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Abstract. A hierarchical approach to the single-pair shortest path prob-
lem subdivides a network with n vertices into r regions with the same
number m of vertices (n = rm) and iteratively creates higher levels of
a hierarchical network by merging a constant number c of adjacent re-
gions. In a hierarchical approach, shortest paths are computed at higher
levels and expanded towards lower levels through intra-regional queries.
We introduce a hybrid shortest path algorithm to perform intra-regional
queries. This strategy uses a subsequence of pre-processed vertices that
belong to the shortest path while actually computing the whole shortest
path. At the lowest level, the hybrid algorithm requires O(m) time and
space assuming a uniform distribution of vertices. For higher levels, the
path view approach takes O(1) time and requires O(ckm) space.

1 Introduction

Information systems that assist drivers in planning a travel are required to im-
prove safety and efficiency of automobile travel. These systems use real-time
traffic information gathered by traffic control and surveillance centers like traf-
fic congestion and roadwork. They aid travelers in finding the optimal path to
their destinations considering distance, time and other criteria. This helps to
eliminate unnecessary travel time reducing accidents and pollution.

A Moving Object Database (MOD) is a special form of a spatial database
that represents information about moving objects, their location in space, and
their proximity to other entities or objects. In spatial database applications,
the embedding space consists in a geographical network with a distance metric
based on shortest paths. Hence, shortest path finding is a basic operation in
MODs. This operation is used as a subroutine by many other proximity queries,
including nearest neighbors [10]. In particular, finding nearest neighbors in a
spatial network presumes that the shortest path to the neighbors have been
computed already. The efficiency issues related to this operation are critical to
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MODs due to the dynamic and real-time characteristics of such databases. A
large number of queries in a huge network may prevent the system from meeting
the real-time requirement when a non-efficient approach is used.

A path view or transitive closure contains the information required to re-
trieve a shortest path corresponding to each pair of vertices in the network. This
strategy pre-computes all shortest paths in the network. Once the path view is
created, any path query is performed with a lookup in the path view and report-
ing the sequence of vertices that represent the path. A path query takes O(n)
time using a path view, since the number of vertices in the path may be linear
in the worst case. The path view strategy requires O(n2) time for pre-processing
[5, 8] and O(n2) space. The quadratic space is achieved when a predecessor ma-
trix represents the path view. Methods that pre-compute and store the shortest
paths between every pair of vertices in a graph assume that the real-time com-
putation of the shortest paths for large networks may not be feasible. However,
the focus of their work is the compact encoding of the O(n2) shortest paths and
efficient retrieval. However, a major drawback of path view approaches is that
large networks may need an unacceptable amount of time and space in order to
satisfy the real-time constraint.

A hierarchical approach for shortest path finding is one possible way to sat-
isfy both time and space efficiency requirements for moving object databases
based on large geographical networks. A hierarchical approach subdivides a sin-
gle network into r smaller regions. Each such region has the same number m of
vertices and belongs to the lowest level of the hierarchy. The same size for regions
is a property enforced at the other levels by creating a higher level merging c
adjacent regions. This process creates a hierarchy of multilevel networks for a
path finding search. The parameters 〈r,m, c〉 completely define the structure of
a simple hierarchy of networks.

Given a hierarchy of networks, a hierarchical shortest path algorithm starts
at the lowest level network from the source vertex. When the current region
is completely traversed, the search is promoted to the next higher level. The
promotion step is executed once at each level until it reaches the highest level.
At this point, the search is demoted to the next lower level towards the des-
tination vertex. The demotion step is performed until encountering the lowest
level network. The resulting hierarchical shortest path consists of subpaths at
each level of the network. If we seek only the shortest path cost, the hierarchical
path cost is enough. However, when the actual path is required, the hierarchical
approach executes shortest path queries inside individual regions, denoted here
as intra-regional queries, for each level in order to expand these subpaths to the
next lower level. These intra-regional queries are performed until the whole path
is represented by subpaths at the lowest level network.

In a hierarchical approach, the shortest subpaths found at higher levels are
expanded towards lower levels through intra-regional queries. Formally, an intra-
regional shortest path query concerns the computation of a shortest path inside
one region between two vertices on the border of the region. Therefore, these
intra-regional queries are an essential component of a hierarchical approach for
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the computation of shortest paths in geographical networks. The subdivision
of large geographical networks is not restricted to hierarchical approaches and,
consequently, intra-regional queries are used in other frameworks. As an example,
the TIGER files of the U.S. Census Bureau are subdivided into counties.

In this paper, we propose a new strategy to execute intra-regional shortest
path queries at the lowest level of a hierarchical network. This strategy is based
on a hybrid shortest path algorithm that uses both a partial path view and
a multiple-source shortest path algorithm. A partial path is a pre-computed
subsequence of vertices that belong to the shortest path. The partial path is used
to find a single shortest path between two vertices on the border of a region. The
novel contribution of our paper is this new strategy for intra-regional shortest
path queries.

Using our hybrid shortest path algorithm, the time and space requirements
for intra-regional queries at the lowest level of the hierarchical network is O(m)
assuming a uniform distribution of vertices. This is an improvement compared
to the O(m1.5) space required by a path view algorithm. The time efficiency is
achieved by extending a shortest path algorithm to consider pre-computed guide
vertices and to visit a much smaller number of vertices in the process.

The rest of this paper is organized as follows. In Section 2, we review work
related to intra-regional queries. Hierarchical approaches are described in Sec-
tion 3. We present our hybrid shortest path algorithm in Section 4. Section 5
presents our experimental results. Section 6 discusses the main contributions of
this paper.

2 Related Work

This work is a natural progression from our prior work on building systems to
support both feature-based queries (“Where is X happening?”) and location-
based queries (“What is happening at location Y ?”) [1] as in systems such as
QUILT [20] and the SAND Browser [12]. It is also applicable to surface data
(e.g., [22]). Queries on road networks have received particular interest [18] with
shortest path finding receiving renewed attention due to applications in spatial
network databases such as MapQuest, Google Maps, Yahoo! Maps, Bing Maps,
and others. Among these applications, nearest neighbors algorithms [2, 3] require
the efficient computation of shortest path distances in spatial networks. How-
ever, besides these client applications, shortest path finding has been recently
addressed with regards to the efficient encoding of path views. Samet et al. [13–
15] pre-compute the shortest paths between all possible vertices in the network.
The path view is encoded by subdividing the shortest paths from a single vertex
based on the first edges of each shortest path. They further reduce the space
requirements to store the path view by exploring spatial coherence with a short-
est path quadtree. Similarly, Sankaranarayanan et al. [16, 17, 19] propose a new
encoding of the path view that aggregates source and destination vertices into
groups that share common vertices or edges on the shortest paths between them.



46 G. Guerra-Filho and H. Samet

Frederickson [5] proposed a hierarchical algorithm for the single-source short-
est path problem on planar graphs. The shortest paths between every pair of
border vertices are found for two levels. Therefore, the algorithm uses a path
view in the search for a shortest path through the hierarchy of networks.

Jing et al. [9] suggested a path view approach that stores the direct successor
vertex and the cost of a shortest path for each source-destination pair in a region.
Therefore, the path view requires O(m2) space for a region at the lowest level,
where m is the number of vertices in a single region. They use a path finding
algorithm that recursively queries the shortest path cost through all levels in
the hierarchy of networks. They first determine the sets Bs and Bd of border
vertices in regions containing the source vertex s and the destination vertex d,
respectively. The algorithm uses pre-computed shortest paths between s and Bs;
Bs and Bd; and Bd and d to find the global minimum cost for the path from s
to d by searching among all pairs (bs, bd) of border vertices, where bs ∈ Bs and
bd ∈ Bd. The algorithm does not compute the whole path described by edges at
the lowest level.

Shekhar et al. [21] focus on path view implementations for a two-level hier-
archy. They proposed a hybrid path view that encodes the direct successor and
cost for any shortest path only from interior vertices to the border vertices in
each lowest level region. The higher level is fully materialized. Grid graphs were
used in a complexity analysis of the space required for the path views. The space
storage required for the path views is O(n5/3). In this paper, we present a hybrid
path view that requires O(n) space based on partial paths.

Goldberg and Harrelson [6] propose a flat shortest path algorithm that prunes
the number of visited vertices as does our hybrid shortest path algorithm for the
lowest level of the hierarchy. They use A∗ search with cost bounds computed
according to the triangle inequality and distances between sampled (possibly
random) vertices called landmarks.

3 A Hierarchical Approach

A hierarchical approach is based on the subdivision of the original network into
regions. A region corresponds to a connected subgraph of the graph representing
the network. A higher level network consists only of border vertices. A border
vertex is a vertex that belongs to at least two different regions in the network.
Since a shortest path passing through more than one region must include border
vertices, the edges of a higher network represent possible connections between
border vertices in this network.

The 0-level network is the original network represented by an embedding of
an undirected planar graph G(V,E) on the plane, where V (E) is the set of
vertices (edges) in G. The number of vertices in V is n. This graph is subdivided
into r smaller connected regions corresponding to subgraphs 〈G0

0, G
1
0, . . . , G

r−1
0 〉

such that these subgraphs cover the original network (V = V 0
0 ∪V 1

0 ∪ · · ·∪V r−1
0 ,

E = E0
0 ∪E1

0 ∪ · · · ∪ Er−1
0 ) and each edge belongs to only one subgraph.
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Each 0-level subgraph has m vertices and forms a suitable subdivision of the
graph G where boundaries of each corresponding region has a size of O(

√
m)

vertices. Such suitable subdivision is obtained in O(n log n) time using a frag-
mentation algorithm [5]. Goodrich [7] proposed an algorithm to find a separator
decomposition and a suitable subdivision in O(n) time.

For k > 0, the k-level network is generated from the (k − 1)-level network.
A vertex v is in the k-level network if it belongs to two different (k − 1)-level
regions. Note that the k-level network has only border vertices. There is an edge
connecting two k-level vertices in the k-level network if there is a path connecting
them in the same (k − 1)-level region. The k-level network is subdivided into
connected k-level regions containing c adjacent (k − 1)-level regions such that
each (k − 1)-level region belongs to only one k-level region.

In a hierarchy of networks, the graph G associated with the original network
is represented by a set G0 of r subgraphs 〈G0

0, G
1
0, . . . , G

r−1
0 〉. These subgraphs

correspond to regions that will be merged into higher level regions containing c
regions3. This way, all regions at a particular level have about the same number
of vertices. Each subgraph is denoted by Gi

k

(

V i
k , E

i
k

)

, where k is the level in the
hierarchy and i represents a region. The set of subgraphs representing regions
for a k-level is denoted by Gk. The set of border vertices in a subgraph Gi

k is
represented by Bi

k and Bk denotes the border vertex set for the k-level.
PV i

k is the path view for the border vertices in Gi
k. The path view for the

border vertices contains the information required to retrieve a shortest path only
between any pair of border vertices in a k-level region i. The function PV i

k (u, v)
returns the predecessor of vertex v in the shortest path from vertex u. Li

k is
the set of edges linking all pairs of border vertices that are connected by a path
in the subgraph Gi

k and Lk denotes these sets for the k-level. Each edge (u, v)i
in Li

k represents a shortest path from u to v in Gi
k. If there is another edge

(u, v)j in Lk, then we just retain the edge with the minimum cost. The relation
T in a particular k-level network represents the topological relation between k-
level regions such that (i, j) ∈ T if and only if the intersection set of vertices
Bi,j

k = Bi
k ∩ Bj

k is not empty, where i and j are indices for different k-level
regions.

Lemma 1. Since the number of vertices embedded in a k-level region corre-
sponding to subgraph Gi

k is O(ckm), the number of border vertices |Bk| is

O
(√

ckm
)

, where m is the number of vertices in a 0-level subgraph [5, 7, 11].

Lemma 2. If k > 0, the number of vertices |Vk| in a k-level subgraph Gi
k is

O
(√

ck+1m
)

and the number of edges |Ek| is O
(

ckm
)

.

A hierarchical shortest path algorithm creates shortest path tree layers PT+
k

(for promotion) and PT−

k (for demotion) at each k-level of the hierarchy 〈G0, G1,

. . . , Gh〉 of networks, where Gk represents a level 〈G0
k, G

1
k, . . . , G

rk−1

k 〉 in the

3 We assume without loss of generality that r is a power of c, i.e., r = ch, where h is
the highest level in the hierarchy of networks.
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hierarchy. We define a shortest path tree as a tree whose unique simple path
from root to any vertex represents a shortest path. A layer of a shortest path
tree is a subset of a shortest path tree contained in a particular level of the
hierarchy of networks (see Fig. 1). The shortest path tree layers are computed in
order to find the hierarchical shortest path from a source vertex s to a destination
vertex d throughout all levels of the hierarchy. The algorithm uses a set S that
represents source vertices for a layer at a k-level, where each vertex in S is
associated with a cost.
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340

Fig. 1. Shortest path tree layers in a network subdivided into six regions. The source
and destination vertices are depicted with a cross inside a circle. Border vertices are
shown as filled black circles. Only the regions containing the source and destination
vertices are depicted with all vertices. The other regions are shown only through border
vertices.

3.1 Expanding Subpaths in Higher Levels

A hierarchical shortest path from s to d consists of a sequence of subpaths
〈P+

0 (s, v1), P
+
1 (v1, v2), P

+
2 (v2, v3), . . . , P

+
h−1

(vh−1, vh), P
−

h (vh, vh+1),

P−

h−1
(vh+1, vh+2), . . . , P

−
2 (v2h−2, v2h−1), P

−
1 (v2h−1, v2h), P

−
0 (v2h, d)〉, where a

subpath from vertex vi to vertex vj in the k-level network is denoted by either
P+
k (vi, vj) or P

−

k (vi, vj). In order to have a complete shortest path, a hierarchical
algorithm executes intra-regional queries for each k-level expanding subpaths at
the k-level to subpaths at the next lower level until the whole path consists only
of edges in the lowest level network.

The Expand-Path algorithm given below finds a whole shortest path from s to
d represented by a sequence of edges in the lowest level network. The algorithm
traverses the shortest path tree layers PT±

k in order to retrieve the subpaths
that compose a shortest path from s to d at all levels of the hierarchy. Then, the
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algorithm performs intra-regional queries to expand each edge of these subpaths
into a path P at a lower level.

Algorithm Expand-Path(〈PT+
0 , . . . , PT+

h−1, PT−

h , PT−

h−1, . . . , PT−

0 〉, s, d)

1. P−

0 (v2h, d)← Traverse-Backwards
(

PT−

0 , d
)

2. for k ← 1 to h do
(a) P−

k (v2h−k, v2h−k+1) ← Traverse-Backwards
(

PT−

k , v2h−k+1

)

3. for k ← h− 1 to 1 do
(a) P+

k (vk, vk+1)← Traverse-Backwards
(

PT+

k , vk+1

)

4. P+
0 (s, v1)← Traverse-Backwards

(

PT+
0 , v1

)

5. for k ← h to 1 do
(a) P ← ∅
(b) for u← vk ∧ (u, v)i ∈ P−

k (vk, v2h−k+1) to v2h−k+1 do
i. P ← P⊕ Intra-Regional(u, v, k, i)

(c) P−

k−1
(vk−1, v2h−k+2)← P+

k−1
(vk−1, vk)⊕ P ⊕ P−

k−1
(v2h−k+1, v2h−k+2)

Initially, the algorithm traverses each shortest path tree layer backwards us-
ing the procedure Traverse-Backwards (steps 1, 2, 3, and 4). This procedure
creates the subpaths P+

k (vj , vj+1) and P−

k (vj , vj+1) at each k-level by retriev-
ing a sequence of edges (u, v)i for each subpath. The algorithm expands each
subpath starting at the highest level until it finds a whole path represented by
edges only at the lowest level (step 5). For each k-level, the algorithm takes the
corresponding subpath P−

k (vk, v2h−k+1) and the procedure Intra-Regional ex-
pands each edge (u, v)i in this subpath into a subpath in the (k − 1)-level (step
5.b). This procedure finds the subpath from u to v in the subgraph Gi

k−1 corre-
sponding to a region i at the (k−1)-level. These subpaths at the (k−1)-level are
concatenated (operator ⊕) into a path P (step 5.b.i). Then, all subpaths at the
(k − 1)-level are concatenated into only one subpath P−

k−1
(vk−1, v2h−k+2) (step

5.c).
An important issue in the complexity analysis of the Expand-Path algorithm

is the number of edges that an expanded shortest path will have at a particular
level of the hierarchy.

Lemma 3. The number of edges in a shortest path expanded to the (h− i)-level
is O(2i).

For intra-regional queries, we may use any flat strategy. However, we propose
an efficient method for this task in the next section. A path view strategy pre-
computes all shortest paths in the network for each region. When c = 2, this
strategy requires O(m) time to retrieve a shortest path at the lowest level and
O(1) time otherwise. The path view strategy requires O(m1.5) space at the
lowest level and O(|Bk|2) = O(ckm) otherwise. The path view at the highest
level and the expanded shortest path at the lowest level require O(n) space.
They dominate the space requirement for Expand-Path.

Theorem 1. If the intra-regional query is implemented as a path view approach,
the algorithm Expand-Path requires O(n) time.
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The path view in the highest level and the expanded shortest path in the
lowest level require O(n) space. They dominate the space requirement for the
algorithm Expand-Path.

Theorem 2. If the intra-regional query is implemented as a path view approach,
the algorithm Expand-Path requires O(n+m1.5) space.

Another flat strategy for intra-regional queries is a single-source shortest path
algorithm [4]. This strategy needs O(|Vk| log |Vk|+ |Ek|) time to find a shortest
path in a k-level subgraph and requires O(|Vk|+ |Ek|) space.

Theorem 3. If the intra-regional query is implemented as a single-source short-
est path algorithm, the algorithm Expand-Path requires O(n logm) time.

The single-source shortest path algorithm requires space for two subgraphs
at each level of the hierarchy (except the highest) and for the expanded path P .
The total space required is O(n). Therefore, there is no improvement concerning
space requirement when a single-source shortest path algorithm performs intra-
regional queries in a hierarchical approach.

Theorem 4. If the intra-regional query is implemented as a single-source short-
est path algorithm, the algorithm Expand-Path requires O(n) space.

4 The Hybrid Shortest Path Algorithm

Given an edge e = (u, v)i at the k-level network (k > 0), an intra-regional query
consists of expanding the edge e into a subpath from u to v in the subgraph
Gi

k−1 at the (k− 1)-level, where u and v are border vertices in Gi
k−1. The query

may be performed using any flat strategy, ranging from a single-source shortest
path algorithm to a lookup in a path view for border vertices.

The strategy proposed in this paper uses a hybrid path view for border
vertices. The hybrid path view represents each shortest path between border
vertices of a region by just a sequence of guide vertices. A usual path view is
implemented as a predecessor matrix, where each row of the predecessor matrix
represents a shortest path tree corresponding to a particular source vertex as the
root. Each entry of the matrix row specifies the predecessor vertex for a vertex
in the shortest path tree. A guide vertex is a vertex acting as predecessor vertex
for more than one vertex in the predecessor matrix implementing the path view
for border vertices. The path view for border vertices consists of shortest path
trees composed only of shortest paths from a border vertex to the other border
vertices (see Fig. 2).

Lemma 4. The number of guide vertices in a shortest path tree of a path view
for a subgraph at the k-level is O(

√
ckm).

The hybrid path view PV i
k for each region i at each k-level of the network

hierarchy is retrieved from the corresponding path view PV i
k for border ver-

tices. In order to create PV i
k , each guide vertex is identified in a traversal of
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(a) Destinations are all vertices. (b) Destinations are only border ver-
tices.

Fig. 2. Shortest path tree from a source vertex (gray square) and guide vertices (black
squares) in a lowest level region.

PV i
k . A hybrid path view is implemented as a predecessor sparse matrix whose

columns only consider guide vertices V i
k and border vertices Bi

k. Furthermore,
the predecessor relation in this sparse matrix is only expressed in terms of guide
vertices.

The algorithm Hybrid-View below creates a hybrid path view PV i
k from the

path view PV i
k . Each path view PV i

k is associated with a set of vertices V i
k and

a set of border vertices Bi
k. The algorithm builds a matrix Γ to keep track of

the shortest path tree considering only paths to border vertices. The algorithm
uses a vector Λ to store the number of times any vertex v ∈ V i

k is a predecessor
in a particular shortest path tree of PV i

k .

Algorithm Hybrid-View
(

PV i
k

)

1. for u ∈ Bi
k do

(a) V i
k ← Bi

k

(b) Λ← 0
(c) Γ ← false

(d) for v ∈ Bi
k do

i. Γ (u, v)← true

ii. v′ ← PV i
k (u, v)

iii. while v′ #= u do

A. Γ (u, v′)← true

B. v′ ← PV i
k (u, v

′)
(e) for v ∈ V i

k do

i. if Γ (u, v) then
A. Λ(PV i

k (u, v))← Λ(PV i
k (u, v)) + 1

(f) for v ∈ V i
k do

i. if Λ(v) > 1 then

A. V i
k ← V i

k ∪ v

(g) for v ∈ V i
k do

i. v′ ← PV i
k (u, v)
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ii. while v′ /∈ V i
k do

A. v′ ← PV i
k (u, v

′)

iii. PV i
k (u, v)← v′

Hybrid-View algorithm traverses the path view PV i
k computing the hybrid

path for each vertex u ∈ Bi
k corresponding to a shortest path tree in PV i

k .
Initially, the algorithm finds the shortest path tree considering only paths to
border vertices (step 1.d). The matrix Γ identifies the edges belonging to this
shortest path tree (see Fig. 2.b). According to Γ , the algorithm computes the
vector Λ that stores the number of sons for each vertex in the shortest path tree
considering only paths to border vertices (step 1.e). Each vertex v ∈ V i

k that
is a predecessor for more than one vertex in a shortest path tree is considered
a guide vertex and inserted in V i

k (step 1.f). Next, the algorithm computes the

corresponding shortest path tree only in terms of guide vertices in V i
k (step 1.g).

The predecessor of a vertex in V i
k is the first vertex in a backward traversal of

the corresponding shortest path tree in PV i
k that belongs to V i

k .
The hybrid path view computation implies pre-processing time. The time

required for the Hybrid-View algorithm is dominated by the path view scanning
that counts predecessors and finds guide vertices.

Theorem 5. Algorithm Hybrid-View needs O(m2) time at the lowest level and
O((ckm)1.5) time otherwise.

The hybrid path view computation at all levels of the hierarchy requires
additional pre-processing time O(rm2 +

∑h
k=1

r
ck (c

km)1.5). This expression is
equivalent to O(nm + n

√
n) = O(n(m+

√
n)). If we assume r = m =

√
n, then

the additional pre-processing time becomes O(n1.5).
At higher levels, a hybrid path view has the same space requirements as

a path view when c = 2. However, at the lowest level, a hybrid path view
requires O(m) space. This is an improvement compared to the O(m1.5) space
required by a path view at this level. This way, the Hybrid-View algorithm space
requirements are dominated by the path view predecessor matrix.

Theorem 6. Algorithm Hybrid-View requires O(m1.5) space at the lowest level
and O(ckm) space otherwise.

An intra-regional query for an edge (u, v)i in a 1-level network is performed
by the hybrid shortest path algorithm. This algorithm uses the subgraph Gi

0

and the hybrid path view PV i
0 information in order to find a single shortest

path P from u to v in the 0-level region i. PV i
0 describes the shortest path

in terms of guide vertices as a partial shortest path P i
0(u, v). Therefore, the

algorithm expands P i
0(u, v) finding a sequence of subpaths between consecutive

guide vertices in P i
0(u, v).

The algorithm Hybrid-Shortest-Path below creates a shortest path tree
PT whose root represents the source vertex u. A priority queue Q is used to
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keep track of all information related to the current vertices in V i
k−1 − PT . Each

entry (u, f(u), e) in Q represents a vertex u with an estimate cost f(u) and a
predecessor edge e. The set Q′ keeps track of the vertices in Q whose cost is not
infinity and, consequently, will be reset for the next subpath search.

Algorithm Hybrid-Shortest-Path(u, v, k, i)

1. P i
0(u, v)← Path-Lookup

(

PV i
0 , u, v

)

2. PT ← Q← ∅
3. Q← Q ∪ (u, 0, 0)
4. for v′ ∈ V i

0 ∧ v′ &= u do

(a) Q← Q ∪ (v′,∞,∞)

5. for (s, d)← (u, v′) ∧ (s, d) ∈ P i
0(u, v) to (v′′, v) do

(a) (u′, f(u′), e′)←Extract-Min(Q)
(b) Q′ ← Q′ − u′

(c) PT ← PT ∪ (u′, f(u′), e′)
(d) while u′ &= d do

i. for (u′, u′′)j ∈ Ei
0

A. if f(u′) + |(u′, u′′)j | < f(u′′) then

– f(u′′)← f(u′) + |(u′, u′′)j |
– e′′ ← (u′, u′′)j
– Q′ ← Q′ ∪ u′′

ii. (u′, f(u′), e′)←Extract-Min(Q)
iii. Q′ ← Q′ − u′

iv. PT ← PT ∪ (u′, f(u′), e′)
(e) for u′ ∈ Q′ do

i. f(u′)← e′ ←∞
(f) for (d, u′′)j ∈ Ei

0

i. f(u′′)← |(d, u′′)j |
ii. e′′ ← (d, u′′)j

6. P ←Traverse-Backwards(PT, v)

First, the algorithm finds the partial shortest path P i
0(u, v) using the proce-

dure Path-Lookup which traverses the hybrid path view PV i
0 (step 1). Initially,

PT is empty and Q has all vertices with cost and predecessor edge equal to ∞,
but the source vertex u whose cost is 0 (steps 2, 3, and 4). Next, the algorithm
finds a shortest subpath in Gi

0 corresponding to each edge (s, d) in the partial
shortest path (step 5). The shortest subpath for each edge is computed in a sim-
ilar way to Dijkstra‘s shortest path algorithm. However, the current state of the
priority queue Q means that there is no need to consider the vertices already in
PT for the current subpath. Therefore, each subsequent search has an initial Q
just with all remaining vertices (step 5.e). All costs and predecessor edges are set
to ∞, but vertices connected to d have its costs and predecessor edges updated
to represent that the next source vertex is d with cost equal to 0 (step 5.f). The
subpath from u to v is computed by traversing PT from v using the procedure
Traverse-Backwards (step 6).
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In the worst case, the hybrid shortest path algorithm has the same time
complexity as Dijkstra‘s single-source shortest path algorithm [4]. However, the
worst case only happens when all vertices of the subgraph are visited by the
algorithm. The number of vertices visited by the hybrid shortest path algorithm
is much smaller than the number of vertices of the subgraph when vertices are
uniformly distributed in the region corresponding to the subgraph and the guide
vertices are uniformly distributed along a shortest path (see Fig. 3).

(a) Shortest path tree
for border vertices.

(b) Dijkstra’s algo-
rithm.

(c) Our hybrid algo-
rithm.

Fig. 3. Vertices visited by shortest path algorithms.

Theorem 7. Assume a uniform distribution of vertices at the lowest level and
the guide vertices are also uniformly distributed along a shortest path. The num-
ber of vertices visited by the hybrid shortest path algorithm is O(

√
m).

Assuming that vertices are uniformly distributed, the running time for the
hybrid shortest path algorithm becomes O(m) at the lowest level.

Theorem 8. Assume a uniform distribution of vertices at the lowest level and
the guide vertices are also uniformly distributed along a shortest path. The hybrid
shortest path algorithm spends O(m) time at the lowest level.

Since the subgraph Gi
0 and the hybrid path view PV i

0 are the inputs for the
hybrid shortest path algorithm, the space requirements for the algorithm are the
same as for a single-source shortest path algorithm.

Theorem 9. The hybrid shortest path algorithm requires O(m) space in the
k-level when k = 1 and O(ck−1m) space otherwise.

We have now seen that the best time and space requirements for intra-
regional queries at the lowest level are achieved by the hybrid shortest path
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algorithm. On the other hand, for higher levels, the best strategy concerning
time and space requirements is the path view approach when c = 2. Therefore,
the expansion of the hierarchical path into a path with edges at the lowest level
requires O(n) time and space.

5 Experimental Results

We evaluate the time and space performance of our hybrid approach using road
networks from the TIGER files of the U.S. Census Bureau. We compare our
method with two state-of-the-art techniques for shortest path finding on spatial
networks: the shortest path quadtrees [13] and a flat approach based on Dijk-
stra’s algorithm [4]. All algorithms were implemented using C++ in a Dell XPS
730X machine with a i7 CPU at 3.20GHz and 6Gb of RAM. All data structures
necessary for the execution of all algorithms were loaded in the main memory.

The implementation of our approach consists of four pre-processing modules:
network, border, view, and hierarchy. They pre-process the TIGER/Line files in
order to find the information required by the shortest path algorithms. A road
network for each county in a state is obtained in the network module. After
that, the border module finds for each county the set of border vertices that are
shared with another county. Then, the view module computes the path view for
each county. Finally, the hierarchy module finds a higher-level network for the
state to be used in a hierarchical shortest path algorithm.

In our experimental setup, we initially selected a spatial network that re-
quires only the amount of available space for all evaluated techniques. To obtain
networks of smaller sizes, we determined the centroid of the original network
and incrementally removed vertices according to their distance to the centroid.
This way, we were able to generate networks of continuous sizes to evaluate the
space requirements of all considered methods for a continuous range of network
sizes. Similarly, for each network size, we compute shortest paths from the cen-
troid vertex to the most distant vertex in the spatial network. This way, we
investigated the time needed to found shortest paths of varying lengths. The
memory space and the running time obtained in our experiments is shown in
Fig. 4. The space requirements for our hybrid approach a virtually the same as
the requirements of the Dijkstra’s algorithm. The shortest path quadtree spends
more space as expected from its space complexity O(n1.5). In terms of running
time, the hybrid approach performs best followed closely by the shortest path
quadtree method.

6 Conclusion

We introduced a hybrid shortest path algorithm to perform intra-regional queries.
This strategy uses a subsequence of pre-processed vertices that belong to the
shortest path while actually computing the whole shortest path. At the lowest
level, the hybrid algorithm requires O(m) time and space assuming a uniform
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Fig. 4. The memory space and running time of our hybrid approach compared to other
path finding methods.

distribution of vertices. For higher levels, the path view approach takes O(1)
time and requires O(ckm) space.
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