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Similarity search is a very important operation in multimedia databases and other database ap-
plications involving complex objects, and involves finding objects in a data set S similar to a query
object q, based on some similarity measure. In this article, we focus on methods for similarity search
that make the general assumption that similarity is represented with a distance metric d . Existing
methods for handling similarity search in this setting typically fall into one of two classes. The first
directly indexes the objects based on distances (distance-based indexing), while the second is based
on mapping to a vector space (mapping-based approach). The main part of this article is dedicated
to a survey of distance-based indexing methods, but we also briefly outline how search occurs in
mapping-based methods. We also present a general framework for performing search based on dis-
tances, and present algorithms for common types of queries that operate on an arbitrary “search
hierarchy.” These algorithms can be applied on each of the methods presented, provided a suitable
search hierarchy is defined.

Categories and Subject Descriptors: E.1 [Data Structures]: Trees; H.2.4 [Database Man-
agement]: Systems—query processing, multimedia databases; H.2.8 [Database Management]:
Database Applications—image databases

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Hiearchical metric data structures, similarity searching,
distance-based indexing, nearest neighbor queries, range queries, ranking

1. INTRODUCTION

Classical database methods are designed to handle data objects that have some
predefined structure. This structure is usually captured by treating the vari-
ous attributes associated with the objects as independent dimensions, and then
representing the objects as records. These records are stored in the database us-
ing some appropriate model (e.g., relational, object-oriented, object-relational,
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hierarchical, network, etc.). The most common queries on such data are exact
match, partial match, range, and join applied to some or all of the attributes.
Responding to these queries involves retrieving the relevant data. The retrieval
process is facilitated by building an index on the relevant attributes. These in-
dexes are often based on treating the records as points in a multidimensional
space and using what are called point access methods (e.g., Gaede and Günther
[1998] and Samet [1990, 1995]).

More recent applications involve data that has considerably less structure
and whose specification is therefore less precise. Some example applications
include collections of more complex data such as images, videos, audio record-
ings, text documents, time series, DNA sequences, etc. The problem is is that
usually the data can neither be ordered nor is it meaningful to perform equality
comparisons on it. Instead, proximity is a more appropriate retrieval criterion.
Such data objects are often described via a collection of features, and the result
is called a feature vector. For example, in the case of image data, the feature vec-
tor might include color, color moments, textures, shape descriptors, etc., all of
which are usually described using scalar values. In the case of text documents,
we might have one dimension per word, which leads to prohibitively high di-
mensions. Correcting misspelled text or searching for semantic equivalents is
even more difficult. Video retrieval involves finding overlapping frames which
is somewhat like finding subsequences in DNA sequences. The goal in these
applications is often one of the following:

(1) Find objects whose feature values fall within a given range or where the
distance, using a suitably defined distance metric, from some query object
falls into a certain range (range queries).

(2) Find objects whose features have values similar to those of a given query
object or set of query objects (nearest neighbor queries). In order to reduce
the complexity of the search process, the precision of the required similarity
can be an approximation (approximate nearest neighbor queries).

(3) Find pairs of objects from the same set or different sets which are sufficiently
similar to each other (closest pairs queries).

The process of responding to these queries is termed similarity searching,
also referred to as content-based or similarity retrieval. Given a query object
q, this involves finding objects that are similar to q in a database S of N ob-
jects, based on some similarity measure. Both q and S are drawn from some
“universe” U of objects, but q is generally not in S. In this article, we assume
that the similarity measure can be expressed as a distance metric d , such that
d (o1, o2) becomes smaller as o1 and o2 are more similar. Thus, (S, d ) is said to
be a finite metric space.

As in the case of structured data, the retrieval process is facilitated by build-
ing an index on the various features, which are analogous to attributes. Again,
these indexes are based on treating the records as points in a multidimensional
space and use point access methods. The primary challenge in performing sim-
ilarity search (e.g., finding the nearest neighbors) when the data is indexed
in this way lies in the realization that the process of evaluating the distance
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function d is typically rather expensive. Moreover, the “intrinsic” dimensional-
ity of the metric space is often high on account of the many features that are
used to describe the data, which is an important difference from structured
data.

Searching in high-dimensional spaces can be time-consuming. Interestingly,
exact match, partial match, and range queries in high dimensions are relatively
easy, from the standpoint of computational complexity, as they do not involve the
computation of distance. In particular, such searches through an indexed space
usually involve simple comparison tests. However, if we have to examine all of
the index nodes, then the process is time-consuming. In contrast, computing
similarity, as is the case for nearest neighbor queries, makes use of distance,
and the process of computing the distance can be computationally complex
in a high-dimensional space. For example, computing the Euclidean distance
between two points in a high-dimensional space, say of dimension n, requires
n multiplication operations and n− 1 addition operations, as well as a square
root operation (which can be omitted).

The above discussion has been based on the premise that we know the fea-
tures that describe the objects (and hence the dimensionality of the underlying
feature space). In fact, it is often quite difficult to identify the features and
thus we frequently turn to experts in the application domain from which the
objects are drawn for assistance in this process. Nevertheless, frequently, the
features cannot be easily identified even by the domain experts. In this case,
the only information that we have available is the distance function d , which
as we pointed out before may be quite expensive to compute, that indicates the
degree of similarity (or dis-similarity) between all pairs of objects, given a set
of N objects. Sometimes, the degree of similarity is expressed by use of a sim-
ilarity matrix which contains interobject distance values, for all possible pairs
of the N objects.

There are two alternatives when the only information that we have is the dis-
tance function. The first is to derive “features” purely based on the inter-object
distances (e.g., methods described in Faloutsos and Lin [1995], Hristescu and
Farach–Colton [1999], Linial et al. [1995], and Wang et al. [1999]). Thus, given
N objects, the goal is to choose a value of k and find a set of N corresponding
points in a k-dimensional space, via an appropriate mapping F that is applica-
ble to all elements of U and thus also to the query objects q, so that the distance
between the N corresponding points, using a suitably defined distance function
δ, is as close as possible to that given by the original distance function d for the
N objects. The rationale for doing so is that it allows replacing the expensive
computations of d (q, o), for o ∈ S, by the much less expensive computations
of δ(q′, o′), for q′ = F (q) and o′ ∈ F (S). Moreover, the attractiveness of such
methods is that we can now index the points using multidimensional indexes
thereby speeding up the search in F (S). These methods are known as embed-
ding methods and they can also be applied to objects represented by feature
vectors. In this case, the advantage of using these methods lies in choosing k to
be considerably smaller than the number of features. This leads to a reduction
in the dimensionality of the feature vector thereby lowering the dimension of
the space which is being indexed.
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An important property for facilitating similarity search when using em-
bedding methods is that the mapping F be contractive [Hjaltason and Samet
2003b], which implies that it does not increase the distances between objects,
that is, that δ(F (o1), F (o2)) ≤ d (o1, o2) for all o1, o2 ∈ U. In particular, this al-
lows using the mapped objects as a “filter” during query processing without
suffering false dismissals, and then “refine” the result by using d (e.g., Korn
et al. [1996] and Seidl and Kriegel [1998]). For example, the result of applying a
range query on F (S) with query object F (q) and radius ε includes all the objects
in the range query on S with query object q and radius ε. Thus, we obtain the
exact query result for S by first computing the range query on F (S) and then
eliminating objects o with d (q, o) > ε. We do not discuss embedding methods
in this paper except to point out where they are related to other methods that
we present.

The second alternative when the only information that we have is a distance
function is to use the given distance function to index the data (i.e., objects) with
respect to their distance from a few selected objects. We use the term distance-
based indexing to describe such methods. The advantage of distance-based in-
dexing methods is that distance computations are used to build the index, but
once the index has been built, similarity queries can often be performed with
a significantly lower number of distance computations than a sequential scan
of the entire dataset, as would be necessary if no index exists. Of course, in
situations where we may want to apply several different distance metrics, then
distance-based indexing techniques have the drawback of requiring that the
index be rebuilt for each different distance metric, which may be nontrivial. On
the other hand, this is not the case for the multidimensional indexing methods
which have the advantage of supporting arbitrary distance metrics (however,
this comparison is not always entirely fair, since the assumption, when using
distance-based indexing, is that often we do not have any feature values as for
example in DNA sequences).

In this article, we survey a number of such distance-based indexing methods,
and show how they can be used to perform similarity search. We do not treat
multidimensional indexing methods (see Böhm et al. [2001] for a recent sur-
vey). Some of the earliest distance-based indexing methods are due to Burkhard
and Keller [1973], but most of the work in this area has taken place within
roughly the past decade. Typical of distance-based indexing structures are met-
ric trees [Uhlmann 1991a, 1991b], which are binary trees that result in recur-
sively partitioning a data set into two subsets at each node. Uhlmann [1991b]
identified two basic partitioning schemes, ball partitioning and generalized hy-
perplane partitioning.

In ball partitioning, the data set is partitioned based on distances from one
distinguished object, sometimes called a vantage point [Yianilos 1993], that is,
into the subset that is inside and the subset that is outside a ball around the
object (e.g., Figure 1(a)). In generalized hyperplane partitioning, two distin-
guished objects a and b are chosen and the data set is partitioned based on
which of the two distinguished objects is the closest, that is, all the objects in
subset A are closer to a than to b, while the objects in subset B are closer to b
(e.g., Figure 1(b)).
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Fig. 1. Possible top-level partitionings of a set of objects (depicted as two-dimensional points) in a
metric tree using (a) ball partitioning and (b) generalized hyperplane partitioning.

In this article, we collectively use the term pivot to refer to any type of dis-
tinguished object that can be used during search to achieve pruning of other
objects, following the convention of Chávez et al. [2001b]. In other words, a pivot
p ∈ S is an object for which we have some information about its distance from
some or all objects in S, for example, for all objects o ∈ S′ ⊆ S we know

(1) the exact value of d (p, o),
(2) that d (p, o) lies within some range [rlo, rhi] of values, or
(3) that o is closer to p than to some other object p′ ∈ S.

While most distance-based indexing structures are variations on and/or ex-
tensions of metric trees, there are also other approaches. Several methods based
on distance matrices have been designed [Micó et al. 1994; Vidal Ruiz 1986;
Wang and Shasha 1990]. In these methods, all or some of the distances be-
tween the objects in the data set are precomputed. Then, when evaluating
queries, once we have computed the actual distances of some of the objects
from the query object, the distances of the other objects can be estimated based
on the precomputed distances. Clearly, these distance matrix methods do not
form a hierarchical partitioning of the data set, but combinations of such meth-
ods and metric tree-like structures have been proposed [Micó et al. 1996]. The
sa-tree [Navarro 2002] is another departure from metric trees, inspired by the
Voronoi diagram. In essence, the sa-tree records a portion of the Delaunay graph
of the data set, a graph whose vertices are the Voronoi cells, with edges between
adjacent cells.

The remainder of the article is organized as follows. In Section 2, we present
a general framework for performing similarity search. In Section 3, we de-
scribe three common types of queries and present query algorithms for each
one, expressed within this general framework. In Section 4, we discuss prop-
erties of distance metrics that are exploited by the various indexes to provide
lower bounds on the distances from the query object(s) of objects in one or
more subsets of S thereby enabling the search to be pruned. In Section 5, we
describe the vp-tree [Yianilos 1993] and other variants of metric trees that

ACM Transactions on Database Systems, Vol. 28, No. 4, December 2003.



522 • G. R. Hjaltason and H. Samet

employ ball partitioning. In Section 6, we present the gh-tree [Uhlmann 1991b]
and other variants of metric trees that employ generalized hyperplane parti-
tioning. In Section 7, we describe the M-tree [Ciaccia et al. 1997], a dynamic
and balanced metric tree variant, suitable for disk-based implementation. In
Section 8, we introduce the sa-tree [Navarro 2002]. In Section 9, we describe
AESA [Vidal Ruiz 1986] and LAESA [Micó et al. 1994], methods that rely on
distance matrices. In Section 10 we review the different indexing methods that
we presented and provide an alternative method of characterizing them which
shows the close relationship between some of them and the embedding meth-
ods that were briefly discussed above. Finally, Section 11 contains concluding
remarks.

Note that this article differs from the excellent recent survey by Chávez
et al. [2001b] on searching in metric spaces in that we focus more on practical
aspects of performing similarity search with distance-based indexing struc-
tures, while Chávez et al. [2001b] focus on the theoretical aspects of the vari-
ous indexing structures. Generally speaking, compared to Chávez et al. [2001b],
our article provides a more detailed and, perhaps, more intuitive description
of the methods that we cover. Note that Chávez et al. [2001b] also present
a unifying framework, but the aim of their framework is to classify the dif-
ferent methods, in order to compare and contrast them, while our focus is
more on how they can be used for similarity searching using a unified search
hierarchy.

Our article has two goals. The first goal is to serve as a starting point in
exploring this topic for newcomers to similarity searching in metric spaces,
as well as to be a reference for practitioners in the field. We describe a num-
ber of indexing structure in considerable depth, and provide pointers for fur-
ther reading on those and related structures. Along the way, our treatment
points out aspects that different structures have in common, and where they
diverge. Although we often describe construction algorithms for the different
indexing structures, our emphasis is on search algorithms. The second goal is
to show how the general framework for performing similarity search can be
adapted for the different distance-based indexing methods. Many of the result-
ing algorithms are new. The similarities in the different adaptations help in
providing a unified view of the different structures with regard to similarity
searching.

2. GENERAL SEARCH FRAMEWORK

In this section, we present a general framework that is essentially an abstrac-
tion of the common elements of virtually all methods for organizing sets of
metric space data and performing similarity searching on it. Loosely speaking,
it applies to methods that are based on some form of the philosophy of “divide
and conquer.” Hence, the framework is hierarchical in nature and defines the
abstract concept of search hierarchy, on which general search algorithms can
be applied (see Section 3). In later sections, we present concrete instances of
search hierarchies, which then yield concrete similarity search algorithms from
the general ones.
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2.1 Search Hierarchy

The common elements of most similarity search methods in metric spaces are as
follows. From a database S of N objects, we wish to find an object, or objects, that
is similar to a query object q. More precisely, S and q are drawn from a metric
space (U, d ), where U is the “universe” of objects and d is a distance metric
that indicates dissimilarity; that is, greater distances mean less similarity. The
search is performed with the aid of a data structure T that organizes the set S
or provides information about it, and possibly some auxiliary structures that
only exist during the search. Given the entire problem P of searching in S,
one or more subproblems P1, P2, . . .are identified, each of which applies to an
associated subset of S (typically, the subsets are disjoint). The subproblems may
have some relative “priority” and some of them may be immediately known to
yield no result. The subproblems, in turn, yield subproblems of their own, and
so on, until we have subproblems that are sufficiently elementary to be “solved”
directly.

The concept of search hierarchy is an abstraction of the essence of methods
that fit the above general description. The nodes in the hierarchy are referred to
as elements (to avoid confusion with nodes in data structures), and each element
represents a subproblem of the search; in fact, we often refer to the elements
as “search problems.” Thus, the root of the hierarchy represents P , as defined
above, while its children represent the subproblems of P , and the leaves of the
hierarchy represent the elementary subproblems. Equivalently, each element e
represents a subset of S, denoted s[e], with the leaves denoting single objects in
S (or, possibly, a “small” set of objects). The elements are classified into different
types, t = 0, . . . , tmax, based on the nature of the associated subproblem, with
type 0 denoting the objects in S; the different element types typically have
different kinds of associated information. (For example, for the search hierarchy
given in Section 2.2 for spatial data, there are three types of elements, denoting
objects, bounding rectangles, and nodes.) We denote the type of an element e
with t[e]. A search hierarchy on a set of 14 objects, A0 though N0, with three types
of elements, is shown in Figure 2. Elements of type 1 and 2 are depicted with
hollow and shaded circles, respectively, while elements of type 0 are depicted
with hollow boxes. As depicted in the figure, an element e can give rise to
one or more “child” elements of types 0 through tmax; child elements are often
all of the same type, but this is not a requirement. In this presentation, we
assume that the child elements of e represent disjoint subsets of e’s subset, or,
equivalently, that each element has only one “parent” in the search hierarchy,
and, in particular, that each object is represented only once in the hierarchy.
However, many of the search algorithms presented in Section 3 can be adapted
to handle multiple parents and duplicate object instances.

Elements of each type t have an associated distance function dt(q, e) for
measuring the distances from a query object q to elements e of that type. The
distance dt(q, e) “summarizes” in some manner the distances of objects in s[e],
and reflects knowledge gained in solving the subproblem associated with the
parent p of e in the hierarchy. Thus, the computation of dt(q, e) must be based
solely on the specific information attached to p or on information computed

ACM Transactions on Database Systems, Vol. 28, No. 4, December 2003.



524 • G. R. Hjaltason and H. Samet

Fig. 2. A sample search hierarchy for objects A0 through N0. Elements of type 1 and 2 are depicted
with hollow and shaded circles, respectively, while elements of type 0 are depicted with hollow
boxes.

earlier in the search process. Furthermore, if e is not of type 0, this computation
should be substantially less expensive than the total cost of computing d (q, o)
for all objects o ∈ s[e], or else it would not be worthwhile to extract e as a
subproblem of p. Observe that the distances of the children of p can be used
to indicate the priority of the associated subproblems and/or for immediate
pruning. Typically, the distance functions are defined such that they lower-
bound the distances of the objects represented by the elements: dt(q, e) ≤ d (q, o)
for any object o ∈ s[e]. Most of the algorithms presented in Section 3 rely on this
property for their correctness, but relaxing it may yield better performance at
the cost of reduced accuracy. Some types of search (such as farthest neighbors)
make use of another set of distance functions, d̂ t(q, e), that bound from above
the distances from q of the objects in a subtree: d̂ t(q, e) ≥ d (q, o) for any object
o ∈ s[e].

Observe that when the data structure T is itself of a hierarchical nature, the
search hierarchy usually arises naturally from the hierarchical structure of T .
For a given similarity search method, nevertheless, it is often possible to define
more than one search hierarchy. In this case, the different choices of hierarchies
can be thought of as reflecting different search policies. In some cases, however,
search algorithms exploit specific features of a data structure that cannot easily
be abstracted into a search hierarchy; for example, see Section 6.2.

2.2 Example 1: Spatial Data

The concept of a search hierarchy, as defined above, also applies to search in
geometric space, and to data structures and algorithms defined on spatial data.
In fact, many of the algorithms presented in Section 3 were originally proposed
for spatial indexing structures. Hence, to obtain a better grasp of the notion of
search hierarchy and how it relates to search, it is a useful exercise to consider
an example in geometric space. Figure 3 depicts seven two-dimensional spatial
objects and a hierarchical partitioning of them as produced by a hypothetical
spatial indexing technique (e.g., the R-tree [Guttman 1984]), and a range query
specified by a query point q and radius r. Each of the seven objects o1 through
o7 has a bounding rectangle, denoted b1 through b7, respectively, and the space
partitioning on them consists of the leaf node regions n1, n2, and n3, and that
of their parent node n. The range query gives rise to the shaded query region
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Fig. 3. A small collection of two-dimensional spatial objects, represented by a space hierarchy, and
a sample range query on the collection: (a) a geometric view of the objects, the space partitioning
on them, and the query region; and (b) the search hierarchy that naturally arises from the space
partitioning in (a), and the boundary below which the range search need not pass.

in Figure 3(a), which can be seen to intersect n, n1, n2, b1, b2, and o2. Thus,
to answer the query, we must at a minimum explore the portion of the search
hierarchy in Figure 3(b) above the boundary cutting through it, which contains
the elements whose regions intersect the query region.

Using the terminology introduced in Section 2.1, the search hierarchy shown
in Figure 3(b) consists of three types of elements: the objects oi are elements of
type 0, the bounding rectangles bi are elements of type 1, while the nodes n, n1,
n2, and n3 are of type 2. Assuming that we use the Euclidean distance metric
to measure distances from the query object q, as implied by the query region
in Figure 3(b), it naturally follows that we should use Euclidean distance as a
basis for the distance functions for all three element types. In other words, if
dE (p1, p2) denotes the Euclidean distance between points p1 and p2, we define
dt(q, e) = minp∈R[e] dE (q, p) for t = 1, 2, where R[e] denotes the spatial region
associated with element e of type t. This definition is in accordance with the
geometric depiction of Figure 3(a), as the resulting distances are less than r
for all the elements corresponding to regions intersecting the query region. In
particular, the distance between q and an element ei is equal to the distance
from q to the closest point on the boundary of the spatial region for ei, or zero if
q is inside the region (which is true for n). Furthermore, observe that the fact
that each spatial object o is enclosed by the regions of all ancestor elements
e in the hierarchy directly implies that this definition naturally satisfies the
lower-bounding criteria dt(q, e) ≤ d0(q, o).

In performing the range search on the hierarchy in Figure 3(b), we need only
explore the portion of the hierarchy above the boundary line, as mentioned
above. We say that the elements above the line must be visited by the search,
while the portion of the hierarchy below the line can be pruned. For any visited
element e of the hierarchy, we must compute the distance between q and all
child elements of e. Therefore, in addition to the visited elements, the search
must compute the distance from q of elements that are immediately below the
boundary (i.e., that are incident to edges that intersect the boundary), namely
o1, b3, b4, b5, and n3 in the figure. Having done that, however, the search can
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prune these elements and all their descendants without further distance com-
putations, and, in particular, we need not compute the actual distances from q
to the objects o3 through o7.

By analogy with the geometric example above, we obtain an alternative view
of the abstract concept of search hierarchies that can be helpful to gain an
intuitive understanding. In particular, each non-object element e can be thought
of as having an associated “region” R[e] that “overlaps” all objects o ∈ s[e].
This captures the upper- and lower-bounding criteria on the distance functions.
In many cases, search hierarchies satisfy the stronger criteria that R[e′] is
completely contained in R[e] for the child elements e′ of e, as is the case for
our geometric example. However, this is not a requirement, and does not hold
for some of the search hierarchies that we present below (e.g., the one for the
vp-tree in Section 5.1).

2.3 Example 2: Feature Vectors

As mentioned in Section 1, it is quite common in similarity search applications
to use (feature) vectors to describe the data objects, where the vectors may
be obtained using (domain-specific) feature extraction, dimension-reduction, or
general embedding methods. These feature vectors are indexed using multidi-
mensional indexing structures and as they apply a form of spatial indexing,
the discussion in Section 2.2 is applicable to them as well, and a search hier-
archy can be defined for performing similarity (or proximity) search on the set
of vectors. When the feature vectors are obtained using some mapping F as in
the embedding methods discussed in Section 1, then the complete execution of
a similarity search query requires the added step of refining the query result
based on the original object data. In other words, as we pointed out in Section 1,
for the query object q ∈ U and data set S, the initial, “filter,” step of the query
processing involves computing the vector F (q) and performing the query on the
set of vectors F (S) using a distance function δ with the aid of the multidimen-
sional index. In the “refinement” step (which may actually occur concurrently
with the filter step), the actual similarity to q is evaluated for candidate objects
from the filter stage, and irrelevant objects discarded.

Such “multistep” query processing can actually be thought of as being ap-
plied on a particular form of search hierarchy, formed by extending the search
hierarchy used on the set of vectors F (S), for example, based on a multidimen-
sional indexing structure. In particular, in the extended search hierarchy, each
element for a vector F (o) has the corresponding object o ∈ S as its child. Thus,
the situation is very similar to the example in Figure 3, with vectors replacing
bounding rectangles.

The lower-bounding property dt(q, e) ≤ d (q, o) implies that the mapping F
and the distance function δmust satisfy δ(F (q), F (o)) ≤ d (q, o) for any q ∈ U and
o ∈ S. We recall from Section 1 that when this holds, F is said to be contractive,
and it ensures that we do not suffer false dismissals in the filter step. This is
demonstrated in Figure 4, which shows both objects and the vectors resulting
from mapping the objects; the figure can be thought to represent arbitrary
domains of objects and their mapped versions, with the understanding that the
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Fig. 4. Range query, with query object q and query radius ε, on three data objects a, b, and c,
represented as two-dimensional points. The mapped versions of the objects are also depicted as
two-dimensional points in the same space. Only b is in the range, but the distance d (q, a) must also
be computed, since F(a) is in the range.

two-dimensional distances in the figure represent relative distances between q
and the data objects, on the one hand, and between F(q) and the corresponding
vectors, on the other. Observe that c can be pruned from the search without
computing d (q, c), by virtue of F(c) being outside the range. If the mapping
were not contractive, then c could be inside the range even if F(c) is outside it,
in which case a false dismissal would have occurred in the example.

3. QUERIES AND SEARCH ALGORITHMS

In this section, we define three basic types of queries that are commonly used for
similarity search and outline a few useful variations of these queries. We also
present search algorithms for each query, defined on the basis of the framework
presented in Section 2.

(1) Range: Given a query object q and ε ≥ 0, find all o ∈ S such that d (q, o) ≤ ε.
(2) Nearest neighbor : Given a query object q and k > 0, find the k objects in S

with smallest distance from q.
(3) Ranking : Given a query object q, report the objects in S in order of distance

from q, subject to some stopping condition.

Each successive query type is more difficult to handle than the previous one,
in the sense that given values for an unknown parameter, later queries can be
computed with the one before. Thus, for the nearest neighbor query, if we knew
in advance the distance Dk of the kth nearest neighbor, we could answer it with
a range query using ε = Dk . Similarly, for the ranking query, if we knew the
number kr of objects in the result of a ranking query that are implied by the
stopping condition, the result can be provided by applying a nearest neighbor
query using k = kr (provided the result is ordered by distance). Indeed, it can
be useful to combine the criteria of the queries, adding a maximum distance
criteria (cf. range) to the nearest neighbor query, and including maximum dis-
tance and/or maximum cardinality (cf. number of neighbors) in the stopping
condition of the ranking query.

The stopping condition for the ranking query can be based on arbitrary cri-
teria. Clearly, these criteria can be based on properties that are inherent in the
search hierarchy, such as maximum distance or maximum cardinality of the re-
sult set, as mentioned above. More interestingly, however, the criteria may be
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based on external properties. Typically, these external properties arise from the
fact that the distance function d is based on only a partial aspect of the objects
in S. In database terminology, what this implies is that the objects in S have
multiple attributes, and d is based on only one (or a few) of these attributes.
For example, in a geometric setting as noted in Section 2.2, S might represent
a “city” relation, with attributes for name, population, location, etc. Thus, we
might answer the query “find the city of population at least one million closest
to the Grand Canyon” with a ranking query on the location with a stopping
condition on the population.

The most useful algorithms for the ranking query are ones that compute
the result progressively, such that results are reported as early as possible.
This allows making use of pipelined query execution in complex queries invol-
ving ranking queries as subqueries [Carey and Kossmann 1997; Fagin et al.
2001].

Although we restrict our focus to “elementary” queries that involve a single
set of objects, there are important types of queries that involve two or more
sets of objects—that is, what is termed join queries in database applications.
For example, in a geometric setting, the query “find stores and warehouses
within 20 miles of each other” is a join with a “within” criteria (analogous to
a range query), while the query “find the hotel closest to a French restaurant”
is a join with a “closest” criteria (analogous to a nearest neighbor query). A
number of join algorithms have been proposed for particular indexing struc-
tures, for example, Brinkhoff et al. [1993], Hjaltason and Samet [1998], Shafer
and Agrawal [1997] and Shin et al. [2000]. Many of these algorithms can be
generalized to apply to search hierarchies.

In the rest of this section, we describe algorithms for each type of query.
Section 3.1 reviews a depth-first algorithm for the range query. Section 3.2
presents two algorithms for the nearest neighbor query. Section 3.3 gives an
incremental algorithm for the ranking query. Finally, Section 3.4 discusses vari-
ants on the different queries and algorithms.

3.1 Range Query

The range query for query object q and radius ε on a search hierarchy T can be
handled with a straight-forward depth-first traversal of T . This is illustrated in
Figure 5, where the depth-first traversal is performed by the RANGETRAVERSAL

procedure. In the algorithm, the RangeSet variable refers to the set of result
objects that is accumulated in the course of the traversal. The RANGE procedure
initializes this set to be empty and invokes RANGETRAVERSAL on the root of the
search hierarchy. We make the simplifying assumption that there are at least
two objects in the data set S, which implies that the root of the search hierarchy
is not an object.

The for-loop in RANGETRAVERSAL iterates over the children of element e in
the search hierarchy. The distance of a child element e′ is tested in line 2 and
the rest of the loop is skipped if e′ is too far from q. This looks perhaps some-
what awkward, but this makes it easier to see the depth-first nearest neighbor
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Fig. 5. Range search algorithm for a search hierarchy T , query object q, and radius ε.

algorithm in Section 3.2.1 as an extension of this algorithm. Also, note that we
assume that the element e may have as children elements of type 0 (i.e., objects)
as well as of other types, so we must check the type of e′ inside the for-loop (i.e.,
in line 4). If objects are the sole kind of children of elements of type 1, say,
then it would be more natural to use two separate for-loops depending on the
type of e. In other words, the for-loop for type 1 would contain the insertion
statement of line 5, while for other types it would perform the recursive call of
line 7.

The portion of the search hierarchy that must be visited by the range query
illustrated in Figure 3(a) is shown in Figure 3(b), as noted above. The range
search algorithm given in Figure 5 visits exactly the necessary portion shown
in Figure 3. A further illustration of the traversal performed by the algorithm
is shown in Figure 6(a) where the arrows and the circled numbers indicate the
order in which the traversal proceeds. We also show in Figure 6(b) the distances
of the various search hierarchy elements from the query point q where, of course,
the distance of the six elements visited by the algorithm is smaller than the
search radius r = 73.

3.2 Nearest Neighbor Query

As defined above, a nearest neighbor query involves finding the k closest objects
in S to a query object q. There are numerous ways of performing the search for
such queries, primarily depending on how the search hierarchy is traversed.
We present two algorithms that use two different traversal orders. The first
algorithm makes use of depth-first traversal and is a straightforward extension
of the range search algorithm. The second algorithm, on the other hand, uses
“best-first” traversal, which is based on the distances and, in a sense, breaks
free of the shackles of the search hierarchy.

3.2.1 Depth-First Algorithm. The key idea in extending the range search
algorithm of Figure 5 for k nearest neighbor search is to make use of objects
that are found during the traversal to bound the search, that is, to serve as
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Fig. 6. (a) A depiction of the traversal for the range query in Figure 3(a), where the arrows indicate
the direction of the traversal and the circled numbers denote order in which the elements are visited.
(b) Some of the search hierarchy elements closest to query object q along with their distances from
q in increasing order. Using the same distance unit, the value of r in Figure 3(a) is 73.

ε in the range search algorithm. In particular, the value of ε is∞ until at least
k objects have been seen, and from then on is set to the kth smallest distance
seen so far. Clearly, the value of ε converges quicker to the distance of the kth
nearest neighbor of q if we see objects that are close to q as early as possible.
A heuristic that aims at this goal is such that at each nonleaf element e that
is visited, we visit the children of e in order of distance. The term “branch
and bound” is sometimes used to characterize algorithms of this form: After
“branching” to the child element e′ with the smallest value of d (q, e′), we have
hopefully reduced ε, thus helping to “bound” the search.

The nearest neighbor algorithm in Figure 7 makes use of the above obser-
vations. In the algorithm, the list NearestList is used to store the k candi-
date nearest neighbors (i.e., the k objects seen so far that are closest to q),
similar to the use of RangeSet in the range search algorithm. The expression
MAXDIST(NearestList) replaces the use of ε in the range search algorithm, and
has the value of the greatest distance among the objects in NearestList, or ∞
if there are still fewer than k objects in the list. The call to SORTBRANCHLIST in
line 2 sorts the children of e in order of distance, which determines the order in
which the following for-loop iterates over the children. When the distance from
q of a child element is found to be greater than MAXDIST(NearestList) (line 4),
the ordering ensures that all subsequent child elements also have distances
that are too large, so the for-loop can be terminated.

The algorithm in Figure 7 is essentially a generalized version of the early
nearest neighbor algorithm presented Fukunaga and Narendra [1975], and
later extended [Kamgar-Parsi and Kanal 1985; Larsen and Kanal 1986], and

ACM Transactions on Database Systems, Vol. 28, No. 4, December 2003.



Index-Driven Similarity Search in Metric Spaces • 531

DFNEAREST(q, k, T )
1 e← root of the search hierarchy T
2 NearestList← NEWLIST(k) }/* a list for accumulating result */}
3 NEARESTTRAVERSAL(q, NearestList, e)
4 return NearestList

NEARESTTRAVERSAL(q, NearestList, e)
1 ActiveBranchList← child elements of e
2 SORTBRANCHLIST(ActiveBranchList, q)
3 for each element e′ in ActiveBranchList do
4 if dt[e′](q, e′) > MAXDIST(NearestList) then
5 Exit loop
6 if t[e′] = 0 then }/* e′ is an object */}
7 INSERT(NearestList, e′, d0(q, e′))
8 /* element with largest distance is removed */
9 /* if already k objects in list */

10 else
11 NEARESTTRAVERSAL(q, NearestList, e′)

Fig. 7. A depth-first k-nearest neighbor algorithm on a search hierarchy T given a query object q.

Fig. 8. (a) A depiction of the traversal for the depth-first nearest neighbor algorithm for the data
and query objects in Figure 3(a) for k = 1, where the arrows indicate the direction of the traversal
and the circled numbers denote order in which the elements are visited (i.e., the leaf and nonleaf
elements that have not been pruned). (b) A depiction of the traversal for the best-first nearest
neighbor algorithm for the same argument values, with the curved line delimiting the portion of
the search hierarchy that is visited.

applied to other structures (e.g., Chiueh [1994], Navarro [2002], Roussopoulos
et al. [1995] and Yianilos [1993]). The main difference in our presentation is
that we do not explicitly prune (i.e., remove) members of the ActiveBranchList
after each recursive invocation (line 11). Instead, the termination of the for-loop
in line 5 implicitly prunes the remaining members of the list.

Figure 8(a) shows a trace of the algorithm with k = 1 on the set of
objects (and associated bounding rectangles and nodes) and query object
q given in Figure 3(a). Initially, NearestList is empty, which implies that
MAXDIST(NearestList) in line 4 evaluates to ∞. The root node n is naturally
the first to be visited during the traversal. The ActiveBranchList computed
for n (in line 2) is {(n2, 44), (n1, 51), (n3, 80)}; the distance values come from
Figure 6(b). The second node to be visited is then n2, whose ActiveBranchList is
{(b5, 85), (b4, 88)}. The bounding rectangle b5 is visited next, followed by the as-
sociated object o5 at a distance of 91, which becomes the first candidate nearest
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neighbor to be inserted into NearestList (line 7). Backtracking to n2, we must
now visit the next element on its ActiveBranchList, namely b4 since its distance
value is less than 91 (so the test in line 4 is false), but o4 is pruned from the
search (via line 5) since d (q, o4) = 112 > 91. Thus, the algorithm backtracks
to n, where the next element on the ActiveBranchList is n1, which is promptly
visited since its associated distance 51 is less than 91. The ActiveBranchList
for n1 is {(b2, 51), (b1, 63), (b3, 203)}, and since d (q, b2) = 51 < 91, we next visit
b2, followed by the associated object o2, since its distance from q of 57 is less
than 91. At this point, o2 is inserted into NearestList (line 7), causing o4 to
be ejected, and o2 thus becomes the new candidate nearest neighbor. Finally,
since the distance values of b1 (on the ActiveBranchList of n1) and n3 (on the
ActiveBranchList of n) are both greater than 57, the traversal backtracks be-
yond the root and the algorithm terminates, having determined that o2 is the
nearest neighbor of q.

3.2.2 Best-First Algorithm. The nearest neighbor algorithm presented in
Section 3.2.1 is as good as possible for a depth-first algorithm given only the
lower-bound distances present in the search hierarchy (i.e., without making
use of some aspect of the search structure that cannot be abstracted into a
search hierarchy). However, it turns out that we can do better with different
traversal strategies. To see why, observe that once we visit a child e′ of an el-
ement e, we are committed to traverse the entire subtree rooted at e′ (subject
to the pruning condition) before another child of e can be visited. For example,
in the traversal illustrated in Figure 8(a), we must visit b5 and o5 after the
traversal reaches n2, even though n1 is closer to q than b5. The above prop-
erty is inherent in the fact that the algorithm of Figure 7 maintains a separate
ActiveBranchList for each element on the path from the root of the search hier-
archy down to the current element. Thus, it may seem that we might improve on
the depth-first strategy by somehow combining ActiveBranchList’s for different
elements.

The best-first traversal strategy is indeed driven by what is in effect a global,
combined ActiveBranchList of all elements that have been visited. In the near-
est neighbor algorithm of Figure 9, this global list is maintained with a priority
queue Queue, with distances serving as keys. Initially, the root of the search
hierarchy is inserted into the queue. Then, at each step of the algorithm, the
element with the smallest distance is removed from the queue (i.e., it is “vis-
ited”), and its child elements either inserted into Queue or, for objects, into
NearestList. The NearestList variable and MAXDIST(NearestList) have the same
meaning as in the depth-first algorithm, while MINDIST(Queue) denotes the
smallest distance among the elements in Queue. Observe that MINDIST(Queue)
and MAXDIST(NearestList) converge toward each other (from 0, being increased
by line 7, and from∞, being decreased by line 11, respectively), and that when
the while-loop terminates, the value of MAXDIST(NearestList) has reached the
distance from q of its kth nearest neighbor. Also, note that, as a variation on
this algorithm, we could remove elements from Queue after the execution of the
for-loop in case MAXDIST(NearestList) has decreased (due to one or more inser-
tions in line 11), which renders unnecessary the second part of the condition
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BFNEAREST(q, k, T )
1 Queue← NEWPRIORITYQUEUE()
2 NearestList← NEWLIST(k)
3 e← root of the search hierarchy T
4 ENQUEUE(Queue, e, 0)
5 while not ISEMPTY(Queue) and
6 MINDIST(Queue) < MAXDIST(NearestList) do
7 e← DEQUEUE(Queue)
8 for each child element e′ of e do
9 if dt[e′](q, e′) ≤MAXDIST(NearestList) then

10 if t[e′] = 0 then /* e′ is an object */
11 INSERT(NearestList, e′, dt[e′](q, e′))
12 /* element with largest distance is removed */
13 /* if already k objects in list */
14 else
15 ENQUEUE(Queue, e′, dt[e′](q, e′))
16 return NearestList

Fig. 9. A best-first k-nearest neighbor algorithm on a search hierarchy T given a query object q.

in line 6. However, in this case, the priority queue implementation must sup-
port efficient ejection of elements having keys greater than some value (i.e.,
MAXDIST(NearestList)).

One way to obtain an intuition about the best-first nearest neighbor algo-
rithm is to consider the geometric case. If q is a two-dimensional point, as
in Figure 3, the search effectively proceeds by first drilling down the search
hierarchy and then expanding a circular query region with q as its cen-
ter. Each time that the query region hits a nonleaf element e, we visit e,
and the search terminates once the query region intersects at least k ob-
jects. The order in which search hierarchy elements would be visited for the
above example is depicted in Figure 8b. Initially, NearestList is empty and
Queue = {(n, 0)}. Thus, we “drill down” to n, causing its children to be inserted
into the priority queue, which results in Queue = {(n2, 44), (n1, 51), (n3, 80)} (all
enqueued in line 15). At this point, the circular query is in effect expanded
until its radius becomes equal to 44, the distance of n2 from q. Visiting n2

causes b4 and b5 to be inserted into the priority queue, resulting in Queue =
{(n1, 51), (n3, 80), (b5, 85), (b4, 88)}. Next, n1 is visited and b1 through b3 en-
queued, yielding Queue = {(b2, 51), (b1, 63), (n3, 80), (b5, 85), (b4, 88), (b3, 203)}.
Visiting b2 leads to the insertion of o2 with distance value of 57 into NearestList
(in line 11), which has hitherto been empty. Since we now have 63 =
MINDIST(Queue) 6< MAXDIST(NearestList) = 57 (i.e., the second part of the con-
dition in line 6 now evaluates to false), and the traversal is terminated with o2

as the nearest neighbor.
The best-first nearest neighbor algorithm can be thought of as a special case

of the classic A∗-algorithm (e.g., see Russel and Norvig [1994]). Nevertheless, it
was not popularized until relatively recently (e.g., see Arya et al. [1994]). One
reason is perhaps that the depth-first algorithm performs quite adequately in
many cases. Another reason may be that priority queues are somewhat expen-
sive to maintain. Thus, when the cost of priority queue operations is on a similar
order as the cost of visiting elements (e.g., computing distances or performing
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Fig. 10. Incremental ranking algorithm on a search hierarchy T given a query object q.

disk I/O), the depth-first algorithm may be preferred over the best-first algo-
rithm. However, when distances are expensive to compute and/or the search
hierarchy represents a disk-based structure, the improved pruning exhibited
by the best-first algorithm comfortably outweighs the cost of maintaining the
priority queue (e.g., see Hjaltason and Samet [1999]).

3.3 Ranking Query

In computing the ranking query, we must produce a list of the objects in S in
order of distance from the query object q. However, it is rare that we wish to rank
all the objects in S, and the stopping condition typically causes only a fraction of
the objects in S to be ranked. Furthermore, as mentioned above, it is most useful
in actual systems if the ranking query is computed in a progressive fashion, such
that the result is produced incrementally. In fact, it turns out that the best-
first nearest neighbor algorithm of Figure 9 can be extended to do just that.
The key insight is that at any state of the algorithm, the distances of objects
that are later added to NearestList can be no smaller than MINDIST(Queue) (i.e.,
due to the lower-bounding property of distances), and the objects in NearestList
with distances that are less than or equal to MINDIST(Queue) constitute the first
objects in the result of a ranking query. Thus, we obtain an incremental ranking
algorithm by simply outputting objects in NearestList once their distance is no
larger than MINDIST(Queue).

The algorithm presented in Figure 10 is essentially based on this principle.
In effect, it merges the functionality of NearestList with that of the priority
queue, thereby allowing an unlimited result size. Using a single priority queue
makes for a simple algorithm: when an object reaches the front of the queue,
it gets output as the next object in ranking order. Alternatively, it is possible
to use a separate priority queue for the objects, in which case the algorithm
would in each iteration dequeue from the priority queue whose front element
has the smaller distance. In either case, we can gain an intuition about the
progress of the ranking algorithm by considering the geometric case. For a two-
dimensional query point q, as in Figure 3, the search can be viewed as expanding
a circular query region with q as its center, similar as for the best-first nearest
neighbor algorithm. An element e reaching the front of the priority queue is
then essentially analogous to the event that the expanding query region hits e.
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This algorithm was introduced independently by Henrich [1994] and Hjaltason
and Samet [1995, 1999], in the context of spatial databases. The main difference
in their algorithms was that Henrich used two priority queues.

The trace of the ranking query on the sample objects and query point in
Figure 3 is essentially the same as described for the best-first nearest neighbor
algorithm above. The difference is that, here, when b2 is visited, o2 is in-
serted into the priority queue (line 10) rather than NearestList, which results in
Queue = {(o2, 57), (b1, 63), (n3, 80), (b5, 85), (b4, 88), (b3, 203)}. Thus, in the next
iteration of the while-loop, o2 is reported as the first nearest neighbor (line 7).
At this point, if no more neighbors are needed, the algorithm is terminated;
otherwise, the traversal continues, visiting b1 next, and eventually determin-
ing that o7 is the second nearest neighbor (but only after also visiting n3 and
b7; see Figure 6(b) for the associated distance values).

The fact that the algorithm in Figure 10 is able to rank all N objects in S
opens it up to the liability that the priority queue may become very large, and
in, the worst case, on the order of N . For example, this would be true if all the
objects in S are at approximately the same distance away from q (e.g., in the
two-dimensional geometric case, the data objects may be arranged on a circle
around the query point). Of course, likelihood of the occurrence of this event is
very rare from a probabilistic standpoint (i.e., the probability of the events that
all the objects being along a circle and that the query point is at their center),
especially for low-dimensional data; nevertheless, we still cannot rule out the
possibility of the size of the priority queue being on the order of N . To avoid this
situation, we can impose a limit on the size of the priority queue, and discard
the elements with the largest distances when it becomes too large, in a similar
way that NearestList is handled in the nearest neighbor algorithms. When
this occurs, we effectively put an upper bound on the distance to the farthest
object that can be produced by the ranking. In particular, if D is the smallest
distance of an element that has been discarded, the algorithm will only produce
a ranking for objects o ∈ S with d (q, o) ≤ D. If that does not produce enough
objects to satisfy the stopping condition of the ranking query, the algorithm
must be restarted, but this time with D being a minimum distance of produced
objects (see below).

3.4 Variants

Several useful variants can be defined of the queries and algorithms presented
above. For example, we can impose a maximum distance Dmax to the nearest
neighbor and ranking queries, which has the same meaning as the radius ε in
the range query. For the nearest neighbor algorithms, this simply requires mak-
ing the original value of MAXDIST(NearestList) be Dmax instead of∞, while it re-
quires additional distance tests in the ranking algorithm. A minimum distance
bound Dmin can also be exploited in all the algorithms, but doing so requires the
additional upper-bounding distance functions d̂ t[e](q, e). In particular, in each
case, we discard elements that satisfy d̂ t[e](q, e) < Dmin.

Another useful variant of the nearest neighbor query is the farthest neighbor
query, and, similarly, for the ranking query the reverse ranking query. This
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simply requires replacing dt[e](q, e) for ordering elements for processing with
−d̂ t(q, et) (i.e., ordering by decreasing values of d̂ t(q, et)). Unfortunately, this
is likely to be inefficient and requires visiting a large portion of the search
hierarchy before the farthest object from q is identified, since many objects
tend to be at a similar distance from q as the farthest one, relatively speaking.

In many applications, obtaining exact results is not critical. Therefore, users
are willing to trade off accuracy for improved performance. This is another di-
rection in which the algorithms can be easily extended. For approximate nearest
neighbor search [Arya et al. 1998], a proposed criterion is that the distance be-
tween q and the resulting candidate nearest neighbor o′ is within a factor of 1+ ε
of the distance to the actual nearest neighbor o, that is, d (q, o′) ≤ (1+ ε)d (q, o).
All the algorithms can be made approximate in this sense by “inflating” the dis-
tances of non-object elements by a factor of 1+ ε. For the ranking algorithm, the
implication of this modification is that the objects are not necessarily produced
in distance order. Instead, for any successive objects o1 and o2 that are reported,
we have d (q, o1) ≤ (1+ε)d (q, o2). Other strategies of making search algorithms
approximate can often be integrated into the algorithms by similarly manip-
ulating the distances of non-object elements (e.g., the method of Chen et al.
[2000], which involves shrinking the radii of bounding spheres when computing
their distances). For approximate farthest neighbor search in high-dimensional
point data, Duncan et al. [1999] suggest the criterion that o′ is an approximate
farthest neighbor of q if d (q, o′) ≥ d (q, o) − εD, where o is the actual farthest
neighbor and D is the diameter of the point set (i.e., the distance between the
two farthest points).1 This criterion can also be incorporated into the nearest
neighbor and ranking algorithms in a straightforward manner.

Observe that what causes the algorithms to become approximate when the
distance functions are modified is that the lower-bounding property of the dt dis-
tance functions (or the upper-bounding property of the d̂ t functions) is no longer
satisfied. If the original distance functions do not satisfy the lower-bounding
property, the algorithms will also not return correct results, but possibly in
unpredictable ways.

4. DISTANCE METRIC AND SEARCH PRUNING

As mentioned earlier, the indexed objects must reside in a finite metric space
(S, d ). This means that the distance function d must satisfy the following three
properties, where o1, o2, o3 ∈ S:

(1) d (o1, o2) = d (o2, o1) (symmetry)
(2) d (o1, o2) ≥ 0, d (o1, o2) = 0 iff o1 = o2 (nonnegativity)
(3) d (o1, o3) ≤ d (o1, o2)+ d (o2, o3) (triangle inequality)

1The motivation for basing the criterion on an absolute error bound based on D rather than a
relative error bound based on d (q, ok) is that the absolute error bound gives a tighter bound in
the farthest neighbor case. For example, all points in S would tend to be the approximate farthest
neighbor according to the relative error bound if the points in S were relatively close while q is
very far from these points [Duncan et al. 1999].
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The indexing methods discussed in later sections are often applicable even when
these three properties are relaxed. For example, it rarely matters if d (o1, o2) = 0
for some pairs of distinct objects o1 and o2 (in this case, d is often termed a
pseudo-metric). Furthermore, adequate performance can often be attained even
if the triangle inequality is occasionally violated,2 but this leads to approximate
query results.

Of the distance metric properties, the triangle inequality is the key prop-
erty for pruning the search space when processing queries. However, in order
to make use of the triangle inequality, we often find ourselves applying the
symmetry property. Furthermore, the nonnegativity property allows discarding
negative values in formulas. Below, we enumerate a number of results that can
be derived based on the metric properties. Our goal is to provide ammunition for
use in later sections when constructing distance functions that lower-bound or
upper-bound the distances between a query object and the objects in a subtree
of some search hierarchy (as defined in Section 2.1). Thus, we provide lower
and upper bounds on the distance d (q, o) between a query object q and some
object o, given some information about distances between q and o and some
other object(s). The reader may wish to skim over this section on first reading
and refer back to it as needed.

Recall that S ⊂ U, where U is some underlying set, usually infinite, and we
assume that (U, d ) is also a metric space (i.e., that d also satisfies the above
properties on U). For generality, we present our results in terms of (U, d ), since
a query object is generally not in S. In the first lemma, we explore the situation
where we know the distances from an object p to both q and o (while the distance
between q and o is unknown).

LEMMA 4.1. Given any three objects q, p, o ∈ U, we have

|d (q, p)− d (p, o)| ≤ d (q, o) ≤ d (q, p)+ d (p, o). (1)

Thus, knowing d (q, p) and d (p, o), we can bound the distance of d (q, o) from
both below and above.

PROOF. The upper bound is a direct consequence of the triangle inequal-
ity. For the lower bound, notice that d (p, o) ≤ d (p, q) + d (q, o) and d (q, p) ≤
d (q, o)+d (o, p) according to the triangle inequality. The first inequality implies
d (p, o)− d (p, q) ≤ d (q, o), while the second implies d (q, p)− d (o, p) ≤ d (q, o).
Therefore, combining these inequalities and making use of symmetry, we obtain
|d (q, p)− d (p, o)| ≤ d (q, o), as desired.

Figure 11(a) illustrates the situation where the lower bound |d (q, p)−d (p, o)|
established in Lemma 4.1 is nearly attained. Clearly, in the figure, d (q, o) is
nearly as small as d (q, p)−d (p, o). The opposite relationship (i.e., d (q, o) being
nearly as small as d (p, o) − d (q, p)) is obtained by exchanging q and o in the
figure. Similarly, Figure 11(b) illustrates the situation where the upper bound
d (q, p)+ d (p, o) is nearly attained.

2Distance functions for DNA data that are based on edit distance are usually of this nature [Smith
and Waterman 1981].
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Fig. 11. Illustration of distance bounds. Given d(q,p) and d(p,o), a lower bound (a) and an upper
bound (b) can be established for d(q,o). (c) Given that rlo ≤ d(p, o) ≤ rhi, we can establish lower and
upper bounds on d(q,o). Three positions are shown for q, demonstrating three cases that can arise.

In the next lemma, we assume that we know the distance between q and p,
but that the distance between p and o is only known to be within some range.
This is illustrated in Figure 11(c), where we show three different positions of
the query object q. The lower bounds on the distances d (q1, o) and d (q2, o) are
indicated with gray arrows, and the upper bound on d (q2, o) is indicated with
a gray broken arrow. Note that the lower bound on d (q3, o) is zero, since q3 is
inside the “shell” around p.

LEMMA 4.2. Let o and p be objects in U such that rlo ≤ d (o, p) ≤ rhi. The
distance d (q, o) from q ∈ U to o can be bounded as follows, given d (q, p):

max{d (q, p)− rhi, rlo − d (q, p), 0} ≤ d (q, o) ≤ d (q, p)+ rhi. (2)

PROOF. Again, we use the triangle inequality to prove these bounds. In
particular, from the inequality d (q, p) ≤ d (q, o) + d (o, p) and the upper
bound d (o, p) ≤ rhi, we obtain d (q, p) − d (q, o) ≤ d (o, p) ≤ rhi, which im-
plies that d (q, p) − rhi ≤ d (q, o) (e.g., see q1 in Figure 11(c)). Similarly, we
can combine the triangle inequality and the lower bound on d (o, p) to obtain
rlo ≤ d (o, p) ≤ d (q, o)+ d (q, p), which implies that rlo − d (q, p) ≤ d (q, o) (e.g.,
see q2 in Figure 11(c)). Either or both of these lower bounds can be negative (e.g.,
for q3 in Figure 11(c)), whereas distance values are required to be nonnegative.
Thus, the overall lower bound in Eq. (2) is obtained by taking the maximum of
zero and these two lower bounds. The upper bound in Eq. (2) is obtained by a
straightforward application of the triangle inequality and the upper bound on
d (o, p), i.e., d (q, o) ≤ d (q, p)+d (o, p) ≤ d (q, p)+rhi (e.g., see the broken arrow
from q2 through p to the outer boundary in Figure 11(c)).

In some situations, the distance d (q, p) in Lemma 4.2 may not be known
exactly. The next lemma establishes bounds on the distance from q to o in such
circumstances:

LEMMA 4.3. Let o, p, and q be objects in U for which d (o, p) is known to be in
the range [rlo, rhi] and d (q, p) is known to be in the range [slo, shi]. The distance
d (q, o) can be bounded as follows:

max{slo − rhi, rlo − shi, 0} ≤ d (q, o) ≤ rhi + shi. (3)
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Fig. 12. (a) The lower bound on d(q,o) is illustrated for the case when d(p,o) is in the range [rlo, rhi]
and d(p,q) is in the range [s]lo, shi]. (b) Illustration of how the upper bound on d(q,o) can be attained
when d(p,o) and d(p,q) are in these ranges.

PROOF. Substituting slo for the first instance of d (q, p) in Eq. (2) can only
reduce the lower bound. Thus, we find that slo − rhi ≤ d (q, o). The same is
true when substituting shi for the second instance of d (q, p) in the equation,
as this instance is subtractive, which shows that rlo − shi ≤ d (q, o). Similarly,
substituting shi for the last instance of d (q, p) in the equation increases the
upper bound, so we obtain d (q, o) ≤ rhi + shi.

Clearly, the roles of the two ranges in Lemma 4.3 are symmetric. For an
intuitive understanding of the lower bound, imagine two shells around p, one
with radius range [rlo, rhi] (where o is allowed to reside) and the other with
radius range [slo, shi] (where q is allowed to reside). As illustrated by the shaded
arrow in Figure 12(a), the minimum distance between q and o is equal to the
space between the shells, if any. Similarly, the upper bound can be understood
by visualizing shells around q and o, with p at the outer edge of each shell,
as illustrated in Figure 12(b). Observe that Lemmas 4.1–4.3 are increasingly
general and that the earlier ones can be proved based on the later ones; we
chose to present the lemmas in this manner for didactic reasons.

In some distance-based indexes, objects are partitioned based on relative
closeness to two or more objects. The following lemma provides a result that we
can use in such situations:

LEMMA 4.4. Let o ∈ U be an object that is closer to p1 than to p2, or equidis-
tant from both (i.e., d (p1, o) ≤ d (p2, o)). Given d (q, p1) and d (q, p2), we can
establish a lower bound on d (q, o):

max
{

d (q, p1)− d (q, p2)
2

, 0
}
≤ d (q, o). (4)

PROOF. From the triangle inequality, we have d (q, p1) ≤ d (q, o) +
d (p1, o), which yields d (q, p1) − d (q, o) ≤ d (p1, o). When combined with
d (p2, o) ≤ d (q, p2) + d (q, o) (from the triangle inequality) and d (p1, o) ≤
d (p2, o), we obtain d (q, p1) − d (q, o) ≤ d (q, p2) + d (q, o). Rearranging yields
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Fig. 13. (a) Lower bound on d(q,o), illustrated in a two-dimensional Euclidean space when q is on
the line between p1 and p2, closer to p2, while o is closer to p1. (b) The lower bound can be shown
to decrease when q is moved off the line (e.g., to q’).

d (q, p1) − d (q, p2) ≤ 2d (q, o), which yields the first component of the lower
bound in Eq. (4), the second component being furnished by nonnegativity.

One way to get some intuition about this result is to consider the situation
shown in Figure 13(a), where q lies on the line between p1 and p2 in a two-
dimensional Euclidean space, closer to p2. If o is closer to p1, it is to the left of the
horizontal line midway between p1 and p2 which separates the regions in which
objects are closer to p1 or to p2. Thus, d (q, o) is lower-bounded by the distance
from q to the dividing line, which equals (d (q, p1)−d (q, p2))/2 for the particular
position of q in the figure. If we move q parallel to the dividing line (i.e., up or
down in Figure 13(a)), the distance from q to the line is clearly unchanged.
However, the difference between d (q, p1) and d (q, p2) can be shown to decrease
as both distance values increase,3 so the value of (d (q, p1) − d (q, p2))/2 will
also decrease. In other words, we see that (d (q, p1)− d (q, p2))/2 is exactly the
distance from q to the dividing line in the figure, while (d (q, p1) − d (q, p2))/2
decreases as q is moved while keeping the distance from q to the dividing line
constant. Therefore, the value (d (q, p1) − d (q, p2))/2 is indeed a lower bound
on the distance from q to the dividing line, and thus also a lower bound on the
distance between q and o. Note that this argument holds for all positions of q
that are closer to p2 than to p1, as the initial position of q can be anywhere on
the line between p1 and p2. Observe that without additional information, an
upper bound on d (q, o) cannot be established, as o may be arbitrarily far away
from p1 or p2.

5. BALL PARTITIONING METHODS

In this section we describe a number of ball partitioning methods. Section 5.1
presents the vp-tree in great detail. Section 5.2 reviews variants of the vp-tree,
while Section 5.3 discusses a few other search structures that employ some
form of ball partitioning.

3Figure 13(b) depicts the relative distances for a query point q′ that is above q. From α2 = a2 + c2,
we obtain α2 − a2 = (α − a)(α + a) = c2 or α − a = c2

α+a . In the same manner, we can show that
β − b = c2

β+b . Since q is closer to p2, we have a > b and α > β, and therefore α + a > β + b.
Thus, α − a = c2

α+a <
c2

β+b = β − b, implying that α − β < a− b, and thus (d (q′, p1)− d (q′, p2))/2 <
(d (q, p1)− d (q, p2))/2.
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5.1 The VP-Tree

The vp-tree (Vantage Point Tree) [Yianilos 1993] is an example of an index-
ing method that uses ball partitioning (and thus is a variant of the metric
tree [Uhlmann 1991a, 1991b]). In this method, we pick a pivot p from S (termed
a vantage point in Yianilos [1993]), compute the median r of the distances of
the other objects to p, and then divide the remaining objects into roughly equal-
sized subsets S1 and S2 as follows:

S1 = {o ∈ S \ {p} | d (p, o) < r}, and
S2 = {o ∈ S \ {p} | d (p, o) ≥ r}.

Thus, the objects in S1 are inside the ball of radius r around p, while the objects
in S2 are outside this ball. Applying this rule recursively leads to a binary tree,
where a pivot object is stored in each internal node, with the left and right
subtrees corresponding to the subsets inside and outside the corresponding ball,
respectively. In the leaf nodes of the tree we would store one or more objects,
depending on the desired capacity. An example of such a partition is shown in
Figure 1(a). In fact, we can define bounding values for each subset S1 and S2.
In particular, for o ∈ Si, we have d (p, o) ∈ [ri,lo, ri,hi], for some bounding values
ri,lo and ri,hi. Given only the radius r, the known bounds are [r1,lo, r1,hi] = [0, r]
and [r2,lo, r2,hi] = [r,∞] (or, more accurately, [0, r − δ] and [r, M ], respectively,
where δ ≤ d (o, o1) − d (o, o2) and M ≥ d (o1, o2) for all o, o1, o2 in S). For the
tightest bounds possible, all four bounding values can be stored in the node
corresponding to p. Doing this can yield improved search performance, but
perhaps at the price of excessive storage cost.

5.1.1 Pivot Selection. The simplest method of picking pivots is to simply
select at random. Yianilos [1993] argues that a more careful selection procedure
can yield better search performance (but at the price of a higher construction
cost). The method he proposes is to take a random sample from S, and choose
the object among the sample objects that has the best spread (defined in terms
of the variance) of distances from a subset of S, also chosen at random. For a
data set drawn from a Euclidean space for which the data points are relatively
uniformly spread over a hypercube c, this would tend to pick points near cor-
ners as pivots (the observation that such pivots are preferable was first made
by Shapiro [1977]). Choosing such points as pivots can be shown to minimize
the boundary of the ball that is inside c (e.g., the length of the boundary in
Figure 14(a) is greater than that in Figure 14(b)), which Yianilos [1993] argues
increases search efficiency. Some intuitive insight into the argument that the
boundary is reduced as the pivot is moved farther from the center of c can be
gained by considering that if we are allowed to pick points outside c as pivots,
the resulting partitioning of the hypercube increasingly resembles a partition-
ing by a hyperplane (e.g., see Figure 14(c)). Notice that the areas of the two
regions inside c formed by the partitioning tend to be about the same when
the points are uniformly distributed, and the length of the partitioning arc in-
side c is inversely proportional to the distance between the pivot point and the
center of c (see Figure 14). Observe also that the length l of the partitioning
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Fig. 14. Depiction of partitions of a set of points in a two-dimensional Euclidean space, assumed
to be uniformly distributed in a cube c, for pivot points (a) in the center of c, (b) in a corner of c,
and (c) outside c.

arc decreases even more as the pivot is moved further away from c (e.g., see
Figure 14(c)).

In the vp-tree, the ball radius is always chosen as the median, so that the
two subsets are roughly equal in size. Another possibility would be to split at
the mid-point between the distances of the objects in S\{p} that are closest
and farthest from p, as proposed by Chávez et al. [2001b] (and inspired by
Burkhard and Keller [1973]). This yields a partition into equal-width “shells”
around p. Chávez et al. [2001b] argue that splitting at the mid-point yields
better partitions for data sets whose “inherent dimensionality” is high, as the
objects outside the ball may reside in a thin “shell” when always splitting at
the median [Chávez et al. 2001b]. However, the disadvantage of splitting at the
mid-point is that the resulting tree is not balanced, as is the case when splitting
at the median. Nevertheless, even when splitting at the median, the tree can
become unbalanced if we support dynamic insertions, but this can be alleviated
with periodic reorganization.

5.1.2 Search. Clearly, search algorithms are fundamentally the same re-
gardless of how the pivot and ball radius are determined, since the basic struc-
ture is the same. Let us examine how a range query algorithm similar to that
in Section 3.1 would proceed. When visiting a node n with pivot p and ball
radius r, we must decide whether to visit the left and/or right child of n. To do
so, we must establish lower bounds on the distances from q to objects in the
left and right subtrees: if the query radius is less than the lower bound for a
subtree, there is no need to visit that subtree. For example, in Figure 15(a),
the left subtree (for the objects inside the ball) need not be visited, while in
Figure 15(b), the left subtree must be visited. The lower bounds are provided
by Eq. (2) in Lemma 4.2. In particular, by applying the equation with rlo = 0
and rhi = r, we find that the distance from q to an object in the left subtree of n
is at least max{d (q, p) − r, 0}. Similarly, by applying the equation with rlo = r
and rhi = ∞, we find that the distance from q to an object in the right subtree
of n is at least max{r − d (q, p), 0}. Thus, we visit the left child if and only if
max{d (q, p)− r, 0} ≤ ε and the right child if and only if max{r −d (q, p), 0} ≤ ε.

The above description of performing range search on a vp-tree immediately
suggests how to derive a search hierarchy according to the framework presented
in Section 2.1, thus making it possible to apply all the algorithms in Section 3.
The elements of the search hierarchy correspond to the objects (type 0) and the
nodes (type 1) in the vp-tree. Figure 16(b) is the resulting search hierarchy for
the small sample vp-tree of Figure 16(a). In Figure 16(b), the circles represent
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Fig. 15. During a range query with query radius ε, the subtree corresponding to the inside of the
ball need not be visited in (a) while it must be visited in (b).

Fig. 16. (a) An example vp-tree for three objects p, o1, and o2, and (b) the search hierarchy induced
by the vp-tree.

elements of type 1, and the squares represent elements of type 0. Thus, a node
element (i.e., of type 1) produces an element of type 0 corresponding to its pivot,
and two elements of type 1 corresponding to its two children, if present.

Having defined the structure of the search hierarchy, we must specify the
distance functions dt for each element type t (i.e., 0 and 1, in this case). Since
elements e0 of type 0 represent objects, d0 is simply equal to d. As for d1, recall
that the value of d1(q, e1) should be a lower-bound on the distance d (q, o) for
any object o in the sub-hierarchy rooted at e1. As we showed above for the range
query, such lower bounds are readily derived based on Lemma 4.2. In particular,
for a node element e with pivot p and a child element e′ with bounding values
[rlo, rhi], the distance function for e′ (of type 1) is:

d1(q, e′) = max{d (q, p)− rhi, rlo − d (q, p), 0}.
This definition of d1 is general in that it accounts for e1 being either a left
child (in which case rlo = 0 and rhi = r) or a right child (in which case rlo = r
and rhi = ∞).4 Furthermore, for either case, it also accounts for q being either

4As we pointed out before, tight distance bounds for each subtree could be stored in each vp-tree
node instead of just the median [Yianilos 1993], thereby causing d1 and d̂1 to yield improved bounds.
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Fig. 17. An example of pivots p1 and p2 for two nodes n1 and n2, respectively, in a vp-tree (a),
where n1 is the left child of n2. The regions for the left and right child of n1 are denoted S1 and S2,
respectively, and shown in (b).

inside or outside the region for e1 (i.e., inside or outside the ball around p of
radius r).

The upper-bound distance function d̂1 can also be derived from the result of
Lemma 4.2 (i.e., by Eq. (2)):

d̂1(q, e′) = d (q, p)+ rhi,

where p and rhi are defined as above. Recall that upper-bound distance functions
are used when performing farthest-neighbor queries and when a minimum
distance bound is imposed on the query results (see Section 3.4).

In the vp-tree, it is quite possible for the “ball” around the pivot p1 for a node
n1 to not be completely inside the “ball” around the pivot p2 of its parent node
n2, as depicted in Figure 17(b), which shows the ball regions corresponding to
the vp-tree in Figure 17(a). Thus, it is possible for the lower-bound distance
from q to a child node to be smaller than the lower-bound distance to its parent
node, which is true in the figure, since d (q, p1)−r1 < d (q, p2)−r2. However, this
does not affect the correctness of the algorithms presented in Section 3, since
the objects in the subtree rooted at n1 are still no closer to q than d (q, p2)− r2,
even though the lower bound based on the pivot p1 and its ball radius r1 is
smaller. In other words, the objects in the left subtree of n1 must be somewhere
in the white region inside the ball for p1 (denoted S1 in the figure) and not in
the darkly shaded region, and the objects in the right subtree must be in the
lightly shaded region (denoted S2) and not outside the ball for p2.

5.2 Variants of the VP-Tree

When the vp-tree is constructed, we must compute the distances of an object o
from each of the pivots on the path from the root to the leaf containing o. This
information is useful, as it can often be used during search to either prune o
from the search or include it in the search result without computing its distance.
Based on this insight, Yianilos [1993] proposed a version of the vp-tree, termed
the vps-tree, where we store, for each object (whether it functions as a pivot or

This can improve search performance, but at the cost of an increase in the storage requirement
(i.e., four distance values in each node instead of just one).
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is stored in a leaf node), its distance from all ancestral pivots (i.e., those higher
in the tree on the path from the root). In the related vpsb-tree, the leaf nodes
can store more than one object, thus serving as “buckets.” To see how we make
use of the distances to ancestral pivots, consider an object o, one of its ancestral
pivots p, and the query object q. Given d (q, p) and d (p, o), Lemma 4.1 allows
us to bound the distance between q and o, that is, |d (q, p)−d (p, o)| ≤ d (q, o) ≤
d (q, p) + d (p, o). Thus, when performing a range query with radius ε, we can
safely discard o if |d (q, p) − d (p, o)| > ε or directly include it in the result if
d (q, p)+ d (p, o) ≤ ε.

A potential criticism of vp-tree and related metric tree variants is that the
fan-out is low (i.e., just 2). As pointed out by Yianilos [1993], the vp-tree can
gain higher fan-out by splitting S into m subsets of roughly equal size instead
of just two, based on m+ 1 bounding values r0, . . . , rm (alternatively, we can let
r0 = 0 and rm = ∞). In particular, S is partitioned into S1, S2, . . . , Sm where
Si = {o ∈ S \ {p} | ri−1 ≤ d (p, o) < ri}. Observe that objects in the subsets lie
on spherical “shells” around p. Applying this partitioning process recursively
yields an m-ary tree. It is easy to adapt the search hierarchy defined above
to this variant. In particular, the various distance functions defined above for
search hierarchy elements that represent vp-tree nodes still apply, provided
that we set rlo and rhi to the proper values—that is, rlo = ri−1 and rhi = ri for
the child corresponding to Si (unless tighter bounds are maintained).

Another variant of vp-trees that achieves a higher fan-out, termed the mvp-
tree, was suggested by Bozkaya and Ozsoyoglu [1997; 1999]. Each node in the
mvp-tree is essentially equivalent to the result of collapsing the nodes at several
levels of a vp-tree. There is one crucial difference between the mvp-tree and the
result of such collapsing: only one pivot is used for each level inside an mvp-tree
node (although the number of different ball radius values is unchanged). Thus,
in an mvp-tree that corresponds to collapsing a vp-tree over every two levels, two
pivots are used in each mvp-tree node with three ball radius values. An example
of the top-level partitioning for such an mvp-tree is shown in Figure 18.

The motivation for the mvp-tree is that fewer distance computations are
needed for pivots during search since there are fewer of them (e.g., for an mvp-
tree node with two pivots, three pivots would be needed in the corresponding
vp-tree). Observe that some subsets are partitioned using pivots that are not
members of the sets, which does not occur in the vp-tree (e.g., p2 is used to
partition the subset inside the ball around p1 in Figure 18(a)). Bozkaya and
Ozsoyoglu [1997, 1999] suggest using multiple partitions for each pivot, as
discussed above. Hence, with k pivots per node and m partitions per pivot, the
fan-out of the nonleaf nodes is mk . Furthermore, they propose storing, for each
data object in a leaf node, the distances to some maximum number n of ancestral
pivots (by setting a maximum n on the number of ancestral pivots, the physical
size of all nodes can be fixed). This is analogous to the use of ancestral pivots in
the vpsb-tree, as described above, except that this distance information is only
maintained in leaf nodes in the mvp-tree. Another minor departure from the
vp-tree that enables additional pruning to take place is that each leaf node in
the mvp-tree also contains k pivots (whereas pivots are not used in leaf nodes
in the vp-tree). In addition, the distances between these pivots and the data
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Fig. 18. (a) Possible top-level partitionings of a set of objects (depicted as two-dimensional points)
in an mvp-tree where two pivots are used in each node, and (b) a depiction of the corresponding
mvp-tree node. The second pivot, p2, partitions the inside of the ball for p1 into subsets S1 and S2,
and the outside of the ball into subsets S3 and S4.

objects are stored in the node (a version of the mvp-tree in which pivots are not
used in leaves is also considered in Bozkaya and Ozsoyoglu [1999]). Thus, the
leaf node pivots essentially function like the ancestral pivots.

Search hierarchies for the above vp-tree variants are readily suggested by
their structure, similar as we saw for the vp-tree in Section 5.1. Thus, we would
have elements for the nodes and objects. As described above for the range query,
in algorithms where a maximum distance bound is defined, the distance infor-
mation for ancestral pivots can often be used to discard objects without comput-
ing their actual distance. However, for the ranking query, a maximum distance
bound is usually not available. Thus, to exploit the ancestral pivots in this
case, we can define “approximate object” elements that would be produced for
objects that appear in leaf nodes, and whose lower-bound distance function is
defined on the basis of the ancestral pivots. For a further discussion, please
refer to Hjaltason and Samet [2000].

5.3 Other Methods Related to Ball Partitioning

A number of additional proposals of search structures that employ some form
of ball partitioning have been made. Below, we summarize some of these ball
partitioning methods.

The vp-tree, one of the more popular instances of ball partitioning, is actually
a special case of what Knuth terms a post-office tree whose proposal he attributes
to Bruce McNutt in 1972 [Knuth 1998, p. 563]. The difference is that each node
in the post-office tree is a vp-tree node (p, r) with the addition of a tolerance δ
which is associated with the radius r of the ball centered at p. In particular,
given a value of δ, once pivot p and radius r have been chosen, the remaining
objects are subdivided into two subsets S1 and S2 as follows:

S1 = {o ∈ S \ {p} | d (p, o) ≤ r + δ}
S2 = {o ∈ S \ {p} | d (p, o) ≥ r − δ}
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Thus the objects in S1 are inside the ball of radius r + δ, while the objects in
S2 are outside a ball of radius r − δ. Of course, some objects lie both in S1 and
S2—that is all objects o where |d (o, p)− r| ≤ δ.5

Among the earliest published work on distance-based indexing was that of
Burkhard and Keller [1973]. One of the three structures they proposed employs
ball partitioning. However, the distance function was assumed to be discrete,
so that only a few different distance values are possible, say m. At the top
level, some distinguished object p ∈ S is chosen, and the remaining objects are
partitioned into m subsets S1, S2, . . . , Sm based on distance value. Applying
this process recursively yields an m-ary tree. Clearly, p has the same role as a
pivot in the vp-tree, and the result of the partitioning process is analogous to
that of an m-ary vp-tree (see Section 5.2). In fact, as pointed out by Chávez et al.
[2001b], a natural adaptation of Burkhard and Keller‘s technique to continuous
distance functions is to choose the partition values r0, r1, . . . , rm such that the
objects are partitioned into m equiwidth shells around p. In other words, r0 and
rm are chosen as the minimum and maximum distances, respectively, between
p and objects in S \ {p}, and ri = i

m (rm − r0)+ r0 for i = 1, . . . , m− 1.
Baeza-Yates et al. [1994] proposed a variant of Burkhard and Keller’s ap-

proach that they termed the fixed-queries tree (also known as an fq-tree). In
this variant, all nodes at the same level in the tree use the same pivot, and
the pivot objects also appear as data objects in leaf nodes of the tree (unlike the
vp-tree or Burkhard and Keller’s approach). The rationale for using just one
pivot per level is the same as in the mvp-tree—that is, so that fewer distance
computations are needed during search, since only one distance computation
is needed for visiting all nodes at a given level (as is the case when the search
backtracks). The drawback is that the quality of the partitioning may suffer
as a result of using fewer pivots. Fixed-height variants of this idea were also
proposed, where all leaf nodes are at the same level h. Thus, some internal
nodes have only one child node (in cases where the node would otherwise have
been a leaf node), and leaf nodes may contain arbitrary numbers of objects.
Furthermore, each object has the same number of ancestral pivots, and thus
requires the same number of distance computations when constructing the tree.
This insight led to the proposal of the fixed query array (also known as an fq-
array) [Chávez et al. 2001a], which is essentially a compact representation of
the distances in a fixed-height fixed-queries tree in the form of an array of bit
strings. Thus, each bit string is the result of encoding the h distances from an
object to the h pivots, by concatenating b-bit representations of each distance, so
that the most significant digits in the bit string correspond to the pivots closer
to the root. In the fixed query array, movements in the equivalent fixed-height
fixed-queries tree are simulated with binary search.

Yianilos [1998] proposed a variant of vp-trees termed the excluded mid-
dle vantage point forest (see also Gennaro et al. [2001]) that is intended for

5The idea of a loose partition so that the children of a node are not disjoint is also used in the os-
tree [Maneewongvatana and Mount 2001a, 2001b], KD2-tree [van Oosterom 1990; van Oosterom
and Claassen 1990], spatial k-d tree [Ooi et al. 1987], and hybrid tree [Chakrabarti and Mehrotra
1998, 1999].
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radius-limited nearest neighbor search, that is, where the nearest neighbor is
restricted to be within some radius r∗ of the query object. This method is based
on the insight that most of the complexity of performing search in methods
based on binary partitioning, such as the vp-tree, is due to query objects that
lie close to the partition values, thereby causing both partitions to be processed.
For example, in the vp-tree, these are objects q for which d (q, p) is close to r,
the partitioning value for a pivot p. The proposed solution is to exclude all data
objects whose distances from a pivot are within r∗ of the partition value (i.e.,
the ball radius). This process is applied to all pivots in the tree and a new tree
is built recursively for the set of all excluded objects. Thus, the final result is a
forest of trees. Since the width of all exclusion regions is at least 2r∗, nearest
neighbor search limited to a search region of radius r∗ can be performed with
no backtracking, but this is at the price of having to search all the trees in the
forest. The fact that no backtracking is needed allows determining a worst-case
bound on the search cost, based on the heights of the trees in the forest. Unfor-
tunately, the method appears to provide good performance only for very small
values of r∗ [Yianilos 1998], which is of limited value in most similarity search
applications.

6. GENERALIZED HYPERPLANE PARTITIONING METHODS

In this section, we describe a number of generalized hyperplane partition-
ing partitioning methods. Section 6.1 presents the gh-tree in great detail.
Section 6.2 reviews GNAT (Geometric Near-neighbor Access Tree). Section 6.3
describes the bisector tree and the mb-tree, while Section 6.4 discusses a
few other search structures that employ some form of generalized hyperplane
partitioning.

6.1 The GH-Tree

Uhlmann [1991b] defined a metric tree using generalized hyperplane
partitioning, which has been termed a gh-tree by later authors [Bozkaya and
Ozsoyoglu 1999; Brin 1995; Fu et al. 2000]. Instead of picking just one ob-
ject for partitioning as in the vp-tree, this method picks two pivots p1 and
p2 (e.g., the objects farthest from each other as in Faloutsos and Lin [1995],
McNames [1998], McNames et al. [1999], and Merkwirth et al. [2000]) and
splits the set of remaining objects based on the closest pivot (see Figure 1(b)):

S1 = {o ∈ S \ {p1, p2} | d (p1, o) ≤ d (p2, o)}, and
S2 = {o ∈ S \ {p1, p2} | d (p2, o) < d (p1, o)}.

In other words, the objects in S1 are closer to p1 than to p2 (or equidistant from
both), and the objects in S2 are closer to p2 than to p1. This rule is applied
recursively, resulting in a binary tree where the left child of a nonleaf node
corresponds to S1 and the right to S2. This rule can be restated as stipulating
that S1 contains all objects o such that d (p1, o) − d (p2, o) ≤ 0. Clearly, the
two subsets S1 and S2 can be very different in size. Uhlmann [1991b] actually
suggested partitioning based on a median value m, so that d (p1, o)−d (p2, o) ≤
m applies to roughly half the objects in S. For simplicity, we assume below that
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Fig. 19. (a) A possible space partitioning produced by the gh-tree for a set of points in a two-
dimensional Euclidean space, and (b) its tree representation.

m is fixed at 0; the discussion is easily generalized to other values. A sample
gh-tree is shown in Figure 19.

The term “generalized hyperplane partitioning” is derived from the fact that
if the objects are points in an n-dimensional Euclidean space, the resulting
partitioning is equivalent to one based on an (n− 1)-dimensional hyperplane
like that used in a k-d tree (in a k-d tree, however, the partitioning planes are
axis-aligned). This hyperplane is the set of all points o that satisfy d (p1, o) =
d (p2, o). Consider how to compute a lower bound on the distance from a query
object q to an object in one of the partitions, say, that for S1. If q is in the partition
(i.e., is closer to p1), the lower bound is clearly zero. Otherwise, the lower bound
is equal to the distance from q to the partitioning hyperplane, which is easy to
compute in Euclidean spaces. For arbitrary metric spaces, however, we cannot
form a direct representation of the “generalized hyperplane” that divides the
two partitions, since we assume that the interobject distances are the only
available information.

Fortunately, even given the limited information available in the gh-tree,
Lemma 4.4 shows that it is possible to derive a lower bound on the distance
from q to some object in a partition; an upper bound cannot be determined,
on the other hand, since objects can be arbitrarily far from from p1 and p2. In
particular, for a range query with query radius ε, the left subtree of a node n
with pivots p1 and p2 must be visited if and only if d (q, p1)−d (q, p2)

2 ≤ ε and the
right one must be visited if and only if d (q, p2)−d (q, p1)

2 ≤ ε. Observe that the lower
bound obtained from Lemma 4.4 is much weaker than would be obtained in a
Euclidean space by using the hyperplane directly, since the bound decreases as
q moves parallel to the hyperplane away from p1 or p2 (recall Figure 13).

To augment the information given by the closeness relationship to the two
pivots in each node, it is common in gh-tree variants to include for each pivot the
maximum distance to an object in its subtree (the result is termed a bisector tree
(BST) [Kalantari and McDonald 1983]). Thus, for pivot pi (i = 1, 2), we define
the radius ri = maxo∈Si {d (pi, o)}. Clearly, these radii can be used during search
in the same way that the ball radii are used in the vp-tree, by using Lemma 4.2.

ACM Transactions on Database Systems, Vol. 28, No. 4, December 2003.



550 • G. R. Hjaltason and H. Samet

A number of researchers have independently invented structures similar to this
“augmented” gh-tree. For example, this is the case with the work of Noltemeier
et al. [1993] (further described in Section 6.3) and Merkwirth et al. [2000].
The latter authors also describe a best-first nearest neighbor algorithm that
is equivalent to the algorithm presented in Section 3.2.2 when applied on the
search hierarchy defined below.

A search hierarchy for the gh-tree naturally arises from its structure, similar
as for the vp-tree (see Section 5.1), with elements for objects and nodes, and
where node elements produce an object element for each pivot and a node ele-
ment for each child. For a node element e with pivots p1 and p2, a lower-bound
distance function d1 is defined for the two node elements e′ that are children of
e, corresponding to S1 and S2, respectively. In particular, in defining d1, we can
make use of both the lower bound that follows from Lemma 4.4 as well as the
lower bound based on the radii ri of the balls around pivots pi using Lemma 4.2,
taking the maximum of the two:

d1(q, e′) =


max

{
d (q, p1)−d (q, p2)

2 , d (q, p1)− r1, 0
}

,
if e′ is the child of e corresponding to S1,

max
{

d (q, p2)−d (q, p1)
2 , d (q, p2)− r2, 0

}
,

if e′ is the child of e corresponding to S2.

Unfortunately, we cannot use Lemma 4.4 to define an upper bound distance
function d̂1 since Lemma 4.4 does not provide an upper bound on the distance
from q to any point o in a hyperplane bounded region e′. However, we can make
use of the radii ri of the balls around pivots pi, as defined above again based on
Lemma 4.2, to yield:

d̂1(q, e′) =
{

d (q, p1)+ r1, if e′ is the child of e corresponding to S1,
d (q, p2)+ r2, if e′ is the child of e corresponding to S2.

6.2 GNAT

GNAT (Geometric Near-neighbor Access Tree) [Brin 1995] is a generalization
of the gh-tree, where more than two pivots (termed split points in Brin [1995])
may be chosen to partition the data set at each node. In particular, given a set of
pivots P = {p1, . . . , pm}, we split S into S1, . . . , Sm based on which of the objects
in P is the closest. In other words, for any object o ∈ S \ P , o is a member of Si if
d (pi, o) ≤ d (pj , o) for all j = 1, . . . , m. In case of ties, i is the lowest index among
the ones that participate in the tie. Thus, applying such a partitioning process
recursively yields an m-ary tree. Brin [1995] left the value of m as a parameter,
and also suggested a way to adaptively choose a different number of pivots at
each node, based on the cardinalities of the partition sets. The method Brin
[1995] describes for choosing the pivot objects is based on a philosophy similar
to that of Yianilos [1993] for the vp-tree (and also suggested by others [Bozkaya
and Ozsoyoglu 1999; Shapiro 1977]). In particular, initially, randomly pick 3m
candidate pivot objects from S. Next, pick the first pivot object at random from
the candidates, pick as the second the candidate farthest away from the first
one, pick as the third the candidate farthest away from the first two, etc.
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Fig. 20. Depiction of the bounds for two pivots pi and pj in a GNAT. The broken line indicates
the hyperplane between the pivots (here, it is a line, but, in general, there may be no such simple
characterization), and the filled circles denote objects associated with pj. Query object q1 with query
radius ε1 results in eliminating pj and its subset from the search since d(q, pi) − ε > r(i,j)

hi . Similarly,
query object q2 with query radius ε2 eliminates pj from the search since d(q2, pi) + ε < r(i,j)

lo .

In addition to pivots and child pointers, the nodes in GNAT also store in-
formation about the ranges of distances between the pivots and objects in
the subtrees, which enables more pruning during search. In particular, for
each pair of pivots pi and pj in a node n, we store the range [r (i, j )

lo , r (i, j )
hi ] of

d (pi, o) over all objects o ∈ Sj ∪ {pj }; that is, r (i, j )
lo = mino∈S j∪{pj }{d (pi, o)}

and r (i, j )
hi = maxo∈S j∪{pj }{d (pi, o)}. Although not mentioned by Brin [1995], it

may also be advantageous to store the range [r ( j , j )
lo , r ( j , j )

hi ] for d (pj , o) over all
m objects o ∈ Sj bringing the total number of ranges to m2 (since there are
m · (m− 1) +m ranges altogether).6 Figure 20 illustrates the distance bounds
for two pivots pi and pj , where the dots clustered around pj depict the objects
in Sj .

If the objects are points in an n-dimensional Euclidean space, the objects
in Si are exactly the objects in S \ P that fall into the Voronoi cell with pi as
a site. For Euclidean spaces, it is relatively straightforward to directly rep-
resent the Voronoi cells (although this becomes increasingly impractical as
the dimensionality grows), and thus compute a lower bound on the distance
from a query point to the points inside a given cell (i.e., based on the ge-
ometry of the cell). Unfortunately, for arbitrary metric spaces, computing a
lower bound in this way is not feasible since, as we saw for the gh-tree, we do
not have a direct representation of the “generalized Voronoi cells” formed by
the pivots (termed Dirichlet domains in Brin [1995]). Clearly, we could simply

6This approach of storing m2 ranges should be contrasted with the approach of Kamgar-Parsi and
Kanal [1985] and Larsen and Kanal [1986] who only store the m ranges formed by ri,i

lo and ri,i
hi while

in the augmented gh-tree [Kalantari and McDonald 1983; Merkwirth et al. 2000; Noltemeier et al.
1993], described in Section 6.1, only ri,i

hi is stored.
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apply Lemma 4.4, as we did for the gh-tree, which would yield the lower bound
(d (q, pi)−d (q, pj ))/2 on d (q, o) for an object o in Si (i.e., o is closer to pi than to
pj ), where pj is the object in P closest to q (since this choice of pj maximizes
the lower bound). However, as shown below, tighter bounds can be obtained
by using the distance ranges [r (i, j )

lo , r (i, j )
hi ] (based on Lemma 4.2), thus achiev-

ing better search performance. We can think of the distance bounds as effec-
tively constraining the “shape” of the region represented by the child nodes so
as to approximate the corresponding Voronoi cells. For example, in Euclidean
spaces, the distance bounds represent spherical shells around the pivots, and
the Voronoi cell for pi is approximated by the intersection of the shells for all
other pivots pj (i.e., j 6= i). Of course, two approximate Voronoi cell regions
may intersect each other, unlike actual Voronoi cells (which at most share a
boundary).

The range query algorithm for GNAT described by Brin [1995], for a query
object q and query radius ε, proceeds in a depth-first manner. When processing
a node n, the distances between q and the pivots are computed one by one,
gradually eliminating subtrees when possible. The children of n are visited
only after computing the distances of all pivots that could not be eliminated
using the distances of pivots that were considered earlier. In particular, the
process is initiated with the set P consisting of all pivots for n. At each step, we
remove one of the objects pi ∈ P whose distance from q has not been computed,
and compute d (q, pi). If d (q, pi) ≤ ε, we add pi to the query result. Next, for all
pj ∈ P , we discard pj from P if d (q, pi) − ε > r (i, j )

hi or d (q, pi) + ε < r (i, j )
lo (or,

equivalently, if max{d (q, pi)− r (i, j )
hi , r (i, j )

lo − d (q, pi)} > ε, based on Lemma 4.2).
Figure 20 depicts two sample query objects q1 and q2 and associated query radii
ε1 and ε2, respectively, both of which would cause pj to be removed from P since
d (q1, pi) − ε1 > r (i, j )

hi and d (q2, pi) + ε2 < r (i, j )
lo . After the distances from q for

all the pivots in P have been computed (or P becomes empty), the children
of n that correspond to the remaining pivots in P are searched recursively.
Notice that a pivot pj may be discarded from P before its distance from q is
computed.

In the range query algorithm above, the query radius ε plays a crucial role
in pruning pivots in P . The nearest neighbor algorithms in Section 3.2 can
be adapted for GNAT in a similar way, by using MAXDIST(NearestList) for this
pruning. However, it is difficult to derive a generic search hierarchy that makes
use of all the inter-pivot distances r (i, j ), on which we can apply the incremen-
tal ranking algorithm of Section 3.3. Some possible strategies are outlined in
Hjaltason and Samet [2000].

6.3 Bisector Trees and mb-Trees

As pointed out in Section 6.1, it is often common to augment the gh-tree by
including for each pivot the maximum distance to an object in its subtree yield-
ing what are, in effect, covering balls. The resulting data structure is called a
bisector tree (BST) [Kalantari and McDonald 1983]. The motivation for adding
the covering balls is to speed up the search by enabling the pruning of ele-
ments whose covering balls are farther from the query object than the current
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Fig. 21. Example where the radius of the covering ball around pivots p1 and p2 in element ea are
be greater than the radius of the covering ball around the pivot pa in the ancestor element e of ea.

candidate nearest neighbor (the farthest of the k candidate nearest neighbors)
or are outside the range for a range query. Naturally, the utility of the covering
balls for pruning increases as their radii decrease. Thus, as the search hierar-
chy is descended, it is desirable for the covering balls to become smaller thereby
leading to more pruning. Unfortunately, the radii of the covering balls of the
children are not necessarily smaller than the radii of the covering balls of their
ancestors. For example, consider a two-dimensional space with a Euclidean dis-
tance metric as shown in Figure 21. Let pa be at the origin, p1 be at (−2, 3), p2
be at (−2,−3), o1 be at (4, 3), and o2 be at (4,−3). Let o1 and o2 be the farthest
objects from pa. Moreover, let o1 be the farthest object from p1 and let o2 be the
farthest object from p2. We now see that the radii of the covering balls around
p1 and p2 are both 6 and are larger than the radius of the covering ball of pa
which is 5.

Dehne and Noltemeier [1987] characterize a child element in the bisector
tree as eccentric when the radius of its covering ball is larger than the radius of
the covering ball of its ancestor element. Eccentricity of children is disadvanta-
geous for pruning because the radii of the covering balls increase as the search
hierarchy is descended. The potential for having eccentric children is viewed
by some (e.g., Dehne and Noltemeier [1987] and Noltemeier et al. [1992, 1993])
as a drawback of the bisector tree. Hence, it has been proposed to modify the
definition of the bisector tree so that one of the two pivots in each nonleaf node
n, except for the root, is inherited from its parent node—that is, of the two piv-
ots in the parent of n, the one that is inherited is the one that is closer to each
object in the subtree rooted at n. In other words, each pivot will also be a pivot
in the child node corresponding to that pivot. Since this strategy leads to fewer
pivot objects, its use can be expected to reduce the number of distance compu-
tations during search (provided the distances of pivot objects are propagated
downward during search), at the possible cost of a worse partitioning and a
deeper tree if the decomposition process is only halted when each mb-tree leaf
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Fig. 22. (a) A possible space partitioning produced by the mb-tree for a set of points in a two-
dimensional Euclidean space of Figure 19, and (b) its tree representation.

node contains just one object. Of course, the radius of the covering ball around
the pivots (i.e., the maximum distance to objects in the corresponding subtree)
is also stored and used for pruning. The result is termed the monotonous bisec-
tor tree (abbreviated below as mb-tree) and was proposed by Noltemeier et al.
[1992; 1993] (and used by Bugnion et al. [1993]).

mb-trees were originally intended for use with point data and Minkowski
metrics. However, the mb-tree can be used with arbitrary metrics. An extension
of the mb-tree, the mb∗-tree, accommodates complex objects, such as lines and
polygons. The TLAESA method of Micó et al. [1996] also uses an mb-tree-like
search structure in conjunction with a distance matrix to provide lower bounds
on the distance from q to the pivot objects during search (see Section 9.3 for
more details).

Figure 22(a) is an example of the space partitioning produced by an mb-tree
corresponding to the set of points in the two-dimensional space stored in the
gh-tree in Figure 19, while Figure 22(b) is its tree representation, where the
same number of partitions were made at each level as in the corresponding
gh-tree. Notice that two points are associated with each nonleaf node of the tree
representation thereby defining the partition of the underlying space, while
each of the points is repeated in the next level of the tree. However, in the inter-
est of saving storage, all of the points are actually stored in the leaf nodes of the
mb-tree. Nonleaf nodes store pointers to their corresponding leaf node entries.

It should be clear that many different configurations are possible when con-
structing an mb-tree for a set of objects. This is because there are many options
for which objects to choose as pivots at each step of the decomposition. In con-
structing our example mb-tree, we have followed a strategy that tries to as-
sociate approximately the same number of objects with each leaf node, while
using the same initial partition as in the example gh-tree (i.e., using pivots a
and b). Note also that if we would have decomposed the underlying space so
that every leaf node would contain just one point, then the resulting mb-tree
would be considerably deeper than the corresponding gh-tree. In particular, for
a set of N (N > 1) objects, the fully decomposed mb-tree always requires N − 1
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nonleaf nodes, while the corresponding gh-tree may need as few as N/2 nodes
in total as each node can contain as many as 2 objects, and there is no need to
distinguish between leaf and nonleaf nodes in a gh-tree as they are both used
to store the points.

It is interesting to observe that the decomposition rule on which the mb-
tree is based is analogous to a classical decomposition rule in applications
involving spatial data such as points where a region is decomposed if it con-
tains more than one point. This is the case for a PR quadtree [Orenstein 1982;
Samet 1990], PR k-d tree [Orenstein 1982], as well as variants of k-d trees
[Bentley 1975] such as the adaptive k-d tree [Friedman et al. 1977] and the
BSP tree [Fuchs et al. 1980]. The BSP tree analogy is different from the others
as the partitioning hyperplanes are not necessarily orthogonal. The analogy
also holds for bucket variants of these structures where the decomposition is
based on the region containing k > 1 points. In all of these examples, the pivot
objects play the same role as the points. The principal difference is that the
boundaries of the regions associated with the points are represented explicitly
while they are implicit in the mb-tree and thus it is easy to use the mb-tree with
data from an arbitrary metric space. In particular, in the latter, each partition
is defined by two pivots and the set of objects that are closer to one of them than
to the other. Thus the pivot objects play a similar role to control points in Bezier
methods in modeling curves and surfaces in CAD (computer-aided design) ap-
plications (e.g., Foley et al. [1990]) in the sense that just as the curve in the
latter is implicitly defined by the control points, the partitioning hyperplanes
in the former are also implicitly defined by the pivot points.

Sharing a pivot with an ancestor, as proposed for the mb-tree, has the effect of
guaranteeing that children are not eccentric (i.e., that the radii of the covering
balls around pivots p1 or p2 in element ea, which form e1, are not greater than
the radius of the covering ball around the pivot pa in the ancestor element
e of ea). This non-eccentricity constraint on the radii of the covering balls is
also satisfied when the more general stipulation that the distance from q to a
nonobject element e1 (i.e., d (q, e1)) must be greater than or equal to the distance
from q to an ancestor of e1 (i.e., d (q, ea)) holds—that is, they form a containment
hierarchy and hence are monotonically nondecreasing.

It is important to note that although it is impossible to have a containment
hierarchy when the children are eccentric, a containment hierarchy may also
fail to exist when the children are not eccentric and even when the hierarchy
is formed by sharing a pivot with an ancestor as in the mb-tree. For example,
consider Figure 23 where the radius of the covering ball of child e1 is smaller
than the radius of the covering ball of its ancestor ea yet the covering ball of e1

is not completely contained in the covering ball of ea.
Merkwirth et al. [2000] ignore the issue of eccentricity and instead force

a containment hierarchy to exist by basing the lower bound d (q, e1) on the
maximum of the distance of q from the children and the distance of q from the
parent (i.e., d (q, ea)). They use a conventional bisector tree (also referred to as
an augmented gh-tree in Section 6.1). Nevertheless, it can be shown [Samet
2004] that for queries such as finding the nearest neighbors of q using the
best-first method, the fact that the covering balls of the children do not contain
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Fig. 23. Example illustrating that the covering ball of a descendant of a node may extend past the
ball element of its ancestor.

any objects that are not in the covering balls of the ancestors means that taking
the distance of the parent (i.e., d (q, ea)) into account when computing d (q, e1)
does not result in more objects or nodes being pruned from the search process.
Equivalently, failing to take the distance of the parent into account, and thus
just using the distance from q of the children does not cause additional objects
or nodes to be visited during the search process. A similar statement can be
made about range searching. The only requirement that must be met is that
the distances of the nonobject elements lower bound the distances of the object
elements (as pointed out in Section 2.1). Thus we can also safely ignore the
issue of whether or not a containment hierarchy exists.

6.4 Other Methods Related to Generalized Hyperplane Partitioning

The gh-tree and GNAT (as well as the M-tree, described in Section 7) can be
considered to be special cases of a general class of hierarchical clustering meth-
ods, as described by Burkhard and Keller [1973] and Fukunaga and Narendra
[1975]. Using the description given by Burkhard and Keller [1973], a set S of
objects is clustered into m subsets S1, S2, . . . , Sm using some criterion usually
based on proximity. Next, a pivot object pi is chosen for each Si and the radius
ri = maxo∈Si {d (pi, o)} is computed.7 This process is applied recursively to each
Si, possibly with a different number m of clusters each time. Observe that for
performing search (e.g., range search), a lower bound on the distances from a
query object q to all objects in Si can be derived based on pi and ri according
to Lemma 4.2, as was done for the vp-tree in Section 5.1 (i.e., letting rlo = 0
and rhi = ri). Besides the above general formulation, Burkhard and Keller also
described a specific method of clustering, where each cluster is a clique, which
they define to be a set of objects R such that the greatest distance between any
two objects in R is no more than some value D.8 The clique property was found
to reduce the number of distance computations and allow more pruning during
search [Burkhard and Keller 1973], at the price of high preprocessing cost (for
determining the cliques).

7GNAT [Brin 1995] maintains more comprehensive distance information in each node.
8If we consider the objects to be nodes in a graph, with edges between objects whose distance is no
more than D, a graph-theoretic clique in this graph corresponds to Burkhard and Keller’s definition
of a clique.
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The manner in which we described the hierarchies that comprise the gh-
tree, GNAT, mb-tree, etc. implies that they are built in a top-down manner.
For example, recall that the hierarchy in GNAT is built by initially choosing
m of the objects to serve as pivots, and then forming m sets each of which
contains the objects that are closest to the corresponding pivot. Each of these
m sets are recursively processed to yield m or some other number of sub-
sets. Alternatively, the hierarchy can also be built in a bottom-up manner. In
this case, the algorithms generally assume that the objects are initially pro-
cessed using some clustering method to obtain k clusters with k cluster centers
(e.g., k-centers Gonzalez [1985]). These clusters are subsequently processed by
applying a hierarchical clustering method (e.g., Dasgupta [2002], Fukunaga
and Narendra [1975] and Moore [2000]). These methods are very similar to
those used to obtain object hierarchies such as the R-tree [Guttman 1984]
and R∗-tree [Beckmann et al. 1990] which make use of bounding hyperrect-
angles, and more specifically object hierarchies that make use of minimum
bounding hyperspheres such as the SS-tree [White and Jain 1996], balltree
[Omohundro 1989] (the anchors hierarchy [Moore 2000] is similar), and sphere
tree [Hubbard 1996; van Oosterom and Claassen 1990]. Clustering is an active
area of research in pattern recognition, machine learning, etc. but is beyond
the scope of this article.

7. THE M-TREE

The distance-based indexing methods described in Sections 5 and 6 are either
static, unbalanced, or both. Hence, they are unsuitable for dynamic situations
involving large amounts of data, where a disk-based structure is needed. The M-
tree [Ciaccia et al. 1997; Ciaccia and Patella 2002] is a distance-based indexing
method designed to address this deficiency. Its design goal was to combine a
dynamic, balanced index structure similar to the R-tree [Guttman 1984] (which,
in turn, was inspired by the B-tree) with the capabilities of static distance-based
indexes.

7.1 Structure

In the M-tree, as in the R-tree, all the objects being indexed are referenced in
the leaf nodes,9 while an entry in a nonleaf node stores a pointer to a node at
the next lower level along with summary information about the objects in the
subtree being pointed at. Recall that in an R-tree, the summary information
consisted of minimum bounding rectangles for all the objects in the subtree. For
arbitrary metric spaces, we cannot explicitly form the “regions” that enclose a
set of objects in the same manner. Instead, in the M-tree, “balls” around pivot
objects (termed routing objects in Ciaccia et al. [1997]) serve the same role as the
minimum bounding rectangles in the R-tree. Clearly, the pivots in the M-tree
have a function similar to that of the pivots in GNAT (see Section 6). However,
unlike GNAT, all objects in S are stored in the leaf nodes of the M-tree, so an

9The objects can either be stored directly in the leaf nodes, or externally to the M-tree, with object
IDs stored in the leaf nodes.
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Fig. 24. (a) A possible space partitioning produced by the M-tree for a set of points in a two-
dimensional Euclidean space, and (b) the corresponding M-tree node structure.

object may be referenced multiple times in the tree (once in a leaf node, and
as a pivot in one or more nonleaf nodes). For an object o in the subtree of a
node n, the pivot p of that subtree is not always the one closest to o among all
the pivots in n (i.e., we may have d (p, o) > d (p′, o) for some other pivot p′ in
n). In addition to this summary information, the entries in M-tree nodes also
contain distance values that can aid in pruning during search, as is done in the
vpsb-tree (see Section 5.2). A sample M-tree is shown in Figure 24.

More precisely, for a nonleaf node n, the entries are (p, r, D, T ), where p is
a pivot, r is the corresponding covering radius, D is a distance value (defined
below), and T is a reference to a child node of n. For all objects o in the subtree
rooted at T , we have d (p, o) ≤ r. For each nonroot node, let parent object denote
its associated pivot, that is, the pivot in the entry pointing to it in its parent.
The distance value stored in D is the distance d (p, p′) between p and the parent
object p′ of n. As we shall see, these parent distances allow more pruning during
search than would otherwise be possible. Similarly, for a leaf node n, the entries
consist of (o, D), where o is a data object and D is the distance between o and
the parent object of n. Clearly, the root has no parent, so D = ∞ for all the
entries in the root. Observe that the covering radius for a nonleaf entry is not
necessarily the minimum radius for the objects in the corresponding subtree
(except when the M-tree is bulkloaded [Ciaccia and Patella 1998]).

Being a dynamic structure, the M-tree can be built gradually as new data
arrives [Ciaccia et al. 1997]. The insertion procedure first “routes” a new data
object to a leaf node n, for each nonleaf node on the path, picking a child node
that “best matches” the data object, based on heuristics. For example, a heuristic
might first look for a pivot object whose “ball” includes the data object, and pick
the one closest to the data object if there is more than one such pivot. The
insertion into n may cause overflow, causing n to be split and a new pivot to
be selected. Thus, overflow may cascade up to the root, and the tree actually
grows in a bottom-up fashion. Ciaccia et al. [1997] considered a number of
heuristics for choosing the child node to route an object into and for splitting
overflowing nodes. Bulk-loading strategies [Ciaccia and Patella 1998] have also
been developed for use when an M-tree must be built for an existing set of data
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Fig. 25. Possible top-level partitionings of a set of objects (depicted as two-dimensional points)
in an M-tree. Objects that fall into more than one “ball,” like o, can be inserted into any of the
corresponding subtrees.

objects. An example of root node partitioning in an M-tree for a set of objects
is shown in Figure 25, where we have three pivot objects, p1, p2, and p3. Notice
that the regions of some of the three subtrees overlap. This may give rise to a
situation where an object can be inserted into more than one subtree, such as
the object marked o, which can be inserted into the subtree of either p1 or p3.

Traina Jr. et al. [2002] introduced the Slim-tree, a variant of the M-tree
with faster node insertion and node splitting algorithms. More importantly,
the Slim-tree also features improved storage utilization, which is achieved, in
part, by applying a post-processing step, termed the Slim-down algorithm. This
algorithm attempts to reduce the overlap among node regions by moving entries
between sibling nodes in iterative fashion. In particular, in the case of slimming
down leaf nodes, an object o stored in a leaf node n is a candidate for being moved
if (1) o is the object in n that is farthest from n’s parent object p, and (2) the region
of a sibling n′ of n also covers o. Having identified such a candidate o, o is moved
from n to n′, and the covering radius of n is reduced, if possible, depending on the
distance between p and the next farthest object in n. An empirical study showed
that these modifications led to a reduction in the number of disk accesses as
compared to the original M-tree [Traina Jr. et al. 2002].

7.2 Search

Range queries for query object q and query radius ε can be performed on the
M-tree with a straightforward depth-first traversal, initiated at the root, as in
the algorithm of Section 3.1. Let n be a node that is being visited, and let p′ be
its parent pivot, that is, p′ is the pivot for the entry in n’s parent that points
to n. In order to exploit the parent distance D stored in the entries of n (i.e., to
avoid as much as possible the computation of the distances from q to the pivots
p stored in the entries of n), the value of d (q, p′) must be propagated downward
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in the depth-first traversal as n is visited (since the root has no parent, we use
d (q, p′) = ∞ when processing the root, and assume that ∞−∞ evaluates to
0). Assume that n is a nonleaf node. We consider each entry (p, r, D, T ) in turn.
There are two cases:

(1) If |d (q, p′) − D| − r > ε, then the subtree pointed at by T need not be
traversed and thus the entry is pruned. This criterion is based on the
fact that |d (q, p′) − D| − r is a lower bound on the distance of any object
in the subtree pointed at by T . Thus, if the lower bound is greater than ε,
then no object in this subtree can be in the range. The lower bound can be
established by making use of Lemmas 4.1 and 4.3. Lemma 4.1 yields a lower
bound from q to any of the pivots (e.g., p) in node n. In this case, p and p′

play the roles of o and p, respectively, in the Lemma which stipulates that
|d (q, p′)− d (p′, p)| = |d (q, p′)− D| ≤ d (q, p). The upper bound on the dis-
tance from q to any of the pivots (e.g., p) in node n is∞. The distance from
pivot p to any of the objects in the corresponding subtree T lies between 0
and r. We now apply Lemma 4.3 to obtain a lower bound on the distance
from q to any object o in the subtree pointed at by T—that is, rlo = 0, rhi = r,
slo = |d (q, p′)− D|, and shi = ∞—yielding |d (q, p′)− D| − r ≤ d (q, o).

(2) Otherwise, |d (q, p′) − D| − r ≤ ε. In this case, we can no longer avoid
computing d (q, p). However, having computed d (q, p), we can still avoid
visiting the node pointed at by T if the lower bound on the distance from q
to any object o in T is greater than ε. This is the case if d (q, p)− r > ε and
is a direct result of applying Lemma 4.2 noting that the distance from p to
o lies between 0 and r.

Leaf nodes are processed in a similar way: For each entry (o, D) in n with parent
pivot p′, we first check if |d (q, p′)−D| ≤ ε (since we know from Lemma 4.1 that
|d (q, p′)−d (p′, o)| = |d (q, p′)−D| ≤ d (q, o), so if ε < |d (q, p′)−D| ≤ d (q, o), we
can immediately discard o without computing its distance), and only for such
entries compute d (q, o) and check whether d (q, o) ≤ ε. Observe that once again
we see that the parent distances sometimes allow us to prune node entries from
the search based on the query radius ε, without computing the actual distances
of the corresponding objects.

For k-nearest neighbor search, Ciaccia et al. [1997] propose using the dis-
tance of the farthest candidate kth nearest neighbor in place of ε in the pruning
conditions. Thus, their algorithm is a variant of the best-first nearest neigh-
bor algorithm of Section 3.2.2. Unfortunately, the pruning conditions are not
applicable for the ranking query (Section 3.3), since the number of result
objects is typically unknown in advance, implying that the search radius is
unbounded. To overcome this dilemma, we introduce two new element types
corresponding to approximate objects and approximate nodes to the search
hierarchy. These additional elements provide a simple way to order the sub-
sequent processing of elements of both a leaf and nonleaf node without hav-
ing to compute the actual distances of these elements from the query object.
In fact, we show in Hjaltason and Samet [2000] that applying the algorithm
of Section 3.2.2 on the resulting search hierarchy results in a more efficient
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solution to the k-nearest neighbor problem than the algorithm of Ciaccia et al.
[1997].

In particular, in the search hierarchy for the M-tree, we define four types of
elements. Type 0 represents objects, type 1 represents approximate objects, type
2 represents nodes, and type 3 represents approximate nodes. Elements of type
1 and 3 are generated as a result of processing leaf nodes and nonleaf nodes,
respectively. In particular, when processing a leaf (nonleaf) node n (i.e., when
it reaches the front of the priority queue as an element of type 2), an element
of type 1 (3) is generated from each of the entries in n. An element of type 0 is
generated as a result of processing an element of type 1, and, similarly, each
element of type 2 derives from an element of type 3. In an analogous manner
to their use in defining the range query pruning rules, we can use Lemmas 4.1
and 4.3 to derive the lower-bound distance functions for elements of type 1
through 3:

d1(q, e1) = max{|d (q, p′)− D|, 0},
d2(q, e2) = max{d (q, p)− r, 0}, and (5)
d3(q, e3) = max{|d (q, p′)− D| − r, 0}

where p′ is the parent object and D the corresponding distance for the node
entry from which e1 and e3 were generated, and where p and r are the pivot
and covering radius for the node corresponding to e2 and e3. Using the same
definitions, the upper-bound distance functions for types 1 through 3 are

d̂1(q, e1) = d (q, p′)+ D,
d̂2(q, e2) = d (q, p)+ r, and
d̂3(q, e3) = d (q, p′)+ D + r.

Correctness of these definitions is shown in Hjaltason and Samet [2000].
To support distance computations for descendants, we must associate certain

information with each element. In particular, an element of type 1 must include
the identity of the corresponding object, an element of type 2 must include a
pointer to the corresponding node n and the distance d (q, p′), where p′ is the
parent object of n, and an element of type 3 must include p, r, and T , where
(p, r, D, T ) is the nonleaf node entry that gave rise to it. Doing this ensures that
when d1(q, e1) and d3(q, e3) are computed for elements e1 and e3, respectively,
the distance information that they are based on is already available, so no
additional computation of actual distances is necessary. In particular, D is a
distance value computed during the construction of the M-tree, and d (q, p′)
was computed earlier in the processing of the query and stored in e2, the node
element from which e1 or e3 is generated (i.e., p′ is the parent object of the
node corresponding to e2). Thus, when we apply the range query algorithm
of Section 3.1 to the search hierarchy, any elements of types 1 and 3 whose
distances exceed ε represent objects and nodes, respectively, that we were able
to prune without computing their actual distances from q. The same effect is
achieved in using the pruning rules in the range query algorithm described
above, so the two algorithms are in fact equivalent.
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8. THE SA-TREE

Like GNAT, the sa-tree [Navarro 1999, 2002] was inspired by the Voronoi dia-
gram [Voronoi 1909], a widely used method for nearest neighbor search in point
data. Hence, to understand the sa-tree, it is important to look at how Voronoi
diagrams can be used for performing search. In a Voronoi diagram for point
data, for each “site” p, the Voronoi cell of p identifies the area closer to p than
to any other site. Thus, given a query point q, nearest neighbor search simply
involves identifying the Voronoi cell that contains q. Another, somewhat indi-
rect, way of constructing a search structure for nearest neighbor search based
on the Voronoi diagram is to build a graph termed a Delaunay graph, defined
as the graph where each object is a node and two nodes have an edge between
them if their Voronoi cells have a common boundary (in an earlier publication,
Navarro [1999] used the term “Voronoi graph”). In other words, the Delaunay
graph is simply an explicit representation of neighbor relations that are implic-
itly represented in the Voronoi diagram; clearly, Delaunay graphs are closely
related to Delaunay triangulations, the difference being that in the latter, the
edges have an associated geometric shape. Searching a Delaunay graph for the
nearest neighbor in S of a query point q in U starts with an arbitrary point in
S, and proceeds to a neighboring point in S that is closer to q as long as this is
possible. Once we reach a point o in S where the points in its neighbor set N (o)
in S (i.e., the points connected to o by an edge) are all farther away from q than
o, we know that o is the nearest neighbor of q. The reason this search process
works on the Delaunay graph of a set of points is that the Delaunay graph has
the property that if q is closer to a point p than to any of the neighbors of p
in the Delaunay graph, then p is the point in S closest to q. The same search
process can be used on any graph that satisfies this Voronoi property. In fact, for
an arbitrary metric space (U, d ), a Delaunay graph for a set S ⊂ U is a minimal
graph that satisfies the Voronoi property (i.e., removing any edge would cause
violation of the property). Thus, any graph that satisfies the Voronoi property
must include a Delaunay graph as a subgraph. Note, however, that the De-
launay graph is not necessarily unique as there can be several such minimal
graphs (possibly even with a different number of edges).

8.1 Definition

In Section 6, we defined two other methods, the gh-tree and GNAT, that are
also based on Voronoi cell-like partitioning. However, these structures are
based on hierarchical partitioning, where at each level, the space is partitioned
into two or more Voronoi cell-like regions. In contrast, the sa-tree attempts
to approximate the structure of the Delaunay graph; hence its name, which
is an abbreviation for Spatial Approximation Tree. As we saw in Section 6.2,
Voronoi cells (or, perhaps more accurately, Dirichlet domains [Brin 1995]) for
objects cannot be constructed explicitly (i.e., their boundaries specified) if only
interobject distances are available. Moreover, it is possible to show [Navarro
2002] that without more information about the structure of the underlying
metric space (U, d ), just knowing the set of interobject distances for a finite
metric space (S, d ), S ⊂ U, is not enough to enable the construction of a valid
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Delaunay graph for S based on d—that is, we also need information about the
distances between the elements of S and the elements of U. In other words, for
the two sets S ⊂ U and S′ ⊂ U′ with identical interobject distances (i.e., (S, d )
and (S′, d ′) are isometric), possibly drawn from different underlying spaces U
and U′, (S, d ) may have a Delaunay graph D that is not a Delaunay graph for
(S′, d ′), or vice versa.10 Moreover, for any two objects a and b, a finite metric
space (S, d ) exists whose Delaunay graph contains the edge between a and b.
Hence, given only the interobject distances for a set S, the only way to con-
struct a graph G such that G satisfies the Voronoi property for all potential
query objects in U (i.e., contains all the edges in the Delaunay graph) is for G to
be the complete graph—that is, the graph containing an edge between all pairs
of nodes (each of which represents an object in S). However, such a graph is
useless for search, as deciding on what edge to traverse from the initial object
in S requires computing the distances from the query object to all the remain-
ing objects in S (i.e., it is as expensive, O(N ), as brute-force search). The idea
behind the sa-tree is to approximate the proper Delaunay graph with a tree
structure that retains enough edges to be useful for guiding search, but not so
many that an excessive number of distance computations are required when
deciding on what node to visit next.

The sa-tree is defined as follows (see the example in Figure 26 to clarify
some of the questions that may arise). An arbitrary object a is chosen as the
root node of the tree (since each object is associated with exactly one node,
we use the terms object and node interchangeably in this discussion). Next, a
smallest possible set N (a) ⊂ S \{a} is identified, such that x is in N (a) iff for all
y ∈ N (a) \ {x}, d (x, a) < d (x, y). The set N (a) is termed the neighbor set of a,
by analogy with the Delaunay graph, and the objects in N (a) are said to be the
neighbors of a. Intuitively, for a legal neighbor set N (a) (i.e., not necessarily the
smallest such set), each object in N (a) is closer to a than to the other objects in
N (a), and all the objects in S \N (a) are closer to one of the objects in N (a) than
to a. The objects in N (a) then become children of a. The remaining objects in
S are associated with the closest child of a (i.e., the closest object in N (a)), and
the subtrees are defined recursively in the same way for each child of a. The
distance from the root b of each subtree Sb to the farthest object in Sb can also
be stored in b—that is, dmax(b) := maxo∈Sb d (o, b). Figure 26(b) shows a sample

10For example, suppose that U = U′ = {a, b, c, x}, d (a, b) = d (a, c) = d (b, c) = 2 and d ′(a, b) =
d ′(a, c) = d ′(b, c) = 2. Furthermore, assume that d (a, x) = 1, d (b, x) = 2, and d (c, x) = 3 while
d ′(a, x) = 3, d ′(b, x) = 2, and d ′(c, x) = 1. If S = S′ = {a, b, c}, the distance matrices for the two
sets are the same. The graph with edges (a, b) and (a, c) (i.e., N (a) = {b, c} and N (b) = N (c) = {a})
satisfies the Voronoi property for (S, d ), since the nearest neighbor of any query object drawn from
U can be arrived at starting at any object in S by only transitioning to neighbors that are closer
to or at the same distance from the query object. Thus, this graph is a Delaunay graph for (S, d ).
However, it does not satisfy the Voronoi property for (S′, d ′), since starting at b with q = x, b’s
only neighbor a is farther away from x than b is, so we cannot transition to the nearest neighbor
c of x. Thus, it is not a Delaunay graph for (S′, d ′). It is interesting to note that the graph with
edges (a, b) and (b, c) (i.e., N (b) = {a, c} and N (a) = N (c) = {b}) satisfies the Voronoi property for
both (S, d ) and (S′, d ′) and thus it is a Delaunay graph for both (S, d ) and (S′, d ′). Of course, this
example does not invalidate our observation that knowledge of (S, d ) is insufficient to determine
the Delaunay graph.
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Fig. 26. (a) A set of points in a 2-dimensional Euclidean space, and (b) its corresponding sa-tree
constructed using the algorithm of Navarro [2002] when a is chosen as the root.

Fig. 27. An example of four points a, b, c, d where the sa-tree construction algorithm does not find
the minimal neighbor set N(a).

sa-tree for the two-dimensional points a–w given in Figure 26(a), with a chosen
as the root. In this example, N (a) = {b, c, d, e}. Note that h is not in N (a) as h
is closer to b than to a.

The fact that the neighbor set N (a) is used in its definition (i.e., in a sense,
the definition is circular) makes constructing a minimal set N (a) expensive. In
fact, Navarro [2002] argues that its construction is an NP-complete problem.
Thus, Navarro [2002] resorts to a heuristic for identifying the neighbor set. This
heuristic considers the objects in S\{a} in the order of their distance from a, and
adds an object o to N (a) if o is closer to a than to the existing objects in N (a).
In fact, the sa-tree in Figure 26(b) has been constructed using this heuristic
with a chosen as the root. An example of a situation where the heuristic would
not find the minimal neighbor set is shown in Figure 27, where approximate
distances between four points a through d are labeled. The minimum neighbor
set of a in this case is N (a) = {d} (and N (d) = {b, c}) whereas use of the heuristic
would lead to N (a) = {b, c} (and N (b) = {d}). Although the heuristic does not
necessarily find the minimal neighbor set, it is deterministic in the sense that
for a given set of distance values, the same neighbor set is found (except for
possible ties in distance values). Thus, using the heuristic, the structure of
the sa-tree is uniquely determined once the root has been chosen. However,
different choices of the root lead to different tree structures.
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8.2 Search

Using the sa-tree, it is easy to perform exact match queries (i.e., to search for
an object in S) with the same procedure as in the Delaunay graph as described
above. Of course, this is not very useful, as the query object is typically not in S
in most actual queries. Nearest neighbor and range search can be performed in
the sa-tree for arbitrary query objects q by using the observation in Lemma 4.4.
In particular, if a is the object corresponding to the root node of an sa-tree, let
c be some object in {a} ∪ N (a). Letting b be an arbitrary object in N (a) and o
be an object in the subtree associated with b (i.e., rooted at b), we know that
o is closer to b than to c (or equidistant, e.g., if c = b). Thus, we can apply
Lemma 4.4 to yield the lower bound (d (q, b)—d (q, c))/2 on d (q, o)—that is, o is
at a distance of at least (d (q, b)—d (q, c))/2 from q. Since o does not depend on
c, we can select c in such a way that the lower bound on d (q, o) is maximized,
which occurs when d (q, c) is as small as possible—that is, c is the object in
{a} ∪ N (a) that is closest to q. When a is not the root node for the sa-tree, it is
possible to show [Hjaltason and Samet 2000, 2003a] that c can be chosen from
the larger set

⋃
a′∈A(b)({a′} ∪ N (a′)), where A(b) is the set of ancestors of b and b

is in N (a). In other words, c is the closest to q among b’s ancestors, and all of
their immediate children.

When performing range search with query radius ε, we can use the lower
bound on the distances derived above to prune the search. In particular,
the search is realized with a depth-first traversal of the tree, starting at
the root. When at node a which is not a root, we first determine the object
c ∈ ⋃a′∈A(b)({a′} ∪ N (a′)) where b is in N (a) such that d (q, c) is minimized.
When at node a which is a root, then c is set to a. Next, the search traversal
visits each child b ∈ N (a), except those for which (d (q, b)−d (q, c))/2 > ε, since,
in this case, we know that d (q, o) > ε for any object o in the subtree associated
with b. A similar argument can be used in deriving a search hierarchy, on which
we can apply the other query algorithms presented in Section 3 (see Hjaltason
and Samet [2000, 2003a]).

The sa-tree, as described above, is a static structure, in that the entire data
set must be known in order to build it. Navarro and Reyes [2002] introduce a
dynamic version of the sa-tree, that supports both insertions and deletions. In
order to yield adequate performance, the dynamic version must relax the defi-
nition of neighbor sets. In particular, for a given object o inserted into the tree
at time t, the properties described above for ancestors and siblings of ancestors
of o only hold for those inserted before time t. The implication of this relaxed
definition of neighbor sets is that when evaluating the lower-bound distances
for objects in the subtree rooted at a node b, we can only make use of those
ancestors and ancestor siblings of b that were inserted before b.

9. DISTANCE MATRIX METHODS

The distance-based indexing methods that we have considered so far impose
a hierarchy on the set of objects that guides the order of distance compu-
tations during query evaluation. A number of methods have been proposed
that instead precompute some or all of the distances between the objects in S,
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typically stored in a matrix, and use these distances when evaluating queries. In
Sections 9.1 and 9.2, we describe AESA and LAESA, which are “pure” distance
matrix methods, while in Section 9.3, we discuss other related methods, some
of which are hybrid in that they use both a distance matrix and a hierarchy.

9.1 AESA

AESA (Approximating and Eliminating Search Algorithm) [Vidal Ruiz 1986;
Vidal 1994]11 is a nearest neighbor algorithm that requires all O(N2) inter-
object distances are precomputed for the N objects in S and stored in a matrix.
At query time, the distance matrix is used to provide lower bounds on dis-
tances to objects whose distances have not yet been computed, based on object
distances already computed. The process is initiated by computing the distance
from the query object to an arbitrary data object, allowing establishing the ini-
tial lower-bound distances of the remaining data objects. The algorithm uses
these lower bounds to guide the order in which objects are chosen to have their
distances from the query object q computed and to eliminate objects from con-
sideration (hopefully without computing their actual distances from q). In other
words, AESA treats all N data objects as pivot objects when performing search.
Although designed for finding nearest neighbors, AESA can also be used with
almost no modification to perform range searching.

According to experiments presented in Vidal Ruiz [1986], nearest neigh-
bors can be obtained with AESA using remarkably few distance computations.
In particular, AESA was observed to require at least an order of magnitude
fewer distance computations than competing methods and was argued to have
constant-time behavior with respect to the size of the data set [Vidal Ruiz
1986]. These benefits are obtained at the expense of quadratic space complex-
ity, quadratic time preprocessing cost, and linear time and storage overhead
during search. Thus, although promising, the method is practical only for rela-
tively small data sets, of at most a few thousand objects. For example, for 10,000
data objects, the distance matrix occupies about 400 MB, assuming 4 bytes per
distance value. Nevertheless, if distances are expensive to evaluate and if we
can afford the large preprocessing cost, the search performance is hard to beat
with other methods.

Of course, one could ask if it is really worthwhile to perform N · (N − 1)/2
distance computations between the objects, when by using brute force we can
always find the nearest object to q using N distance computations. The payoff
occurs when we can be sure that the set of objects is static and that there will be
many queries (more than N , assuming that preprocessing time and query time
are of equal importance), and that most of these queries will be nearest neighbor
queries for low numbers of neighbors or range queries with small query radii
(otherwise, AESA will tend to require O(N ) distance computations, like the
brute-force approach). The complexity arguments made in favor of AESA must
also bear in mind that the constant-time claim refers to the number of distance

11The difference between Vidal Ruiz [1986] and Vidal [1994] lies in the presentation of the algorithm
and in the order in which the objects are chosen whose distance from the query object is computed—
that is, in the “approximating” step (see footnote 14 below).
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Fig. 28. An example of the computation of the lower bound distance dlo for two objects o1 and
o2 based on three pivots p1, p2, and p3. The directed lines emanating from each object oi to the
different pivots pj(j = 1 · · ·3) indicate the distance value |d(q, pj) − d(pj, oi)| (in parentheses). For
each object oi, the solid directed line is the longest and its corresponding distance value is the one
that is used in computing the lower bound distance dlo(q, oi).

computations, while the distance matrix has to be accessed many times for
each query (Ä(N ) for each nearest neighbor query12), although the distance
computations are usually many orders of magnitude more complex than the
operation of accessing the distance matrix.

The key to the search strategy employed by AESA [Vidal Ruiz 1986] in deter-
mining the nearest neighbor (and which also can be used for range searching)
is the property described in Lemma 4.1: for any objects o and p in the data set
S and any query object q ∈ U, the following inequality holds:

|d (q, p)− d (p, o)| ≤ d (q, o).

Thus, if Sc ⊂ S is the set of objects whose distances from q have been computed,
the greatest known lower bound dlo(q, o) on d (q, o) for any object o ∈ S \ Sc is

dlo(q, o) = max
p∈Sc
{|d (q, p)− d (p, o)|} (6)

An example of this computation is illustrated in Figure 28 for two objects o1

and o2 based on distances to three objects p1, p2, p3 in Sc, which serve as pivots.
There are three directed lines emanating from each object to the different pivots
where the solid line is the longest and its distance is the one that is used to
compute the lower bound distance dlo(q, o) where o is one of o1 and o2. Observe
that, in this example, the lower bound for both objects is quite close to the actual
distance of the objects (16.5 and 31 for objects o1 and o2, respectively).

For finding nearest neighbors, the algorithm uses this lower bound to elim-
inate objects o in S\Sc whose lower-bound distances are greater than the dis-
tance of the nearest neighbor candidate on, that is, dlo(q, o) > d (q, on) (for range

12To see why the number of accesses is at least proportional to N (i.e., Ä(N )), observe that even if
the first object picked as the candidate nearest neighbor turns out to be the actual nearest neighbor,
the distances between that object and all the other objects must be accessed to establish that this
is indeed the case.
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search with query radius ε, the elimination criterion is dlo(q, o) > ε).13 Hence,
it maintains the set Su ⊂ S of objects whose distances have not been computed
and that have not been eliminated based on their lower-bound distances.

Initially, the algorithm sets Sc to ∅, Su to S, and dlo(q, p) to∞ for all p ∈ S.
At each step of the algorithm, the next object p ∈ Su whose distance is to be
computed is chosen as the one whose lower-bound distance dlo(q, p) is small-
est, with ties in lower-bound distances broken arbitrarily. Next, the algorithm
computes d (q, p), updates the nearest neighbor candidate on if necessary, and
then eliminates objects from Su that cannot be the nearest neighbor as de-
scribed above. The algorithm is terminated once Su becomes empty—that is,
once the greatest known lower-bound distance dlo(q, o) for each object o ∈ S \Sc
is greater than d (q, on). (In the case of range searching, we instead add p to the
result set if d (q, p) ≤ ε and eliminate objects from Su for which dlo(q, o) > ε.
Furthermore, when the algorithm terminates, we know that dlo(q, o) > ε for all
objects o ∈ S \ Sc.)

Observe that in the above algorithm, the lower-bound distance, dlo(q, o), for
an object o ∈ Su need not be computed from scratch based on all p ∈ Sc each
time the algorithm makes use of it. Rather, the algorithm stores the current
lower-bound distance for each object o ∈ Su, and incrementally updates dlo(q, o)
in each iteration as a new distance value is computed. Storing and maintaining
this information accounts for the linear space and time overhead of the algo-
rithm, besides the quadratic space and time for constructing and storing the
distance matrix.

The rationale for picking the object p to process next based on the smallest
lower bound dlo is that, hopefully, such a choice ensures that p is relatively
close to q. As pointed out by Vidal [1994], the closer p is to q, the greater
is the tendency for |d (p, o) − d (q, p)| to be large, which means that the lower
bound dlo(q, o) is larger and hence the potential for pruning increases. Of course,
other strategies for picking the next object are also possible.14 Some possible
strategies include picking the object at random, choosing the object with the
greatest value of dlo(q, p), or even basing the choice on the upper bound dhi(q, p),
described below. Wang and Shasha [1990] explored several different choices
which are described briefly in Section 9.3.

AESA is easily extended to a k-nearest neighbor algorithm by maintaining
a list of the k candidate nearest neighbors seen so far, and by using the largest
distance among the k candidates for the elimination step. Unfortunately, this
is not applicable for the ranking query, since its search radius is typically not
bounded. There are a number of ways to define a search hierarchy based on the
AESA framework, allowing the ranking algorithm in Section 3.3 to be applied.

13If dlo(q, o) > d (q, on) is satisfied, we know that d (q, o) > d (q, on) since dlo(q, o) ≤ d (q, o); simi-
larly, dlo(q, o) > ε means that d (q, o) > ε.
14 In the original formulation of AESA [Vidal Ruiz 1986], the selection criterion was actually
based on picking the object p ∈ Su that minimizes the value of

∑
s∈Sc
{|d (q, s) − d (s, p)|} rather

than that of dlo(q, p) = maxs∈Sc {|d (q, s) − d (s, p)|}, which Vidal [1994] later claimed was a better
“approximation.” One possible rationale for the claimed improvement is that the former minimizes
the average lower bound while the latter minimizes the maximum of the lower bounds, which yields
a tighter lower bound.

ACM Transactions on Database Systems, Vol. 28, No. 4, December 2003.



Index-Driven Similarity Search in Metric Spaces • 569

Of course, applying the range query algorithm of Section 3.1 to such a hier-
archy should be equivalent to the algorithm presented above, in terms of the
number of distance computations. In Hjaltason and Samet [2000], we outline
the definition of three search hierarchies, each of which has somewhat differ-
ent characteristics. Conceptually, all three approaches involve the maintenance
of two sets, Sc and Su, of data objects, where S = Sc ∪Su, whose distances from
the query object have been computed and have not been computed, respectively.
They differ in the way in which Su is represented, which has implications in
the cost of maintaining the lower-bound distance, dlo(q, o), associated with each
object o ∈ Su. Notice that in the case of a ranking query, Su is larger than when
it was used for range searching as no objects can be eliminated; instead, their
reporting is deferred.

9.2 LAESA

Recall that AESA is impractical for all but the smallest data sets due to the
large preprocessing and storage costs. LAESA (Linear AESA) [Micó et al. 1992,
1994] alleviates this drawback by choosing a fixed number M of pivots (termed
base prototypes by Micó et al. [1992; 1994]), whose distances from all other
objects are computed. Thus, for N data objects, the distance matrix contains
N · M entries rather than O(N 2) for AESA (or more precisely N (N − 1)/2
entries assuming that only the lower triangular portion of the matrix is stored).
An algorithm for choosing the M pivots is presented by Micó et al. [1994].
Essentially, this algorithm attempts to choose the pivots such that they are
maximally separated, that is, as far away from each other as possible (a similar
procedure was suggested by Brin [1995] for GNAT; see Section 6.2).

The LAESA search strategy is very similar to that of AESA, except that some
complications arise from the fact that not all objects in S serve as pivot objects
in LAESA (and the distance matrix does not contain the distances between
non-pivot objects). In particular, as before, let Sc ⊂ S be the set of objects
whose distances from q have been computed and let Su ⊂ S \ Sc be the set of
objects whose distances from q have yet to be computed and that have not been
eliminated. The distances between the query object q and the pivot objects in Sc
are used to compute a lower bound on the distances of objects in Su from q, and
these lower bounds allow eliminating objects from Su based on the distance from
q of the current candidate nearest neighbor on (or ε in the case of range search).
The difference here is that non-pivot objects in Sc do not help in tightening
the lower-bound distances of the objects in Su, as the distance matrix stores
only the distances from the non-pivot objects to the pivot objects and not to the
remaining objects. Thus, Micó et al. [1994] suggest treating the pivot objects in
Su differently than nonpivot objects when

(1) selecting the next object in Su to have its distance from q computed (since
computing the distances of pivot objects early will help in tightening dis-
tance bounds), and

(2) eliminating objects from Su (since eliminating pivot objects that may later
help in tightening the distance bounds is undesirable).
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A number of possible policies can be established for this purpose. The policies
explored by Micó et al. [1994] are simple, and call for

(1) selecting a pivot object in Su over any nonpivot object, and
(2) eliminating pivot objects from Su only after a certain fraction f of the pivot

objects have been selected into Sc ( f can range from 0 to 100%; note that if
f = 100%, pivots are never eliminated from Su).

As with AESA, several possible strategies can be pursued for defining a
search hierarchy within the framework of LAESA, as shown in Hjaltason and
Samet [2000]. However, since LAESA is practical for much larger data sets
than AESA, some of the approaches that are feasible for AESA are too ineffi-
cient. Nevertheless, it is possible to define search hierarchies in which the use
of the ranking algorithm of Section 3.3, without an a priori knowledge of the
result size, has the same cost as the LAESA nearest neighbor search strategy
[Hjaltason and Samet 2000]. See Chávez et al. [1999] for another search strat-
egy that is in the spirit of the method of Nene and Nayar [1997].

9.3 Other Distance Matrix Methods

Shapiro [1977] described a nearest neighbor algorithm (which is also applicable
to range searching) that is closely related to LAESA, which also uses an N ·M
distance matrix based on M pivot objects. The order in which the data objects
are processed in the search is based on their positions in a list (o1, o2, . . .) sorted
by distance from the first pivot object p1. Thus, the search is initiated at the
object whose distance from p1 is most similar to d (q, p1), where q is the query
object—that is, the element at the position j for which |d (q, p1)− d (p1, o j )| is
minimized (this value is a lower bound on d (q, o j ), as shown in Lemma 4.1).
The goal is to eliminate object oi from consideration as soon as possible, thereby
hopefully avoiding the need to compute its distance from q. Therefore, when
object oi is processed during the search, we check whether the pruning condition
|d (q, pk) − d (pk , oi)| > d (q, on) is satisfied for each pivot object p1, p2, . . . in
turn until oi can be eliminated; otherwise, we compute d (q, oi) (and possibly
update on). The search continues alternating in the two directions—that is, for
i = j + 1, j − 1, j + 2, j − 2, . . . , stopping in either direction when the pruning
condition |d (q, p1) − d (p1, oi)| > d (q, on) is satisfied, where on is the current
candidate nearest neighbor.15

Observe that Shapiro’s algorithm is less sophisticated than LAESA in two
ways:

(1) the order used in the search is based on position in the sorted list ordered
by distance from p1, and

(2) only the first pivot p1 affects the order in which the data objects are pro-
cessed.

In contrast, LAESA uses the lower-bound distances as determined by all pivot
objects that have been applied so far to guide the search (i.e., to choose the pivot

15Recall that range search can be performed by basing the pruning condition on ε instead of d (q, on).
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to use next and to decide when to compute the actual distances of data objects).
In other words, rather than applying all pivots for each object in turn as done by
Shapiro, LAESA applies each pivot in turn for all objects (the difference can be
characterized roughly in terms of processing the pivot-object distance matrix
in row-major or column-major order).

Wang and Shasha [1990] described a search method based on distance ma-
trices that is similar to AESA. However, they allow for the case where only some
of the distances have been precomputed, as in LAESA. In contrast to LAESA,
no assumptions are made about the pairs of objects for which the distance is
precomputed (so that no distinction is made between pivot and non-pivot ob-
jects). In other words, we are given a set of interobject distances for arbitrary
pairs of objects in S. Search is facilitated by the use of two matrices Dlo and Dhi
(called ADM and MIN in Wang and Shasha [1990]), constructed on the basis of
the precomputed distances, where Dlo[i, j ] ≤ d (oi, o j ) ≤ Dhi[i, j ], given some
enumeration o1, o2, . . . , oN of the objects in S.16 In other words, all entries in
Dlo and Dhi are initialized to zero and∞, respectively, except that the entries
on their diagonals are set to zero, and if d (oi, o j ) has been precomputed, then
Dlo[i, j ] and Dhi[i, j ] are both set to d (oi, o j ).

A dynamic programming algorithm is described by Wang and Shasha [1990]
that utilizes a generalized version of the triangle inequality17 to derive values
for the entries of Dlo and Dhi whose distance values are missing, in such a
way that they provide as tight a bound as possible, based on the precomputed
distances that are available. In particular, the generalized triangle inequality
property was used by Wang and Shasha to derive rules for updating Dlo[i, j ]
and Dhi[i, j ] based on the values of other entries in Dlo and Dhi (some of these
rules use entries in Dlo to update entries in Dhi, and others do the opposite). At
search time, the matrices Dlo and Dhi are augmented so that the query object q
is treated as if it were object oN+1. In particular, Dlo[i, N+1] and Dhi[i, N+1] are
initialized to 0 and∞, respectively. Observe that the values of Dlo[i, N +1] and
Dhi[i, N+1] correspond to our definitions of dlo(q, oi) and dhi(q, oi), respectively,
in Section 9.1.

The nearest neighbor algorithm presented by Wang and Shasha [1990]
follows the same general outline as AESA. Thus any object oi satisfying
Dlo[i, N + 1] > d (q, on) can be pruned from the search, where on is the current
candidate nearest neighbor. The difference here is that when d (q, ok) is com-
puted for some candidate object ok , their method attempts to update Dlo[i, j ]
and Dhi[i, j ] (by applying their generalized triangle inequality property) for
all pairs of objects oi, o j ∈ S whose actual distances are not available (i.e., ei-
ther precomputed or computed during the search), thereby possibly yielding a
tighter bound on d (oi, o j ). In contrast, in AESA, only the values of dlo(q, oi) and
dhi(q, oi) are updated for all objects oi ∈ S, corresponding to Dlo[i, N + 1] and
Dhi[i, N + 1], respectively.

16Note that the matrices are symmetric and that their diagonals are zero. Thus, only the lower
triangular part of each matrix is actually maintained.
17For example, based on d (o1, o4) ≥ d (o1, o3)−d (o3, o4) and d (o1, o3) ≥ d (o1, o2)−d (o2, o3) we can
conclude that d (o1, o4) ≥ d (o1, o2)− d (o2, o3)− d (o3, o4).
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Since updating the entire matrices Dlo and Dhi can be expensive if done for
all pairs at each stage of the algorithm, Wang and Shasha [1990] describe two
alternatives, one of which is almost equivalent to the updating policy used in
AESA. The difference is that in AESA, upper-bound distances are not main-
tained, whereas such upper bounds can be used to update the values of dlo(q, o)
in the same way as is done for Dlo[N + 1, i] in the method of Wang and Shasha
[1990]. Wang and Shasha [1990] identify four heuristics for picking the next
candidate object during search. The next object oi for which to compute d (q, oi)
is chosen as the object in Su (as defined in Section 9.1) having

(1) the least lower bound Dlo[i, N + 1],
(2) the greatest lower bound Dlo[i, N + 1],
(3) the least upper bound Dhi[i, N + 1], or
(4) the greatest upper bound Dhi[i, N + 1].

According to their experiments, the best choice is the object with the least lower-
bound distance estimate (i.e., item 1), which is the same as used in AESA.

Micó et al. [1996] proposed a hybrid distance-based indexing method termed
TLAESA that makes use of both a distance matrix and hierarchical clustering,
thereby combining aspects of LAESA [Micó et al. 1994] (see Section 9.2) and
the mb-tree [Noltemeier et al. 1993] (see Section 6.3). The hierarchical search
structure used by TLAESA applies the same variation on the gh-tree as is
used in the mb-tree: two pivots are used in each node for splitting the subset
associated with the node (based on which pivot is closer), where one of the pivots
in each nonroot node is inherited from its parent. The search algorithm proposed
by Micó et al. uses a partial distance matrix as in LAESA, thus introducing a
second set of pivots (termed base prototypes by Micó et al. [1996]). Initially, the
algorithm computes the distances between q and all distance matrix pivots.
Next, when traversing the tree structure, TLAESA uses the distance matrix
pivots to compute lower bounds on the distances of the tree pivots from q, rather
than computing their actual distances from q. In other words, if p1, p2, . . . , pM
are the distance matrix pivots and p is a tree pivot, a lower bound dlo(q, p) on
d (q, p) is obtained by applying Lemma 4.1 to all the distance matrix pivots.
Therefore, dlo(q, p) ≤ d (q, p) where

dlo(q, p) = max
i
{|d (q, pi)− d (pi, p)|}.

Now, if r is the ball radius corresponding to the tree pivot p, dlo(q, p) − r is
the lower bound on the distances between q and all the objects in the subtree
rooted at the child node corresponding to p (via Lemma 4.3, setting rlo = 0,
rhi = r, slo = d lo(q, p), and shi = ∞). The actual distances of data objects (other
than distance matrix pivots) are then computed only when reaching leaf nodes
of the tree.

Several other variants of AESA and LAESA have been developed (e.g.,
Ramasubramanian and Paliwal [1992] and Vilar [1995]). For example,
Ramasubramanian and Paliwal [1992] presented a variant of AESA that is
tailored to vector spaces, allowing them to reduce the preprocessing cost and
space complexity to O(nN ), where n is the dimensionality of the vector space
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(thus, there are significant savings compared to O(N2) since n ¿ N ). This
algorithm appears to be quite related to LAESA.

Although both AESA and LAESA usually lead to a low number of distance
computations when searching, they do have an overhead of O(N ) in terms of
computations other than distance. Vilar [1995] presents a technique (termed
Reduced Overhead AESA, or ROAESA for short), applicable to both AESA and
LAESA, that reduces this overhead cost by using a heuristic to limit the set
of objects whose lower-bound distances dlo are updated at each step of the
algorithm. In particular, rather than updating dlo for all objects in Su (to use
the notation in Section 9.1), ROAESA partitions Su into two subsets which
are termed alive (Sa) and not alive (Sd ), and only updates the dlo values of the
objects in Sa. ROAESA starts by picking an object o1 whose distance from q
is computed, and o1 is entered into Sc. Next, it computes dlo for all objects in
Su = S \ Sc on the basis of o1, and makes the object oa in Su with the lowest dlo
value alive—that is, initially, Sa = {oa} and Sd = S \ {oa}.

In the main loop that constitutes the search, the object in Sa with the smallest
dlo value is picked as the next object whose distance is computed and the dlo
values of the objects in Sa are updated. Then, in an inner loop, the objects
in Sd are considered in order of their dlo value (i.e., which was based on the
initial object o1), and made alive (i.e., moved from Sd to Sa) if their dlo value is
lower than the minimum of dn and da, where dn is the distance of the current
candidate nearest neighbor and da is the minimum dlo of an object in Sa (note
that da may change in each iteration of the inner loop).18 Note that ROAESA
has no effect for range searching as in this case dn is replaced by ε and now Sa
is the set of all elements of Su that have not been eliminated by virtue of their
dlo values being greater than ε.

Interestingly, some of the search hierarchies that we devised for AESA and
LAESA (see Hjaltason and Samet [2000]) are related to Vilar’s technique, as
they also aim at reducing the amount of updating in a somewhat analogous, but
more powerful, manner. In particular, in some of the search hierarchies that
we proposed, Su is partitioned into any number of subsets rather than just two
(i.e., the alive and not alive objects in ROAESA), where a different number of
objects in Sc are used to define dlo for each subset.

10. ALTERNATIVE CHARACTERIZATION OF THE DIFFERENT
DISTANCE-BASED INDEXING METHODS

An alternative way of distinguishing between some of the different distance-
based indexing methods is on the basis of whether they are pivot-based or
clustering-based (e.g., Chávez and Navarro [2000]). Pivot-based methods choose
a subset of the objects in the data set to serve as distinguished objects, termed
pivot objects (or more generally pivots), and classify the remaining objects in
terms of their distances from the pivot objects. Pivot-based similarity searching

18Vilar [1995] employs a performance improvement technique, in which all of the objects in S are
sorted in the preprocessing step of AESA/LAESA on the basis of their distance from o1. It can be
shown that this means that all alive objects lie in consecutive locations in the sorted array, so that
the next object to become alive will be one of the objects just beyond the region of alive objects.
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algorithms make use of the known distances from the objects to different
pivot objects to reduce the number of distance computations involving the
query object that will be needed to respond to the query. The pivot objects,
assuming without loss of generality that there are k of them, can often be
viewed as coordinates in a k-dimensional space and the result of the dis-
tance computation for object x is equivalent to a mapping of x to a point
(x0, x1, . . . , xk−1) where coordinate value xi is the distance d (x, pi) of x from
pivot pi. The result is very similar to embedding methods discussed briefly in
Section 1.

In this case, similarity search usually makes use of Lemma 4.1 which enables
pruning an object x from further consideration as being within ε of query object
q when |d (q, pi) − d (x, pi)| > ε for some coordinate corresponding to pivot
pi (0 ≤ i ≤ k − 1). Its use is analogous to the application of the method of
Friedman et al. [1975] as well as Nene and Nayar [1997] for vector spaces
who eliminate a k-dimensional object x = (x0, x1, . . . , xk−1) from consideration
as being within ε of q = (q0, q1, . . . , qk−1) if |xi − qi| > ε for one of xi where
0 ≤ i ≤k−1. A variant of this method is also advocated by Chávez et al. [1999].
It is interesting to note that this search strategy makes an implicit assumption
that the k-dimensional space is indexed with a set of inverted lists, one for the
distance of the objects from each of the pivots. This is in contrast with a search
strategy that assumes the existence of a more general multidimensional point
access method (e.g., Gaede and Günther [1998] and Samet [1990, 1995]) on the
k-dimensional space.

Ball partitioning methods (Section 5) are all examples of pivot-based meth-
ods. In particular, the fixed-queries tree [Baeza-Yates et al. 1994], fixed-height
fixed-queries tree [Baeza-Yates et al. 1994], and fixed-queries array [Chávez
et al. 2001a] methods (see Section 5.3) can be viewed as variations of embed-
ding methods. In addition, methods that make use of distance matrices which
contain precomputed distances between some or all of the objects in the data
set such as AESA [Vidal Ruiz 1986; Wang and Shasha 1990] and LAESA [Micó
et al. 1994] (Section 9) are also examples of pivot-based methods. Note that the
distance matrix methods differ from the ball partitioning methods in that they
do not form a hierarchical partitioning of the data set.

Clustering-based methods partition the underlying data set into spatial-like
zones called clusters that are based on proximity to a distinguished object known
as the cluster center. In particular, once a set of cluster centers has been chosen,
the objects that are associated with each cluster center c are those that are
closer to c than to any other cluster center. Although the cluster centers play a
similar role as the pivot objects, the principal difference is that an object o is
associated with a particular pivot p on the basis of the distance from o to p and
not because p is the closest pivot to o, which would be the case if p was a cluster
center. This means that in pivot-based methods an object o is not necessarily
associated with the element whose pivot is closest to o. Generalized-hyperplane
partitioning methods (Section 6) are examples of clustering-based methods. The
sa-tree [Navarro 2002] (Section 8), inspired by the Voronoi diagram, is another
example of a clustering-based method. It records a portion of the Delaunay
graph of the data set, which is a graph whose vertices are the Voronoi cells, with
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edges between adjacent cells. Although many of the clustering-based methods
are hierarchical, this need not necessarily be the case.

It is interesting to observe that both pivot-based and clustering-based meth-
ods achieve a partitioning of the underlying data set into spatial-like zones.
However, the difference is that the boundaries of the zones are more well de-
fined in the case of pivot-based methods in the sense that they can be expressed
explicitly using a small number of objects and a known distance value. In con-
trast, in the case of clustering-based methods, the boundaries of the zones are
usually expressed implicitly in terms of the cluster centers, instead of explicitly,
which may require quite a bit of computation to determine. In fact, very often,
the boundaries cannot be expressed explicitly as, for example, in the case of an
arbitrary metric space (in contrast to a Euclidean space) where we do not have
a direct representation of the “generalized hyperplane” that separates the two
partitions.

11. CONCLUDING REMARKS

We have surveyed a number of different methods for performing similarity
search in metric spaces. The main focus was on distance-based indexing meth-
ods, with a short discussion of the alternative method of mapping into a vector
space. We introduced a framework for performing search based on distances and
presented algorithms for common types of queries. These algorithms can be ap-
plied to the indexing methods that we presented, given that a suitable search
hierarchy is defined. We sketched such a hierarchy for several selected methods.

An important future task in this area is to develop cost models for the algo-
rithms presented in Section 3 in various settings. Such cost models necessarily
depend on the particular indexing structure being employed, but some general
assumptions can possibly be formulated that apply reasonably well to a large
class of structures. For the ranking query (Section 3.3), for example, there would
be three important parameters to such a cost model. First, the expected num-
ber k of desired neighbors of the query object q. Second, the expected distance
r of the kth nearest neighbor of q. Third, the expected cost C of performing a
range query with query radius r. Clearly, the measure C of the cost of the range
query must include the number of distance computations on S, since they are
typically expensive, but for a disk-resident indexing structure, we must also
take into account the number of I/O operations. The relative weight of these
two factors clearly depends on the relative cost of distance computations vs.
I/O operations. Some headway has been made in recent years in developing
cost models for proximity queries, for example, for high-dimensional vector
spaces [Berchtold et al. 1997] and for M-trees [Ciaccia et al. 1998]. Based on
some simplifying assumptions, this work focuses on estimating the r parame-
ter based on k and/or the C parameter based on r. However, the assumptions
do not apply to all similarity search methods, so more remains to be done. In
situations where the number of desired neighbors is not precisely known in
advance, it will also be necessary to estimate k. A reasonable approach might
be to take a “trailing average” of the number of requested neighbors in some of
the recent queries.
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Other future work includes performing experiments using various distance-
based indexes and mapping methods and on more varied data sets. Thus, we
would aim at providing an empirical basis for choosing the appropriate method
(e.g., whether to use a mapping-based approach or a distance-based index) in a
selected set of applications.
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