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Abstract—Complex data types—such as images, documents, DNA sequences, etc.—are becoming increasingly important in modern

database applications. A typical query in many of these applications seeks to find objects that are similar to some target object, where

(dis)similarity is defined by some distance function. Often, the cost of evaluating the distance between two objects is very high. Thus, the

number of distance evaluations should be kept at a minimum, while (ideally) maintaining the quality of the result. One way to approach this

goal is to embed the data objects in a vector space so that the distances of the embedded objects approximates the actual distances. Thus,

queries can be performed (for the most part) on the embedded objects. In this paper, we are especially interested in examining the issue of

whether or not the embedding methods will ensure that no relevant objects are left out (i.e., there are no false dismissals and, hence, the

correct result is reported). Particular attention is paid to the SparseMap, FastMap, and MetricMap embedding methods. SparseMap is a

variant of Lipschitz embeddings, while FastMap and MetricMap are inspired by dimension reduction methods for Euclidean spaces (using

KLT or the related PCA and SVD). We show that, in general, none of these embedding methods guarantee that queries on the embedded

objects have no false dismissals, while also demonstrating the limited cases in which the guarantee does hold. Moreover, we describe a

variant of SparseMap that allows queries with no false dismissals. In addition, we show that with FastMap and MetricMap, the distances of

the embedded objects can be much greater than the actual distances. This makes it impossible (or at least impractical) to modify FastMap

and MetricMap to guarantee no false dismissals.

Index Terms—Embedding methods, metric spaces, similarity search, multimedia databases, contractiveness, distortion, quality,
Lipschitz embeddings, singular value decomposition (SVD), SparseMap, FastMap, MetricMap.
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1 INTRODUCTION

THE need for being able to handle novel data types is
becoming ever more important in modern database

applications, including in such fields as bioinformatics,
computer vision, pattern recognition, image databases,
computer-aided design (CAD), etc. Examples of this type of
data include images, video, and text documents, and even
such exotic data as protein and DNA sequences. A common
type of query on such data, known as similarity search (also
termed content-based or similarity retrieval), seeks to find
objects in the database that are similar to some target object.
For such queries to be meaningful, some measure of similarity
between the objects in the database must be defined. Usually,
the query returns objects having at least some given level of
similarity to the target object (range query), or some given
number of the most similar objects (nearest-neighbor query).

The rest of this section is organized as follows: In

Section 1.1, we describe how mapping a set of data objects

into a vector space can make search more efficient. In

Section 1.2, we present in more detail the general class of

embeddings that we focus on, namely, ones that do not

depend on knowledge of the specific nature of the data

objects. In Section 1.3, we discuss similarity search using
embedded data objects. Finally, in Section 1.4, we present
an outline of the remainder of this paper.

1.1 Embedding

The level of similarity (or, actually, dissimilarity) between
two objects is typically measured with a distance function d.
The challenge faced in performing similarity search is that the
distance function is often very expensive to compute for
complex data objects. For example, computing the similarity
of two proteins, based on their amino acid sequences, has
been reported as taking several hundred milliseconds on a
typical workstation [1]. For this reason, it is desirable to make
as few distance calculations as possible when executing
similarity queries, preferably none. A common approach to
achieving this goal is to map, or embed, the set of objects into
points in a low-dimensional embedding space and then conduct
the search there with the help of multidimensional indexing
methods [2], [3]. Intuitively, the rationale for performing such
mappings is that distances in the embedding space approx-
imate distances of the objects in the original space and that
searching in the embedding space is “less expensive” than in
the original space.

In this paper, we focus on embedding methods that
produce a mapping solely based on the distance function d,
which is usually required to be a distance metric (i.e., d must
satisfy the triangle inequality, or, at worst, only a relatively
small number of the distances violate the triangle inequality).
The advantage of such methods is that they can be applied
without knowledge of the specific nature of the data objects
since the distance function d is treated as a “black box.”
Nevertheless, domain-specific mapping methods exist for a
variety of data types and applications, such as for images [4],
[5], [6] and time series [7], [8]. Such methods are often referred
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to as feature extraction and their results as feature vectors.1 For
some of these methods, no explicit distance function d may
exist beyond the subjective judgments of human domain
experts. Naturally, when we have both an explicit distance
function and a domain-specific mapping method, we have a
choice as to how to embed the objects.

An important class of embedding methods is one where
the data objects are vectors of high dimensionality, to which
we wish to apply dimensionality reduction. Examples of such
methods include Karhunen-Loève transform (KLT) [9], also
known as principal component analysis (PCA) [10], discrete
Fourier transform (DFT) [11], wavelet transforms [12], [13],
and random projections [14], [15] (also, see [16] for a survey
of some of these methods, as well as of some domain-
specific mapping methods). Many of these methods require
d to be the Euclidean metric, but some also work for other
metrics (e.g., weighted Euclidean metric). In contrast, the
methods we focus on below can be applied for arbitrary
distance metrics (but, see Section 1.4), and may even be
competitive alternatives when pure dimension reduction
methods are applicable.

1.2 General Distance Metrics

A tuple ðS; dÞ is said to be a finite metric space ifS is a finite set of
cardinality N and d : S � S ! IRþ is a distance metric. A
great deal of work has been done on embedding finite metric
spaces into low-dimensional real-normed spaces—that is,
real-valued vector spaces with a norm, which serves as the
basis of a distance metric. Such embeddings have been
extensively studied in pure mathematics [17], [18] (where the
embedding is often performed into Hilbert spaces, which are
essentially abstractions of real-valued vector spaces with a
dot product [19]), and have found application in a variety of
settings [1], [20], [21], [22], [23]. Usually, the norm is one of the
Lp norms, jjxjjp ¼ ð

P
jxijpÞ1=p. Distance metrics based on such

a norm are often termed Minkowski metrics when p � 1. The
most common Minkowski metrics are the Euclidean distance
metric (L2), the City Block distance metric (L1), and the
Chessboard distance metric (L1), denoted below by dE , dA,
and dM (for Euclidean, average, and maximum), respectively.

Formally, an embedding of a finite metric space ðS; dÞ into
ðIRk; �Þ is a mapping F : S ! IRk, where k is the dimension-
ality of the embedding space and � : IRk � IRk ! IRþ is the
distance metric of the embedding space. If we denote the
norm in IRk by jj � jj, the distance metric � is defined as
�ðx; yÞ ¼ jjxÿ yjj. Ideally, the distance �ðF ðo1Þ; F ðo2ÞÞ in the
embedding space adheres closely to the distance dðo1; o2Þ in
the original space. However, it is often impossible and/or
impractical to achieve exact correspondence between the
distances based on d and �. If an embeddingF exists such that
�ðF ðo1Þ; F ðo2ÞÞ ¼ dðo1; o2Þ for all o1; o2 2 S, then ðS; dÞ and
ðIRk; �Þ are said to be isometric (strictly speaking, ðS; dÞ is
isometric to ðF ðSÞ; �Þ, where F ðSÞ � IRk is the image of S
under F ).

In similarity retrieval applications, it is typical to consider
a larger, potentially infinite, metric space ðUU; dÞ, whereS � UU,
and to define the domain of F as UU rather than S. As a
concrete example, UU might be the set of all possible protein
sequences, while S � UU is a particular data set under study.

The reason for generalizing F is that the query object q 2 UU
used for similarity queries is typically not a member of S.
Furthermore, in many applications, the database is dynamic,
so that objects may be inserted into and removed from S over
time. Note that, even though F can be applied on the entire
set UU, the embedding F is still usually constructed with the
goal of approximating the distances of only the objects in S.
Thus, F may not provide good distance preservation for
objects in UU n S, although we would hope that it performs
adequately. Nevertheless, if many objects are added to the
data set S, the quality of the embedding will tend to
degenerate. Unfortunately, recomputing F may cause the
value of F ðoÞ to change for every existing object o 2 S,
requiring a costly rebuilding of any index that has been built
on the embedding space. Thus, it is preferable to recompute
F only infrequently rather than for each update of S, e.g.,
based on the number of updates or when the “quality” of F
falls below some threshold. An example of a quality measure
is distortion [1] which measures how much larger or smaller
the distances in the embedding space are than the corre-
sponding distances in the original space (see Section 2.2 for
more details).

1.3 Similarity Searching

Unless the distances measured with the distance function �
in the embedding space correspond exactly to the distances
measured with the original distance function d, queries
performed in the embedding space clearly do not have the
same accuracy as queries performed in the original metric
space. In particular, if Ro is the set of objects resulting from a
similarity query performed in the original metric space, and
Re is the set of objects resulting from the corresponding
query in the embedding space, then some of the objects in
Ro may not be present in Re, and vice versa. In other words,
some objects that should be in the result Ro are not found in
Re, while other objects that should not be in the result Ro are
found in Re. The assumption, of course, is that Ro is the
correct result. The notion of precision captures the propor-
tion of objects in Re that are in the correct result Ro, and is
defined as jRe\Roj

jRej . The notion of recall, on the other hand,
captures the proportion of the correct result Ro found in Re,
and is defined as jRe\Roj

jRoj . When the precision is 100 percent,
all the objects in Re are correct. However, note that a
precision of 100 percent does not necessarily mean that Re

contains every element of the correct result. On the other
hand, when the recall is 100 percent, all correct objects occur
in Re (as well as possibly some that are not correct!).

There are two options in making use ofRe, the result from a
query in the embedding space. One option is to use it “as is”
and report Re to the user as the result of the query.
Unfortunately, the precision and recall of queries in the
embedding space are often unknown, except perhaps
experimentally. The other option is to use a filter and refine
strategy, where the query in the embedding space, resulting
in Re, is used as a “filter” and the actual distances, as
measured by d, are used to “refine” the result, thereby
forming the set Rf . In practice, the filter and refine steps are
often interleaved (see Section 2.3). A filter and refine strategy
allows the removal of all irrelevant objects from the result
and, thus, enables bringing the precision up to 100 percent.
However, if there are objects inRo that are missing inRe, then
they will clearly also be missing inRf . Thus, unless the recall
of queries in the embedding space is 100 percent, it is
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impossible to achieve 100 percent recall even with refinement
(unless we resort to the expensive strategy of restarting the
query in the embedding space with less selective criteria).

As will be shown in Section 2.3, the property that an
embedding is contractive is sufficient to guarantee 100 percent
recall of queries in the embedding space. Briefly, this property
implies that distances in the embedding space lower-bound
distances in the original space; see Section 2.3.

1.4 Outline

In this paper, we review three general embedding methods,
SparseMap, FastMap, and MetricMap, for each one present-
ing a detailed description aimed at conveying the intuition
and motivation behind each method. For each method, we
also examine whether they allow achieving 100 percent recall
and, in some cases, suggest variations of the methods aimed at
improving some of their characteristics. Some further details
can be found in [24], such as an application of the methods on a
sample data set and proofs of many of the stated properties.

The rest of the paper is organized as follows: In Section 2,
we discuss the properties of an embeddingF and methods for
measuring the quality of F . We find that 100 percent recall is
assured when F is contractive, which implies that the
distances in the embedding space lower-bound the corre-
sponding distances in the original space; see Section 2.3. In
Section 3, we describe SparseMap and the Lipschitz embed-
dings that it is based on and introduce modifications that
make the result of SparseMap contractive. In Section 4, we
review FastMap, while in Section 5, we show that FastMap
does not, in general, yield contractive embeddings (and
cannot be modified to do so in a practical manner). In
Section 6, we discuss MetricMap and show its relationship to
singular value decomposition (SVD). In Section 7, we show
that MetricMap also does not guarantee a contractive
embedding, propose some modifications to the method,
and explore the relationship between MetricMap and
FastMap. Finally, in Section 8, we draw some conclusions
and present directions for future research.

2 PROPERTIES OF EMBEDDINGS

In this section, we first describe basic properties of embed-
dings and why embeddings are useful (Section 2.1). Next, we
outline a number of different ways of measuring the quality of
embeddings (Section 2.2). We conclude with a discussion of
important properties of embeddings that affect similarity
queries and sketch how these properties can be exploited for
both range queries and nearest-neighbor queries (Section 2.3).

2.1 Basic Properties

As mentioned in Section 1, embedding complex data objects
into low-dimensional vector spaces facilitates similarity
queries in an environment where we are given a set S of
N objects and a function d indicating the distances between
them. At times, this distance function is represented by an
N �N similarity matrix containing the distance between all
NðN ÿ 1Þ=2 distinct pairs of objects. The justification for
applying embeddings is that for any finite metric space ðS; dÞ,
we can usually find a functionF that maps theN objects into a
vector space of dimensionality k, given a sufficiently high
value of k, such that the distances between the points are
approximately preserved when using a distance function � in
the k-dimensional space. In other words, for any pair of objects

aand b, we havedða; bÞ � �ðF ðaÞ; F ðbÞÞ. In practice, our goal is
to use a relatively low value for k in the mapping (i.e., k� N),
thereby allowing effective use of multidimensional indexing
methods, while still achieving reasonable distance preserva-
tion. Since distance computation can be expensive, the
mapping F should ideally be computed efficiently (i.e.,
require substantially fewer than OðN2Þ distance computa-
tions), should preserve distances to a reasonable extent, and
should provide a fast way of obtaining thek-dimensional point
corresponding to a query object (usually an object not in S).

2.2 Measuring Quality

A number of different ways have been proposed for
measuring the quality of an embedding procedure (i.e., a
method that constructs a mapping F ) or of a particular
embedding F produced by such a procedure. The concept
of distortion (e.g., [1]) is frequently used for this purpose.
Distortion measures how much larger or smaller the
distances in the embedding space �ðF ðo1Þ; F ðo2ÞÞ are than
the corresponding distances dðo1; o2Þ in the original space.
In particular, the distortion is defined as the lowest value
c1c2 that guarantees that

1

c1
� dðo1; o2Þ � �ðF ðo1Þ; F ðo2ÞÞ � c2 � dðo1; o2Þ; ð1Þ

for all pairs of objects o1; o2 2 S, where c1; c2 � 1. In other
words, the distance values �ðF ðo1Þ; F ðo2ÞÞ in the embedding
space may be as much as a factor of c1 smaller and a factor
of c2 larger than the actual distances dðo1; o2Þ. Note that, for
some embedding procedures, there may be no upper or
lower bound on the distance ratio for the embeddings that
they construct, so c1 and/or c2 may be infinite in this case.
Of course, the distortion is always bounded when con-
sidering any given embedding F and finite metric space
ðS; dÞ. A number of general results are known about
embeddings, e.g., that any finite metric space can be
embedded in Euclidean space with OðlogNÞ distortion [1].

Another common measure of a particular embedding F
with respect to a data set S is stress [22]. Stress measures the
overall deviation in the distances (i.e., the extent to which
they differ), and is typically defined in terms of variance:P

o1;o2
ð�ðF ðo1Þ; F ðo2ÞÞ ÿ dðo1; o2ÞÞ2P

o1;o2
dðo1; o2Þ2

:

Alternative definitions of stress may be more appropriate for
certain applications. For example, the sum in the denominator
may be on �ðF ðo1Þ; F ðo2ÞÞ2, or the division by dðo1; o2Þ2 may
occur inside the sum, instead of in a separate sum.

A measure of the quality of embeddings that has been
proposed in clustering applications [21] is termed Cluster
Preservation Ratio (CPR). This measure can be applied to a
data set when a known clustering exists for the objects. In this
case, CPR indicates the average ratio of cluster preservation
over all objects in the data set. In other words, for each object o
whose cluster is of size s, we find the snearest neighbors in the
embedding space and compute the fraction of cluster objects
that are among these s neighbors. For an example where the
clustering of the objects is known, consider the situation of
proteins in a computational biology application [21]. In
particular, a number of proteins have been studied exten-
sively in terms of their biochemical functions, so proteins
having similar functions can be grouped together. Therefore,
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we can test whether amino acid sequences representing these
known proteins follow this grouping.

Finally, we want to point out that precision and recall (as
defined in Section 1.3) of a similarity query performed in the
embedding space can also be used as measures of the quality
of embeddings. Ideally, both measures should be close to
100 percent, but poor distance preservation will decrease
both. Notice that precision and recall differ from the other
measures in that the query object q is not in S and, thus, qwas
not taken into account when the embedding F was con-
structed (although F can be applied to q once F has been
constructed). Thus, we may get drastically different precision
and recall depending on the choice of q. This means that a
reasonable measure of quality requires that we typically
average together the result of several queries using some
likely distribution in the choice of q.

2.3 Properties Affecting Similarity Queries

An embedding induced by a mapping F is said to be
contractive with respect to S if �ðF ðo1Þ; F ðo2ÞÞ � dðo1; o2Þ for
all o1; o2 2 S. In other words, c2 ¼ 1 in (1) and, thus, the
distortion is just c1. Contractiveness of the embedding is a
very useful property in similarity search, and many other
applications, as it has implications for pruning the search.
However, for similarity search, contractiveness with respect
to S is not sufficient for achieving 100 percent recall. In
particular, query objects are usually not members of S, so
contractiveness with respect to S would not say anything
about the relationship between dðq; oÞ and �ðF ðqÞ; F ðoÞÞ for
a query object q 2 UU n S and data object o 2 S. If we knew in
advance the set Q � UU of all potential query objects, we
could define Q=S-contractiveness such that �ðF ðqÞ; F ðoÞÞ �
dðq; oÞ for any q 2 Q and o 2 S. For example, consider a
range query with a radius of r with respect to object q 2 S,
where we would like to identify objects o 2 S such that
dðq; oÞ � r. If the embedding is Q=S-contractive, we are
ensured that dðq; oÞ > r if �ðF ðqÞ; F ðoÞÞ > r for any q 2 Q
and o 2 S. Thus, we can safely prune all objects o from the
search for which �ðF ðqÞ; F ðoÞÞ > r without any false dis-
missals—that is, no relevant object is dropped from the
query result and, thus, we have 100 percent recall.

Unfortunately, the set Q of all potential query objects is
usually not known at the time when the mapping F is
constructed, except for the trivial caseQ ¼ UU. Furthermore, if
dynamic updates are made to the database S and F is only
updated occasionally (e.g., when the quality of the embed-
ding has deteriorated to a certain level), then the contents ofS
at query time may be different than when the mapping was
constructed. Therefore, for ensuring 100 percent recall for
similarity search, it is usually necessary forF to be contractive
with respect to UU. In the remainder of this paper, we use the
term contractive to mean that F is contractive with respect to
UU, i.e., �ðF ðo1Þ; F ðo2ÞÞ � dðo1; o2Þ for all o1; o2 2 UU.

Another useful, albeit rarely satisfied, property of a
mapping F is proximity preservation, i.e., the property that
dðo1; o2Þ � dðo1; o3Þ ) �ðF ðo1Þ; F ðo2ÞÞ � �ðF ðo1Þ; F ðo3ÞÞ. I f
this property holds, we can perform nearest-neighbor
queries in the embedding space and be assured that the
result is valid in the original space. In other words, if q is a
query object and o 2 S is its nearest neighbor, i.e., dðq; oÞ �
dðq; o0Þ for all objects o0 2 S, then we know that F ðoÞ is also
the nearest neighbor of F ðqÞ with respect to �. Thus, we can
simply perform the nearest-neighbor query using F ðqÞ.

Since the proximity preservation property is rarely satisfied,
it is interesting to ask if we can derive a relaxed version of it
from other properties, such as distortion. This is indeed
possible and yields the following relaxed form given a
distortion of c1c2 (see (1)):

dðo1; o2Þ � dðo1; o3Þ
)1=c2 � �ðF ðo1Þ; F ðo2ÞÞ � dðo1; o2Þ � dðo1; o3Þ �
c1 � �ðF ðo1Þ; F ðo3ÞÞ
)�ðF ðo1Þ; F ðo2ÞÞ � c1c2 � �ðF ðo1Þ; F ðo3ÞÞ:

In other words, �ðF ðo1Þ; F ðo2ÞÞ is never larger than
�ðF ðo1Þ; F ðo3ÞÞ by more than a factor of c1c2. Thus, if a
nearest-neighbor query is performed in the embedding
space, with the result that F ðo0Þ with o0 2 S is the nearest
neighbor of F ðqÞ, then �ðF ðqÞ; F ðo0ÞÞ can be smaller than
�ðF ðqÞ; F ðoÞÞ by as much as a factor of c1c2, where o is the true
nearest neighbor of q in S. Equivalently, dðq; o0Þmay be larger
than dðq; oÞ by a factor as large as c1c2. In many applications,
exact responses to nearest-neighbor queries are not crucial
and approximate responses are satisfactory, at least if the
error is not too high (e.g., see [25], [26], [27]). Unfortunately,
the worst-case distortion is often fairly high (e.g., OðlogNÞ),
so the relaxed proximity preservation property may yield too
large an error for nearest-neighbor queries.

Nevertheless, if the mapping F is contractive, efficient
nearest-neighbor query algorithms can be implemented that
give an exact result.2 Such algorithms use a filter and refine
strategy [6], [28], [29], as described in Section 1.3. In
particular, in the “filter” step, the embedding space is used
as a filter to produce a set of candidates. The satisfaction of
the contractive property makes it possible to guarantee that
the correct result is among the candidates. For example, if o
is the actual nearest neighbor of the query object q, then the
filter step must at the very least produce as candidates all
objects o0 such that �ðF ðqÞ; F ðo0ÞÞ � dðq; oÞ. In the “refine”
step, the actual distance must be computed for all the
candidates to determine the actual nearest neighbor.

To elaborate on how such a query is implemented,
suppose that we want to find the nearest object to a query
object q. We first determine the pointF ðqÞ corresponding to q.
Next, we examine the objects in the order of their distances
from F ðqÞ in the embedding space. When using a multi-
dimensional index, this can be achieved by using an
incremental nearest neighbor algorithm [30], [31]. Suppose
that pointF ðaÞ corresponding to object a is the closest point to
F ðqÞ at a distance of �ðF ðaÞ; F ðqÞÞ. We compute the distance
dða; qÞ between the corresponding objects. At this point, we
know that any object xwith �ðF ðxÞ; F ðqÞÞ > dða; qÞ cannot be
the nearest neighbor of q since the contractive property then
guarantees that dðx; qÞ > dða; qÞ. Therefore, dða; qÞnow serves
as an upper bound on the nearest-neighbor search in the
embedding space. We now find the next closest point F ðbÞ
corresponding to object b, subject to our distance constraint
dða; qÞ. If dðb; qÞ < dða; qÞ, then b and dðb; qÞ replace object a
and dða; qÞ as the current closest object and upper bound
distance, respectively; otherwise, a and dða; qÞ are retained.
This search continues until encountering a point F ðxÞ with
�ðF ðxÞ; F ðqÞÞ > dðy; qÞ, where y is the current closest object
which is now guaranteed to be the actual closest object to q.
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3 SPARSEMAP

SparseMap is an embedding method based on a powerful
class of embedding methods known as Lipschitz embeddings
[17], [18]. As originally defined, Lipschitz embeddings are not
suitable for similarity search due to the large computational
cost. Thus, SparseMap includes heuristics aimed at reducing
the cost of producing the embedding. Below, we first describe
Lipscitz embeddings (Section 3.1) and then explain the
heuristics of SparseMap (Section 3.2).

3.1 Lipschitz Embeddings

In Lipschitz embeddings, a coordinate space is defined such
that each axis corresponds to a reference set, drawn from
the set S of objects, as described in Section 3.1.1. How to
select the reference sets is shown in Section 3.1.2.

3.1.1 Definition

A Lipschitz embedding is defined in terms of a set R of
subsets of S, R ¼ fA1; A2; . . . ; Akg. The subsets Ai are
termed the reference sets of the embedding. Let dðo;AÞ be
an extension of the distance function d to a subset A � S,
such that dðo;AÞ ¼ minx2Afdðo; xÞg. An embedding with
respect to R is defined as a mapping F such that
F ðoÞ ¼ ðdðo;A1Þ; dðo;A2Þ; . . . ; dðo;AkÞÞ. In other words, what
we are doing is defining a coordinate space where each axis
corresponds to a subset Ai � S of the objects and the
coordinate values of object o are the distances from o to the
closest element in each of Ai.

The intuition behind the Lipschitz embedding is that, if
x is an arbitrary object in the data set S, some information
about the distance between two arbitrary objects o1 and o2

is obtained with the aid of dðo1; xÞ and dðo2; xÞ, i.e., the
value jdðo1; xÞ ÿ dðo2; xÞj. In particular, due to the triangle
inequality, we have jdðo1; xÞ ÿ dðo2; xÞj � dðo1; o2Þ, as illu-
strated in Fig. 1. This argument can be extended to a
subset A: The value jdðo1; AÞ ÿ dðo2; AÞj is a lower bound
on dðo1; o2Þ. This can be seen as follows: Let x1; x2 2 A be
such that dðo1; AÞ ¼ dðo1; x1Þ and dðo2; AÞ ¼ dðo2; x2Þ. Since
dðo1; x1Þ � dðo1; x2Þ and dðo2; x2Þ � dðo2; x1Þ, we have
jdðo1; AÞ ÿ dðo2; AÞj ¼ jdðo1; x1Þ ÿ dðo2; x2Þj. Accounting for
the fact that dðo1; x1Þ ÿ dðo2; x2Þ can be positive or
negative, we have

jdðo1; x1Þ ÿ dðo2; x2Þj
� maxfjdðo1; x1Þ ÿ dðo2; x1Þj; jdðo1; x2Þ ÿ dðo2; x2Þjg:

Finally, from the triangle inequality, we have

maxfjdðo1; x2Þ ÿ dðo2; x2Þj; jdðo1; x1Þ ÿ dðo2; x1Þjg � dðo1; o2Þ:

Thus, jdðo1; AÞ ÿ dðo2; AÞj is a lower bound on dðo1; o2Þ. By
using a set R of subsets, we increase the likelihood that the
distance dðo1; o2Þ between two objects o1 and o2 (as

measured relative to other distances) is captured ade-
quately by the distance in the embedding space between
F ðo1Þ and F ðo2Þ (i.e., �ðF ðo1Þ; F ðo2ÞÞ).

3.1.2 Selecting Reference Sets

With a suitable definition ofR, the set of reference sets, we can
establish bounds on the distance �ðF ðo1Þ; F ðo2ÞÞ for all pairs of
objects o1; o2 2 S, where � is one of the Lp metrics. Such a
definition was provided by Linial et al. [1], [32] based, in part,
on previous work by Bourgain [17]. In particular, in their
definition [1], R consists of Oðlog2 NÞ randomly selected
subsets ofS, where each group ofOðlogNÞ subsets is of size 2i,
where i ¼ 1; . . . ; OðlogNÞ; more concretely, the value
OðlogNÞ is typically approximately blog2 Nc. Thus,
R ¼ fA1; A2; . . . ; Akg, where k ¼ blog2 Nc2 and Ai is of size
2j with j ¼ bðiÿ 1Þ=ðlog2 NÞ þ 1c. The embedding proposed
by Linial et al. [1] is a variant of the basic Lipschitz embedding,
where each coordinate value is divided by a factor that
depends on k. In particular, if � is the Lp metric, F is defined
such that F ðoÞ ¼ ðdðo;A1Þ=q; dðo;A2Þ=q; . . . ; dðo;AkÞ=qÞ,
where q ¼ k1=p. Given this definition, Linial et al. [1] prove
that F satisfies

c

blog2 Nc
� dðo1; o2Þ � �ðF ðo1Þ; F ðo2ÞÞ � dðo1; o2Þ; ð2Þ

for any pair of objects o1; o2 2 S, where c > 0 is a
constant.3 Thus, the relative amount of deviation of the
distance values in the embedding space with respect to
the original distance values, known as distortion, is
guaranteed to be OðlogNÞ (with high probability). The
proof for the bound c=blog2 Ncdðo1; o2Þ � �ðF ðo1Þ; F ðo2ÞÞ is
fairly complex [1], [17], and is beyond the scope of this
paper. However, the bound �ðF ðo1Þ; F ðo2ÞÞ � dðo1; o2Þ is
easy to show. In particular, for each Ai 2 R, we have
jdðo1; AiÞ ÿ dðo2; AiÞj � dðo1; o2Þ, as shown in Section 3.1.1.
Thus, when � is an arbitrary Lp distance metric,

�ðF ðo1Þ; F ðo2ÞÞ ¼
Xk
i¼1

dðo1; AiÞ ÿ dðo2; AiÞ
k1=p

� �p !1=p

� k � dðo1; o2Þp

k

� �1=p

¼ dðo1; o2Þ:

ð3Þ

A distortion of OðlogNÞ may be too large to effectively
preserve distances. For example, if the range of distance
values is less than the distortion, then the relative order of
the neighbors of a given object may be completely
scrambled. However, note that OðlogNÞ is a worst-case
(probabilistic) bound. In many cases, the actual behavior is
much better. For example, in a computational biology
application [21], [33], the embedding defined above was
found to lead to good preservation of clusters, as defined by
biological functions of proteins.

Unfortunately, the embedding of [1] described above is
rather impractical for similarity searching for two reasons.
First, due to the number and sizes of the subsets in R, there
is a high probability that all N objects appear in some set in
R. Thus, when computing the embedding F ðqÞ for a query
object q (which generally is not in S), we would need to
compute the distances between q and practically all objects
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3. More accurately, since the sets Ai are chosen at random, the proof is
probabilistic and c is a constant with high probability.

Fig. 1. Demonstration of the distance bound jdðo1; xÞÿdðo2; xÞj � dðo1; o2Þ.
The objects o1, o2, and x are represented as points and the distances
between them by the lengths of the line segments between them.



in S, which is exactly what we wish to avoid. Second, the
number blog2 Nc2 of subsets in R and, thus, the number of
coordinate values (i.e., dimensions) in the embedding, is
rather large. Even with as few as 100 objects, the number of
dimensions is 36, which is much too high to index on
efficiently with multidimensional indexing methods. These
drawbacks were acknowledged in [1], but addressing them
was left for future work (the only suggestion that was made
was to drop the sets Ai of largest sizes).

3.1.3 Related Work

A number of researchers have presented variations on
Lipschitz embeddings as described above. Cowen and Priebe
[34] presented a method where the number and sizes of the
referencesetsAi arechosenbasedonanobjective functionthat
is meant to capture the quality of clustering that results.
Faragó et al. [35] and Vleugels and Veltkamp [36] indepen-
dentlysuggested usingsingletonreferencesets, eachof whose
sole member is termed a vantage object in [36]. Farago et al. [35]
wereprimarilyconcernedwithpropertiesof thesearchanddo
not explicitly specify how to choose the “vantage objects,” but
Vleugels and Veltkamp [36] suggest picking them at random
from the data set (as is the case with singleton reference sets in
the method of Linial et al. [1]).

Similarity search methods based on distance matrices
[37], [38], [39], [40], [41], also have some relation to Lipschitz
embeddings. These methods typically (e.g., see [38]) make
use of a matrix A ¼ ðaijÞ of distances, where aij ¼ dðoi; pjÞ
and T ¼ fp1; p2; . . . ; pkg is a set of k reference objects; for
some methods (e.g., [40]), T ¼ S and k ¼ N). Thus, the row
vectors of A correspond to the result of a Lipschitz
embedding using the singleton reference sets of objects in
T . However, the search algorithms proposed for distance
matrix methods do not explicitly treat the row vectors as if
they represent points in geometric space (i.e., by using the
Euclidean metric, or some other Minkowski metric).

3.2 SparseMap Heuristics

SparseMap was originally proposed for mapping a database
of proteins into Euclidean space and is built on the work of
Linial et al. [1] in that the same set of reference setsR is used.
The SparseMap method [21] comprises two heuristics, each
aimed at alleviating one of the drawbacks discussed in
Section 3.1.2—that is, the potentially high cost of computing
the embedding in terms of the number of distance computa-
tions that are needed, and the large number of coordinate
values. The first heuristic reduces the number of distance
computations by calculating an upper bound d̂dðo;AiÞ instead
of the exact value dðo;AiÞ, while the second heuristic reduces
the number of dimensions by using a “high quality” subset of
R instead of the entire set as defined in Section 3.1.2. Both
heuristics have the potential of reducing the quality of the
embedding, in terms of the correspondence of distances in
the original metric space and in the embedding space, but
their goal [21] is to maintain the quality to the greatest extent
possible. Note that the embedding used in SparseMap
employs the regular Lipschitz embedding with respect to
R, rather than the embedding proposed in [1] (which divides
the distances dðo;AiÞ by k1=p) and uses the Euclidean distance
metric.

A drawback of SparseMap is that the resulting embedding
cannot be shown to satisfy any constraints on the distortion.
In other words, when the SparseMap method is applied,

dEðF ðo1Þ; F ðo2ÞÞ can be arbitrarily smaller or larger than
dðo1; o2Þ. In Section 3.3, we address the question of whether
this shortcoming can be rectified, especially in terms of the
contractive property.

In SparseMap, the coordinate values of the vectors are
computed one by one. In other words, ifR ¼ fA1; A2; . . . ; Akg
is the sequence of reference sets in order of size, we first
compute d̂dðo;A1Þ for all objects o 2 S, next d̂dðo;A2Þ for all
objects o, etc., where d̂ddenotes the heuristic upper bound ond.
The heuristic for computing d̂d exploits the partial vector that
has already been computed for each object and calculates only
a fixed number of distance values for each object (as opposed
to jAij distance values). In particular, for each object x 2 Ai, it
computes dEðFiÿ1ðoÞ; Fiÿ1ðxÞÞ, where Fiÿ1 is the embedding
based on A1; . . . ; Aiÿ1. On the basis of this approximate
distance value, a fixed number l of objects in Ai having the
smallest approximate distance value from o is picked and the
actual distance value dðo; xÞ for each such object x is
computed. The smallest distance value among those serves
as the upper-bound distance value d̂dðo;AiÞ, which becomes
the ith coordinate value of the vector corresponding to o in the
embedding.

The second heuristic involved in SparseMap reduces the
dimensionality of the result and is termed greedy resampling in
[21]. Greedy resampling is applied after the k coordinate axes
have all been determined, and its goal is to reduce the number
of coordinate axes to k0 < k, thus eliminating some of the
reference sets Ai. A natural question is whether we cannot
eliminate a poor reference set Ai before computing all the
approximate distances d̂dðo;AiÞ. However, the problem is that
we cannot know whether or not a set Ai is good before
evaluating d̂dðo;AiÞ (ordðo;AiÞ) for each objecto. The basic idea
of greedy resampling is to start with a single “good”
coordinate axis and then incrementally add coordinate axes
that maintain “goodness.” In particular, initially, the coordi-
nate axis whose sole use leads to the least stress [22] is
determined (this is somewhat analogous in spirit to basing the
first coordinate axis on a pair of objects that are far apart in the
FastMap method as described in Section 4). Unfortunately,
calculating the stress requires computing distances for all
pairs of objects, which is prohibitively expensive. Instead, the
heuristic computes the stress based on some fixed number of
object pairs (e.g., 4,000 in experiments in [21], which
constituted 10 percent of the total number of pairs). Next,
the coordinate axis that leads to the least stress when used in
conjunctionwith the firstaxis is determined. This procedure is
continued until the desired number of coordinate axes has
been obtained.

In order to study the validity of the SparseMap method,
various experiments are presented in [21], in which the data
sets consist of proteins (or more accurately, the amino acid
sequences that comprise each protein). The focus of the
presentation is mainly on comparing the performance of
SparseMap with that of FastMap [20], another embedding
method proposed for similarity searching and described in
greater detail in Section 4. Both methods are based on
heuristics where some parameter controls the number of
distance computations that are performed. In SparseMap,
this is the number of actual distance computations per-
formed in evaluating d̂dðo;AiÞ, while in FastMap it is the
number of iterations performed in the pivot-finding process
(see Section 4.3). Thus, the two methods can be made to
perform approximately the same number of distance
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computations when obtaining a given number of coordinate
axes. In the experiments reported in [21], when this is done,
the embedding produced by SparseMap is of higher quality
than that produced by FastMap in terms of stress as well as
cluster preservation (i.e., CPR as defined in Section 2.2
where the clusters were determined using the biological
functions of the proteins). This was especially true when the
number of coordinate axes was low, which is an important
consideration since multidimensional indexing is more
effective in low dimensions. In addition, SparseMap was
found to scale up better than FastMap, in terms of the time
to perform the mapping, as the manner in which the
database is accessed leads to fewer disk I/Os.

3.3 Making SparseMap Contractive

A drawback of the embedding that forms the basis of
SparseMap [21] (i.e., the regular Lipschitz embedding on the
reference sets, without taking the heuristics into account) is
that it is not contractive and, thus, does not allow achieving
100 percent recall in similarity queries. In particular, the
distance value in the embedding may be as much as a factor
of log2 N larger than the actual distance value. Two methods
can be applied to obtain a contractive embedding. First, the
embedding proposed in [1] (where the coordinate values are
divided by k1=p) can be employed, which is indeed
contractive. Second, the distance function � can be modified
to yield the same effect. In particular, if dpðF ðo1Þ; F ðo2ÞÞ
is one of the Minkowski metrics, we can define
�ðF ðo1Þ; F ðo1ÞÞ ¼ dpðF ðo1Þ; F ðo2ÞÞ=ðk1=pÞ. The advantage of
modifying the distance function � rather than the embed-
ding itself is that it allows modifying the number of
coordinate axes (for example, during the construction of
the embedding and in the second SparseMap heuristic),
without changing existing coordinate values. With either
method, the embedding would satisfy (2) for any distance
metric Lp (i.e., subject to modification when using the
second method).

Unfortunately, the heuristics applied in SparseMap do
not allow deriving any practical bounds on the distortion
resulting from the embedding. In particular, the first
heuristic can lead to larger distances in the embedding
space, thus possibly causing the contractive property to be
violated (in contrast, the second heuristic can only reduce
distances in the embedding space). This is because
the value of jd̂dðo1; AiÞ ÿ d̂dðo2; AiÞj may not necessarily be
a lower bound on dðo1; o2Þ. To see why, note that the
upper bound distances d̂dðo1; AiÞ and d̂dðo2; AiÞ can
exceed the actual distances dðo1; AiÞ and dðo2; AiÞ by an
arbitrary amount. In particular, we cannot rule out a
situation where d̂dðo1; AiÞ > d̂dðo2; AiÞ þ dðo1; o2Þ, in which
case jd̂dðo1; AiÞ ÿ d̂dðo2; AiÞj > dðo1; o2Þ.

Thus, we see that, in order to be able to satisfy the
contractive property, we must use the actual values dðo;AiÞ in
the embedding, rather than an upper bound on these
distances as done in SparseMap. Fortunately, there is a way
to modify the first heuristic of SparseMap so that it computes
the actual value dðo;AiÞ, while still (at least potentially)
reducing the number of distance computations. We illustrate
this for the case when the Chessboard distance metric, dM , is
used as � in the embedding space. Recall that
dMðF ðo1Þ; F ðo2ÞÞ � dðo1; o2Þ as shown in Section 3.1.2 (the
key observation is that jdðo1; AiÞ ÿ dðo2; AiÞj � dðo1; o2Þ for all
Ai). Furthermore, if Fi is the partial embedding for the first i

coordinate values, we also havedMðFiðo1Þ; Fiðo2ÞÞ � dðo1; o2Þ.
In this modified heuristic for computing dðo;AiÞ, instead of
computing the actual distance value dðo; xÞ for only a fixed
number of objectsx 2 Ai, we must do so for a variable number
of objects in Ai. In particular, we first compute the approx-
imate distances dMðFiÿ1ðoÞ; Fiÿ1ðxÞÞ for all objects x 2 Ai,
which are lower bounds on the actual distance value dðo; xÞ.
Next, we compute the actual distances of the objects x 2 Ai in
increasing order of their lower bound distances,
dMðFiÿ1ðoÞ; Fiÿ1ðxÞÞ. Let y 2 Ai be the object whose actual
distance value dðo; yÞ is the smallest distance value so far
computed following this procedure. Once the lower bound
distances dMðFiÿ1ðoÞ; Fiÿ1ðxÞÞ of all remaining elements x 2
Ai are greater than dðo; yÞ, we are assured that
dðo;AiÞ ¼ dðo; yÞ.

Even though we described our modified heuristic in
terms of the Chessboard distance metric, by using a suitable
definition of the distance function � the heuristic can be
applied to any Minkowski metric Lp. In particular, if k0 is the
current number of coordinate axes (at the completion of the
process, k0 ¼ k), the distance function � based on Lp is
defined as

�ðFk0 ðo1Þ; Fk0 ðo2ÞÞ ¼
ð
P

i jdðo1; AiÞ ÿ dðo2; AiÞjpÞ1=p

ðk0Þ1=p
: ð4Þ

For any choice of p, this distance metric makes F contractive;
note the similarity with (3). Moreover, observe that, for fixed
values of o1, o2, andFk0 , the function � defined by (4) increases
with increasing values of p. For example, for p ¼ 1, �ðFk0 ðo1Þ;
Fk0 ðo2ÞÞ is the average among the coordinate value differ-
ences, while for p ¼ 1, it is the maximum difference. Thus,
the use of the Chessboard metricL1would lead to the largest
values of �ðFk0 ðo1Þ; Fk0 ðo2ÞÞ for any given choice of the setsAi.
For similarity queries, given a fixed set of reference sets Ai,
this would therefore lead to the best possible pruning during
search, as well as for the modified heuristic described above.
To see why this is the case, suppose that we are performing a
range query with query object q and query radius r, and we
wish to report all objects o such that dðq; oÞ � r. Let o0 be an
object that is too far from q, i.e., dðq; o0Þ > r. However, if
�ðF ðqÞ; F ðo0ÞÞ � r, o0 will be a part of the result set when
performing a query in the embedding space. Thus, the
situation can easily arise that �ðF ðqÞ; F ðo0ÞÞ � rwhen basing �
on the City Block or Euclidean distance metrics (i.e.,L1 orL2),
but �ðF ðqÞ; F ðo0ÞÞ > r when � is based on the Chessboard
distance metricL1. Such a hypothetical example is illustrated
in Fig. 2.

Although the modified heuristic presented above will
likely lead to a higher number of distance computations than
the SparseMap heuristic, the higher cost of the embedding
(which mainly affects preprocessing) may be justified, as the
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Fig. 2. A hypothetical range query example where an object o0 is outside
the distance range r from the query object q. The distance �ðF ðqÞ; F ðo0ÞÞ
from q to o0 in the embedding space will lie somewhere on the line
between q and o0. Thus, this distance may lie inside the query range if �
is based on L1 or L2, but outside it if � is based on L1.



resulting embedding is contractive. This allows effective
pruning in similarity queries, while obtaining accurate
results, as we get 100 percent recall and, thus, do not miss
any relevant answers.

4 FASTMAP

FastMap [20] is a general embedding technique that is
inspired by dimensionality reduction methods for Eucli-
dean space based on linear transformations such as the
Karhunen-Loève transform (KLT) [10]. However, as we
show in Section 5, it is only guaranteed to be contractive for
the Euclidean distance metric. In this section, we first
review the motivation for the development of FastMap
(Section 4.1). Next, we outline how it works (Sections 4.2,
4.3, 4.4, 4.5, and 4.6). In particular, Section 4.2 explains the
general principles behind FastMap by outlining how the
coordinate axes that make up the mapping are constructed.
This includes the introduction of a modified distance
function. Section 4.3 describes how the pivot objects that
anchor the lines that form the newly formed coordinate axes
are chosen. Section 4.4 shows how the first coordinate value
is determined. Section 4.5 presents the modified distance
function for computing the remaining coordinate values,
while Section 4.6 applies this modified distance function to
actually compute the remaining coordinate values.

4.1 Motivation

The Karhunen-Loève transform (KLT) [10] is a linear
transformation that allows determining coordinate axes
that retain as much distance information as possible; it is
essentially equivalent to Principal Component Analysis
(PCA) and both can be computed using Singular Value
Decomposition (SVD, see Section 6.2). In particular, for a set
S of points in an m-dimensional Euclidean space, KLT
identifies a new set of m coordinate axes, represented by an
orthonormal set V ¼ fv1; v2; . . . ; vmg of basis vectors (i.e.,
each basis vector has a length of 1 and any two basis vectors
are orthogonal). The origin of the new coordinate system is
taken to be the center of gravity of the points in S and the
new coordinate values are obtained by projecting each point
in S onto the basis vectors.

Loosely speaking, the set V is chosen such that the
variance, when projecting S on the basis vectors, is as great
as possible along each basis vector in turn (the variance
indicates the level of “spread” when projecting S on a basis
vector). The implication is that dkðFkðp1Þ; Fkðp2ÞÞ will
preserve distances as much as possible, in a mean-square
sense, if we denote by FkðpÞ the projection of a point p onto
the first k basis vectors in V and by dk the Euclidean
distance in k-dimensional Euclidean space. In other words,
KLT results in the linear transformation that minimizesX

p1;p2

ðdkðFkðo1Þ; Fkðo2ÞÞ ÿ dðo1; o2ÞÞ2:

Thus, the mapping Fk provides dimension-reduction to a
k-dimensional Euclidean space that provides good distance-
preservation among the points in S. However, KLT is not
applicable when using distance metrics other than the
Euclidean, let alone when S is not drawn from a vector space.

FastMap is an attempt to generalize the principles of
dimension-reduction methods based on linear transforma-
tions for obtaining embeddings of arbitrary metric spaces

(rather than just for Euclidean spaces) into k-dimensional
Euclidean space. Nevertheless, as we shall see in the
remainder of this section as well as in Section 5, this
generalization is not without its limitations (i.e., the resulting
mapping is no longer guaranteed to be contractive). Besides
the motivation of generalizing KLT to arbitrary metric spaces,
FastMap is designed to be faster than KLT, which takesOðN �
m2Þ time. In contrast, FastMap requires OðN � kÞ distance
computations, each of which is OðmÞ assuming that we start
out with m-dimensional vector data. Thus, in this setting, a
more accurate assessment of the execution time complexity of
the FastMap method is OðNmkÞ.

4.2 General Principles

In the following, we explain how the FastMap method works
in some detail. Many of the derivations used in the develop-
ment of the method make an implicit assumption that ðS; dÞ is
a subset of a Euclidean space of some dimensionality, or in
other words, that d is the Euclidean distance metric.4 Never-
theless, FastMap can be applied with varying success with
otherdistance metrics. In particular, as we will see in Section 5,
use of the FastMap method with other distance metrics will
often mean that some desirable key aspects such as the
contractive property will not necessarily hold nor will we
always be able to obtain as many as k coordinate axes (even as
few as 1).5 Similarly, due to the nature of the FastMap method,
the best result is obtained when �, the distance function in the
embedding space, is the Euclidean distance metric. Thus,
unless otherwise stated, we assume � to be the Euclidean
distance metric.

The FastMap method works by imagining that the objects
are points in a hypothetical high-dimensional Euclidean
space of unknown dimension—that is, a vector space with the
Euclidean distance metric. However, the various implica-
tions of this Euclidean space assumption are not explored by
Faloutsos and Lin [20] in their development of the method. In
the sequel, the terminology reflects the assumption that the
objects are points (e.g., a line can be defined by two objects,
etc.). The coordinate values corresponding to these points are
obtained by projecting them on k mutually orthogonal
directions, thereby forming the coordinate axes of the space
in which the points are embedded. The projections are
computed using the given distance function d. The coordinate
axes are constructed one by one, where at each iteration, two
objects (termed pivot objects) are chosen, a line is drawn
between them that serves as the coordinate axis, and the
coordinate value along this axis for each object o is
determined by mapping (i.e., projecting) o onto this line.

Assume, for the sake of discussion, that the objects are
actually points (this makes it easier to draw the examples that
we use in our explanation) and that they lie in an
m-dimensional space. We prepare for the next iteration (where
the next coordinate axis established) by determining the ðmÿ
1Þ-dimensional hyperplane H perpendicular to the line that
forms the previous coordinate axis, and projecting all of the
objects ontoH. The projection is performed by defining a new
distance function dH that measures the distance between the
projections of the objects on H. In particular, we will see that
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4. More precisely, the assumptions made by FastMap are valid if ðS; dÞ is
isometric to a subset of some Euclidean space. Below, when we say that a
property applies (or not) when d is a Euclidean metric, we also mean that it
applies (or not) in this isometric case.

5. Of course, this would not be a problem if the “intrinsic”
dimensionality [42] of the data were low, but this need not be the case.



dH is derived from the original distance function d and the
coordinate axes determined so far. At this point, the problem
has been replaced by a recursive variant of the original
problem with m and k reduced by one and a new distance
function dH . This process is continued until the necessary
number of coordinate axes has been determined.

Fig. 3 illustrates how the first coordinate axis is
determined, how the objects are mapped onto the hyper-
plane H, and how the projected objects are used to
determine the second coordinate axis. Fig. 3a shows the
result of the projection that yields the first coordinate axis
where the pivot objects are r and s. In particular, the first
coordinate value xa for object a (i.e., the first coordinate
value in the vector F ðaÞ) is the distance from r to the
projection of a onto the line through r and s. We postpone
for now the discussion of Fig. 3b, which illustrates how dH
and the next set of coordinate values is determined.

4.3 Choosing Pivot Objects

As we saw, the pivot objects that are chosen at each step
serve to anchor the line that forms the newly formed
coordinate axis. When projecting the remaining objects on
this line, the values should ideally be well spread out since
this generally means that more distance information can be
extracted from the projected values—that is, for any pair of
objects a and b, it is more likely that jxa ÿ xbj is large, thereby
providing more information. Recall that the KLT method,
described in Section 4.1, uses variance as a measure of
spread. However, to reduce the computational cost,
FastMap resorts to the weaker notion of range as a measure
of spread, maxa;b2S jxa ÿ xbj, and approximates the range
with the distance between the pivot objects. Thus, in each
iteration, FastMap attempts to identify a pair of pivot objects
that are far away from each other. Unfortunately, determin-
ing the farthest pair of objects in a given set of N objects
requires OðN2Þ distance computations which is prohibi-
tively expensive.

Faloutsos andLin[20]proposeaheuristic for computingan
approximation of the farthest pair of objects. This heuristic
first arbitrarily chooses one of the objects a. Next, it finds the
object r which is farthest from a. Finally, it finds the object s
which is farthest from r. The last step can be iterated a number
oftimes(e.g., fivetimes[20]) inorder toobtainabetterestimate
of the pair that is farthest apart. In fact, it can be shown that, for
a given set ofN objects, the procedure for finding the farthest
pair of objects can be iterated a maximum ofN ÿ 1 steps for a
total ofOðN2Þdistance computations. The heuristic process of
findingthepivotobjectsrequiresOðNÞdistancecomputations
as long as the number of iterations is fixed. Unfortunately, the
OðNÞ cost bound for the heuristic may not always hold, as
shownin Section 5. Note that theoriginal distance functiond is
used only when determining the first coordinate axis.
However, the modified distance functions (resulting from
successive projections on hyperplanes) used for subsequent
coordinate axes are based on d and, thus, an evaluation of d is
also required for any distance computations in later steps.

Choosing pivot objects r and s in this way guarantees that
the distance between the actual farthest pair, a and b, is at
most 2dðr; sÞ; i.e., dðr; sÞ � 1

2 dða; bÞ (see [24] for a proof).
However, this bound is guaranteed to hold only for the first
pair of pivot objects, as shown in Section 5, since it is
possible that the distance functions used to determine the
second and subsequent coordinate values do not satisfy the
triangle inequality.

4.4 Deriving the First Coordinate Value

In order to understand better how and why the FastMap
mapping process works, let us examine its mechanics in
greater detail as we compute the first coordinate value.
Initially, we project the objects on a line between the pivot
objects, say r and s, as shown in Fig. 4 for an object a. Note that
the projection of object a may actually lie beyond the line
segment between r and s as shown in Fig. 4b. This does not
pose problems, but may cause xa to be negative. The actual
valueofxa isobtainedbysolvingthefollowingequationforxa:

dðr; aÞ2 ÿ x2
a ¼ dðs; aÞ

2 ÿ ðdðr; sÞ ÿ xaÞ2: ð5Þ

Expanding terms in (5) and rearranging yields

xa ¼
dðr; aÞ2 þ dðr; sÞ2 ÿ dðs; aÞ2

2dðr; sÞ : ð6Þ

Observe that (5) is obtained by applying the Pythagorean
theorem to each half of the triangle in Fig. 4a (a similar
interpretation applies to the case in Fig. 4b). Since the
Pythagorean theorem is specific to Euclidean space, we have
here an instance where Faloutsos and Lin [20] in their
development of the method make the implicit assumption
that d is the Euclidean distance metric. Thus, the equation is
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Fig. 3. Examples of projections of objects with the FastMap method on
(a) the first coordinate axis and (b) the second coordinate axis.

Fig. 4. Examples of two possible positions for the projection of an object
on the line joining the points corresponding to the pivot objects.



only a heuristic when used for general metric spaces. (The
implications of this heuristic are explored in Section 5;
namely, we find that the embedding produced by FastMap
is not contractive and this may cause the mapping process to
terminate prematurely.)

A number of observations can be made about xa, based on
(6) and the selection of pivot objects. First, xr ¼ 0 and
xs ¼ dðr; sÞ, as would be expected. Second, note that
jxaj � dðr; sÞ, implying that the range (as defined above)
along the first coordinate axis is at most 2dðr; sÞ. In fact, it can
be shown that the range is never larger than the distance
between the farthest pair of objects (see [24]), which is at most
2dðr; sÞ as mentioned in Section 4.3. Thus, the range obtained
from pivots r and s is at least half of the maximum obtainable
range, since the range is at least dðr; sÞwhen r and s serve as
the pivot objects (asxr ¼ 0 andxs ¼ dðr; sÞ). Unfortunately, as
we show in Section 5, it is possible that the distance functions
used to determine the second and subsequent coordinate
values do not satisfy the triangle inequality; in which case, the
above bounds may not hold.

4.5 Projected Distance

Before we can determine the second coordinate value for
each object, we must derive dH , the distance function for the
distances between objects when projected onto the hyper-
plane H, as mentioned in Section 4.2. Fig. 3b illustrates how
the objects are projected onto the hyperplane H and how
the projected objects are used to determine the second
coordinate axis. For expository purposes, assume that the
underlying space is three-dimensional. In this case, points A
and B are the projections of objects t and u, respectively, on
the first coordinate axis (formed by the line joining the pivot
objects r and s) with a separation of jxt ÿ xuj. Points t0 and u0

are the projections of objects t and u, respectively, on the
plane H that is perpendicular to the line between r and s
that forms the first coordinate axis. Point C is the projection
of u onto the line through t and t0, parallel to the line
through r and s. Thus, the distance between t0 and u0 equals
the distance between C and u. The latter can be determined
by applying the Pythagorean theorem since the angle at C
in the triangle tuC is 90�. Therefore, we have

dðt; uÞ2 ¼ dðt; CÞ2 þ dðC; uÞ2 ¼ ðxt ÿ xuÞ2 þ dðt0; u0Þ2: ð7Þ

Thus, defining dHðt; uÞ ¼ dðt0; u0Þ and changing the order of
the terms, we obtain

dHðt; uÞ2 ¼ dðt; uÞ2 ÿ ðxt ÿ xuÞ2: ð8Þ

Note that (8) applies to any pair of objects t and u and not
just to the ones that serve as pivots in the next iteration, as is
the case in Fig. 3b. Also, note that Faloutsos and Lin [20] use
the notation dHðt0; u0Þ rather than dHðt; uÞ.

Observe that this is another occasion where Faloutsos and
Lin [20] in their development of the method make the implicit
assumption that d is the Euclidean distance metric (or that
ðS; dÞ is isometric to a subset of some Euclidean space). As
pointed out before, this assumption has some undesirable
side-effects. For example, as we show in Section 5, if d is not a
Euclidean distance metric, dH may fail to satisfy the triangle
inequality, which in turn may cause (6) to produce coordinate
values that violate the contractive property. Furthermore,
violation of the contractive property in earlier iterations of
FastMap may cause negative values of dHða; bÞ2. This

complicates the search for pivot objects, as the square root
of a negative value is a complex number, which in this case
means that a and b (or, more precisely, their projections)
cannot serve as pivot objects.

4.6 Subsequent Iterations

Each time we recursively invoke the FastMap coordinate
determination method, we must determine the distance
function dH for the current set of projections in terms of the
current distance function (i.e., the one that was created in
the previous recursive invocation). Thus, the original
distance function d is only used when obtaining the first
coordinate axis. In subsequent iterations, d is the distance
function dH from the previous iteration. At this point, it is
instructive to generalize (6) and (8) to yield a recursive
definition of the distance functions and the resulting
coordinate values for each object. Before we do so, we
must define a number of symbols, each representing the ith
iteration of FastMap. In particular, xio is the ith coordinate
value obtained for object o, FiðoÞ ¼ fx1

o; x
2
o; . . . ; xiog denotes

the first i coordinate values of F ðoÞ, di is the distance
function used in the ith iteration, and pi1 and pi2 denote the
two pivot objects chosen in iteration i (with the under-
standing that pi2 is the farthest object from pi1). Now, the
general form of (6) for iteration i is

xio ¼
diðpi1; oÞ

2 þ diðpi1; pi2Þ
2 ÿ diðpi2; oÞ

2

2diðpi1; pi2Þ
; ð9Þ

given the recursive distance function definition

d1ða; bÞ ¼ dða; bÞ ð10Þ
diða; bÞ2 ¼ diÿ1ða; bÞ2 ÿ ðxiÿ1

a ÿ xiÿ1
b Þ

2

¼ dða; bÞ2 ÿ dEðFiÿ1ðaÞ; Fiÿ1ðbÞÞ2:

The process of mapping the N objects to points in a
k-dimensional space makes Oðk �NÞ distance computations,
as there areOðNÞ distance calculations at each of k iterations.
It requiresOðk �NÞ space to record the k coordinate values of
each of the points corresponding to the N objects. It also
requires a 2� k array to record the identities of the k pairs of
pivot objects, as this information is needed to process
queries. Note that query objects are transformed to
k-dimensional points by applying the same algorithm that
was used to construct the points corresponding to the
original objects, except that we use the existing pivot objects.
In other words, given query object q, we obtain its
k-dimensional coordinate values by projecting q on the lines
formed by the corresponding pivot objects using the
appropriate distance function. This process is facilitated by
recording the distance between the points corresponding to
the pivot objects so, that it need not be recomputed for each
query; although this can be done, if we do not want to store
these distance values. The entire process of obtaining the
k-dimensional point corresponding to the query object takes
OðkÞ distance computations; thus, it is independent of the
size N of the database.

4.7 Heuristic for Non-Euclidean Metrics

When d is not a Euclidean metric, the value dHðt; uÞ2 in (8)
may be negative, as mentioned above. More generally, for the
formulation in (10), this implies that diða; bÞ2 may be negative
for i � 2. Such a situation is undesirable since it means that
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diða; bÞ becomes complex-valued, which precludes the choice
of a and b as the pair of pivot objects in iteration i of FastMap.
Furthermore, diða; bÞ2 with a large negative values can cause
a large distortion in the distances between coordinate values
determined by (9); see Section 5.3.

Wang et al. [23] introduce a heuristic to alleviate this
situation. The heuristic defines diða; bÞ, i � 2, in such a way
that it is always real-valued, but possibly negative:

diða; bÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�iða; bÞ

p
if �iða; bÞ � 0;

ÿ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ÿ�iða; bÞ

p
otherwise;

�
ð11Þ

where �iða; bÞ ¼ diÿ1ða; bÞ2 ÿ ðxiÿ1
a ÿ xiÿ1

b Þ
2; that is, diða; bÞ2

as defined in (10). Although this heuristic apparently
resolves the drawbacks of negative diða; bÞ2 values, it does
not correct the fundamental problem with (10), namely, the
fact that di may violate the triangle inequality if d is not the
Euclidean distance metric. Furthermore, notice that this
formulation also means that, if diða; bÞ is negative for some i,
then djða; bÞ2 6¼ dða; bÞ2 ÿ dEðFjÿ1ðaÞ; Fjÿ1ðbÞÞ2 for all j � i.

Notice that, when diða; bÞ is defined according to (11), the

value of diða; bÞ2 is always nonnegative, regardless of

whether diða; bÞ is negative or not. Thus, in situations where

(10) leads to negative values, the coordinate value xio for an

object o as determined by (9) can be different depending on

which definitions of di is used—that is, (10) or (11). If we

focus on the result of just one iteration of FastMap, neither

definition of di is always better than the other, in terms of

how well distances are preserved. In particular, it is

sometimes better to use (10) and sometimes better to use

(11). However, the advantage of the definition in (11) is that

the value of diða; bÞ2 tends to decrease as i increases (i.e., as

more iterations are performed). In particular, (11) implies

that diða; bÞ2 ¼ jdiÿ1ða; bÞ2 ÿ ðxiÿ1
a ÿ xiÿ1

b Þ
2j, so, diða; bÞ2 is

only larger than diÿ1ða; bÞ2 if ðxiÿ1
a ÿ xiÿ1

b Þ
2 > 2diÿ1ða; bÞ2. In

contrast, according to (10), the value of diða; bÞ2 is mono-

tonically nonincreasing in i, so it can become a large negative

value (which has adverse effects on search performance as

the embedding is not contractive). In Section 5.3, we explore

further the implications of these properties.
With the heuristic described above, two objects a and b can

be used as a pivot pair even when diða; bÞ is negative. In
contrast, when using (10), such pairs cannot be utilized.
However, it is not clear how appropriate such a choice of
pivot objects is in terms of resulting in good distance
preservation. In particular, the fact that diða; bÞ is negative
implies that the distance between Fiÿ1ðaÞ and Fiÿ1ðbÞ is
greater than dða; bÞ, so using a and b as pivot objects further
increases the amount by which the distance in the embedding
space exceeds the distance in the original space (i.e.,
expansion as defined in Section 5.3).

5 FASTMAP: PROPERTIES

When ðS; dÞ is actually a subset of some Euclidean space, then
the embeddingF produced by FastMap is always contractive
(Section 5.1). Unfortunately, if ðS; dÞ is a finite metric space of
any other type, F is not guaranteed to be contractive
(Section 5.2). Moreover, the distortion in the distances, as
defined in Section 2.2, can be very high. In other words, the
distances in the embedding space can be much smaller or

much larger than in the original space (Section 5.3). Not only is
the lack of the contractive property undesirable for similarity
searching purposes, but as we point out, it can also severely
degrade the performance of FastMap. In particular, 
ðN2Þ
distance computations may now be needed to find an
appropriate pair of pivot objects, instead of OðNÞ which is
the case when the contractive property is satisfied. A more
detailed discussion of these results can be found in [24].

5.1 Contractiveness for Euclidean Spaces

It should come as no surprise that FastMap produces a
contractive embedding when ðS; dÞ is a subset of a Euclidean
space (or isometric to one), being that key aspects of FastMap
are based on a property unique to Euclidean spaces, namely,
the Pythagorean theorem. In particular, both (6), which
computes a single coordinate value and (8), which computes
the projected distance dH used in the next iteration, are based
on the Pythagorean theorem. Equivalently, FastMap can be
seen to be based on the property of the Euclidean metric being
invariant under rotation and translation.

Fig. 5 illustrates the rotation and translation of the
coordinate system that results from the first iteration of
FastMap in two-dimensional Euclidean space. In the
second iteration, the distances of the data points are based
on their projection on the new axis y0, which trivially
amounts to a one-dimensional Euclidean space. In general,
for m-dimensional Euclidean space, the distance function di
used in iteration i of FastMap, as defined by (10),
corresponds to the Euclidean distance in a mÿ iþ
1-dimensional Euclidean space. Thus, each iteration of
FastMap effectively reduces the dimensionality by one, so
that after k iterations, the “residual” distances dkþ1ða; bÞ
reflect a mÿ k-dimensional space. Since dkþ1ða; bÞ2 ¼
dða; bÞ2 ÿ dEðF ðaÞ; F ðbÞÞ2 and dkþ1ða; bÞ2 � 0, we have
dða; bÞ2 � dEðF ðaÞ; F ðbÞÞ2, so F is contractive. Furthermore,
when k ¼ m, dkþ1ða; bÞ ¼ 0 for all objects a; b 2 S, so
FastMap can always yield a distance-preserving embed-
ding given a sufficient number of iterations. A complete
proof that roughly follows the outline sketched above is
found in [24].

5.2 Noncontractiveness of FastMap

Fig. 6 illustrates how FastMap maps objects a and b after
having determined just one coordinate value, assuming that r
and s are the pivot objects. Based on the figure, it may seem
intuitively obvious that the distance betweenF ðaÞ andF ðbÞ is
smaller than that between a and b. Unfortunately, intuition is
misleading here, as it is colored by the fact that we perceive the
three-dimensional world around us as obeying Euclidean
geometry. In particular, the relative lengths of the line
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Fig. 5. An example of the rotation and translation of the coordinate

system in two-dimensional Euclidean space. In the new coordinate

system, the coordinate values of the projected images of data objects a

and b become ðxa; 0Þ and ðxb; 0Þ, respectively.



segments between the points in Fig. 6 can only arise if d is the
Euclidean distance metric. Thus, we see that, in the figure,
dða; bÞ2 ¼ ðxa ÿ xbÞ2 þD2 (according to the Pythagorean
theorem), so we clearly have dða; bÞ � jxa ÿ xbj, meaning that
the mapping is contractive. In general, though, we cannot
assume that this relationship holds: D2 may actually be
negative! Furthermore, even when the embedding F pro-
duced by FastMaphappens to be contractive with respect toS,
it may not be contractive for query objects drawn from UU n S
(i.e., it may not beQ=S-contractive, as defined in Section 2.3).

When ðS; dÞ is not drawn from a Euclidean space, the
contractive property may be violated as a result of both (6)
and (8), due to the implicit assumption made in deriving
these equations on properties unique to Euclidean spaces
(i.e., distances being invariant to rotations). This can readily
be shown with counterexamples [24]. In particular, in a
single iteration of FastMap, (6) may result in a mapping that
violates the contractive property. A counterexample that
shows this has four objects, a, b, c, and e, with distances
dða; bÞ ¼ 10, dða; cÞ ¼ 4, dða; eÞ ¼ 5, dðb; cÞ ¼ 8, dðb; eÞ ¼ 7,
and dðc; eÞ ¼ 1. Here, a and b are pivots in the first iterations,
resulting in xe ÿ xc ¼ 6=5 ¼ 1:2 > 1 ¼ dðc; eÞ. On the other
hand, (8), can indirectly cause a violation of the contractive
property in the next iteration of FastMap since dH may not
satisfy the triangle inequality (thereby failing to be a distance
metric). A counterexample that demonstrates such a dH
also has four objects, a, b, c, and e, with distances
dða; bÞ ¼ dðc; eÞ ¼ 6, dða; cÞ ¼ 5, dða; eÞ ¼ dðb; eÞ ¼ 4, and
dðb; cÞ ¼ 3. Given a and b as pivots can be found to yield
dHða; cÞ þ dHða; eÞ � 5:141 < 5:850 � dHðc; eÞ, which violates
triangle inequality. Finally, it is possible to show that, if the
triangle inequality is violated for any of the distances
between the two pivot objects r and s and an arbitrary object
a, then the contractive property is violated for dðr; aÞ, dðs; aÞ,
or both. (See [24] for detailed proofs on the claims in this
paragraph.)

Observe that, when the mapping Fi produced by
FastMap in i iterations is noncontractive, the value of
diþ1ða; bÞ2 in (10) is negative for some a; b 2 S. Thus, a and b
cannot be used as a pivot pair in iteration iþ 1. If
diþ1ða; bÞ2 � 0 for sufficiently many objects, the pivot-
finding process may need more than a constant number
of iterations to locate a pair with a positive negative
distance. Furthermore, the fact that di may not be a distance
metric for i � 2 (i.e., as pointed out above about dH ¼ d2)
means that the lower bound derived in Section 4.3 on the
distance between the pivot objects need not hold.

5.3 Large Distortion with FastMap

As stated in the previous section, the embedding F
produced by FastMap may fail to satisfy the contractive

property. In this section, we are concerned with how much
larger the distances in the embedding space can be
compared to the original distances. We call this the
expansion of F , defined as

max
o1;o22UU

�ðF ðo1Þ; F ðo2ÞÞ
dðo1; o2Þ

� �
:

Note that, if the expansion is no greater than 1, F is
contractive with respect to UU. Furthermore, if we can derive
an upper bound c on the expansion, then any embedding F
produced by FastMap can be made to be contractive by
defining �ðo1; o2Þ ¼ dEðF ðo1Þ; F ðo2ÞÞ=c such that the expan-
sion with respect to this � is no more than 1. Unfortunately,
the expansion of embeddings produced by FastMap when
determining even just one coordinate is already relatively
large, and for additional coordinates the expansion can be
very large, especially if the heuristic discussed in Section 4.7
is not employed. These results are only sketched below,
while a more detailed exposition can be found in [24].

5.3.1 Original Formulation

With the original formulation of FastMap (i.e., without the
non-Euclidean heuristic), it is possible to derive the tight
upper bound of 3 on the expansion for determining just one
coordinate (i.e., k ¼ 1) [24]. The proof of the tightness of the
upper bound uses arbitrarily small distance values, which is
clearly unrealistic. Nevertheless, even with a ratio of the
largest distance value to the smallest of only 10, the
expansion can be as large as 2.6.

When determining more than one coordinate with
FastMap, we may obtain an arbitrarily large expansion, due
to the fact that the triangle inequality does not necessarily
hold for the distance functions used in the second and
subsequent iterations of FastMap. The basic problem is that
for iteration i > 1 the value of diðr; sÞ2, as defined in (10), can
be arbitrarily close to zero. One solution is to set a strict lower
bound on the distance between the pivot objects, such that, if r
and s are the first two pivot objects, then any pivot objects t
and u chosen in any subsequent iteration i must obey
diðt; uÞ � dðr; sÞ=�, where � > 1 is some constant. Unfortu-
nately, this requirement means that the pivot-finding heur-
istic may no longer succeed in finding a legal pair of pivots in a
constant number of iterations, thus possibly leading toOðN2Þ
distance computations. An alternative solution is to terminate
FastMap if a legal pivot pair is not found inOð1Þ iterations of
the pivot-finding process (see Section 4.3). This means that we
may obtain fewer coordinate axes than desired. However,
this is usually not a problem, as a low number of coordinate
axes is preferable in most applications. Nevertheless, it is still
not clear that the original distances are adequately approxi-
mated in the embedding space in cases when legal pivots
cannot be found in OðNÞ distance computations. This is a
subject for further study.

Based on the distance range limitation diðt; uÞ � dðr; sÞ=�
(� > 1) on the pivots t; u used in iteration i, it is possible to
show that the expansion is no more than 36�2 for i ¼ 2 (i.e.,
after two iterations) and, in general,Oð�2ðiÿ1ÞÞ; see [24]. Since
these bounds are not tight, we constructed nonlinear
optimization models to obtain examples that yield a high
expansion. For i ¼ 2, the maximum expansion resulting from
the model appeared to be at least proportional to �. For
example, for � ¼ 5 (which meant that the largest distance
value was never more than 10 times larger than the smallest
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Fig. 6. Example projection of two objects on the line joining the points
corresponding to the pivot objects r and s.



one), the optimizer was able to discover a legal assignment of
distance values that yielded an expansion of about 30. For
� ¼ 50, it yielded an expansion of about 300, and for � ¼ 100,
it yielded an expansion of about 600. Similarly, for i ¼ 3, we
obtained suggestive evidence that the upper bound is
Oð�kÿ1Þ. Admittedly, the largest values for the expansion
result from a large number of significant digits (since this
allows for very small relative differences in distance values).
Still, with only five significant digits for the distance values,
the expansion can be as high as several hundred.

5.3.2 Non-Euclidean Heuristic

When employing the heuristic described in Section 4.7, the
upper bound on the expansion is still three, since the heuristic
does not affect the first iteration of FastMap. However, the
expansion due to the second and subsequent coordinate
values will typically be less when the heuristic is used, as
discussed in Section 4.7. The reason is that the worst-case
expansion due to an iteration of FastMap is roughly
proportional to the magnitude of the (squared) distance
values in (9). For two coordinate values (i.e., i ¼ 2), it is
possible to derive an upper bound of 32�2, or nearly as much
as when not using the heuristic (although, as before, this
upper bound is not attainable). Modifying the nonlinear
optimization model to account for the heuristic, we obtained
an expansion of up to seven for two iterations of FastMap, and
14 for three iterations. Unfortunately, the optimizer appeared
to have difficulty converging on solutions for the complicated
formulas that result, so it is possible that it missed solutions
with larger expansion values. Nevertheless, even though
these values are much smaller that we saw before, they
constitute a significant distortion in distance values.

When the heuristic is used, it is actually possible to use r
and s as the pivot pair even when diðr; sÞ is negative.
Therefore, any pair of objects can be used as pivots, which is
not the case without the heuristic (i.e., when diðr; sÞ2 is
negative). However, the effect on the quality of the mapping
when diðr; sÞ is negative for the pivot objects r and s is not
obvious, so it is not clear whether it is advisable to allow such
pivot objects. Furthermore, if jdiðr; sÞj is very small, the
expansion can potentially get very large. Thus, in order to
keep the expansion from becoming too large, we must still be
careful about how the pair of pivot objects is chosen.

5.3.3 Summary

A very large expansion, as we have seen is possible with
FastMap, is problematic in similarity search (potentially
causing a large number of false dismissals), and also in other
applications such as clustering. In particular, FastMap may
cause two nearby objects to appear to be far apart, resulting in
these objects not being clustered together as they should be.
Of course, it could be argued that expansion as we have
defined it is a worst-case quality measure over all pairs of
objects, and that the large upper bounds on expansion are not
often attained. Nevertheless, determining the expected
expansion for some distribution of distance values is difficult
and, thus, remains an open question. Perhaps a more practical
approach to the evaluation of the expansion in FastMap is to
apply it to a suite of realistic data sets and measure the
average expansion. Such a study is left for future work.

6 METRICMAP

Wang et al. [43], [44] propose an interesting embedding,
termed MetricMap, which is closely related to FastMap and
SVD. In particular, like FastMap, MetricMap is based on an
analogy to rotation and projection in Euclidean spaces.
However, MetricMap differs from FastMap in that the
embedding space is pseudo-Euclidean, which means that some
coordinate axes make a negative contribution to “distances”
between the points. Like FastMap, MetricMap uses 2k “pivot
objects” (termed reference objects in MetricMap) in deriving
the embedding function when mapping into a space of
dimension k. However, mapping each object is less expensive
in MetricMap than in FastMap, in that only kþ 1 distance
computations are necessary. Furthermore, MetricMap em-
ploys a different strategy to handle non-Euclidean metrics
than FastMap (see Section 4.7), namely, by mapping into a
pseudo-Euclidean space, which may result in less distortion
in the distances. Nevertheless, as we show in Section 7.1, the
result of MetricMap, like that of FastMap, may not be
contractive.

Below, we first present a concise definition of MetricMap
(Section 6.1), where we also informally describe the under-
lying intuition, though without going into details. Next, we
show how SVD can be applied to yield a dimension reduction
mapping in Euclidean spaces (Section 6.2), and argue that this
is in fact equivalent to the formulation of MetricMap [24]. This
equivalence helps to explain the underlying intuition behind
the formulation of MetricMap, which may be difficult to
grasp from the treatment of the method by Wang et al. [43],
[44]. Section 6.3 describes the intuition behind a dimension-
reduction mapping that is a part of MetricMap, and presents
one method for achieving it.

6.1 Definition

Given a finite metric space ðS; dÞ,S � UU, MetricMap results in
an embeddingF into the space ðIRk; �Þ, where, as we shall see,
� is based on a pseudo-Euclidean squared distance function
and, thus, is not necessarily a metric. The embedding is
produced based on a subset S0 � S of size mþ 1,
S0 ¼ fo0; o1; . . . ; omg, where m � k (m ¼ 2k is suggested by
Wang et al. [43]). The setS0 is used to form an imaginary space
based on the “vectors” ðo0; o1Þ, ðo0; o2Þ . . . ðo0; omÞ, from which
an “orthonormal basis” in IRk is derived that (approximately)
“spans” the same space. Informally, the embedding F ðoÞ of
an arbitrary o 2 UU can then be considered as involving
“translating” o based on o0 and “projecting” the result onto
thekbasis vectors. In this section, we present the mechanics of
MetricMap, but without explaining why the above informal
description applies to the method; its basis is the fact that, as
argued in Section 6.2 (and shown in [24]), MetricMap is
equivalent to applying translation and projection when S is
drawn from Euclidean space.

Define them�mmatrixM based on elements ofS0, where

mi;j ¼
dðo0; oiÞ2 þ dðo0; ojÞ2 ÿ dðoi; ojÞ2

2
: ð12Þ

Since M is symmetric, the decomposition M ¼ QDQT

exists, where D ¼ diagð�iÞ is an m�m diagonal matrix
containing the eigenvalues �i of M along the diagonal and
Q is an m�m orthogonal matrix (i.e., Qÿ1 ¼ QT ) with the
corresponding eigenvectors as columns. Furthermore, as-
sume that the eigenvalues are ordered by decreasing
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absolute value, i.e., such that j�1j � j�2j � � � � � j�mj � 0.
Since some of the eigenvalues may be negative or zero, we
define the m�m matrices C and J :

C ¼ diagðj�ij0Þ; and ð13Þ
J ¼ diagðsignð�iÞÞ; ð14Þ

where

j�ij0 ¼
j�ij if �i 6¼ 0; and

1 if�i ¼ 0

�

signð�iÞ ¼
1 if �i > 0;

0 if �i ¼ 0; and

ÿ1 if �i < 0:

8><>:
Observe that D ¼ C1=2JC1=2 and that C1=2 ¼ diagð

ffiffiffiffiffiffiffiffiffi
j�ij0

p
Þ.

As defined by Wang et al. [43]), the set S0 used to deriveM
is of size 2kþ 1 (i.e., m ¼ 2k). However, the final embedding
is based on a setR � S0 of kþ 1 reference objects. In addition to
o0, R includes those objects oi for which the set of “vectors”
ðo0; oiÞ most nearly “spans” the imaginary space formed
based on S0 (see Section 6.3 for details). Without loss of
generality, we assume that R ¼ fo0; o1; . . . ; okg; of course,
R equals S0 if k ¼ m.

Now, for l � m, define the function Hl : UU! IRl,

HlðoÞ ¼
dðo0; oÞ2 þ dðo0; ojÞ2 ÿ dðo; ojÞ2

2

 !
j2f1;...;lg

; ð15Þ

and the function Fl : UU! IRl,

FlðoÞ ¼ Cÿ1=2
½l;l� Q

ÿ1
½l;l�HlðoÞ; ð16Þ

where the notation A½i;j� denotes the i� j principal
submatrix of A. The embedding produced by MetricMap
is F ¼ Fk. (The form of the mapping presented in [43] has a
redundant J½k;k� factor.) Clearly, in mapping a given object o
by computing F ðoÞ, it is necessary to perform kþ 1 distance
computations dðo; oiÞ for oi 2 R; while to form the embed-
ding function F (i.e., when computing the matrix M)
Oðm2Þ ¼ Oðk2Þ distance computations are needed.

For l � m, define the function �l : IRl � IRl ! IR:

�lðx; yÞ ¼ ðxÿ yÞTJ½l;l�ðxÿ yÞ ¼
Xl
i¼1

signð�iÞðxi ÿ yiÞ2: ð17Þ

Wang et al. [43] suggest defining the “distance” function
� : IRk � IRk ! IR on the transformed space as follows:

�ðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�kðx; yÞ

p
if �kðx; yÞ � 0;

ÿ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ÿ�kðx; yÞ

p
otherwise:

�
The �k function, used in defining �, represents a pseudo-
Euclidean “square distance” function based on the pseudo-
Euclidean “inner product” hx; yi ¼ xTJ½k;k�y ¼

P
i sixiyi,

where si 2 fÿ1; 0; 1g. Strictly speaking, if si � 0 for some
i 2 f1; . . . ; kg, then h�; �i is not an inner product as hx; xi can be
negative and hx; xi ¼ 0 need not imply that x is the zero
vector. Notice that h�; �i resembles the dot product of
Euclidean spaces, x � y ¼ xTy, from which the Euclidean
norm and the Euclidean distance metric are derived.
However, � is not a distance metric if any of the eigenvalues

�i are zero (since, then, �ðx; yÞ ¼ 0 does not necessarily imply

x ¼ y), and if any of the eignevalues are negative, then �

cannot be properly said to be a distance function (since, then,

�ðx; yÞ < 0 for some x; y 2 IRk).
Observe that coordinate axes that correspond to zero

eigenvalues do not contribute to distances according to �

(since the corresponding value on the diagonal of J is then
zero). Thus, if only k0 < k eigenvalues are nonzero, we can
actually map into IRk0 instead of IRk by using a reference setR
of only k0 þ 1 objects and using Fk0 as the final embedding
(alternatively, only the firstk0 coordinate values inFk could be
used). However, as we point out in Section 6.3, the hope is that
by constructing a matrixM that is larger than k� k (i.e., based
on a setS0 that is larger thankþ 1), we obtain at leastknonzero
eigenvalues.

6.2 Motivation: SVD

In the special case that S is drawn from a Euclidean space, it
is possible to show that MetricMap is equivalent to applying
SVD for dimensionality reduction. In particular, assume that
S � UU ¼ IRn and that d is the Euclidean metric dE (i.e.,
dða; bÞ ¼ kaÿ bk2, where k � k2 denotes the Euclidean norm).
Furthermore, as before, let S0 be a subset of S of size mþ 1;
here, however, we denote the elements of S0 with pi. Now,
based on S0, we define the n�m matrix P , where P ¼
sðp1Þ ðp2Þ . . . sðpmÞ½ � and sðpiÞ ¼ pi ÿ p0. In other words, the

column vectors in P equal the m vectors p0pi
ÿ!

for
pi 2 S0 n fp0g. The singular value decomposition (SVD) of
P has the formP ¼ U�V T , whereU ¼ ½u1 u2 . . . un� and V ¼
v1 v2 . . . vm½ � are n� n and m�m orthogonal matrices,

respectively, and � ¼ diagð�1; �2; . . . ; �mÞ is an n�m matrix
and �1 � �2 � . . . � �m � 0, termed the singular values of P
(at least mÿ n of the singular values are zero if m > n).

Below, we show that for Euclidean spaces, there is an
intimate connection between the matrix U and the Metric-
Map embedding as presented in (16). Before we do so,
however, we review some properties of the matrices in the
SVD of P . First, observe that the bottom nÿm rows of �

contain only zeros, i.e.,

� ¼

�1 0 � � � 0
0 �2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � �m
..
. ..

. ..
. ..

.

0 0 � � � 0

266666664

377777775:

For notational convenience, let �l be the l�m principal

submatrix of �, i.e., the first l rows, and letUl ¼ u1 u2 . . . ul½ �,
i.e., the first l columns ofU . Note that �m is a diagonal matrix,

and that U� ¼ ð�iuiÞi2f1;...;mg ¼ Um�m. U and V being ortho-

gonal means that UTU ¼ UUT ¼ In and V TV ¼ V V T ¼ Im,

where Il denotes the l� l identity matrix. Multiplying a vector

by an orthogonal matrix establishes new coordinates for the

vector, amounting to a rotation and, thus, preserves its length

under the Euclidean norm. For example, if p 2 IRn, then ðui �
pÞui is an orthogonal projection of p onto ui since kuik2 ¼ 1, so

UTp represents the coordinates of p using the column vectors

of U as a basis, and
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kUTpk2
2 ¼ ðUTpÞ � ðUTpÞ ¼ ðUTpÞT ðUTpÞ
¼ pTUUTp ¼ pT Imp ¼ pTp ¼ p � p ¼ kpk2

2:

Since kpk2 � 0, this implies that kUTpk2 ¼ kpk2.
Now, for l � n, define the mapping fl : IRn ! IRl such

that

flðpÞ ¼ UT
l ðpÿ p0Þ ¼ ðui � ðpÿ p0ÞÞi2f1;...;lg: ð18Þ

Thus, fnðpÞ amounts to a translation followed by a rotation
(since Un ¼ U) and, therefore, preserves the Euclidean
distances between any two points in IRn since Euclidean
distances are invariant under rotation:

kfnðpiÞ ÿ fnðpjÞk2 ¼ kUT ðpi ÿ p0Þ ÿ UT ðpj ÿ p0Þk2

¼ kUT ðpi ÿ pjÞk2 ¼ kpi ÿ pjk2;

where pi; pj 2 IRn. Furthermore, observe that flðpÞ consists
of the first l coordinate values in fnðpÞ and represents a
translation followed by a projection on the first l orthonor-
mal column vectors in U .

The connection between SVD and MetricMap can be seen
from the fact that the functions Fm according to (16) and fm
according to (18) are, in fact, equivalent. In other words, for
p 2 IRn, FmðpÞ ¼ fmðpÞ [24].

At this point, it is instructive to verify that the
embedding fm according to (18) satisfies the informal
description of MetricMap presented at the beginning of
Section 6.1, assuming that k ¼ m. First, observe that fm is
the result of translating by p0 (i.e., o0) and projecting onto a
set of the m orthonormal vectors in Um. Thus, assuming that
the orthonormal basis Um spans the proper space, fm
satisfies the description of F in Section 6.1. Second, the
space spanned by p0pi

ÿ!
(i.e., ðo0; oiÞ in the notation of

Section 6.1), the column vectors in P , is in fact the same as
that spanned by Um, completing the picture. To see why,
consider the n�m matrix UTP ¼ �V T , the result of
projecting each column vector in P onto the orthonormal
basis U . Since the last nÿm rows of � contain only zeros,
the last rows of �V T also contain only zeros since

�V T ¼ �m

Z

� �
V T ¼ �mV

T

ZV T

� �
¼ �mV

T

Z

� �
;

where Z is the ðnÿmÞ �m zero matrix. Thus, in the
coordinate system defined by U , the last nÿm coordinate
values of the vectors p0pi

ÿ!
are zero, so the vectors span the

same space as the vectors in Um. (More precisely, if P has
any zero singular values and �m0þ1 is the first zero singular
value, P spans the same space as Um0 .) Furthermore, this
implies that fm actually preserves the distances among the
objects in S0 (it is possible to show that Fm has the same
property, regardless of the metric space).

The function fm according to (18) comprises a dimen-
sionality reduction from IRn to IRm, assuming that m < n.
The customary manner in which the dimensionality is
reduced using SVD is to use the n�N matrix P ¼ ðsðpÞÞp2S
as the basis, where sðpÞ ¼ pÿ � and � is the center of
gravity of S (i.e., each coordinate value of � is the mean over
all coordinate values of the points in S along the same axis).
Then, given U in the SVD of P , the function gmðpÞ ¼ UT

mp
reduces the dimensionality of points in S from n to m in a
manner that results in the least-square error. However, if N
is large, computing the dimension reduction mapping

based on the entire set S is expensive, so basing the
dimension reduction mapping on a subset of S, as done by
MetricMap, may be worthwhile.

6.3 Reducing Dimensionality from m to k

As we saw in Section 6.1, the embeddingF ¼ Fk produced by
MetricMap ((16)) is derived based on the m ¼ 2k “vectors”
ðo0; oiÞ, but the embedding itself maps into IRk. The reasoning
behind using more “vectors”m than the final dimensionality
k is that this can be expected to provide an embedding that
better approximates distances in the original space,6 while
performing the same number of distance computations (i.e.,
kþ 1) in computing F ðoÞ for o 2 UU.

A good way to get an intuition for this is to examine the
case when S is drawn from a Euclidean space; similar
arguments can be made when this is not the case. In
particular, observe that the extent to which the mapping fm,
according to (18), preserves distances of the points in S
depends on the extent to which the distribution of the points
in S0 approaches the distribution of the points in S. If S0 is a
random sample ofS, we can therefore expect the preservation
of distances to improve asS0 is enlarged. Furthermore, there is
a higher probability that the column vectors p0pi

ÿ!
of P span a

space of dimensionality k (i.e., implying that �k > 0) if P has
more than k column vectors, i.e., if S0 is larger than kþ 1.
Moreover, since the variance along coordinate axis i in fmðpÞ
for p 2 S0 is proportional to �i (more precisely, equals �2

i ) and
�1 � �2 � � � � � �m � 0, the expected contribution of axis i to
�ðfmðpÞ; fmðp0ÞÞ, where p; p0 2 S0, is greater than that of axis
iþ 1. Thus, the best distance preservation for the points in S0

given only k out of them coordinate values produced by fm is
obtained with the first k coordinate values, i.e., based on fk, so
using fk is a reasonable heuristic for obtaining good distance
preservation for the points in S.

Incidentally, Fk is actually only an approximation of fk
when S is drawn from a Euclidean space. In particular,
FkðpÞ ¼ Cÿ1=2

½k;k� Q
ÿ1
½k;k�HkðoÞ, while

fkðpÞ ¼ UT
k ðpÿ p0Þ ¼ Cÿ1=2

½k;k� Q
T
½m;k�HmðoÞ

(this equality is obtained from UT ¼ �ÿ1V TPT , which holds
when all singular values are nonzero). In other words, Fk is
based on Hk while fk is based on Hm. A similar argument
can be made about Fk when S is not drawn from a
Euclidean space. However, given m ¼ 2k, HmðpÞ is twice as
expensive to compute as HkðpÞ, so basing Fk on the latter
trades off accuracy for time. Nevertheless, since fk already
involves a heuristic (in that it is based on a subset of S), this
tradeoff may be worthwhile.7

Notice that, although perhaps a rare situation, it is
possible for Q½k;k� to be noninvertible, in which case Fk
cannot be evaluated. The originators of MetricMap do not
mention this as a possibility and, thus, do not provide a
solution. This problem does not occur if we use Fm since
Q½m;m� ¼ Q and Qÿ1 ¼ QT . Thus, at worst, we can use the
first k coordinate values in Fm as the final embedding (of
course, if m ¼ k, then Fk ¼ Fm).
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6. Of course, the implicit assumption is made that the distribution of
distances in ðS; dÞ is similar as in ðS [Q; dÞ, where Q is the set of query
objects.

7. However, when d is the Euclidean metric, it is better to use fk rather
than Fk since the former is computed without using the reference objects,
i.e., based on Uk.



Wang et al. suggest that the set R of kþ 1 reference
objects be obtained from the larger set S0 by retaining o0

and the k other objects that “span” IRk. However, exactly
how to do this was not described. There are several ways
to proceed; Zhang [45] suggests the following method.
First, sort the objects in S0 n fo0g in increasing order by
jdðoi; o0Þ2 ÿ�kðF 0ðoiÞ; F 0ðo0ÞÞj, where F 0ðoÞ consists of the
first k coordinate values in FmðoÞ. In other words, the
ordering is by how well the distance between oi and o0 is
preserved by F 0. Next, initialize R as containing only o0.
Choose each object oi 2 S0 n fo0g in turn in the above
order. If HiðoiÞ is close to being a linear combination of
the mapping of the existing objects in R, then oi
is rejected8 (to simplify the notation, we assume here
that R ¼ fo0; o1; . . . ; oiÿ1g). Otherwise, add oi to R. This
process is terminated once jRj ¼ kþ 1.

7 METRICMAP: PROPERTIES AND IMPROVEMENTS

Since MetricMap, like FastMap, is inspired by properties of
Euclidean space, much of the discussion in Section 5 also
applies to MetricMap. In particular, we show in Section 7.1
that the embedding produced by MetricMap is typically not
contractive when d is not the Euclidean metric. Further-
more, even when d is the Euclidean metric, MetricMap may
still not be contractive. Nevertheless, MetricMap can always
achieve a distance-preserving embedding with respect to S,
given a sufficient number of coordinate axes (i.e., N þ 1,
and perhaps less). The remaining sections discuss other
properties of MetricMap and propose minor variants. In
Section 7.2, we point out that the fact that some coordinate
axes have a negative contribution to distances can make
similarity search expensive, and suggest an alternative
definition of � that does not result in negative values. In
Section 7.3, we introduce a heuristic for choosing the
“origin” of the embedding, designed to reduce the error in
distances over S. In Section 7.4, we explore the relationship
between FastMap and MetricMap in more detail, and show
that FastMap can be modified to result in an embedding
into pseudo-Euclidean space, like MetricMap.

7.1 Noncontractiveness

As mentioned in Section 6.2, when S is drawn from a
Euclidean space, the mapping Fm according to (16) is
equivalent to applying translation and rotation on the
points in P and retaining m of the resulting coordinate
values. Thus, since the Euclidean metric is invariant to
translation and rotation, MetricMap results in a contrac-
tive embedding if k ¼ m (i.e., the whole set S0 is used as
reference objects). However, if m > k and the mapping Fk
is used instead (i.e., based on kþ 1 reference objects
instead of mþ 1, chosen as described in Section 6.3), the
embedding is not necessarily contractive. For example,
suppose that k ¼ 1 and that S0 consists of the 2kþ 1 ¼ 3
points p0 ¼ ð0; 0Þ, p1 ¼ ðÿ2; 1Þ, and p2 ¼ ð0; 2Þ. In this case,
the procedure described in Section 6.3 would obtain
R ¼ fp0; p1g, and the result of the embedding would be
F1ðp0Þ ¼ 0, F1ðp1Þ � 2:5, and F1ðp2Þ � 1:0. Thus, the

distance in the embedding space between F1ðp0Þ and
F1ðp1Þ would be greater than that between p0 and p1 since
dðp0; p1Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22 þ 12
p

� 2:2, while �ðF1ðp0Þ; F1ðp1ÞÞ � 2:5.
When ðS; dÞ is an arbitrary finite metric space (i.e., not

necessarily isomorphic to a subset of a Euclidean space), it can
be shown thatFm preserves the distances among the objects in
S0. Unfortunately, this is not enough to guarantee that Fm is
contractive, and, indeed, Fm will typically not be contractive.
The source of the noncontractiveness is essentially the same as
that for FastMap, as detailed in Section 5.2. In particular, as in
FastMap, the mappingFm is based on applying an analogy to
translation and rotation, but when d is not the Euclidean
metric, the analogy to rotation is not guaranteed to preserve
distances.

For a single coordinate axis, MetricMap can result in the
same amount of expansion as FastMap, i.e., at most three as
derived in Section 5.3. The expansion for more coordinate
axes can be even greater, as for FastMap. Nevertheless, since
negative eigenvalues have a negative contribution to “dis-
tances” according to �, it is possible that the excessive
distortion exhibited by FastMap is ameliorated, at least to
some extent.

7.2 Distances in the Embedding Space

The “distance” function � for MetricMap is based on the

function �k, as defined by (17). Thus, coordinate axes

corresponding to negative eigenvalues have a negative

contribution to the distance values according to � (since J is

defined based on the signs of the eigenvalues). There may be a

major problem with such distance functions for similarity

search applications where a spatial index is used to organize

the result of the embedding, in that the query region in the

mapped space may be very large, even for a range query with

a small radius. For example, suppose that we have a two-

dimensional pseudo-Euclidean space with a positive x-axis

and negative y-axis, i.e., �1 > 0 and �2 < 0. Given a query

object q 2 UU, mapped into q0 ¼ F ðqÞ ¼ ðxq; yqÞ, consider the

two diagonal lines through ðxq; yqÞ, i.e., the lines given by the

equations xÿ xq ¼ yÿ yq and xÿ xq ¼ ÿðyÿ yqÞ which are

at 45 and -45 degree angles from the x-axis. The two lines can

be viewed as dividing the plane into four quadrants; we

abbreviate them with N, E, S, and W, in clockwise order,

where the N quadrant is the one “above” ðxq; yqÞ. For any

point p 2 IR2 on these lines, �ðq0; pÞ is zero, while if p is in the N

or S quadrants (and not on the lines), �ðq0; pÞ is negative. Thus,

for a range query with radius �, the query region in the

embedding space, defined by �ðq0; pÞ � �, would include the

entire N and S quadrants, in addition to portions of the W and

E quadrants.9 Hence, since the N and S quadrants are already

infinite, the query region is also infinite (although, in practice,

it would only reach to the boundary of the data space).

Therefore, even a search region with a very small radius may

contain nearly all the objects, and perhaps overlap all the leaf

node regions of the index. A possible solution to this dilemma

is to retain only dimensions corresponding to positive

eigenvalues, thus embedding into a Euclidean space, but this

may lead to excessive expansion (see Section 5.3).
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8. This heuristic is based on the fact that, if a vector vi is a linear
combination of a set of vectors v1; . . . ; viÿ1, then adding vi to the set does not
increase the span of the set of vectors. Also, note that, if HiðoiÞ is close to
being a linear combination of HiðojÞ, j < i, then the i� i matrix with
column vectors HiðojÞ, j � i has a determinant that is close to zero.

9. More precisely, the query region would be delimited by the two
curves of a hyperbola, which lie in the W and E quadrants, respectively.



A related issue is the fact that � can return negative

distance values, which has a questionable purpose. In

particular, when d returns a distance value of zero, complete

similarity is implied, i.e., dða; bÞ ¼ 0 means that a ¼ b (if d is a

pseudometric, a distance of zero may not imply equality, but

it at least implies close similarity or even equivalence). On the

other hand, we cannot for example conclude that a and b are

more similar when �ðF ðaÞ; F ðbÞÞ equals ÿ10 than when it

equals ÿ5. Thus, we propose the following alternative

definition of � that simply “truncates” the distances at zero:

�ðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�kðx; yÞ

p
if �kðx; yÞ � 0;

0 otherwise:

�

7.3 Choosing the Origin

Consider the case when S � UU ¼ IRn and d is the Euclidean
metric. A dimension-reduction mapping gk : IRn to IRk, for a
fixed k < n, is said to be result in the least-square error over a
data set S if X

p1;p22S
ðdðp1; p2Þ ÿ �ðgkðp1Þ; gkðp2ÞÞÞ2

is minimized. As mentioned in Section 4.1, it can be shown

that a linear transformation with the least square error is

one obtained by translating the points in S such that their

center of gravity is at the origin, rotating such that the

variance along the first m coordinate axes is as great as

possible and then projecting onto those k coordinate axes. In

other words, the function gkðpÞ ¼ Ukðpÿ �Þ satisfies the

property, where � is the center of gravity, P ¼ pÿ �ð Þp2S ,

and P ¼ U�V T is the singular value decomposition of P .

Comparing the function gk derived above with fk accord-

ing to (18), it should be clear that the closer p0 is to the center of

gravity for S0, the smaller is the “square error” of fk over S0 is,

the closer p0 is to the center of gravity for S0. Moreover, the

error of fk overS should also tend to be lower for such a choice

of p0, assuming that the distribution of points inS0 is similar as

that of S (and, in particular, their centers of gravity are

similar), which is ideally the case. In fact, rather than picking a

random point in S as p0, we may wish to construct S0 ¼
fp0g [ S00 such thatS00 � S and p0 is the center of gravity of the

objects in S0 0 ¼ fp1; . . . ; pkg (i.e., p0 ¼
P

i
pi

k ). We may even

wish to set p0 to�, the center of gravity for all ofS. If the whole

data setS fits in main memory, computing its center of gravity

does not add significant overhead. However, if S is large

enough to exceed available memory, then computing the

center of gravity requires an extra scan of the entire data set on

disk, thus potentially performing nearly twice the amount of

I/O for embedding S.
When d is not the Euclidean metric, we do not have the

luxury of computing the center of gravity directly. Never-
theless, a heuristic for choosing o0, the “origin” of the
embedding, from among the objects in S0 can be derived by
examining the Euclidean case. In particular, it can be shown
[24] that the sum of the squared distances between p0 and
the remaining objects in S0 depends on the squared distance

between p0 and �0, the center of gravity for S0. Thus, sinceP
i kpi ÿ �0k

2
2 is independent of p0, the sum

P
i kpi ÿ p0k2

2 of
squared distances increases as p0 is farther away from �0,
the center of gravity for S0. Therefore, the best choice of p0

from among the objects in S0 is the one that minimizes the
sum of squared distances since this indicates that p0 is close
to �0. It should be clear that this strategy can be used as a
heuristic when d is not the Euclidean metric. In other words,
after choosing the subset S0 � S, we compute the sum of
squared distances for objects in S0, and pick o0 as the one for
which the sum is minimized.

7.4 Relationship between FastMap and MetricMap

The formulas used in FastMap and MetricMap appear very
similar, namely, (9) for FastMap and (15) for MetricMap.
This is no accident, as (9) is based on an analogy to an
orthogonal projection in Euclidean spaces, while (15) is
based on an analogy to applying the dot product in
Euclidean spaces and an orthogonal projection can be
defined in terms of a dot product. In particular, if p1

1; p
1
2; o 2

IRm and d1 is the Euclidean distance metric, then (9) for the
first iteration of FastMap is equivalent to

x1
o ¼ u1 � ðoÿ p1

1Þ ¼
ðp1

2 ÿ p1
1Þ � ðoÿ p1

1Þ
kp1

2 ÿ p1
1k2

;

where u1 is the unit vector parallel to p1
2 ÿ p1

1. The vector
ðu1 � ðoÿ p1

1ÞÞui is the orthogonal projection of p1
2 ÿ p1

1 onto
u1. If U is an orthogonal matrix such that UTu1 ¼ v1, where
v1 ¼ ð1; 0; . . . ; 0Þ, then u1 is the first column in U . Thus, x1

o is
the first component of UT ðoÿ p1

1Þ, which clearly is of the
same form as (18). Furthermore, as shown in [24], the latter
equation is equivalent to (16), which forms the basis of the
MetricMap embedding.

In light of the similarity between the equations for
FastMap and MetricMap, it is tempting to think that they
are equivalent when determining m coordinate axes if the
pairs ðo0; oiÞ; i 2 f1; . . . ;mg were used in FastMap, i.e., pi1 ¼
o0 and pi2 ¼ oi for i 2 f1; ;mg. In this case, the first component
in HmðoÞ according to (15) would be x1

odðp1
2; p

1
1Þ, so the first

component in FmðoÞ, according to (16), would be x1
o if we set

q1 ¼ e1 and �1 ¼ dðp1
2; p

1
1Þ. Thus, we may ask whether the

mapping of o according to FastMap can be obtained by a
suitable rotation ofHmðoÞ. Unfortunately, although true if d is
the Euclidean metric, this answer is no for arbitrary metric
spaces.

The notion of pseudo-Euclidean squared distances used
by MetricMap can be adopted for use in FastMap, replacing
the non-Euclidean heuristic described in Section 4.7. In
particular, the definition of xio in (9) would be replaced by

xio ¼
diðpi1; oÞ

2 þ diðpi1; pi2Þ
2 ÿ diðpi2; oÞ

2

2jdiðpi1; pi2Þj
;

and the definition of diða; bÞ2 in (10) would be replaced by

diða; bÞ2 ¼ diÿ1ða; bÞ2 ÿ sign diÿ1ðpi1; pi2Þ
ÿ �

xiÿ1
a ÿ xiÿ1

b

ÿ �2
:

Furthermore, in the mapped space, we would use the
pseudo-Euclidean squared distance function �, where

�ðx; yÞ ¼
Xk
i¼0

sign diÿ1ðpi1; pi2Þ
2

� �
ðxÿ yÞ2:
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Note that with these definitions, ðpi1; pi2Þ is still a legal pivot
pair even if diðpi1; pi2Þ

2 is negative. Furthermore, diþ1ðpi1; pi2Þ ¼
0 even in this case, whereas this would not be true with the
heuristic described in Section 4.7 for such pivot objects
(although diþ1ðpi1; pi2Þ > 0). Using the above pseudo-Eucli-
dean heuristic in FastMap has the same potential drawbacks
as using dimensions corresponding to negative eigenvalues
in MetricMap. Moreover, for the purposes of choosing the
pivot pair in iteration i, it is not clear whether it is better to pick
the pair ðpi1; pi2Þ such that diÿ1ðpi1; pi2Þ

2 or jdiÿ1ðpi1; pi2Þ
2j is as

large as possible. Nevertheless, the above heuristic may be a
competitive alternative to the heuristic in Section 4.7.

8 CONCLUDING REMARKS

We have evaluated a number of embeddings of finite metric
spaces in the context of their usage for similarity searching
with 100 percent recall. One hundred percent recall is
important in similarity search as it ensures that no relevant
object is dropped from the query response. Our focus was on
the SparseMap, FastMap, and MetricMap embedding meth-
ods; a somewhat expanded treatment can be found in [24],
including a discussion of Multidimensional Scaling. One
hundred percent recall is achieved when the resulting
embedding is contractive. Although Linial et al. [1] showed
how to make the Lipschitz embeddings contractive, we
showed that the speedup heuristics that comprise the
SparseMap adaptation make the resulting mapping noncon-
tractive. Moreover, we demonstrated how to modify the
SparseMap heuristics so that the resulting embedding is
indeed contractive.

Table 1 summarizes the properties of the three embed-
ding methods and includes our proposed modification of
SparseMap. In the table, construction cost refers to the cost
of constructing the embedding function F , while mapping
cost refers to the cost of computing F ðoÞ for some o 2 UU,
where the cost is in terms of the number of distance
computations. In the cost formulas, k is the dimensionality
of the embedding space, N the size of the data base, and we
assumed that only two iterations are performed in FastMap
when determining pivot objects (see Section 4.3). For
SparseMap, we only list asymptotic costs, which are based
on a suitable choice of embedding space dimensionality and
heuristic parameters [21].

In the case of FastMap, we have first proven that, it is
contractive when the data is drawn from a Euclidean space,
and the distance metric in the embedding space is a
Minkowski metric Lp with p � 2 (which includes the
Euclidean distance metric). In their development of Fas-
tMap, Faloutsos and Lin [20] claimed that the advantage of
FastMap over methods such as KLT is that FastMap can

work for data drawn from an arbitrary metric space (i.e., the
only information about the data objects consists of the
interobject distances, which are required to satisfy the
triangle inequality). However, we showed that FastMap is
only a heuristic when the data is drawn from a metric space
that is not Euclidean. In particular, we have proven that, in
such a case, it is possible for FastMap not to be contractive.
We showed that this was a direct result of the implicit
assumption by Faloutsos and Lin [20] of the applicability of
the Pythagorean theorem, which in the case of a general
metric space can only be used as a heuristic in computing the
projected distance values. In fact, this led to definitions of
distance functions at intermediate iterations that did not
satisfy the triangle inequality and thereby failed to be
distance metrics. Noncontractiveness enabled us to prove
the following properties of FastMap for this situation:

1. Given a value k, application of FastMap may not
always be possible in the sense that we are not
guaranteed to be able to determine k coordinate axes.

2. The distance distortion of the embedding can be
very large, as evidenced by the bounds that we gave,
some of which were attainable, on how much larger
the distances in the embedding space can be.

3. The fact that we may not be able to determine
k coordinate axes limits the extent of achievable
distance preservation. However, more importantly,
failure to determine more coordinate axes does not
necessarily imply that relative distances among the
objects are effectively preserved.

4. The presence of many nonpositive, or very small
positive, distance values (which can cause large
distortion) in the intermediate distance functions
(i.e., those used to determine the second and
subsequent coordinate axes) may cause FastMap to
no longer satisfy the claimed OðNÞ bound on the
number of distance computations in each iteration.
In particular, finding a legal pivot pair may, in the
worst case, require examining the distances between
a significant fraction of all possible pairs of objects,
or 
ðN2Þ distance computations.

A heuristic for handling non-Euclidean distance metrics
in FastMap, proposed by Wang et al. [23], alleviates some of
the drawbacks listed above. In particular, it should reduce
the amount of distance distortion in the embedding, and the
number of object pairs that do not qualify as pivots should be
lower, thus reducing the likelihood of not satisfying the
OðNÞ bound on the number of distance computations in each
iteration of FastMap. However, a detailed empirical study of
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the effect of the heuristic on actual data sets remains to be
performed.

MetricMap has many of the same properties as FastMap,
given that both are inspired by dimension-reduction methods
for Euclidean spaces. In particular, MetricMap is also
contractive for data drawn from Euclidean spaces, but
usually not for other types of data and metrics. However,
when the number of “reference objects” is reduced in
MetricMap, we showed that the embedding may be non-
contractive even for data drawn from a Euclidean space
(Section 7.1). Moreover, MetricMap can also lead to a large
expansion. We point out that the fact that the MetricMap
yields a pseudo-Euclidean embedding may lead to poor
performance for similarity search when spatial indexes are
employed for the mapped objects (Section 7.2). Furthermore,
we proposed heuristics for choosing the origin of the
embedding space, both for Euclidean spaces and for arbitrary
metric spaces (Section 7.3). Like FastMap, MetricMap uses
2k “pivot objects” (termed reference objects in MetricMap) in
deriving the embedding function when mapping into a space
of dimension k. However, mapping each object is less
expensive in MetricMap than in FastMap, in that only
kþ 1 distance computations are necessary. Furthermore,
MetricMap employs a different strategy to handle non-
Euclidean metrics than FastMap (see Section 4.7), namely, by
mapping into a pseudo-Euclidean space, which may result in
less distortion in the distances.

Many possibilities exist for future work on general
embedding methods. Our work, for example, suggests a
number of possible experimental studies, some of which we
have mentioned in the text. These include:

1. Compare the relative quality of the embedding
resulting from the various methods on actual data sets.

2. Evaluate the added cost of the modified SparseMap
heuristic that we suggested (Section 3.2), and the
difference in the embedding quality compared to the
original SparseMap heuristic on actual data sets.

3. Measure the distortion in distances that result when
using FastMap on actual data sets, to see if it tends to
approach the worst-case that we describe in
Section 5.3, as well as study the extent to which the
distortion affects nearest-neighbor search (since the
distortion is greatest over small distances).

4. Study the effect of the heuristics that we propose for
choosing the origin of the embedding space in
MetricMap (Section 7.3).

5. Examine the difference in the quality of the embed-
ding of using different heuristics for handling non-
Euclidean distance metrics in FastMap, including the
one proposed by Wang et al. [23] and the one that we
suggest in Section 7.4.

Another interesting direction for future work is to study
other general embedding methods (such as other variants of
Lipschitz embeddings [34], [36]), and also evaluate them
experimentally.
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