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ABSTRACT
Determining geographic interpretations for place names, or
toponyms, involves resolving multiple types of ambiguity.
Place names commonly occur within lists and data tables,
whose authors frequently omit qualifications (such as city or
state containers) for place names because they expect the
meaning of individual place names to be obvious from con-
text. GeoWhiz is a system that demonstrates a novel tech-
nique for place name disambiguation (also known as toponym
resolution). The system uses Bayesian inference to assign
categories to user-specified lists of place names, then inter-
prets individual toponyms based on the most likely category
assignments. The categories are defined along three orthog-
onal dimensions: place types (e.g., cities, capitals, rivers,
etc.), geographic containers, and prominence (e.g., based on
population). A map interface enables users to explore possi-
ble interpretations and compare the interpretations that are
most likely based on selected categories.
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1. INTRODUCTION
We present GeoWhiz, a prototype system for automati-

cally categorizing and interpreting geographic place names
(or toponyms) found in lists and tables. Many datasets and
documents include informal references to places using to-
ponyms, rather than explicit references using geographic co-
ordinates, which necessitates a transformation from toponym
to geographic coordinates before any spatial processing can
occur. By interpreting each place name as a specific geo-
graphic entity (a process known as toponym resolution), the
document containing the list or table is geotagged with the
locations it references. Toponym resolution and geotagging
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are common topics in current research but the results can be
inaccurate when place names are not well qualified (that is,
when place names are not followed by a geographic container,
such as a state or province name). The aim of GeoWhiz is to
showcase a more principled method for resolving place names
in lists and tables to their intended location.

Our approach uses a Bayesian likelihood model to assign
geographic categories to toponym lists or individual table
columns. This ensures coherence among the interpretations
of toponyms that are expected to have a consistent theme
(called column coherence). For example, assigning a coher-
ent category to a list improves the odds of resolving “Wash-
ington” to mean “the State of Washington” when it appears
in a list containing the values [Washington, Idaho, Oregon]
(which are all names of American states) while resolving
“Washington” to signify “Washington, DC” when it appears
in a list containing the values [Washington, New York, San
Francisco] (American cities).

The Bayesian approach of GeoWhiz involves measuring
certain characteristics of a training sample and using that
data to identify characteristics that are more likely to occur
in true categories for a list or table column. As one example,
the training sample statistics show that interpreting a set of
toponyms in a way that they all have populations greater
than 10,000,000 is about 18% more likely to be the expected
way of interpreting them, rather than interpreting them as
places that all have populations greater than 1,000,000, when
the population is looked at as an isolated feature. The algo-
rithm computes several such likelihood values and combines
them for an aggregate likelihood score that a specific cate-
gory leads to the expected geotagging results.

The rest of this paper is organized as follows. Section 2 sur-
veys prior geotagging work for unstructured and structured
documents. Section 3 presents the geotagging algorithm be-
hind GeoWhiz, while Section 4 describes its user interface.
Section 5 contains some concluding remarks.
2. RELATED WORK

We have done considerable work on indexing spatial and
temporal data [3, 4, 13, 14, 15] and similarity searching in
the serial domain [12, 16, 17], as well as in a distributed do-
main [18]. The spatial data can also be expressed textually.
Traditional geotagging systems, such as Web-a-where [1],
STEWARD [7], and NewsStand [19], accept plain-text doc-
uments or web pages as input for a geotagging algorithm.
Geotagging plain-text documents involves some level of nat-
ural language processing (NLP) to accurately identify indi-
vidual toponyms and reason about the relationships between
them. In particular, the geotagging accuracy of these sys-
tems improves when incorporating the assumption of coher-
ence between place names in several ways. For example,
some systems attempt to infer a geographic focus of individ-
ual document sources, known as a local lexicon that can be
used to resolve otherwise ambiguous toponyms [11]. In other
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Figure 1: Table with a location column containing L =
[Alexandria, Arlington, Springfield, Vienna], geotagged by
Wolfram Alpha. Wolfram Alpha interprets each toponym as
the most populated place with the name, so “Alexandria”
is associated with “Alexandria, Egypt”, “Vienna” with “Vi-
enna, Austria”, “Arlington” with “Arlington, TX, USA”, and
“Springfield” with “Springfield, MO, USA”.

work, incorporating the interpretation of toponyms that ap-
pear close together in text was shown to improve toponym
resolution accuracy. Additionally, some work has shown that
sentence structure, such as place names that appear in a
comma-separated group, can also be utilized to improve ac-
curacy [9]. However, all of these methods apply fairly loose
definitions of consistency because plain-text documents are
unstructured and heterogeneous.

In contrast to toponyms in plain-text documents, the to-
ponyms that appear within a list or table column are much
more likely to exhibit consistent types, geographic contain-
ers, prominence, or a combination of all three. Several sys-
tems support geotagging data from lists or spreadsheets, such
as Google Fusion Tables1 and Wolfram Alpha2, along with
special-purpose systems such as MapAList3 and BatchGeo4.
Each of these performs well on documents with well-specified
locations. But the results are poor for isolated toponyms, as
shown in the Wolfram Alpha results of Figure 1. Figure 2
shows that our method improves on this by categorizing pos-
sible interpretations. Other prior work on geotagging spread-
sheets [8], employs heuristics to determine if a collection of
toponyms can be viewed as (1) all prominent, (2) all nearby,
or (3) all similar place types. This method determines which
places are prominent or proximate using thresholds, which
we aim to eliminate by using a Bayesian method.

3. GEOTAGGING LISTS AND TABLES
The table geotagging problem can be formalized as fol-

lows. Given a grid of data cells, each containing a character
string, determine which cells contain geographic references
(toponym recognition) and provide the most likely geographic
interpretation for each selected cell (toponym resolution) in
the context of the other cells in the grid.

Our method is motivated by the following model of how ta-
ble authors construct lists and tables that contain geographic
information. First, the author recognizes that one or more
geographic locations are associated with each entity in the
table. The entity for each row may itself be a geographic en-
tity, but this situation need not be treated as a special case.
After deciding on the geographic entities that will appear in
the table, the author includes a column with the most de-
scriptive geographic references for each entity. Often, either
to avoid ambiguity or out of habit when constructing data
tables, the author includes multiple columns per geographic
reference, in which case the additional columns usually pro-
1http://tables.googlelabs.com
2http://www.wolframalpha.com
3http://www.mapalist.com
4http://www.batchgeo.com

Figure 2: List L, geotagged by GeoWhiz. GeoWhiz recog-
nizes that the list of toponyms in L are likely to refer to a
cluster of nearby cities in the American state of Virginia.
vide geographic containers for entities in the primary geo-
graphic column. The author fills each geographic column
using coherent categories of toponyms, such as “provinces
in Canada”, or “parks in Texas” or “prominent cities in Eu-
rope”. There are multiple dimensions to these categories: the
feature type, geographic scope, and feature prominence.

Unfortunately, many places share names, a well-known
geotagging challenge known as entity-entity ambiguity [10]
or geo-geo ambiguity [2]. Some place names, such as “Vic-
toria”, “Rome”/“Roma”, and “San Antonio”, are reused for
hundreds of places in dozens of countries. Additionally, even
within a small geographic area, a name can be used to de-
scribe a variety of places, such as “Rappahannock”, which
describes a county, cemetery, mountain, and river in the
American state of Virginia. The process of resolving this
ambiguity is known as toponym resolution [8] and in this
section we describe a method for toponym resolution in the
context of tables. This is in contrast to the related problem
of toponym recognition [6], where we are interested in deter-
mining whether a reference is to be interpreted as a toponym
or not (i.e., is “Jordan” the name of a person or a location).

3.1 Problem Definition
We are given a data table D from a spreadsheet or HTML

document that holds a dataset containing at least one column
of place names. The table contains a two dimensional grid of
data values, where di,j represents the character string in the
i-th column and j-th row of the data values. A gazetteer G is
used to identify and disambiguate place names from the ta-
ble. Each geographic entity gi ∈ G is associated with several
attributes by the gazetteer: name, alternate names, feature
type, geographic container, population, and coordinates.

The goal is to discover the mapping F : D → G ∪ ∅ that
resolves each di,j ∈ D to a geographic entity gi ∈ G or to
nothing (indicating that the string value is not a reference to
a place).

3.2 Proposed Method
To formalize our discussion, we define terms as follows. A

toponym t is a string of characters with one or more pos-
sible geographic interpretations. The set of possible inter-
pretations, Geo(t) = {g ∈ G | g is an interpretation of t}, is
determined by the entities of the gazetteer G. For example,
the interpretations of the string “Washington” include the
city of Washington, D.C., the American state of Washing-
ton, the city of Washington, England, along with dozens of
other, less prominent interpretations. The exact collection of
interpretations depends on how strictly names are matched,
such as whether gazetteer entries for “Mount Washington” or
“Washington County” are included as interpretations for the
string “Washington”. GeoWhiz does not currently support
loose matches such as these.
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Figure 3: Fragments of T , the taxonomy for geographic entities that we derive from a gazetteer. The taxonomy is divided
into three dimensions, TT , TG, and TP , which describe the feature type, geographic container, and prominence for geographic
entities, respectively. Every geographic entity in the gazetteer belongs to a category c ∈ TT × TG × TP .

3.2.1 Taxonomy for Geographic Entities
The properties that are provided by the gazetteer are used

to generate a taxonomy T for describing geographic entities,
which is partially depicted in Figure 3. The taxonomy is
defined by properties along three orthogonal dimensions.

• Feature Type. The feature type describes the class
of objects that an entity belongs to, such as “Capi-
tal City” or “Park” or “Stream” or “County”. Feature
types belong to a type hierarchy TT .

• Geographic Container. The geographic container is
an administrative region in which the entity appears.
Geographic containers belong to a geographic container
hierarchy TG, in which counties or minor regions are
contained by states or provinces, which in turn are con-
tained by their countries.

• Prominence. For our purposes, an entity’s promi-
nence is derived from its population. Our formulation
uses the log10(pop) as the prominence for a place with
population pop. We view the prominence hierarchy TP

as having multiple levels, but no branches.
We define T to be TT × TG × TP and an element c ∈ T

is called a category, which has three components, one for
each dimension of T . Each entity g ∈ G has a specific
category. For example, “Franklin County” is a county in
Ohio, USA with population > 1,000,000. The category for
this entity, denoted Cat(g), is <County, Ohio, Popula-
tion ≥ 106> with the English description “counties in Ohio,
USA, with population ≥ 1, 000, 000”. In addition, this entity
could satisfy many other, less-restrictive categories, such as
c′ =“places in USA with population ≥10, 000”. The boolean
function Sat(g, c) is defined to be true if and only if entity g
satisfies category c in this way.

3.2.2 Features
Coverage. The coverage of a category c over a set of

column values D is defined as the fraction of values in the
column with interpretations that satisfy the category.

Cov(D, c) = |{d ∈ D | Sat(g, c) for some g ∈ Geo(d)}| / |D|

For example, for D = [Washington, New York, Miami]
and c = <City, United States, Population ≥ 106>, we
have Cov(D, c) = 1.0 because all entries in D are names of
large cities in the United States. For c′ = <State, United
States, Population ≥ 106>, Cov(D, c′) ≈ 0.67 because
there is no state of Miami in the United States, so no inter-
pretation of Miami satisfies the category.

Ambiguity. One way to differentiate between categories

for describing a set of place names D is to estimate how
specifically each category describes D. For example, the cat-
egory <Place, Earth, Population ≥ 0> is satisfied by
any valid set of place names. However, this unspecific cate-
gory results in ambiguity when trying to resolve place names
within it. To encapsulate this concept quantitatively, we de-
fine the ambiguity of a category c over a set of string values
D as the average number of interpretations for each string
value that satisfy the category. That is, the ambiguity is
equal to the total number of possible combinations of inter-
pretations, normalized over |D| (i.e., the geometric mean).

Amb(D, c) =

(∏
d∈D

|{g | g ∈ Geo(d), Sat(g, c)}|

)1/|D|

As an example, Conway, Lockhart, Oakland, and Oak
Ridge are suburbs of Orlando with populations greater than
1,000. However, there are also larger cities that share those
names. In particular, there are three cities named Conway,
along with two each named Lockhart, Oakland, and Oak
Ridge in the United States with population greater than
10,000. This implies that there are 3 · 23 = 24 possible com-
binations of interpretations for these place names in this cat-
egory, resulting in an ambiguity value of 241/4 ≈ 2.21. By
contrast, there is only one city of population greater than
1,000 with each of those names in Orange County, Florida,
so that category has an ambiguity value of 1. Intuitively, we
expect that categories with lower ambiguity values are more
likely to be the intended category for place names, all else
being equal. However, rather than enforce the direction of
the correlation, we leave it to our Bayesian model.

3.2.3 List Categorization
A Bayesian classifier determines the likelihood that each

category is the intended category for a set of string values D.
That is, for each c ∈ T , we compute an estimate of p(CD =
c | c, Amb(D, c), Cov(D, c)), where CD represents the in-
tended category for the toponyms in D. In practice, many
categories are not satisfied by any interpretation of any of the
string values, so the space of possible categories is limited.
To estimate each category’s likelihood, the components of
the category c = <cT , cG, cP > are treated separately, so we
have lc(D) = p(CD = c | cT , cG, cP , Amb(D, c), Cov(D, c)).
We apply an assumption of independence between all condi-
tions except the coverage value (since the coverage value is
clearly very important to the likelihood estimate), which al-
lows us to estimate the joint probability as the product of four
factors, p(CD = c|cT , Cov(D, c)) · p(CD = c|cG, Cov(D, c)) ·
p(CD = c|cP , Cov(D, c)) · p(CD = c|Amb(D, c), Cov(D, c)).
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Location Other
Columns

Rome …
Athens …
Dublin …

	
Category Coverage Ambiguity Likelihood
country capitals with population ≥ 100,000 in Europe 1.00 1.00 70.13%
county seats with population ≥ 10,000 in Georgia, USA 1.00 1.00 15.07%
administrative regions with population ≥ 100,000 in Europe 1.00 1.26 13.88%
populated places with population ≥ 100 in Pennsylvania, USA 1.00 1.00 0.60%
populated places in Ohio, USA 1.00 2.15 0.05%
places in Missouri, USA 1.00 1.00 0.04%
farms in Limpopo, South Africa 1.00 2.47 0.04%
administrative regions with population ≥ 1,000,000 in Europe 0.67 1.41 0.03%
third-order administrative divisions with population ≥ 100,000 in Europe 0.67 1.00 0.03%
… … … …

Figure 4: A sample table (left) and the resulting GeoWhiz category classifications (right). The categories with the highest
estimated likelihood of describing the geographic entities from the table are listed.

(a) (b)
Figure 5: Interpretations using (a) the most likely and (b)
the second most likely categories.

We can employ the chain rule of probabilities to show that
p(A|B,C) = p(C|A,B)p(A|B)/p(C|B), which we apply to
the individual factors of the likelihood estimate to transform
them into a form that we can approximate using relative fre-
quencies found in a training dataset. We note that some
transformations are performed to increase the generality of
the training instances. First, the depth within TG, rather
than the node itself, is used to match a category candidate
with categories in the training data, which avoids geographic
bias in our model. Second, the values of Amb(D, c) are dis-
cretized in order to emphasize categories that are completely
unambiguous (i.e., when Amb(D, c) = 1.0). Finally, the like-
lihood of a category coverage value, given one of the category
components or the ambiguity value, is modeled as a trun-
cated normal distribution over the [0, 1] interval, whose mean
and standard deviation are computed from training data [5].
For our system, training data comprised a randomly selected
set of 20 toponym lists along with their proper categories.

4. GEOWHIZ INTERFACE
The GeoWhiz application has a browser-based DHTML

interface for submitting place lists or tables and exploring
the likely categories returned by the classifier and their as-
sociated toponym interpretations. A sample input table is
shown on the left in Figure 4, and the output of the GeoWhiz
category classifier is shown to the right, including the plain-
English description of the category, along with the category’s
coverage and ambiguity over the input string values, and the
normalized likelihood that the category was the intended cat-
egory for the input. In this case the results show that the
most likely category for the toponyms in the input is “coun-
try capitals with population ≥ 100,000 in Europe”. This
describes the interpretations that most people would prob-
ably give if they encountered this table without other con-
text. However, alternative interpretations are possible, such
as the second most likely category returned, “county seats
with population ≥ 10,000 in Georgia, USA”.

Users of GeoWhiz can explore the interpretations that de-
termine each category by selecting those categories. Two
examples are shown in Figure 5, which displays the final in-
terpretations when specific categories are chosen.

5. CONCLUSIONS
The GeoWhiz system (http://geowhiz.umiacs.umd.edu/)

demonstrates a new method for toponym resolution in struc-
tured documents, such as lists and tables. Users submit lists
of place names and GeoWhiz geotags them automatically,
while providing options for alternative results if the collection
of place names is ambiguous. A system utilizing this method
can transform data into a more easily browsable form by plac-
ing the data on a map, without requiring users to manually
disambiguate individual toponyms.
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