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Abstract. The increasing popularity of web-based mapping services such as Microsoft Virtual
Earth and Google Maps/Earth has led to a dramatic increase in awareness of the importance of
location as a component of data for the purposes of further processing as a means of enhancing
the value of the nonspatial data and of visualization. Both of these purposes inevitably involve
searching. The efficiency of searching is dependent on the extent to which the underlying data
is sorted. The sorting is encapsulated by the data structure known as an index that is used to
represent the spatial data thereby making it more accessible. The traditional role of the indexes
is to sort the data, which means that they order the data. However, since generally no ordering
exists in dimensions greater than 1 without a transformation of the data to one dimension, the
role of the sort process is one of differentiating between the data and what is usually done is
to sort the spatial objects with respect to the space that they occupy. The resulting ordering
should be implicit rather than explicit so that the data need not be resorted (i.e., the index
need not be rebuilt) when the queries change. The indexes are said to order the space and the
characteristics of such indexes are explored further.
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1. Introduction

The increasing popularity of web-based mapping services such as Microsoft
Virtual Earth and Google Maps/Earth has led to a dramatic increase in aware-
ness of the importance of location as a component of data for the purposes of
further processing as a means of enhancing the value of the nonspatial data
and of visualization. Both of these purposes inevitably involve searching. The
efficiency of searching is dependent on the extent to which the underlying
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data is sorted. The conventional definition of the term sort is that it is a verb
meaning:

1. To put in a certain place or rank according to kind, class, or nature
2. To arrange according to characteristics.

The sorting is encapsulated by the data structure that is used to represent
the spatial data thereby making it more accessible. In fact, the term access
structure or index is often used as an alternative to the term data structure in
order to emphasize the importance of the connection to sorting.

The notion of sorting is not new to visualization applications. One of the
earliest examples is the work of Warnock who, in a pair of reports that serve
as landmarks in the computer graphics literature (Warnock, 1968; Warnock,
1969), described the implementation of hidden-line and hidden-surface elim-
ination algorithms using a recursive decomposition of the picture area. The
picture area is repeatedly subdivided into rectangles that are successively
smaller while it is searched for areas that are sufficiently simple to be dis-
played. It should be clear that the determination of what part of the picture
area is hidden or not is equivalent to sorting the picture area with respect to
the position of the viewer. This distinction is also present in back-to-front and
front-to-back display algorithms. These algorithms form the rationale for the
BSP tree representation (Fuchs et al., 1983; Fuchs et al., 1980) which facili-
tates visibility calculations of scenes with respect to a viewer as an alternative
to the z-buffer algorithm which makes use of a frame buffer and a z buffer
to keep track of the objects that it has already processed. The advantage of
using a visibility ordering over the z-buffer algorithm is that there is no need to
compute or compare the z values. Sorting is also used to accelerate ray tracing
by speeding up the process of finding ray-object intersections (e.g., (Glassner,
1984; Samet, 1989b; Samet, 1989a)).

Notwithstanding the above definition, sorting usually implies the exis-
tence of an ordering. Orderings are fine for one-dimensional data. For exam-
ple, in the case of individuals we can sort them by their weight, and given an
individual such as Bill, we can use the ordering to find the person closest in
weight to Bill. Similarly, we can use the same ordering to also find the person
closest in weight to John. Unfortunately, in two dimensions and higher, such
a solution does not always work. In particular, suppose we sort all of the
cities in the US by their distance from Chicago. This is fine for finding the
closest city to Chicago, say with population greater than 200,000. However,
we cannot use the same ordering to find the closest city to New York, say
with population greater than 200,000, without resorting the cities.

The problem is that for two dimensions and higher, the notion of an or-
dering does not exist unless a dominance relation holds (e.g., (Preparata and
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Shamos, 1985))—that is, a point a = {ai|1 ≤ i ≤ d} is said to dominate a
point b = {bi|1 ≤ i ≤ d} if ai ≤ bi, 1 ≤ i ≤ d. Thus the only way to ensure the
existence of an ordering is to linearize the data as can be done, for example,
using a space-filling curve (e.g., (Sagan, 1994; Samet, 2006)). The problem
with such an approach is that the ordering is explicit. Instead, what is needed
is an implicit ordering so that we do not need to resort the data when, for
example in our sample query, the reference point for the query changes (e.g.,
from Chicago to New York). Such an ordering is a natural byproduct when
we sort objects by spatial occupancy, and is the subject of the remainder of
this paper.

2. Methods Based on Spatial Occupancy

The indexing methods that are based on sorting the spatial objects by spatial
occupancy essentially decompose the underlying space from which the data
is drawn into regions called buckets in the spirit of classical hashing methods
with the difference that the spatial indexing methods preserve order. In other
words, objects in close proximity should be placed in the same bucket or at
least in buckets that are close to each other in the sense of the order in which
they would be accessed (i.e., retrieved from secondary storage in case of a
false hit, etc.).

There are two principal methods of representing spatial data. The first is
to use an object hierarchy that initially aggregates objects into groups based
on their spatial proximity and then uses proximity to further aggregate the
groups thereby forming a hierarchy. Note that the object hierarchy is not
unique as it depends on the manner in which the objects were aggregated
to form the hierarchy. Queries are facilitated by also associating a minimum
bounding box with each object and group of objects as this enables a quick
way to test if a point can possibly lie within the area spanned by the object
or group of objects. A negative answer means that no further processing is
required for the object or group, while a positive answer means that further
tests must be performed. Thus the minimum bounding box serves to avoid
wasting work. Data structures such as the R-tree (Guttman, 1984) and the
R∗-tree (Beckmann et al., 1990) illustrate the use of this method.

As an example of an R-tree, consider the collection of straight line seg-
ment objects given in Figure 1(a) shown embedded in a 4×4 grid. Figure 1(b)
is an example of the object hierarchy induced by an R-tree for this collection.
Figure 1(c) shows the spatial extent of the bounding rectangles of the nodes
in Figure 1(a), with heavy lines denoting the bounding rectangles correspond-
ing to the leaf nodes, and broken lines denoting the bounding rectangles
corresponding to the subtrees rooted at the nonleaf nodes.
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Figure 1 (a) Example collection of straight line segments embedded in a 4×4 grid, (b) the
object hierarchy for the R-tree corresponding to the objects in (a), and (c) the spatial extent of
the minimum bounding rectangles corresponding to the object hierarchy in (b). Notice that the
leaf nodes in the (c) also store bounding rectangles although this is only shown for the nonleaf
nodes.

The drawback of the object hierarchy approach is that from the perspec-
tive of a space decomposition method, the resulting hierarchy of bounding
boxes leads to a non-disjoint decomposition of the underlying space. This
means that if a search fails to find an object in one path starting at the root,
then it is not necessarily the case that the object will not be found in another
path starting at the root. This is the case in Figure 1(c) when we search for
the line segment object that contains Q. In particular, we first visit nodes R1
and R4 unsuccessfully, and thus need to visit nodes R2 and R5 in order to
find the correct line segment object i.

The second method is based on a recursive decomposition of the under-
lying space into disjoint blocks so that a subset of the objects are associated
with each block. There are several ways to proceed. The first is to simply
redefine the decomposition and aggregation associated with the object hier-
archy method so that the minimum bounding rectangles are decomposed into
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disjoint rectangles, thereby also implicitly partitioning the underlying objects
that they bound. In this case, the partition of the underlying space is heavily
dependent on the data and is said to be at arbitrary positions. The k-d-B-
tree (Robinson, 1981) and the R+-tree (Sellis et al., 1987) are examples of
such an approach.

The second way is to partition the underlying space at fixed positions
so that all resulting cells are of uniform size, which is the case when using
the uniform grid (e.g., (Knuth, 1998)), also the standard indexing method
for maps. Figure 1(a) is an example of a 4 × 4 uniform grid in which a
collection of straight line segments has been embedded. The drawback of
the uniform grid is the possibility of a large number of empty or sparsely-
filled cells when the objects are not uniformly distributed. This is resolved by
making use of a variable resolution representation such as one of the quadtree
variants (e.g., (Samet, 2006)) where the subset of the objects that are associ-
ated with the blocks are defined by placing an upper bound on the number of
objects that can be associated with each block (termed a stopping condition
for the recursive decomposition process). An alternative, as exemplified by
the PK-tree (Samet, 2004; Wang et al., 1998), makes use of a lower bound
on the number of objects that can be associated with each block (termed an
instantiation or aggregation threshold).

Quadtrees (Hunter and Steiglitz, 1979; Klinger, 1971) and their three-
dimensional octree analogs (Hunter, 1978; Meagher, 1982). have also been
used widely for representing and operating on region data in two and three
dimensions, respectively (e.g., (Samet, 1988)). In particular, algorithms have
been devised for converting between them and numerous representations such
as binary arrays (Samet, 1980a), boundary codes (Dyer et al., 1980; Samet,
1980b), rasters (Samet, 1981a; Samet, 1984; Shaffer and Samet, 1987), me-
dial axis transforms (Samet, 1983; Samet, 1985), terrain models (Sivan and
Samet, 1992), boundary models (Tamminen and Samet, 1984), constructive
solid geometry (CSG) (Samet and Tamminen, 1985), as well as for many
standard operations such as connected component labeling (Samet, 1981c),
perimeters (Samet, 1981b), distance (Samet, 1982), image dilation (Ang et al.,
1990), and computing Euler numbers (Dyer, 1980). Quadtrees and their vari-
ants are to be distinguished from pyramids (e.g., (Tanimoto and Pavlidis,
1975; Aref and Samet, 1990)) which are multiresolution data structures.

The PM1 quadtree (Hoel and Samet, 1991; Samet and Webber, 1985)
(see also the related PMR quadtree (Nelson and Samet, 1986; Nelson and
Samet, 1987)) is an example of a variable resolution representation for a
collection of straight line segment objects such as the polygonal subdivision
given in Figure 1(a). In this case, the stopping condition of its decomposition
rule stipulates that partitioning occurs as long as a block contains more than
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one line segment unless the line segments are all incident at the same vertex
which is also in the same block (e.g., Figure 2). A similar representation has
been devised for three-dimensional images (e.g., (Ayala et al., 1985) and the
references cited in (Samet, 2006)). The decomposition criteria are such that
no node contains more than one face, edge, or vertex unless the faces all meet
at the same vertex or are adjacent to the same edge.
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Figure 2 PM1 quadtree for the collection of straight line segment objects of Figure 1(a).

The principal drawback of the disjoint method is that when the objects
have extent (e.g., line segments, rectangles, and any other non-point objects),
then an object may be associated with more than one block. This means that
queries such as those that seek the length of all objects in a particular spatial
region will have to remove duplicate objects before reporting the total length.
Nevertheless, methods have been developed that avoid these duplicates by
making use of the geometry of the type of the data that is being represented
(e.g., (Aref and Samet, 1992; Aref and Samet, 1994; Dittrich and Seeger,
2000)). Note that the result of constraining the positions of the partitions
means that there is a limit on the possible sizes of the resulting cells (e.g.,
a power of 2 in the case of a quadtree variant). However, this means that the
underlying representation is good for operations between two different data
sets (e.g., a spatial join (Hoel and Samet, 1995; Jacox and Samet, 2007))
as their representations are in registration (i.e., it is easy to correlate occu-
pied and unoccupied space in the two data sets, which is not easy when the
positions of the partitions are not constrained as is the case with methods
rooted in representations based an object hierarchy even though the resulting
decomposition of the underlying space is disjoint). For a recent empirical
comparison of these representations with respect to multidimensional point
data, see (Kim and Patel, 2007).
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3. Example of the Utility of Sorting

As an example of the utility of sorting spatial data suppose that we want
to determine the nearest object to a given point (i.e., a “pick” operation in
computer graphics). In order to see how the search is facilitated by sorting
the underlying data, consider the set of point objects A–F in Figure 3 which
are stored in a PR quadtree (Orenstein, 1982; Samet, 1990b). The PR quadtree
recursively decomposes the space in which a set of point objects lie into four
equal-sized squares until each cell is empty or contains just one object (i.e.,
the objects are sorted into the cells which act like bins). The PR quadtree
represents the underlying decomposition as a tree although our figure only
illustrates the resulting decomposition of the underlying space into blocks
(i.e., the leaf nodes/blocks of the PR quadtree).

The search must first determine the leaf that contains the location/object
whose nearest neighboring object is sought (i.e., P in our example). Assum-
ing a tree-based index, this is achieved by a top-down recursive algorithm.
Initially, at each level of the recursion, we explore the subtree that contains
P. Once the leaf node containing P has been found (i.e., 1), the distance
from P to the nearest object in the leaf node is calculated (empty leaf nodes
have a value of infinity). Next, we unwind the recursion so that at each level,
we search the subtrees that represent regions overlapping a circle centered at
P whose radius is the distance to the closest object that has been found so
far. When more than one subtree must be searched, the subtrees representing
regions nearer to P are searched before the subtrees that are farther away
(since it is possible that an object in them might make it unnecessary to search
the subtrees that are farther away).

P

12 10 6 7

11 9 1 3 5

2 4

13 8
D

E C

A

B

F

Figure 3 Example illustrating the neighboring object problem. P is the query object and the
nearest object is represented by point A in node 2.
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In our example, the order in which the nodes are visited is given by their
labels. We visit the brothers of the node 1 containing the query point P (and
all remaining nodes at each level) in the order of the minimum distance from
P to their borders (i.e., SE, NW, and NE for node 1). Therefore, as we unwind
for the first time, we visit the eastern brother of node 1 and its subtrees (nodes
2 and 3 followed by nodes 4 and 5), node 6, and node 7. Note that once we
have visited node 2, there is no need to visit node 4 since node 2 contains A.
However, we must still visit node 3 containing point B (closer than A), but
now there is no need to visit node 5. Similarly, there is no need to visit nodes
6 and 7 as they are too far away given our knowledge of A. Unwinding one
more level reveals that due to the distance between P and A, we must visit
node 8 as it could contain a point that is closer to P than A; however, there is
no need to visit nodes 9, 10, 11, 12, and 13.

4. Concluding Remarks

An overview has been given of the rationale for sorting spatial objects in
order to be able to index them thereby facilitating a number of operations in-
volving search in the multidimensional domain. A distinction has been made
between spatial objects that could be represented by traditional methods that
have been applied to point data and those that have extent thereby rendering
the traditional methods inapplicable. In our examples, the sorting supported
operations that involve proximity measured in terms of as “the crow flies”.
However, these representations can also be used to support proximity in a
graph such as a road network (e.g., (Sankaranarayanan et al., 2005; Samet
et al., 2008)).

The functioning of these various spatial sorting methods can be expe-
rienced by trying VASCO (Brabec and Samet, 1998a; Brabec and Samet,
1998b; Brabec and Samet, 2000; Brabec et al., 2003), a system for Visualizing
and Animating Spatial Constructs and Operations. VASCO consists of a set of
spatial index JAVATM (e.g., (Arnold and Gosling, 1996)) applets that enable
users on the worldwide web to experiment with a number of hierarchical rep-
resentations (e.g., (Samet, 1990a; Samet, 1990b; Samet, 2006)) for different
spatial data types, and see animations of how they support a number of search
queries (e.g., nearest neighbor and range queries). The VASCO system can
be found at http://www.cs.umd.edu/˜hjs/quadtree/. For an example
of their use in a spatial database/geographic information system (GIS), see
the SAND Spatial Browser (Brabec and Samet, 2007; Esperança and Samet,
2002; Samet et al., 2003) and the QUILT system (Shaffer et al., 1990). Such
systems find use in a number of alternative application domains (e.g., digital
government (Marchionini et al., 2003)).
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