes by the gazetteer:
name, alternate names, feature type, geographic container,
population, and coordinates. The goal is to discover the
mapping F : D → G ∪ ∅ that resolves each di,j ∈ D to a
geographic entity gi ∈ G or to nothing (indicating that the
string value is not a reference to a place).

3.2 Proposed Method
To formalize our discussion, we define terms as follows. A to-
ponym d is a character string with one or more possible geo-
graphic interpretations. The set of possible interpretations,
Geo(d) = {g ∈ G | g is a geographic interpretation of d},
is determined by the entities of the gazetteer G. For ex-
ample, the interpretations of the string “Washington” in-
clude the city of Washington, D.C., the American state of
Washington, the city of Washington, England, along with
dozens of other, less prominent interpretations. The exact
collection of interpretations depends on how strictly names
are matched, such as whether gazetteer entries for “Mount
Washington” or “Washington County” are included as in-
terpretations for the string “Washington”. Our method does
not currently support loose matches such as these.
3.2.1 Extract Data Rows
In order to improve the quality and consistency of the data
that our method is run on, we pre-process the input tables
using a previously developed method based on Conditional
Random Fields [1]. This pre-processing method makes it
possible to handle spreadsheets and HTML tables that con-
tain structures such as multiple header rows, sub-total rows,
and notes/footnotes or non-relational rows. The input to
the pre-processor is a table in either spreadsheet format
(.xls) or an HTML file that includes table elements. The
pre-processor outputs a list of row classes that describe the
functions of the rows within each table, which are then used
to isolate the cells that contain data values from the other
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Figure 4: Simplified fragments of T , the taxonomy for geographic entities that we derive from a gazetteer. The taxonomy
is divided into three dimensions, TT , TG, and TP , which describe the feature type, geographic container, and prominence for
geographic entities, respectively. Every geographic entity in the gazetteer belongs to a category c ∈ TT × TG × TP .

components of the table. The remainder of our method is
applied to the data cells only.
3.2.2 Taxonomy for Geographic Entities
The properties that are provided by the gazetteer are used
to generate a taxonomy T for describing geographic entities,
which is partially depicted in Figure 4. The taxonomy is
defined by hierarchies that represent properties along three
orthogonal dimensions.
• Feature Type. The feature type describes the class

of objects that an entity belongs to, such as “Capital
City” or “Park” or “Stream” or “County”. Feature
types belong to a type hierarchy TT .
• Geographic Container. The geographic container

is an administrative region in which the entity ap-
pears. Geographic containers belong to a geographic
container hierarchy TG, in which counties or minor re-
gions are contained by states or provinces, which in
turn are contained by their countries. For example,
a category could describe entities that are in South
Africa, or in Shanghai, China.
• Prominence. For our purposes, an entity’s promi-

nence is derived from its population. Our formulation
uses the log10(pop) as the prominence for a place with
population pop. We view the prominence hierarchy TP
as having multiple levels, but no branches.

The tree structure of these hierarchies is not directly avail-
able from the GeoNames database. However, it can mostly
be generated from the attributes of individual places. For
the place types, we use GeoNames’s feature class and fea-
ture code attributes and add an additional level by grouping
similar types. We also augment the standard geographical
containers with a level representing continents as the par-
ents of country containers. We note that many geographic
categorizations are handled by the geographic container di-
mension, but properly recognizing proximity relationships
that cross borders is limited in the current approach. Prox-
imity relationships lack the regular structure of a proper
container hierarchy, which leads to an intractable number
of possible categories (e.g., “cities in Europe within 200 miles
of Berlin” where Berlin could be replaced with any location
on the globe and the distance threshold could also vary).
However an extension to our method that utilizes proximity
relationships should be considered in future work.

We define T to be TT × TG × TP and an element c ∈ T
is called a category, which has three components, one for
each dimension of T . Each entity g ∈ G has a specific

category. For example, “Franklin County” is a county in
Ohio, USA with population > 1,000,000. The category for
this entity, denoted Cat(g), is <County, Ohio, Popula-
tion ≥106> with the English description “counties in Ohio,
USA, with population ≥1, 000, 000”. In addition, this entity
could satisfy many other, less-restrictive categories, such as
c′ =“places in USA with population ≥10, 000”. The boolean
function Sat(g, c) is defined to be true if and only if entity
g satisfies category c in this way.
3.2.3 Features
Next, we define two measures that can be used to estimate
how well a list of toponyms is described by a specific cate-
gory.

Coverage. The coverage of a category c over a set of
column values D is defined as the fraction of values in the
column with interpretations that satisfy the category.

Cov(D, c) = |{d ∈ D | ∃g ∈ Geo(d) : Sat(g, c)}| / |D| (1)

For example, for D = [Washington, New York, Miami]
and c = <City, United States, Population ≥ 106>, we
have Cov(D, c) = 1.0 because all entries in D are names of
large cities in the United States. For c′ = <State, United
States, Population ≥ 106>, Cov(D, c′) ≈ 0.67 because
there is no state of Miami in the United States, so no inter-
pretation of Miami satisfies the category.

Ambiguity. One way to differentiate between categories
for describing a set of place names D is to estimate how
specifically each category describes D. For example, the
category <Place, Earth, Population ≥ 0> is satisfied
by any valid set of place names. However, this is not a very
specific category, and results in a lot of ambiguity when try-
ing to resolve place names within the category. To encapsu-
late this concept quantitatively, we define the ambiguity of a
category c over a set of string values D as the average num-
ber of interpretations for each string value that satisfy the
category. That is, the ambiguity is equal to the total num-
ber of possible combinations of interpretations, normalized
over |D| (i.e., the geometric mean).

Amb(D, c) =

(∏
d∈D

|{g | g ∈ Geo(d), Sat(g, c)}|

)1/|D|

(2)

As an example, the cities of Conway, Lockhart, Oakland,
and Oak Ridge are suburbs of Orlando with populations
greater than 1,000. However, there exist larger cities that
share those names across the United States. In particular,
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there are three cities named Conway, along with two each
named Lockhart, Oakland, and Oak Ridge in the United
States with populations greater than 10,000. Thus there
are 3 · 23 = 24 possible combinations of interpretations for
these place names in this category, resulting in an ambigu-
ity value of 241/4 ≈ 2.21. By contrast, if we look at the
suburb interpretations, there is exactly one city of popula-
tion greater than 1,000 with each of those names in Orange
County, Florida, so that category has an ambiguity value of
1. Intuitively, we expect that the intended categories for a
toponym lists have low ambiguity, all else being equal. How-
ever, rather than enforce the direction of the correlation, we
leave it to our Bayesian model.

Algorithm 1 Given a column of toponyms, return set of
place categories with coverage and ambiguity values.
1: procedure FindCategories(D)

input: List of toponyms D
output: Set of categories C

2: C ← ∅
3: Initialize ColumnCountsc ← empty list for all c ∈ T
4: for d ∈ D do
5: Initialize CellCountsc ← 0 for all c ∈ T
6: I ← {i | i is a geographic interpretation for d}
7: for i ∈ I do
8: (cT , cG, cP )← GetSpecificCategory(i)
9: pT ← GetAncestors(cT ) ∪ {cT }

10: pG ← GetAncestors(cG) ∪ {cG}
11: pP ← GetAncestors(cP ) ∪ {cP }
12: for c ∈ pT × pG × pP do
13: CellCountsc ← CellCountsc + 1
14: end for
15: end for
16: for c ∈ T where CellCountsc > 0 do
17: Append CellCountsc to ColumnCountsc
18: end for
19: end for
20: for c ∈ T where ColumnCountsc is not empty do
21: c.cov← |ColumnCountsc|/|T |
22: c.amb← (

∏
ColumnCountsc)1/|T |

23: C ← C ∪ {c}
24: end for
25: return C
26: end procedure

Our algorithm for computing the coverage and ambigu-
ity of place categories for a given list of toponyms is shown
in Algorithm 1. It takes a list of toponyms D as input,
and returns a list of candidate place categories C, aug-
mented with the coverage and ambiguity measures defined
above. The algorithm begins by initializing the return set
C (line 2) and ColumnCounts lists (line 3), which will accu-
mulate a sequence of values for each category. The purpose
of these values is to count the number of interpretations
of each toponym that satisfy the category. The algorithm
proceeds by iterating through each string value in D and
determining how many interpretations of each string value
satisfy the possible place categories. For each interpretation
of a string value, the function GetSpecificCategory(i)
returns the most specific satisfying category based on the
gazetteer attributes and the components of that category
are stored separately (line 8). Each component represents
a node in one of the hierarchies of the taxonomy T , and
the function GetAncestors(n) returns all ancestors of a
given node within the taxonomy (lines 9 to 11). The collec-
tion of ancestors within each dimension are combined using
the Cartesian product to get the set of all categories that

are satisfied by the interpretation being examined (line 12).
This step makes use of the important property of our tax-
onomy that anything that satisfies a node n in one of the
dimension hierarchies will also satisfy Parent(n). Once the
full list of satisfying categories is computed, the number of
interpretations is counted (line 13) and the counts are accu-
mulated (lines 16 and 17). Finally, the accumulated counts
are used to compute the coverage and ambiguity of each
category with respect to the values in D (lines 20 to 23) and
the resulting set of categories is returned (line 25).

3.2.4 List Categorization

Having computed Cov(D, c) and Amb(D, c) for every possi-
ble place category, we proceed by identifying which of those
categories is most probably the correct one. A Bayesian
classifier determines the estimated likelihood that each cat-
egory c is the intended category for a set of string values
D. Namely, for each c ∈ T , we compute an estimate of
p(CD = c | c,Amb(D,C), Cov(D, c)), where CD represents
the intended category for the toponyms in D. In practice,
many categories are not satisfied by any interpretation of
any of the string values, so the space of possible categories
is a small portion of the full category space. The example to-
ponym list [Rome, Athens, Dublin] has at least one interpre-
tation in 2,141 categories, which appears to be a large num-
ber for a three toponym list, but is dwarfed by |T |, the total
number of possible categories. To estimate each category’s
likelihood, the components of the category c = <cT , cG, cP >
are treated separately so we have lc(D) = p(CD = c |
cT , cG, cP , Amb(D, c), Cov(D, c)). We want to separate the
influence of each term on the final likelihood estimate, how-
ever the effect of each term is very dependent on the cov-
erage value, so we apply a assumption of independence be-
tween all conditions except for Cov(D, c). This allows us
to estimate the joint probability as the product of four fac-
tors, p(CD = c|cT , Cov(D, c)) · p(CD = c|cG, Cov(D, c)) ·
p(CD = c|cP , Cov(D, c)) · p(CD = c|Amb(D, c), Cov(D, c)).
We can employ the chain rule of probabilities to show that
p(A|B,C) = p(C|A,B)p(A|B)/p(C|B), which we apply to
the individual factors of the likelihood estimate to transform
them into a form that we can approximate using relative fre-
quencies found in a training dataset.

Some transformations are performed to increase the gen-
erality of the training instances. First, the depth within TG,
rather than the node itself, is used to match a category can-
didate with categories in the training data, which avoids ge-
ographic bias in our model. Second, the values of Amb(D, c)
are discretized in order to emphasize categories that are
completely unambiguous (i.e., when Amb(D, c) = 1.0). Fi-
nally, the likelihood of a category coverage value, given one
of the category components or the ambiguity value, is mod-
eled as a truncated normal distribution over the [0, 1] inter-
val, whose mean and standard deviation are computed from
training data [7]. For our system, training data comprised
a randomly selected set of 20 toponym lists along with their
proper categories. The actual number of training instances
is actually much larger than this, as the 20 lists each have in-
terpretations in a large number of categories (between 280
and 6,097 categories per toponym list), where all but one
serve as negative training examples.

As shown in Figure 5, the result of this process is a col-
lection of potential categories with corresponding likelihood
values. The final steps of our algorithm are to select the
most likely category c based on the computed likelihood val-
ues and to resolve each toponym d ∈ D by selecting the most
prominent interpretation g ∈ Geo(d) such that Sat(g, c).
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Location Other
Columns

Rome …
Athens …
Dublin …

	
Category Coverage Ambiguity Normalized

Likelihood
country capitals with population ≥ 100,000 in Europe 1.00 1.00 70.13%
county seats with population ≥ 10,000 in Georgia, USA 1.00 1.00 15.07%
administrative regions with population ≥ 100,000 in Europe 1.00 1.26 13.88%
populated places with population ≥ 100 in Pennsylvania, USA 1.00 1.00 0.60%
populated places in Ohio, USA 1.00 2.15 0.05%
places in Missouri, USA 1.00 1.00 0.04%
farms in Limpopo, South Africa 1.00 2.47 0.04%
administrative regions with population ≥ 1,000,000 in Europe 0.67 1.41 0.03%
third-order administrative divisions with population ≥ 100,000 in Europe 0.67 1.00 0.03%
… … … …

Figure 5: A sample table (left) and the resulting ranked list of column categories (right). The set of possible categories,
along with their coverage and ambiguity values, is computed using the FindCategories algorithm. The likelihood values
are computed by our method using a Bayesian classifier.

4 Evaluation
To evaluate the effectiveness of our table geotagging algo-
rithm, we developed a system to process tables from the
Web. In this section, we describe our dataset, analyze its
spatio-textual composition, evaluate the effectiveness of our
method for categorization, and compare its accuracy to that
of alternative methods for table geotagging.

4.1 Dataset
Our experimental table dataset was selected from a large
corpus of tables that were extracted from spreadsheet doc-
uments (in Microsoft Excel format) and HTML tables. The
source documents were found on the Web using targeted
search terms in search engines to find documents that were
likely to contain relational tables (i.e., tables that contain
data). The search terms made use of the “filetype” predicate
to target Microsoft Excel XLS files and were appended with
various terms such as “data” and “statistics”. The search
terms also contained random chaff values such as combi-
nations of numbers and letters in order to uncover docu-
ments that might otherwise have been far from the front
page of search results. The pre-processing phase described in
Section 3.2.1 discards non-relational tables, such as spread-
sheets containing calendars and forms or HTML layout ta-
bles, which allows us to focus on relational data tables.

We sampled 20,000 spreadsheets and 20,000 HTML tables
from the table dataset. To avoid biasing our dataset towards
large documents with many tables (i.e., spreadsheets with
multiple worksheets or HTML documents with many table
elements), at most one table was selected from each docu-
ment. As an initial filter, we identified columns that contain
text values that match place names in GeoNames. To do so,
we discarded any column containing fewer than three to-
ponyms that matched GeoNames entities, within the first
100 values in the column. We then applied our algorithm to
the remaining columns in order to identify those that can be
described by a category from our taxonomy. This resulted in
a collection of 12,861 columns from 8,422 tables. The auto-
mated processing of these columns by our algorithm results
in a large array of categories, which we describe here.

The distribution of the place types (from TT ) of columns
in our dataset is shown in Figure 7 in the Appendix. As ex-
pected, the most common place types found in the columns
of our table corpus are populated places (i.e., cities) and
administrative areas (i.e., countries, states, provinces, coun-
ties, etc.). Other, less common place types we observed in-
clude schools; airports; country, state/province, and region
capitals; continents; hospitals; and rivers and streams.

Many columns were classified with non-leaf types, which
occurs when places in the column have a variety of specific
types. For example, in American Baseball, there are some
teams that represent states (e.g., Texas and Colorado, which

Table 1: Dataset characteristics.

Spreadsheets HTML
Documents 20,000 20,000
Data column count 234,776 108,795
Data row count 11,984,929 992,309
Data cell count 122,291,632 5,053,901
Geographic tables 5,117 3,305
Geographic columns 7,072 5,789

are identified as administrative regions in GeoNames) and
others that represent cities (e.g., New York and Chicago,
which are identified as populated places), so a column con-
taining these values would be categorized using the root
node of the place type hierarchy. The root node repre-
sents generic places and was part of the assigned category
for 1,640 columns according to our classifier. Another ex-
ample of a generic place column is from a spreadsheet in our
corpus that describes the itinerary of a trip to China, con-
taining cell values such as “Great Wall of China”, “Beijing”,
“Yangtze River”, and “Shanghai”.

Many place types are not found or are found only rarely
in our table dataset. In most cases, these place types are
relatively rare in Web tables, but in others the places are
commonly represented in shorthand that is not found in
GeoNames and consequently they are not identified by our
algorithm. For example, some tables in our dataset con-
tain information about National Parks, but use the park
name without the qualifier, for example, “Yosemite” instead
of “Yosemite National Park”, and the GeoNames gazetteer
does not contain this as an alternate name.

A large number of distinct nodes in the geographic con-
tainer hierarchy TG were present in the categories assigned
to columns in our dataset. In total, 361 different geographic
containers were chosen. The full distribution is too large dis-
play in full, but we note that 39.7% of all geographic contain-
ers were “Earth”, 9.8% were at the continent level, 41.6%
were at the country level, 7.4% were at the state/province
level, and 1.5% were at the country/region level. One hun-
dred seventeen countries were part of at least one geographic
container, so the dataset was geographically diverse.

The final component of our taxonomy, the TP promi-
nence hierarchy, contains only 10 nodes, with the distri-
bution shown in Figure 8 in the Appendix.
4.2 Category Accuracy
Next, we sampled from the full dataset to obtain a smaller
dataset that could be hand-annotated by human judges and
evaluated for correctness. To ensure that a wide variety of
geographic columns were evaluated, columns with a variety
of place types were chosen randomly. In total, 200 columns
were chosen for evaluating the category classifications, bal-
anced over different areas of the place type dimension TT .
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Figure 6: Accuracy of our algorithm for categorizing
columns of toponyms. Bars are scaled horizontally to re-
flect the proportion of results within each group and scaled
vertically to reflect the prevalence of each group within the
full dataset.
Fifty columns each were chosen from the following groups:
• ADM: Administrative Features (or a descendant),
• POP: Populated Places (or a descendant),
• GP: Generic Places (i.e., the root of TT ),
• OTH: Other places types (e.g., schools, airports, etc.).

For each column/category, a human judge determined
whether the category that was returned by our algorithm
matched the values in the column. Results are shown in
Figure 6. Overall, 148 of the 200 columns were correctly cat-
egorized, with 2 mis-categorized, and 50 that were wrongly
chosen as geographic columns. Columns that were catego-
rized as Administrative or Populated Places achieved the
best accuracy rates, with 49 and 45 of the columns given
the proper categories, respectively.

Since the four groups make up different portions of the
full table dataset, we can extrapolate the overall accuracy
rate by incorporating the relative prevalence of each group
throughout the larger dataset. We measured the fraction
of the full dataset that was categorized into each of the
four groups, and found that 46.7% of column categories are
administrative (ADM), 35.7% are populated places (POP),
12.8% are generic places (GP), and 4.8% are other place
types (OTH). Weighting the accuracy results by these pro-
portions lets us estimate an overall accuracy rate of 88.9%.

Most errors were due to non-geographic columns being as-
signed a place category, which suggests that we can improve
upon our toponym recognition phase to filter out words that
are ambiguous. The most common non-geographic words
that were interpreted as toponyms were proper names of
people (15 columns). However, the results for columns that
did contain toponyms were promising, with a total of only
two incorrect categories out of 148 columns.

4.3 Toponym Resolution Accuracy
Our final experiment measures our toponym resolution ac-
curacy. From the 200 categorized columns analyzed in Sec-
tion 4.2, we selected the 148 true geographic columns. From
each column, one cell value was picked at random for inspec-
tion. A human judge was presented with the other values
in the column for context and was asked to choose the most
likely interpretation out of all available interpretations for
the string that were present in the gazetteer. If none of the
interpretations were valid, but the string was indeed a to-
ponym, the string was marked as an “unmatched toponym”.

Or if the string was not a toponym, the string was marked
as a “non-toponym”.

The results were compared to the toponym resolution out-
put of three algorithms. The first, Prom, considers only the
prominence of the possible interpretations when resolving
each toponym. The second, 2D, is a combination of three
classifiers that each only uses two of the dimensions in our
taxonomy T . Each classifier is trained separately with a
subset of our feature set. To arrive at a resolution for to-
ponyms, we choose the category with the highest likelihood
value out of the three and pick the most prominent inter-
pretation within that category. Finally, the third method,
3D, is our full method, which considers features from all
three dimensions of the place taxonomy. The results of this
experiment are shown in Table 2.

Table 2: Toponym Resolution Results.

Method Accuracy
Prom 101/148 (0.682)

2D 130/148 (0.878)
3D 144/148 (0.973)

As expected, considering more dimensions improves the
toponym resolution accuracy. The Prom method manages
to resolve over two-thirds of the toponyms correctly, which
is possible due to the large number of country, state, and
metropolis occurrences in our dataset. The 2D variant im-
proves upon this to achieve nearly 90% accuracy, since the
addition of other attributes allows this method to recognize
coherent types and geographically contained columns. Our
full algorithm increases the accuracy rate further, where in
all but 4 of the cases, the interpretation selected matched
the interpretation that was assigned by our algorithm. This
represents a 97.3% accuracy rate (144/148) for the toponym
resolution task on geographic columns. In both columns
that were assigned incorrect categories, the assigned inter-
pretation did not match the ground truth. And in two other
cases, the category was correct, but the toponym was still
ambiguous within the category and a less prominent inter-
pretation was the correct one (whereas out method chooses
the more prominent interpretation in the face of ambiguity
within a category). This result demonstrates the value of
using our full taxonomy of hierarchical place categories for
toponym resolution.

5 Conclusions
We introduced and studied the utility of combined hierarchi-
cal place categories for identifying and resolving toponyms
in structured datasets. Lists and table columns containing
spatio-textual references can be difficult to geotag correctly
because standard contextual clues, such as geographic con-
tainers, are sometimes omitted when the table author ex-
pects the interpretation of the references to be clear from
context. However, making use of the context that is present
in a list or column of similar places has not been thoroughly
studied before. Here, we take the approach that the com-
mon thread of a list of toponyms can have varying specificity
over multiple dimensions, namely the place type of the loca-
tions, their geographic container, and their prominence. To
address this, we showed how to construct a list of possible
categories that can be used to describe the list of toponyms,
along with several measures of each category’s applicabil-
ity. A Bayesian classifier is used to identify the most likely
category based on observations made from a training data
set. Our experimental analysis shows that the algorithm
is effective at categorizing and resolving toponym lists that
come from a large dataset of tables from the Web. As future
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work, we plan to expand the category taxonomy by incorpo-
rating additional prominence information (including promi-
nence measures for unpopulated places) as branches in the
prominence hierarchy. Our work will also explore adding a
proximity dimension to the category taxonomy in a way that
searches for relevant proximity relationships, such as “parks
within 30 miles of Washington, DC”, while maintaining a
tractable number of candidate categories.
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APPENDIX
Figures 7 and 8 depict the distribution of node values in
the type hierarchy TT and the prominence hierarchy TP for
column categories in our evaluation dataset. The geographic
container hierarchy TG contains too many nodes to display
in full; its distribution is discussed in Section 4.1.
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Figure 7: Place type distribution over nodes in TT in the
categorized table dataset. Values on the right indicate the
number of columns that had the corresponding place type
as part of their assigned category.
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Figure 8: Prominence distribution over nodes in TP in the
categorized table dataset.

http://geonames.org/

	Introduction
	Related Work
	Geotagging Lists and Tables
	Problem Definition
	Proposed Method
	Extract Data Rows
	Taxonomy for Geographic Entities
	Features
	List Categorization


	Evaluation
	Dataset
	Category Accuracy
	Toponym Resolution Accuracy

	Conclusions
	REFERENCES
	APPENDIX

