
Pattern Recognition Letters 24 (2003) 2785–2795

www.elsevier.com/locate/patrec
Improved search heuristics for the sa-tree

G�ıısli R. Hjaltason a,*, Hanan Samet b

a School of Computer Science, University of Waterloo, 200 University Ave W, Waterloo, Ont., Canada N2L 3G1
b Computer Science Department, Center for Automation Research, Institute for Advanced Computer Studies,

University of Maryland, College Park, MD 20742, USA

Received 31 December 2002; received in revised form 22 April 2003
Abstract

The sa-tree is an interesting metric space indexing structure that is inspired by the Voronoi diagram. In essence, the

sa-tree records a portion of the Delaunay graph of the data set, a graph whose vertices are the Voronoi cells, with edges

between adjacent cells. An improvement is presented on the original search strategy for the sa-tree. This consists of

details on the intuition behind the improvement as well as the original search strategy and a proof of their correctness.

Furthermore, it is shown how to adapt an incremental nearest neighbor algorithm to the sa-tree, which allows com-

puting nearest neighbor in a progressive manner. Unlike other adaptations, the resulting algorithm does not take the

unnecessary steps to ensure that keys of ‘‘node’’ elements are monotonically non-decreasing.

� 2003 Elsevier B.V. All rights reserved.

Keywords: Metric spaces; Distance-based indexing; Nearest neighbor algorithms
1. Introduction

Similarity searching is an important task when

trying to find patterns in applications involving

mining different types of data such as images, vi-

deo, time series, text documents, DNA sequences,

etc. (e.g., see Han and Kamber, 2000). Similarity
searching often reduces to a question of finding the

nearest neighbors to a query object. Usually, this

data is not drawn from a vector space. Instead, we

are given the data and a distance metric or func-

tion that enables the computation of interobject
* Corresponding author.

E-mail addresses: gisli@db.uwaterloo.ca (G.R. Hjaltason),

hjs@cs.umd.edu (H. Samet).

0167-8655/$ - see front matter � 2003 Elsevier B.V. All rights reserv

doi:10.1016/S0167-8655(03)00122-3
distances. In other words, we are given an under-

lying space U and a set of objects S � U such that

for each query object q in U, we wish to find the

nearest object in s to q (or, more generally, the k
nearest objects to q or the objects within e of q). A
primary challenge in performing similarity search

for such data is that the evaluation of the distance
function d is typically quite expensive. One ap-
proach in addressing this challenge is to construct

index structures that are based solely on distances

between objects. Examples of such structures are

thevp-tree (Uhlmann, 1991;Yianilos, 1993),GNAT

(Brin, 1995), and M-tree (Ciaccia et al., 1997), see

Ch�aavez et al. (2001) andHjaltason andSamet (2003)
for surveys of these and other distance-based in-
dexing structures. The sa-tree (Navarro, 2002) is

an example of another distance-based index that is
ed.

mail to: gisli@db.uwaterloo.ca

1 For example, suppose that U ¼ U0 ¼ fa; b; c; xg, dða; bÞ ¼
dða; cÞ ¼ dðb; cÞ ¼ 2 and d 0ða; bÞ ¼ d 0ða; cÞ ¼ d 0ðb; cÞ ¼ 2. Fur-
thermore, assume that dða; xÞ ¼ 1, dðb; xÞ ¼ 2, and dðc; xÞ ¼ 3
while d 0ða; xÞ ¼ 3, d 0ðb; xÞ ¼ 2, and d 0ðc; xÞ ¼ 1. If S ¼ S0 ¼
fa; b; cg, the distance matrices for the two sets are the same. The
graph with edges ða; bÞ and ða; cÞ (i.e., NðaÞ ¼ fb; cg and
NðbÞ ¼ NðcÞ ¼ fag) satisfies the Voronoi property for ðS; dÞ,
since the nearest neighbor of any query object drawn from U

can be arrived at starting at any object in S by only

transitioning to neighbors that are closer to or at the same

distance from the query object. Thus this graph is a Delaunay

graph for ðS; dÞ. However, it does not satisfy the Voronoi
property for ðS0; d 0Þ, since starting at b with q ¼ x, b�s only
neighbor a is farther away from x than b is, so we cannot
transition to the nearest neighbor c of x. Thus it is not a
Delaunay graph for ðS0; d 0Þ. It is interesting to note that the
graph with edges ða; bÞ and ðb; cÞ (i.e., NðbÞ ¼ fa; cg and
NðaÞ ¼ NðcÞ ¼ fbg) satisfies the Voronoi property for both
ðS; dÞ and ðS0; d 0Þ and thus it is a Delaunay graph for both ðS; dÞ
and ðS0; d 0Þ. Of course, this example does not invalidate our
observation that knowledge of ðS; dÞ is insufficient to determine
the Delaunay graph.

2786 G.R. Hjaltason, H. Samet / Pattern Recognition Letters 24 (2003) 2785–2795
based on an analogy to the use of the Voronoi

diagram in geometric space. Although other dis-

tance-based indexing methods, such as GNAT,

were also inspired by the Voronoi diagram, the sa-

tree is a novel departure in the way it is con-

structed and searched.
To understand the sa-tree, it is important to

look at how Voronoi diagrams (Voronoi, 1909)

can be used for performing search. In a Voronoi

diagram for point data, for each ‘‘site’’ p, the
Voronoi cell of p identifies the area closer to p than
to any other site. Thus, given a query point q,
nearest neighbor search simply involves identifying

the Voronoi cell that contains q. Another, some-
what indirect, way of constructing a search struc-

ture for nearest neighbor search based on the

Voronoi diagram is to build a graph termed a

Delaunay graph, defined as the graph where each

object is a node and two nodes have an edge be-

tween them if their Voronoi cells have a common

boundary (in an earlier publication, Navarro, 1999

used the term ‘‘Voronoi graph’’). In other words,
the Delaunay graph is simply an explicit repre-

sentation of neighbor relations that are implicitly

represented in the Voronoi diagram; clearly, Del-

aunay graphs are closely related to Delaunay tri-

angulations, the difference being that in the latter,

the edges have an associated geometric shape.

Searching a Delaunay graph for the nearest

neighbor in S of a query point q in U starts with an
arbitrary point in S, and proceeds to a neighboring
point in S that is closer to q as long as this is pos-
sible. Once we reach a point o in S where the points
in its neighbor set NðoÞ in S (i.e., the points con-
nected to o by an edge) are all farther away from q
than o, we know that o is the nearest neighbor of q.
The reason this search process works on the Del-

aunay graph of a set of points is that the Delaunay
graph has the property that if q is closer to a point p
than to any of the neighbors of p in the Delaunay
graph, then p is the point in S closest to q. The same
search process can be used on any graph that sat-

isfies this Voronoi property. In fact, for an arbitrary

metric space ðU; dÞ, a Delaunay graph for a set
S � U is a minimal graph that satisfies the Voronoi

property (i.e., removing any edge would cause vi-
olation of the property). Thus, any graph that

satisfies the Voronoi property must include a Del-
aunay graph as a subgraph. Note, however, that

the Delaunay graph is not necessarily unique as

there can be several such minimal graphs (possibly

even with a different number of edges).

The Voronoi diagram serves as the inspiration

for the sa-tree (Navarro, 1999; Navarro, 2002), in
that the sa-tree attempts to approximate the

structure of the Delaunay graph (its name is an

abbreviation for Spatial Approximation Tree).

Unfortunately, Voronoi cells (or, perhaps more

accurately, Dirichlet domains (Brin, 1995)) for data

objects cannot be constructed explicitly (i.e., their

boundaries specified) if only interobject distances

are available. Moreover, it is possible to show
(Navarro, 2002) that without more information

about the structure of the underlying metric space

ðU; dÞ, just knowing the set of interobject distances
for a finite metric space ðS; dÞ, S � U, is not enough

to enable the construction of a valid Delaunay

graph for S based on d––that is, we also need in-
formation about the distances between the elements

of S and the elements of U. In other words, for the
two sets S � U and S0 � U0 with identical interob-

ject distances (i.e., ðS; dÞ and ðS0; d 0Þ are isometric),
possibly drawn from different underlying spaces U

andU0, ðS; dÞmay have a Delaunay graph D that is
not a Delaunay graph for ðS0; d 0Þ, or vice versa. 1

a

b
d

f
g

h

i

j
n

o

r

a

b
d

f
g

h

i

j
n

o

r

G.R. Hjaltason, H. Samet / Pattern Recognition Letters 24 (2003) 2785–2795 2787
Moreover, for any two objects a and b, a finite
metric space ðS; dÞ exists whose Delaunay graph
contains the edge between a and b. Hence, given
only the interobject distances for a set S, the only
way to construct a graph G such that G satisfies the
Voronoi property for all potential query objects in
U (i.e., contains all the edges in the Delaunay

graph) is for G to be the complete graph––that is,
the graph containing an edge between all pairs of

nodes (each of which represents an object in S).
However, such a graph is useless for search, as de-

ciding on what edge to traverse from the initial

object in S requires computing the distances from
the query object to all the remaining objects in S
(i.e., it is as expensive, OðNÞ, as brute-force search).
The idea behind the sa-tree is to approximate the

proper Delaunay graph with a tree structure that

retains enough edges to be useful for guiding

search, but not somany that an excessive number of

distance computations are required when deciding

on what node to visit next.

In this paper, we describe the sa-tree in more
detail. Section 2 defines the sa-tree. Section 3 is the

main part of the paper and discusses how to search

in an sa-tree. In particular, we introduce an im-

provement over the search strategy originally

proposed by Navarro (1999). This improved

strategy was later adopted by Navarro (2002)

(based on our suggestion). Here, we also provide

more details on the intuition behind the improve-
ment, prove its correctness, and discuss its limita-

tions. Section 4 presents an algorithm for finding

nearest neighbors incrementally. One of its novel

features is that unlike the algorithm of Navarro

(2002), our algorithm does not take the unneces-

sary steps to ensure that keys of ‘‘node’’ elements

are monotonically non-decreasing. Section 5 con-

tains concluding remarks and some suggestions for
future research.
c
ek

l
m

q s

t u v

w

(b)

c
ek

l
m

q s

t u v

w

(a)

Fig. 1. (a) A set of points in a two-dimensional Euclidean

space, and (b) its corresponding sa-tree constructed using the

algorithm of Navarro (2002) when a is chosen as the root.
2. Definition of the sa-tree

The sa-tree is an indexing method on a finite

metric space ðS; dÞ, where S � U is a set of objects

and d is a distance metric. This means that d sat-
isfies the following three properties, where o1, o2,
o3 2 S:
1. dðo1; o2Þ ¼ dðo2; o1Þ (symmetry)

2. dðo1; o2ÞP 0; dðo1; o2Þ ¼ 0 iff o1 ¼ o2 (non-

negativity)

3. dðo1; o3Þ6 dðo1; o2Þ þ dðo2; o3Þ (triangle in-

equality)

The sa-tree is defined as follows (see the exam-

ple in Fig. 1 to clarify some of the questions that

may arise). An arbitrary object a is chosen as the
root node of the tree (since each object is associ-

ated with exactly one node, we use the terms object

and node interchangeably in this discussion). Next,

a smallest possible set NðaÞ � S n fag is identified,
such that x is in NðaÞ iff for all y 2 NðaÞ n fxg,
dðx; aÞ < dðx; yÞ. The set NðaÞ is termed the

neighbor set of a, by analogy with the Delaunay
graph, and the objects in NðaÞ are said to be the
neighbors of a. Intuitively, for a legal neighbor set
NðaÞ (i.e., not necessarily the smallest such set),
each object in NðaÞ is closer to a than to the other
objects in NðaÞ, and all the objects in S n NðaÞ
are closer to one of the objects in NðaÞ than to a.
The objects in NðaÞ then become children of a.
The remaining objects in S are associated with the
closest child of a (i.e., the closest object in NðaÞ),
and the subtrees are defined recursively in the same

way for each child of a. As we shall see below, it is
useful for search to store in each node b the dis-
tance dmaxðbÞ to the farthest object in the subtree
rooted at b. More precisely, dmaxðbÞ � maxo2Sb dðo;
bÞ, where Sb denotes the set of objects in the sub-
tree rooted at b. Fig. 1b shows a sample sa-tree for

a

b
c

d

10 11

9
8

15
12

Fig. 2. An example of four points a, b, c, d where the sa-tree

construction algorithm does not find the minimal neighbor set

NðaÞ.

2788 G.R. Hjaltason, H. Samet / Pattern Recognition Letters 24 (2003) 2785–2795
the two-dimensional points a–w given in Fig. 1a,
with a chosen as the root. In this example,

NðaÞ ¼ fb; c; d; eg. Note that h is not in NðaÞ as h
is closer to b than to a.
The fact that the neighbor set NðaÞ is used in its

definition (i.e., in a sense, the definition is circular)

makes constructing a minimal set NðaÞ expensive.
In fact, Navarro (2002) argues that its construc-

tion is an NP-complete problem. Thus, Navarro
(2002) resorts to a heuristic for identifying the

neighbor set. This heuristic considers the objects in

S n fag in the order of their distance from a, and
adds an object o to NðaÞ if o is closer to a than to
the existing objects in NðaÞ. In fact, the sa-tree in
Fig. 1b has been constructed using this heuristic

with a chosen as the root. An example of a situa-
tion where the heuristic would not find the mini-
mal neighbor set is shown in Fig. 2, where

approximate distances between four two-dimen-

sional points a through d are labeled. The mini-
mum neighbor set of a in this case is NðaÞ ¼ fdg
(and NðdÞ ¼ fb; cg) whereas use of the heuristic
would lead to NðaÞ ¼ fb; cg (and NðbÞ ¼ fdg).
Although the heuristic does not necessarily find

the minimal neighbor set, it is deterministic in the
sense that for a given set of distance values, the

same neighbor set is found (except for possible ties

in distance values). Thus, using the heuristic, the

structure of the sa-tree is uniquely determined once

the root has been chosen. However, different

choices of the root lead to different tree structures.

Using the sa-tree, it is easy to perform exact

match queries (i.e., to search for an object in S)
with the same procedure as in the Delaunay graph

as described in Section 1. Of course, this is not very

useful, as the query object is typically not in S in
most actual queries. In the next section, we show

how to perform more general queries.
3. Search in the sa-tree

When searching the sa-tree with respect to query

object q, we exploit the relationship between the
objects in the nodes. In particular, given a subtree
T having an object p1 in its root node, let p2 be an
object that is known to be farther away from all

objects o in T than is p1 (i.e., dðp1; oÞ6 dðp2; oÞ for
all o in T). Section 3.1 shows how to derive a lower
bound on dðq; oÞ for all objects in T based on this
information. Section 3.2 sketches Navarro�s (1999)
original proposal for how to choose p2. Section 3.3
gives the intuition and a proof of correctness of
our method of choosing p2 from a larger set (later
adopted by Navarro (2002)), thereby enabling us

to obtain a tighter lower bound.

3.1. Lower bound on distances

The following lemma provides the desired lower

bound in the situation outlined above:

Lemma 1. Let o 2 U be an object that is closer to
p1 than to p2, or equidistant from both (i.e.,
dðp1; oÞ6 dðp2; oÞ). Given dðq; p1Þ and dðq; p2Þ, we
can establish a lower bound on dðq; oÞ:

max
dðq; p1Þ � dðq; p2Þ

2
; 0

� �
6 dðq; oÞ: ð1Þ
Proof. From the triangle inequality, we have

dðq; p1Þ6 dðq; oÞ þ dðp1; oÞ, which yields dðq; p1Þ�
dðq; oÞ6 dðp1; oÞ. When combined with dðp2; oÞ6
dðq; p2Þ þ dðq; oÞ (from the triangle inequality) and
dðp1; oÞ6 dðp2; oÞ, we obtain dðq; p1Þ � dðq; oÞ6
dðq; p2Þ þ dðq; oÞ. Rearranging yields dðq; p1Þ�
dðq; p2Þ6 2dðq; oÞ, which yields the first compo-
nent of the lower bound in Eq. (1), the second

component being furnished by non-negativity. h

One way to get some intuition about this result

is to consider the situation shown in Fig. 3a where

q lies on the line between p1 and p2 in a two-
dimensional Euclidean space, closer to p2. If o is
closer to p1, then o is to the left of the horizontal
line midway between p1 and p2 which separates the
regions in which objects are closer to p1 or to p2.
Thus, dðq; oÞ is lower-bounded by the distance

(a)

p2p1 q

o

(d(q,p1)-d(q,p2))/2
(b)

p2p1 q

q´

a

α β

b
c

Fig. 3. (a) Lower bound on dðq; oÞ, illustrated in a two-di-
mensional Euclidean space when q is on the line between p1 and

p2, closer to p2, while o is closer to p1. (b) The lower bound can

be shown to decrease when q is moved off the line (e.g., to q0).

G.R. Hjaltason, H. Samet / Pattern Recognition Letters 24 (2003) 2785–2795 2789
from q to the dividing line, which equals

ðdðq; p1Þ � dðq; p2ÞÞ=2 for the particular position
of q in the figure. If we move q up or down parallel
to the dividing line (e.g., up in Fig. 3b to position

q0), the distance from q0 to the line is clearly un-
changed (i.e., it is still ðdðq; p1Þ � dðq; p2ÞÞ=2).
However, the difference between dðq0; p1Þ and
dðq0; p2Þ can be shown to decrease as both in-
crease, 2 so the value of ðdðq0; p1Þ � dðq0; p2ÞÞ=2
will also decrease. In other words, we see that the

distance from q to the dividing line in the figure is
exactly ðdðq; p1Þ � dðq; p2ÞÞ=2, while ðdðq0; p1Þ�
dðq0; p2ÞÞ=2 decreases as q0 is moved while keeping
the distance from q0 to the dividing line constant.
Therefore, the value ðdðq; p1Þ � dðq; p2ÞÞ=2 is in-
deed a lower bound on the distance from q to any
point on the dividing line or from any point q0 on
the line parallel to the dividing line that passes

through q, and thus also a lower bound on the
distance between q and o. Note that this argument
holds for all positions of q that are closer to p2
than to p1, as the initial position of q can be
anywhere on the line between p1 and p2. Observe
that without additional information, an upper

bound on dðq; oÞ cannot be established, as o may
be arbitrarily far away from p1 or p2.
2 Fig. 3b depicts the relative distances for a query point q0

that is above q. From a2 ¼ a2 þ c2 we obtain a2 � a2 ¼
ða � aÞða þ aÞ ¼ c2 or a � a ¼ c2=ða þ aÞ. In the same manner,
we can show that b � b ¼ c2=ðb þ bÞ. Since q is closer to p2,

we have a > b and a > b, and therefore a þ a > b þ b.

Thus, a � a ¼ c2=ða þ aÞ < c2=ðb þ bÞ ¼ b � b, implying that

a � b < a� b, and thus ðdðq0; p1Þ � dðq0; p2ÞÞ=2 < ðdðq; p1Þ�
dðq; p2ÞÞ=2.
3.2. Original search strategy

Nearest neighbor and range search can be per-

formed in the sa-tree for arbitrary query objects q
by using the observation in Lemma 1. In particu-
lar, if a is the object corresponding to a root node,
let c be some object in fag [NðaÞ. Letting b be an
arbitrary object in NðaÞ and o be an object in the
subtree associated with b (i.e., rooted at b), we
know that o is closer to b than to c (or equidistant,
e.g., if c ¼ b). Thus, we can apply Lemma 1 to
yield the lower bound ðdðq; bÞ � dðq; cÞÞ=2 on
dðq; oÞ––that is, o is at a distance of at least
ðdðq; bÞ � dðq; cÞÞ=2 from q. Since o does not de-
pend on c, we can select c in such a way that the
lower bound on dðq; oÞ is maximized, which occurs
when dðq; cÞ is as small as possible––that is, c is the
object in fag [NðaÞ that is closest to q.
When performing range search with query ra-

dius e, we can use the lower bound on the distances
derived above to prune the search. In particular,
the search is realized with a depth-first traversal of

the tree, starting at the root. When at some node a,
we first determine the object c 2 fag [NðaÞ for
which dðq; cÞ is minimized. Next, the search tra-
versal visits each child b 2 NðaÞ, except those for
which ðdðq; bÞ � dðq; cÞÞ=2 > e (or, equivalently,
dðq; bÞ > dðq; cÞ þ 2e, as used in Navarro, 2002),
since in this case we know that dðq; oÞ > e for any
object o in the subtree associated with b.
Note that this strategy is the same as the one that

we would use in determining which Voronoi re-

gions to examine when performing a range search in

a Voronoi diagram (i.e., find all objects within e of
query object q). In essence, we compute the distance
from q to each site si of Voronoi region vi and then
choose the closest site s to q and eliminate every
Voronoi region whose site si satisfies ðdðq; siÞ�
dðq; sÞÞ > 2 � e as the intersection of the Voronoi
region vi of si with the query range of radius e
centered at q is empty. In this case, the set NðaÞ
plays the role of the sites of the Voronoi regions and

c plays the role of the site that is closest to q.
In addition, the search traversal can also make

use of dmaxðbÞ (the maximum distance from b of the
objects in the subtree rooted at b) for pruning, thus
discarding subtrees for which dðq; bÞ � dmaxðbÞ > e.
To see why this can be done, we observe that from

2790 G.R. Hjaltason, H. Samet / Pattern Recognition Letters 24 (2003) 2785–2795
the triangle inequality we know that dðq; oÞP
dðq; bÞ � dðb; oÞ for any object o including any
object o in the subtree rooted at b. We also know
that for every object o in the subtree rooted at b we
have that dmaxðbÞP dðb; oÞ. Substituting this in-
equality into dðq; oÞP dðq; bÞ � dðb; oÞ shows that

dðq; oÞP dðq; bÞ � dmaxðbÞ
for all objects o in the subtree rooted at b:

ð2Þ

Therefore, whenever dðq; bÞ � dmaxðbÞ > e, we have
that dðq; oÞ > e as well, and thus any object o in
the subtree rooted at b can be pruned in this case.
It should be clear that the search process that

we have described may have to descend several of

the subtrees of a in the process of determining the
objects that satisfy the range query, and thus it
may require backtracking. This is because, unlike

exact match search in an sa-tree where the fact that

we know in advance the identity of the object q
that we are seeking means that we only pursue one

path to find it, in the range query we do not know

in advance the identity of the objects that will

satisfy the range and thus more paths in the tree

must be pursued.

3.3. Improved search strategy

In the search algorithm sketched above, instead

of basing the selection of c on the set fag [NðaÞ
(i.e., based on their distances from q), we can use the
larger set

S
a02AðbÞ ðfa0g [Nða0ÞÞ, where AðbÞ is the

set of ancestors of b and b is in NðaÞ. This strategy
makes it more likely that c is close to q (since a larger
set is used to select it), thus possibly providing a

greater value for the lower bound ðdðq; bÞ�
dðq; cÞÞ=2 on dðq; oÞ. The correctness of choosing c
in this manner is shown in the following lemma.

Lemma 2. Let a be a node in an sa-tree and let b0 be
an object in the subtree rooted at b, where b 2 NðaÞ
(i.e., b is a child of a). Then, b0 is closer to b (or
equidistant) than to any of the ancestors of b or their
immediate children––that is,

8c 2 ANðbÞ �
[
0

fa0g [Nða0Þ; dðb0;bÞ6dðb0; cÞ

a 2AðbÞ
We call the objects in ANðbÞ the ‘‘ancestor neigh-
bors’’ of b where we define the ancestor neighbor of
the root to be the root itself.

Proof. We divide the proof into two parts. First,
we show that b0 is closer to b than to all of the
ancestors of b, and then we do the same for all of
the children of the ancestors.

Let c be an ancestor of b (or b itself), and let c0

be the parent of c. We claim that b0 is closer to c
than to c0, or, more accurately, dðb0; cÞ6 dðb0; c0Þ.
To show this, we will use contradiction. Assume

that dðb0; cÞ > dðb0; c0Þ. Since c 2 Nðc0Þ, the defini-
tion of the neighbor set means then demands that

b0 should also be in Nðc0Þ, but this contradicts the
original assumption that c is an ancestor of b (and,
by extension, of b0). Thus, our claim holds, im-

plying that the ancestors of b are progressively
farther away from b0 (or, more accurately, ‘‘farther
away or equidistant’’). Clearly, this implication

subsumes the statement that we wished to prove,
that b0 is closer to b than to ancestors of b.
Now, let a0 be an ancestor of b (including,

again, b itself), and let c be a member of Nða0Þ that
is not an ancestor of b; the case of c being an an-
cestor was treated above. Suppose that b0 is closer
to c than to b, i.e., dðb0; cÞ < dðb0; bÞ. Letting
c0 2 Nða0Þ be the ancestor of b among the siblings
of c, we saw above that dðb0; bÞ6 dðb0; c0Þ. This,
coupled with our assumption about c, further
implies that dðb0; cÞ < dðb0; c0Þ. However, in this
case, b0 should have been associated with the
subtree rooted at c instead of the one rooted at c0,
thereby contradicting the assumption that c is not
an ancestor of b. Hence, b0 cannot be closer to c
than to b, and the proof is complete. h

The proof of Lemma 2 demonstrates that the

object c that maximizes the lower bound dðq; oÞ
can be chosen from any of b�s ancestors or siblings.
Recalling that the search in the sa-tree proceeds in

a top–down manner starting at its root, it may

appear that Lemma 2 means that we must examine

the ancestors and all their children each time that a

node is visited. However, this is not necessary, as
we can simply keep track of the ancestor neighbor

c that is closest to q as the tree is descended. Thus,
when visiting a new node a, we evaluate dðq; bÞ for

a

c

c'

b

b'

Fig. 4. A simple sa-tree for five two-dimensional points, with a

as root. The points b0 and c0 can move arbitrarily close to the

broken line, as indicated with the gray arrows, without giving

rise to a different tree structure.

G.R. Hjaltason, H. Samet / Pattern Recognition Letters 24 (2003) 2785–2795 2791
all b 2 NðaÞ and replace c as the closest to q if
dðq; bÞ < dðq; cÞ for some b. Actually, rather than c
itself, what we keep track of is the distance value

dðq; cÞ.
Having succeeded in enlarging the set of objects

from which c is selected during the search, it is
tempting to speculate whether an even larger set

can be used. Unfortunately, this hope is unlikely to

be fulfilled, as demonstrated by the example in Fig.

4. In the figure, the two-dimensional points b0 and
c0 can be moved arbitrarily close to each other
while maintaining the same sa-tree structure.
Hence, an object b0 can easily be closer to some
other object c0 than to its parent b if c0 is not
among the ancestor neighbors of b. Therefore,
objects that are not among the ancestor neighbors

of b can be arbitrarily close to b0 thereby pre-
cluding their consideration as candidates for im-

proving the pruning power.
4. Incremental nearest neighbor search

In Section 3, we sketched how to perform range

search with the sa-tree. Another common way of

realizing similarity search for metric space data is

with nearest neighbor search, namely finding the k
objects in S that are closest to the query object q,
where kP 1. In many applications, the number k
of desired nearest neighbors is not known a priori,

but is instead controlled by some stopping condi-

tion (Carey and Kossmann, 1997), which can be

based on arbitrary criteria. In this case, the most

useful algorithms are ones that compute the result

progressively, such that results are reported as
early as possible. This allows making use of pipe-

lined query execution in complex queries involving

nearest neighbor queries as subqueries (Carey and

Kossmann, 1997; Fagin et al., 2001).

4.1. Algorithm

The nearest neighbor algorithm that we intro-

duced in (Hjaltason and Samet, 1999) is incre-

mental, in the sense of computing its results

progressively as described above. Furthermore, the

algorithm is general in the sense that it can be

applied to a variety of domains and search struc-

tures, including the sa-tree. The basic idea behind
the algorithm is to traverse the hierarchical struc-

ture in a ‘‘best-first’’ manner, which essentially

means that at each step, the next node to visit is

chosen from a global list of nodes based on their

‘‘distance’’ from the query object q. The distance
of a node from q must be some value that lower-
bounds the distances from q to all objects in the
subtree rooted at the node. The traversal is facili-
tated by organizing the list of nodes with a priority

queue, where the key is the distance from q of their
entries. A second important idea in the algorithm

is to also insert the objects onto the priority queue,

with their actual distances as their keys. Thus,

when an object reaches the front of the queue, we

know that all other objects that have not already

been removed from the queue must be farther
from the query object.

Fig. 5 presents this incremental nearest neigh-

bor algorithm in a form adapted to the sa-tree.

The process is initialized in lines 1–3, after which

the newly created priority queue, queue, contains
as its only element the root of the sa-tree T . In
each iteration of the while-loop, starting at line 4,

the element e with the smallest key is removed
from the priority queue (with DEQUEUEEQUEUE) and

processed appropriately. In particular, if e repre-
sents an object a (i.e., if e is labeled ‘‘object’’), a is
reported as the next nearest neighbor; at this point,

the algorithm can be terminated if desired. Other-

wise, if e represents a node in the sa-tree, corre-
sponding to an object a, where e is of the form
½a; dðq; aÞ; dðq; cÞ�, where c is closest to q among the
ancestor neighbors of a. In this case, an ‘‘object’’
element is inserted into the queue for a (line 11),

Fig. 5. Incremental nearest neighbor algorithm on an sa-tree T
given a query object q.

2792 G.R. Hjaltason, H. Samet / Pattern Recognition Letters 24 (2003) 2785–2795
and ‘‘node’’ elements are inserted for all elements b
of the neighbor set of a (line 15). The second ar-
gument of ENQUEUENQUEUE specifies the content of the

element to be inserted into the queue, while the

third argument specifies the key used for ordering
the element. Note that although the presentation

suggests that some distances must be computed

many times by the algorithm, it is easy to reuse dis-

tance values such that dðq; aÞ is computed only once
for each object a that has a corresponding element
on the priority queue; that is, dðq; aÞ for the root a
need be computed only once in line 3, and the

distances dðq; bÞ for the neighbors b of a computed
in line 12 can be reused in lines 14 and 15.

As intimated above, the key for an element e
should be a lower bound on the distance from q of
all objects that are in the subset of S represented by
e. Furthermore, to facilitate good performance of
the algorithm, this lower bound should be as tight

as possible (i.e., as close to the actual minimum

distance from q to the objects in the subset). For
an ‘‘object’’ element e ¼ ½a�, this subset consists of
the single object a, so the key then equals dðq; aÞ.
For a ‘‘node’’ element e ¼ ½a; dðq; aÞ; dðq; cÞ�, the
subset represented by e equals a and all objects
that are descendants of the node corresponding to

a. The lower bound for this subset is computed in
the same manner as when performing range search,
and makes use of both dmaxðaÞ (the maximum
distance between a and the objects in its subtree)
and dðq; cÞ (the minimum distance between q and
‘‘ancestor siblings’’ of a). Thus, to obtain the great-
est possible lower bound, we use the maximum of

both dðq; aÞ � dmaxðaÞ and ðdðq; aÞ � dðq; cÞÞ=2
(line 14). The lower-bound property of dðq; aÞ�
dmaxðaÞ, stated in Eq. (2), follows from the triangle
inequality in a straightforward manner, while the

lower-bound property of ðdðq; aÞ � dðq; cÞÞ=2 is
guaranteed by Lemmas 1 and 2 (where Lemma 2

shows that dðq; cÞ can be used in Lemma 1).
In the algorithm (Fig. 5), the value of dðq; cÞ is

propagated down the tree as the search progresses
by storing it in priority queue elements (i.e., as the

third component). It is initialized to dðq; aÞ for the
root a in line 3 (since the root a is the only ancestor
neighbor of itself), while it is computed ‘‘incre-

mentally’’ when processing a node element e;
namely, for the neighbors b of the object a asso-
ciated with e. In particular, the variable minDist is
in line 10 set to dðq; cÞ for c among the ancestor
neighbors of a (as defined in Lemma 2). Then, in
line 12 minDist is decreased if one or more of the
neighbors of a is found to be closer to q, thus
ensuring that minDist takes into account the an-
cestor neighbors of each b 2 NðaÞ even though we
pointed out that they are all the same.

Observe that an ‘‘object’’ element for an object

a is inserted into the queue when the associated
‘‘node’’ element e is processed (line 11) instead of
when e is originally enqueued (i.e., line 15). The
rationale for postponing the enqueuing of ‘‘object’’

elements in this manner is that this results in a

smaller priority queue. In particular, if the corre-

sponding ‘‘node’’ and ‘‘object’’ were enqueued at

the same time (i.e., in line 15), the priority queue

size can at worst be nearly twice as large as when
postponing the enqueuing of ‘‘object’’ elements, as

many objects may have both types of corre-

sponding elements on the queue. Having a smaller

priority queue is an advantage, in turn, due to the

fact that the cost of priority queue operations is

related to the queue size sq; at best, the cost of
ENQUEUENQUEUE, DEQUEUEEQUEUE, or both is at least pro-

portional to log sq.
Incidentally, there is a close relationship be-

tween the algorithm of Fig. 5 and the k-nearest

a
b

q
c

Fig. 6. An sa-tree for three points a, b, and c, rooted at a, as-

suming the Euclidean distance metric. The circles around a and

b denote their dmax ‘‘balls’’, beyond which we know there to be
no descendants.

G.R. Hjaltason, H. Samet / Pattern Recognition Letters 24 (2003) 2785–2795 2793
neighbor algorithm described by Navarro, in Fig.

7 of Navarro (2002). 3 Both algorithms use a best-

first traversal of the hierarchical sa-tree structure

and a priority queue (Q in Navarro�s algorithm
and queue in ours) to manage the traversal.

However, the fixed-size list A in Navarro�s algo-
rithm, representing the candidate k nearest neigh-
bors, is absent in our algorithm. Essentially, the

role of A is assumed by the priority queue queue in
our algorithm, so our algorithm can be viewed as

the result of merging the two priority queues Q and
A in Navarro�s algorithm.
Finally, as discussed in Section 4.2 below, un-

like the algorithm described by Navarro, the al-
gorithm in Fig. 5 does not take the unnecessary

steps to ensure that the keys of the ‘‘node’’ ele-

ments are monotonically non-decreasing.

4.2. Monotonicity

As pointed out at the end of Section 4.1, the

algorithm in Fig. 5 has the property that the keys
of ‘‘node’’ elements are not necessarily monoton-

ically non-decreasing as the tree is traversed

downward, which may appear to be a flaw. In

particular, for b 2 NðaÞ, the lower-bound dlo value
for b, as computed in line 14, may be smaller than
that for its parent a. Simply speaking, the fact that
b is in the neighbor set of a does not represent a
sufficient criteria to ensure that the lower-bound
properties used in line 14 (that is, the ones stated

by Eqs. (2) and (1), respectively) provide a value

for b that is greater than or equal value to that for
a. 4 An example that demonstrates this for the
lower bound of Eq. (2), which makes use of the

bound on ancestor distances (i.e., dmaxðaÞP dða; bÞ
for all descendants b of a) is shown in Fig. 6. Given
a Euclidean space as in the Figure, the lower
bound for an object p (e.g. points a and b in Fig. 6)
equals the distance to the ‘‘ball’’ (i.e., solid circle in

two dimensions) around p of radius equal to
3 An unfortunate error crept into Navarro�s algorithm
listing, in that m=2 in line 14 should have been ðdðq; vÞ � mÞ=2.
4 The same situation would arise for other metric indexing

methods that also use these lower-bound properties, such as the

vp-tree (Uhlmann, 1991; Yianilos, 1993) and gh-tree (Uhlmann,

1991).
dmaxðpÞ. Thus, this lower bound is clearly smaller
for b than for a in the figure. In fact, if the query
point q were moved inside the dark shaded area,
the value of dðq; bÞ � dmaxðbÞ would be negative.
It is easy to modify the incremental nearest

neighbor algorithm above such that monotonicity

is guaranteed on the keys of ‘‘node’’ elements, as

defined above. In particular, in line 14 of Fig. 5, we

would simply include da inside the maxf� � �g
computation. Nevertheless, the algorithm is actu-

ally correct even without this modification, in the

sense of traversing the exact same portion of the

sa-tree T (i.e., dequeuing the same set of ‘‘node’’
elements, albeit possibly in different order) as the

modified algorithm for producing the same num-

ber of neighbors, 5 thus guaranteeing that the

neighbors of q are produced in proper non-de-
creasing order of distance. To see why, let ok 2 S
be the kth neighbor of q and let Dk :¼ dðq; okÞ.
Furthermore, for an sa-tree node n, let d 0

loðnÞ de-
note the value of dlo computed in line 14 for n in
the original algorithm, and d 0

loðnÞ the corre-
sponding value in the monotonic version of the

algorithm. Clearly, we have dloðnÞ6 d 0
loðnÞ. Thus,

if n is visited by the monotonic version, then
Dk P d 0

loðnÞP dloðnÞ, so n is also visited by the
5 This statement is somewhat imprecise, as it disregards the

possibility of ties in the key values of priority queue elements.

However, by giving ‘‘node’’ elements priority over ‘‘object’’

elements, the claims made in this paragraph can all be shown to

be true even in the presence of ties.

2794 G.R. Hjaltason, H. Samet / Pattern Recognition Letters 24 (2003) 2785–2795
original algorithm. Suppose, conversely, that n is
not visited by the monotonic version, implying

that Dk < d 0
loðnÞ. If dloðnÞ ¼ d 0

loðnÞ, then the

original algorithm also does not visit n. If
dloðnÞ < d 0

loðnÞ, on the other hand, then it may
appear that the original algorithm could visit n.
However, in this case, the value for d 0

loðnÞ is based
on the lower bound for an ancestor n0 of n, such
that d 0

loðnÞ ¼ dloðn0Þ. Therefore, n is also not vis-
ited by the original algorithm since its ancestor n0

is not visited (due to Dk < dloðn0Þ), which is im-
plied by Dk < d 0

loðnÞ and d 0
loðnÞ ¼ dloðn0Þ, and we

have shown that the two versions visit exactly the

same set of nodes.
5. Concluding remarks

In this paper, we have presented an improve-

ment on the original search strategy for the sa-tree,

a recently proposed distance-based indexing

structure. In the process, we detailed the intuition
behind the sa-tree and how it was inspired by the

Voronoi diagram. We also presented an adapta-

tion of our incremental nearest neighbor algorithm

for the sa-tree. Finally, we showed that it is not

necessary to maintain a particular monotonicity

property (see Section 4.2) on subtrees as the tree is

traversed, which other authors have emphasized;

abandoning monotonicity has the advantage that
it leads to slightly simplified search algorithms.

The sa-tree represents a highly novel develop-

ment in indexing support for search in metric

spaces. We intend to continue to seek improve-

ments on this idea and to investigate other new

directions of research. We are currently developing

a prototype system with the goal of permitting

realistic experimental comparison between various
distance-based indexing methods on meaningful

data sets. With this system in place, we will be able

to empirically evaluate the effectiveness of our

proposed improvement to the sa-tree. One inter-

esting extension to the sa-tree is a dynamic version

(Navarro and Reyes, 2002) that supports both

insertions and deletions. Whether our improved

search strategy for the sa-tree can be applied to
this dynamic variant is still an open question, and

we plan to investigate the issue.
Among other future work on similarity search

that we wish to pursue is the design of incremental

nearest neighbor (INN) algorithms for distance-

matrix (or pivot-based; Ch�aavez et al., 2001) meth-
ods such as AESA (Vidal, 1994) and LAESA

(Mic�oo et al., 1994). Based on preliminary work, we
believe that it is feasible to devise efficient INN

algorithms for them, even though such methods

are not based on hierarchical partitioning, which is

the basis of our earlier INN algorithm (Hjaltason

and Samet, 1999).
Acknowledgements

This work was supported in part by the National

Science Foundation under grants EIA-99-00268,

EIA-99-01636, IIS-00-86162, and EIA-00-91474.
References

Brin, S., 1995. Near neighbor search in large metric spaces. In:

Dayal, U., Gray, P.M.D., Nishio, S., (Eds.), Proceedings of

the 21st International Conference on Very Large Data Bases

(VLDB), Zurich, Switzerland, September 1995, pp. 574–584.

Carey, M.J., Kossmann, D., 1997. On saying ‘‘enough al-

ready!’’ in SQL. In: Peckham, J., (Ed.), Proceedings of the

ACM SIGMOD Conference, Tucson, AZ, May 1997, pp.

219–230.

Ch�aavez, E., Navarro, G., Baeza-Yates, R., Marroqu�ıın, J., 2001.

Searching in metric spaces. ACM Computing Surveys.

33(3), 273–322, September 2001.

Ciaccia, P., Patella, M., Zezula, P., 1997. M-tree: An efficient

access method for similarity search in metric spaces. In:

Jarke, M., Carey, M.J., Dittrich, K.R., Lochovsky, F.H.,

Loucopoulos, P., Jeusfeld, M.A., (Eds.), Proceedings of the

23rd International Conference on Very Large Data Bases

(VLDB), Athens, Greece, August 1997, pp. 426–435.

Fagin, R., Lotem, A., Naor, M., 2001. Optimal aggregation

algorithms for middleware. In: Proceedings of the Twentieth

ACM SIGACT-SIGMOD-SIGART Symposium on Princi-

ples of Database Systems (PODS), Santa Barbara, CA, May

2001, pp. 102–113.

Han, J., Kamber, M., 2000. Data Mining: Concepts and

Techniques. Morgan Kaufmann, San Francisco.

Hjaltason, G.R., Samet, H., 1999. Distance browsing in spatial

databases. ACM Transactions on Database Systems 24(2),

265–318, June 1999. Also Computer Science TR-3919,

University of Maryland, College Park, MD.

Hjaltason, G.R., Samet, H., 2003. Index-driven similarity

search in metric spaces. ACM Transactions on Database

System, to appear. Also Computer Science TR-3919,

University of Maryland, College Park, MD.

G.R. Hjaltason, H. Samet / Pattern Recognition Letters 24 (2003) 2785–2795 2795
Mic�oo, L., Oncina, J., Vidal, E., 1994. A new version of the

nearest-neighbour approximating and eliminating search

algorithm (AESA) with linear preprocessing-time and mem-

ory requirements. Pattern Recognition Letters 15 (1), 9–17.

Navarro, G., 1999. Searching in metric spaces by spatial

approximation. In: Proceedings String Processing and

Information Retrieval and International Workshop on

Groupware (SPIRE/CRIWG 1999), Cancun, Mexico, Sep-

tember 1999, pp. 141–148.

Navarro, G., 2002. Searching in metric spaces by spatial

approximation. VLDB Journal 11 (1), 28–46.

Navarro, G., Reyes, N., 2002. Fully dynamic spatial approx-

imation trees. In: Laender, A.H.F., Oliveira, A.L., (Eds.),

String Processing and Information Retrieval–Ninth Inter-

national Symposium (SPIRE 2002), Lisbon, Portugal,

September 2002, pp. 254–270; Also Springer-Verlag Lecture

Notes in Computer Science 2476.
Uhlmann, J.K., 1991. Metric trees. Applied Mathematics

Letters 4 (5), 61–62.

Uhlmann, J.K., 1991. Satisfying general proximity/similarity

queries with metric trees. Information Processing Letters 40

(4), 175–179.

Vidal, E., 1994. New formulation and improvements of the

nearest-neighbour approximating and eliminating search

algorithm (AESA). Pattern Recognition Letters 15 (1), 1–7.

Voronoi, G., 1909. Nouvelles applications des param�eetres

continus �aa la th�eeorie des formes quadratiques. Deuxiêeme

m�eemoire: Recherches sur les parall�eello�eedres primitifs. se-
conde partie. Journal f€uur die Reine und Angewandte

Mathematik 136 (2), 67–181.

Yianilos, P.Y., 1993. Data structures and algorithms for nearest

neighbor search in general metric spaces. In: Proceedings of

the Fourth Annual ACM-SIAM Symposium on Discrete

Algorithms, Austin, TX, January 1993, pp. 311–321.

	Improved search heuristics for the sa-tree
	Introduction
	Definition of the sa-tree
	Search in the sa-tree
	Lower bound on distances
	Original search strategy
	Improved search strategy

	Incremental nearest neighbor search
	Algorithm
	Monotonicity

	Concluding remarks
	Acknowledgements
	References

