
Appears in Proceedings of the 29th IEEE International Conference on Data Engineering,

Brisbane, Australia, April 2013, pp. 1254-1257.

Sorting in Space: Multidimensional, Spatial, and

Metric Data Structures for Applications in Spatial

Databases, Geographic Information Systems (GIS),

and Location-Based Services

Hanan Samet
Center for Automation Research, Institute for Advanced Computer Studies

Department of Computer Science, University of Maryland

College Park, MD 20742 USA
hjs@cs.umd.edu

Abstract—Techniques for representing multidimensional, spa-
tial, and metric data for applications in spatial databases,
geographic information systems (GIS), and location-based ser-
vices are reviewed. This includes both geometric and textual
representations of spatial data.

I. INTRODUCTION

The representation of multidimensional, spatial, and metric
data is an important issue in applications of spatial database,
geographic information systems (GIS), and location-based
services. This is in part a direct result of the increasing
popularity of web-based services such as Microsoft Bing Maps
and Google Maps and Earth, as well as their deployment
on gesturing-based devices such as smartphones and tablets
which have also brought Apple into the picture [68]. This
popularity has led to an increase in the awareness of the
importance of location as an attribute in a database. The
existence of the database means that the data stored therein
must be retrieved and this involves searching. The efficiency of
searching is dependent on the extent to which the underlying
data is sorted. The conventional definition of the term sort
is that it is a verb meaning: (1) To put in a certain place
or rank according to kind, class, or nature. (2) To arrange
according to characteristics. The sorting is encapsulated by the
data structure used to represent the spatial data thereby making
it more accessible. In fact, the term access structure or index is
often used as an alternative to the term data structure in order
to emphasize the importance of the connection to sorting.
Notwithstanding the above definition, sorting usually im-

plies the existence of an ordering. Orderings are fine for one-
dimensional data. For example, in the case of individuals we
can sort them by their weight, and given an individual such
as Bill, we can use the ordering to find the person closest
in weight to Bill. Similarly, we can use the same ordering to
also find the person closest in weight to John. Unfortunately, in
two dimensions and higher, such a solution does not always
work. In particular, suppose we sort all of the cities in the
US by their distance from Chicago. This is fine for finding
the closest city to Chicago, say with population greater than
200,000. However, we cannot use the same ordering to find
the closest city to New York, say with population greater than
200,000, without resorting the cities.
The problem is that for two dimensions and higher, the

notion of an ordering does not exist unless a dominance
relation holds (e.g., [44])—that is, a point a = {ai|1 ≤ i ≤ d}
is said to dominate a point b = {bi|1 ≤ i ≤ d} if ai ≤ bi, 1 ≤
i ≤ d. Thus the only way to ensure that an ordering exists
is to linearize the data as can be done, for example, using a
space-filling curve (e.g., [47], [64]). The problem with such
an approach is that the ordering is explicit. Instead, what is
needed is an implicit ordering so that we do not need to resort
the data when, for example in our sample query, the reference
point for the query changes (e.g., from Chicago to New York).
Such an ordering is a natural byproduct when we sort objects
by spatial occupancy, and is the subject of this paper.

II. METHODS BASED ON SPATIAL OCCUPANCY

The indexing methods that are based on sorting the spa-
tial objects by spatial occupancy essentially decompose the
underlying space from which the data is drawn into regions
called buckets in the spirit of classical hashing methods. The
difference is that the spatial indexing methods preserve order.
In other words, objects in close proximity should be in the
same bucket or at least in buckets that are close to each other
in the sense of the order in which they would be accessed (i.e.,
retrieved from secondary storage in case of a false hit, etc.).
There are two principal methods of representing spatial data.

The first is to use an object hierarchy that initially aggregates
objects into groups based on their spatial proximity and then
uses proximity to further aggregate the groups thereby forming
a hierarchy. Note that the object hierarchy is not unique as it
depends on the manner in which the objects were aggregated to
form the hierarchy. Queries are facilitated by also associating a
minimum bounding box with each object and group of objects
as this enables a quick way to test if a point can possibly lie
within the area spanned by the object or group of objects. A
negative answer means that no further processing is required
for the object or group, while a positive answer means that
further tests must be performed. Thus the minimum bounding
box serves to avoid wasting work. Data structures such as the
R-tree [16] and the R∗-tree [6] illustrate the use of this method.
The drawback of the object hierarchy approach is that

from the perspective of a space decomposition method, the
resulting hierarchy of bounding boxes leads to a non-disjoint
decomposition of the underlying space. This means that if a
search fails to find an object in one path starting at the root,

1



Appears in Proceedings of the 29th IEEE International Conference on Data Engineering,

Brisbane, Australia, April 2013, pp. 1254-1257.

then it is not necessarily the case that the object will not be
found in another path starting at the root.

The second method is based on a recursive decomposition of
the underlying space into disjoint blocks so that a subset of the
objects are associated with each block. There are several ways
to proceed. The first is to simply redefine the decomposition
and aggregation associated with the object hierarchy method
so that the minimum bounding rectangles are decomposed
into disjoint rectangles, thereby also implicitly partitioning the
underlying objects that they bound. In this case, the partition
of the underlying space is heavily dependent on the data and
is said to be at arbitrary positions. The k-d-B-tree [46] and the
R+-tree [88] are examples of such an approach.

The second way is to partition the underlying space at fixed
positions so that all resulting cells are of uniform size, which
is the case when using the uniform grid (e.g., [29]), also the
standard indexing method for maps. The drawback of the
uniform grid is the possibility of a large number of empty
or sparsely-filled cells when the objects are not uniformly
distributed. This is resolved by making use of a variable
resolution representation such as one of the quadtree variants
(e.g., [64]) where the subset of the objects that are associated
with the blocks are defined by placing an upper bound on
the number of objects that can be associated with each block
(termed a stopping condition for the recursive decomposition
process) and also often referred to as a bucket capacity. In this
case we can say that the objects are sorted into cells which
act like bins (i.e., buckets). The PR quadtree [43], [62] and
its bucket variants are examples of such a structure for points,
while the PM quadtree family [21], [37], [72], [79] (see also
the related PMR quadtree [19], [40], [41]) is an example of
a variable resolution representation for collections of straight
line segment objects such as those found in polygonal sub-
divisions as well as higher dimensions (e.g., faces of three-
dimensional objects as in the PM octree [5]). An alternative,
as exemplified by the PK-tree [63], [97], makes use of a lower
bound on the number of objects that can be associated with
each block (termed an instantiation or aggregation threshold).

Quadtrees [24], [28] and their three-dimensional octree
analogs [23], [39]. have also been used widely for representing
and operating on region data in two and three dimensions,
respectively (e.g., [59]). In particular, algorithms have been
devised for converting between them and numerous repre-
sentations such as binary arrays [48], boundary codes [14],
[49], [78], rasters [50], [56], [89], medial axis transforms [55],
[57], terrain models [91], boundary models [92], constructive
solid geometry (CSG) [73], as well as operations such as con-
nected component labeling [52], [75], [76], perimeters [51],
[74], distance [53], image dilation [1], computing Euler num-
bers [13], and ray tracing [60]. Many of these operations are
implemented by traversing the actual quadtrees/octrees and
performing the operation on each node and its neighbors [31],
[54], [58], [60], [71]. Quadtrees and their variants are to be
distinguished from pyramids (e.g., [93]) which are multireso-
lution data structures useful in spatial data mining [2].

The principal drawback of the disjoint method is that when
the objects have extent (e.g., line segments, rectangles, and
any other non-point objects), then an object may be associated
with more than one block. This means that queries such
as those that seek the length of all objects in a particular
spatial region will have to remove duplicate objects before
reporting the total length. Nevertheless, methods have been

developed that avoid these duplicates by making use of the
geometry of the type of the data that is being represented
(e.g., [3], [4], [12]). Note that the result of constraining the
positions of the partitions means that there is a limit on the
possible sizes of the resulting cells (e.g., a power of 2 in
the case of a quadtree variant). However, this means that
the underlying representation is good for operations between
two different data sets (e.g., a spatial join [22], [25], [26])
as their representations are in registration (i.e., it is easy
to correlate occupied and unoccupied space in the two data
sets, which is not easy when the positions of the partitions
are not constrained as is the case with methods rooted in
representations based an object hierarchy even though the
resulting decomposition of the underlying space is disjoint).
For an empirical comparison of these representations with
respect to multidimensional point data, see [27].

III. FUTURE TRENDS

In this paper, the discussion has been in the context of
the traditional explicit specification geometric representation
of spatial data (e.g., as latitude-longitude pairs of numbers).
This is often cumbersome as users don’t always think of a
location in this way, and often don’t know it in this way
or have easy access to it, and, more importantly, are not
accustomed to communicate it to others in this way. Instead,
they are accustomed to specify a location textually (including
verbally). A textual specification has a number of advantages.
The first is that it is easy to communicate especially on
smartphone devices where a textual (also increasingly verbal
via speech recognition such as Siri on the Apple platform)
input capability is always present. Another important advan-
tage is that the text acts like a polymorphic type in the
sense that one size fits all. In particular, depending on the
application which makes use of this information, a term such
as “Washington” can be interpreted both as a point or as an
area, and the user need not be concerned with this question.
The drawback of the textual specification of location data is
that it is ambiguous. In particular, there are many possible
locations named ”Washington” and they must be resolved
(i.e., ”toponym resolution”) [33], [35], [45]. Moreover, in
some cases we are not even sure that the term ”Washington”
denotes a location as it could be a reference to the name of a
person (i.e., ”toponym recognition”) [32]. This can be the case
when processing documents such as newspaper articles [34],
[67], [77], [96], tweets [86], blogs, etc. Being able to handle
such specifications enables the development of map query
interfaces to a wide range of spatially-referenced data thereby
enabling the development of new applications such as disease
tracking [30] as well as the hidden web [36]. Moreover, such
interfaces enable the search to make use of spatial synonyms
which result in nearest neighbor computation where the results
are names of the neighbors rather than their coordinate values.

IV. CONCLUDING REMARKS

Sorting spatial and metric data is particularly useful for
proximity queries usually where proximity is measured in
terms of as “the crow flies” (e.g., [17], [18], [65]). However,
these representations can also be used to support proximity in
a graph such as a road network (e.g., [70], [80], [81], [82],
[83], [84], [85]). They can also be used with different metrics
such as a Hausdorff distance [42].
Interestingly, methods analogous to those that we described

have also been used in cases where the only information that
we have available is a distance function that indicates the

2



Appears in Proceedings of the 29th IEEE International Conference on Data Engineering,

Brisbane, Australia, April 2013, pp. 1254-1257.

degree of similarity (or dis-similarity) between all pairs of the
N objects. Usually the distance function d is required to obey
the triangle inequality, be non-negative, and be symmetric, in
which case it is known as a metric and also referred to as a
distance metric. Given a distance function, we usually partition
and index the objects with respect to their distance from a few
selected objects. There are two basic partitioning schemes: ball
partitioning and generalized hyperplane partitioning [20]. In
ball partitioning, the data set is partitioned based on distances
from one distinguished object, into the subset that is inside
and the subset that is outside a ball around the object In
generalized hyperplane partitioning, two distinguished objects
p1 and p2 are chosen and the data set is partitioned into two
sets based on which of the two distinguished objects is the
closest. It is interesting to observe that both schemes achieve a
partitioning of the underlying data set into spatial-like zones.
However, the difference is that the boundaries of the zones
are more well-defined in the case of ball partitioning methods
as they can be expressed explicitly using a small number of
objects and a known distance value. In contrast, in the case of
generalized hyperplane partitioning methods, the boundaries
of the zones are usually expressed implicitly in terms of the
distinguished objects, instead of explicitly, which may require
quite a bit of computation to determine. In fact, very often, the
boundaries cannot be expressed explicitly as, for example, in
the case of an arbitrary metric space (in contrast to a Euclidean
space) where we do not have a direct representation of the
‘generalized hyperplane’ that separates the two partitions.
The functioning of the various spatial sorting methods

can be experienced by trying VASCO [7], [8], [9], [11], a
system for Visualizing and Animating Spatial Constructs and
Operations. VASCO consists of a set of spatial index JAVATM

applets that enable users on the worldwide web to experiment
with a number of hierarchical representations (e.g., [61], [62],
[64]) for different spatial data types, and see animations of how
they support a number of search queries (e.g., nearest neighbor
and range queries). The VASCO system can be found at
http://www.cs.umd.edu/˜hjs/quadtree/. For an
example of their use in a spatial database/geographic informa-
tion system (GIS), see the SAND Spatial Browser [10], [15],
[66] and the QUILT system [69], [90]. Such systems find use
in many application domains (e.g., digital government [38],
point clouds [87] and in peer-to-peer settings [94], [95]).

ACKNOWLEDGMENT

This work was supported in part by the National Science
Foundation under Grants IIS-10-18475 and IIS-12-19023, and
by Google Research.

REFERENCES

[1] C.-H. Ang, H. Samet, and C. A. Shaffer. A new region expansion for
quadtrees. IEEE TPAMI, 12(7):682–686, July 1990.

[2] W. G. Aref and H. Samet. Efficient processing of window queries in
the pyramid data structure. In PODS’90, pp. 265–272, Nashville, TN,
Apr. 1990.

[3] W. G. Aref and H. Samet. Uniquely reporting spatial objects: yet another
operation for comparing spatial data structures. In SDH’92, pp. 178–189,
Charleston, SC, Aug. 1992.

[4] W. G. Aref and H. Samet. Hashing by proximity to process duplicates
in spatial databases. In CIKM’94, pp. 347–354, Gaithersburg, MD, Dec.
1994.

[5] D. Ayala, P. Brunet, R. Juan, and I. Navazo. Object representation by
means of nonminimal division quadtrees and octrees. TODS, 4(1):41–59,
Jan. 1985.

[6] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R∗-
tree: an efficient and robust access method for points and rectangles. In
SIGMOD, pp. 322–331, Atlantic City, NJ, June 1990.

[7] F. Brabec and H. Samet. The VASCO R-tree JAVATM applet. In Visual

Database Systems (VDB4), pp. 147–153, L’Aquila, Italy, May 1998.
[8] F. Brabec and H. Samet. Visualizing and animating R-trees and spatial

operations in spatial databases on the worldwide web. In Visual

Database Systems (VDB4), pp. 123–140, L’Aquila, Italy, May 1998.
[9] F. Brabec and H. Samet. Visualizing and animating search operations

on quadtrees on the worldwide web. In Proc. 16th European Workshop

on Computational Geometry, pp. 70–76, Eilat, Israel, Mar. 2000.
[10] F. Brabec and H. Samet. Client-based spatial browsing on the world

wide web. IEEE Internet Computing, 11(1):52–59, Jan/Feb 2007.

[11] F. Brabec, H. Samet, and C. Yilmaz. VASCO: visualizing and animating
spatial constructs and operations. In Proc. 19th Annual Symposium on

Computational Geometry, pp. 374–375, San Diego, CA, June 2003.

[12] J.-P. Dittrich and B. Seeger. Data redundancy and duplicate detection
in spatial join processing. In ICDE, pp. 535–546, San Diego, CA, Feb.
2000.

[13] C. R. Dyer. Computing the Euler number of an image from its quadtree.
CGIP, 13(3):270–276, July 1980.

[14] C. R. Dyer, A. Rosenfeld, and H. Samet. Region representation:
boundary codes from quadtrees. CACM, 23(3):171–179, Mar. 1980.

[15] C. Esperança and H. Samet. Experience with SAND/Tcl: a scripting
tool for spatial databases. JVLC, 13(2):229–255, Apr. 2002.

[16] A. Guttman. R-trees: a dynamic index structure for spatial searching.
In SIGMOD, pp. 47–57, Boston, June 1984.

[17] A. Henrich. A distance-scan algorithm for spatial access structures. In
GIS’94, pp. 136–143, Gaithersburg, MD, Dec. 1994.

[18] G. R. Hjaltason and H. Samet. Distance browsing in spatial databases.
TODS, 24(2):265–318, June 1999.

[19] G. R. Hjaltason and H. Samet. Speeding up construction of PMR
quadtree-based spatial indexes. VLDBJ, 11(2):109–137, Oct. 2002.

[20] G. R. Hjaltason and H. Samet. Index-driven similarity search in metric
spaces. TODS, 28(4):517–580, Dec. 2003.

[21] E. G. Hoel and H. Samet. Efficient processing of spatial queries in line
segment databases. In SSD’91, pp. 237–256, Zurich, Aug. 1991.

[22] E. G. Hoel and H. Samet. Benchmarking spatial join operations with
spatial output. In VLDB, pp. 606–618, Zurich, Sept. 1995.

[23] G. M. Hunter. Efficient computation and data structures for graph-

ics. PhD thesis, Department of Electrical Engineering and Computer
Science, Princeton University, Princeton, NJ, 1978.

[24] G. M. Hunter and K. Steiglitz. Operations on images using quad trees.
IEEE TPAMI, 1(2):145–153, Apr. 1979.

[25] E. Jacox and H. Samet. Iterative spatial join. TODS, 28(3):268–294,
Sept. 2003.

[26] E. Jacox and H. Samet. Spatial join techniques. TODS, 32(1):7, Mar.
2007.

[27] Y. J. Kim and J. M. Patel. Rethinking choices for multi-dimensional
point indexing: making the case for the often ignored quadtree. In CIDR

2007, pp. 281–291, Asilomar, CA, Jan. 2007.

[28] A. Klinger. Patterns and search statistics. In J. S. Rustagi, editor,
Optimizing Methods in Statistics, pp. 303–337. Academic Press, New
York, 1971.

[29] D. E. Knuth. The Art of Computer Programming: Sorting and Searching,
volume 3. Addison-Wesley, Reading, MA, second edition, 1998.

[30] R. Lan, M. D. Lieberman, and H. Samet. The picture of health: map-
based, collaborative spatio-temporal disease tracking. In Proc. 1st ACM

SIGSPATIAL International Workshop on the Use of GIS in Public Health

(HealthGIS 2012), Redondo Beach, CA, Nov. 2012.
[31] M. Lee, L. De Floriani, and H. Samet. Constant-time neighbor finding

in hierarchical tetrahedral meshes. In SMI’01, pp. 286–295, Genova,
Italy, May 2001.

[32] M. D. Lieberman and H. Samet. Multifaceted toponym recognition for
streaming news. In SIGIR’11), pp. 843–852, Beijing, July 2011.

[33] M. D. Lieberman and H. Samet. Adaptive context features for toponym
resolution in streaming news. In SIGIR’12, pp. 731–740, Portland, OR,
Aug. 2012.

[34] M. D. Lieberman and H. Samet. Supporting rapid processing and
interactive map-based exploration of streaming news. In GIS’12,
Redondo Beach, CA, Nov. 2012.

[35] M. D. Lieberman, H. Samet, and J. Sankaranarayanan. Geotagging with
local lexicons to build indexes for textually-specified spatial data. In
ICDE, pp. 201–212, Long Beach, CA, Mar. 2010.

[36] M. D. Lieberman, H. Samet, J. Sankaranarayanan, and J. Sperling.
STEWARD: architecture of a spatio-textual search engine. In GIS’07,
pp. 186–193, Seattle, WA, Nov. 2007.

3

http://www.cs.umd.edu/~hjs/quadtree/


Appears in Proceedings of the 29th IEEE International Conference on Data Engineering,

Brisbane, Australia, April 2013, pp. 1254-1257.

[37] M. Lindenbaum, H. Samet, and G. R. Hjaltason. A probabilistic analysis
of trie-based sorting of large collections of line segments in spatial
databases. SIAM J. Comp., 35(1):22–58, Sep. 2005.

[38] G. Marchionini, H. Samet, and L. Brandt. Introduction to the digital
government special issue. CACM, 46(1):24–27, Jan. 2003.

[39] D. Meagher. Geometric modeling using octree encoding. CGIP,
19(2):129–147, June 1982.

[40] R. C. Nelson and H. Samet. A consistent hierarchical representation for
vector data. Computer Graphics, 20(4):197–206, Aug. 1986. Also in
SIGGRAPH, Dallas, TX, Aug. 1986.

[41] R. C. Nelson and H. Samet. A population analysis for hierarchical data
structures. In SIGMOD, pp. 270–277, San Francisco, May 1987.

[42] S. Nutanong, E. H. Jacox, and H. Samet. An incremental Hausdorff
distance calculation algorithm. PVLDB, 4(8):506–517, Aug. 2011.

[43] J. A. Orenstein. Multidimensional tries used for associative searching.
INFOPL, 14(4):150–157, June 1982.

[44] F. P. Preparata and M. I. Shamos. Computational Geometry: An

Introduction. Springer-Verlag, New York, 1985.
[45] G. Quercini, H. Samet, J. Sankaranarayanan, and M. D. Lieberman.

Determining the spatial reader scopes of news sources using local
lexicons. In GIS’10, pp. 43–52, San Jose, CA, Nov. 2010.

[46] J. T. Robinson. The K-D-B-tree: a search structure for large multidi-
mensional dynamic indexes. In SIGMOD, pp. 10–18, Ann Arbor, MI,
Apr. 1981.

[47] H. Sagan. Space-Filling Curves. Springer-Verlag, New York, 1994.
[48] H. Samet. Region representation: quadtrees from binary arrays. CGIP,

13(1):88–93, May 1980.
[49] H. Samet. Region representation: quadtrees from boundary codes.

CACM, 23(3):163–170, Mar. 1980.
[50] H. Samet. An algorithm for converting rasters to quadtrees. IEEE

TPAMI, 3(1):93–95, Jan. 1981.
[51] H. Samet. Computing perimeters of images represented by quadtrees.

IEEE TPAMI, 3(6):683–687, Nov. 1981.
[52] H. Samet. Connected component labeling using quadtrees. JACM,

28(3):487–501, July 1981.
[53] H. Samet. Distance transform for images represented by quadtrees. IEEE

TPAMI, 4(3):298–303, May 1982.
[54] H. Samet. Neighbor finding techniques for images represented by

quadtrees. CGIP, 18(1):37–57, Jan. 1982.
[55] H. Samet. A quadtree medial axis transform. CACM, 26(9):680–693,

Sept. 1983. Also see CORRIGENDUM, CACM, 27(2):151, Feb. 1984.
[56] H. Samet. Algorithms for the conversion of quadtrees to rasters. CVGIP,

26(1):1–16, Apr. 1984.
[57] H. Samet. Reconstruction of quadtrees from quadtree medial axis

transforms. CVGIP, 29(3):311–328, Mar. 1985.
[58] H. Samet. A top-down quadtree traversal algorithm. IEEE TPAMI,

7(1):94–98, Jan. 1985.
[59] H. Samet. An overview of quadtrees, octrees, and related hierarchical

data structures. In R. A. Earnshaw, editor, Theoretical Foundations of

Computer Graphics and CAD, pp. 51–68. Springer-Verlag, Berlin, West
Germany, 1988.

[60] H. Samet. Implementing ray tracing with octrees and neighbor finding.
Computers & Graphics, 13(4):445–460, 1989.

[61] H. Samet. Applications of Spatial Data Structures: Computer Graphics,

Image Processing, and GIS. Addison-Wesley, Reading, MA, 1990.
[62] H. Samet. The Design and Analysis of Spatial Data Structures. Addison-

Wesley, Reading, MA, 1990.
[63] H. Samet. Decoupling partitioning and grouping: overcoming shortcom-

ings of spatial indexing with bucketing. TODS, 29(4):789–830, Dec.
2004.

[64] H. Samet. Foundations of Multidimensional and Metric Data Structures.
Morgan-Kaufmann, San Francisco, 2006.

[65] H. Samet. K-nearest neighbor finding using MaxNearestDist. IEEE

TPAMI, 30(2):243–252, Feb. 2008.
[66] H. Samet, H. Alborzi, F. Brabec, C. Esperança, G. R. Hjaltason,

F. Morgan, and E. Tanin. Use of the SAND spatial browser for digital
government applications. CACM, 46(1):63–66, Jan. 2003.

[67] H. Samet, M. D. Adelfio, B. C. Fruin, M. D. Lieberman, and B. E.
Teitler. Porting a web-based mapping application to a smartphone app.
In GIS’11, pp. 525–528, Chicago, November 2011.

[68] H. Samet, B. C. Fruin, and S. Nutanong. Duking it out at the smartphone
mobile app mapping API corral: Apple, Google, and the competition.
In Proc. 1st ACM SIGSPATIAL Int. Wrkshp on Mobile Geog. Inf. Sys.

(MobiGIS 2012), Redondo Beach, CA, Nov. 2012.

[69] H. Samet, A. Rosenfeld, C. A. Shaffer, and R. E. Webber. A geographic
information system using quadtrees. Pattern Recognition, 17(6):647–
656, Nov/Dec 1984.

[70] H. Samet, J. Sankaranarayanan, and H. Alborzi. Scalable network dis-
tance browsing in spatial databases. In SIGMOD, pp. 43–54, Vancouver,
Canada, June 2008.

[71] H. Samet and C. A. Shaffer. A model for the analysis of neighbor
finding in pointer-based quadtrees. IEEE TPAMI, 7(6):717–720, Nov.
1985.

[72] H. Samet, C. A. Shaffer, and R. E. Webber. Digitizing the plane with
cells of non-uniform size. INFOPL, 24(6):369–375, Apr. 1987.

[73] H. Samet and M. Tamminen. Bintrees, CSG trees, and time. Com-

puter Graphics, 19(3):121–130, July 1985. Also in SIGGRAPH, San
Francisco, July 1985.

[74] H. Samet and M. Tamminen. Computing geometric properties of images
represented by linear quadtrees. IEEE TPAMI, 7(2):229–240, Mar. 1985.

[75] H. Samet and M. Tamminen. An improved approach to connected
component labeling of images. In CVPR, pp. 312–318, Miami Beach,
FL, June 1986.

[76] H. Samet and M. Tamminen. Efficient component labeling of images
of arbitrary dimension represented by linear bintrees. IEEE TPAMI,
10(4):579–586, July 1988.

[77] H. Samet, B. E. Teitler, M. D. Adelfio, and M. D. Lieberman. Adapting
a map query interface for a gesturing touch screen interface. InWWW’11

(Companion Volume), pp. 257–260, Hyderabad, India, Mar. 2011.

[78] H. Samet and R. E. Webber. On encoding boundaries with quadtrees.
IEEE TPAMI, 6(3):365–369, May 1984.

[79] H. Samet and R. E. Webber. Storing a collection of polygons using
quadtrees. TOGS, 4(3):182–222, July 1985.

[80] J. Sankaranarayanan, H. Alborzi, and H. Samet. Efficient query process-
ing on spatial networks. In GIS’05, pp. 200–209, Bremen, Germany,
Nov. 2005.

[81] J. Sankaranarayanan, H. Alborzi, and H. Samet. Distance join queries
on spatial networks. In GIS’06, pp. 211–218, Arlington, VA, Nov. 2006.

[82] J. Sankaranarayanan and H. Samet. Distance oracles for spatial net-
works. In ICDE, pp. 652–663, Shanghai, Apr. 2009.

[83] J. Sankaranarayanan and H. Samet. Query processing using distance
oracles for spatial networks. IEEE TKDE, 22(8):1158–1175, Aug. 2010.

[84] J. Sankaranarayanan and H. Samet. Roads belong in databases. IEEE

Data Engineering Bulletin, 33(2):4–11, June 2010.

[85] J. Sankaranarayanan, H. Samet, and H. Alborzi. Path oracles for spatial
networks. PVLDB, 2(1):1210–1221, Aug. 2009.

[86] J. Sankaranarayanan, H. Samet, B. Teitler, M. D. Lieberman, and
J. Sperling. TwitterStand: News in tweets. In GIS’09, pp. 42–51, Seattle,
WA, Nov. 2009.

[87] J. Sankaranarayanan, H. Samet, and A. Varshney. A fast all nearest
neighbor algorithm for applications involving large point-clouds. Com-

puters & Graphics, 31(2):157–174, Apr. 2007.

[88] T. Sellis, N. Roussopoulos, and C. Faloutsos. The R+-tree: a dynamic
index for multi-dimensional objects. In VLDB, pp. 71–79, Brighton,
United Kingdom, Sept. 1987.

[89] C. A. Shaffer and H. Samet. Optimal quadtree construction algorithms.
CVGIP, 37(3):402–419, Mar. 1987.

[90] C. A. Shaffer, H. Samet, and R. C. Nelson. QUILT: a geographic
information system based on quadtrees. IJGIS, 4(2):103–131, Apr.–June
1990.

[91] R. Sivan and H. Samet. Algorithms for constructing quadtree surface
maps. In SDH’92, volume 1, pp. 361–370, Charleston, SC, Aug. 1992.

[92] M. Tamminen and H. Samet. Efficient octree conversion by connec-
tivity labeling. Computer Graphics, 18(3):43–51, July 1984. Also in
SIGGRAPH, Minneapolis, MN, July 1984.

[93] S. L. Tanimoto and T. Pavlidis. A hierarchical data structure for picture
processing. CGIP, 4(2):104–119, June 1975.

[94] E. Tanin, A. Harwood, and H. Samet. A distributed quadtree index for
peer-to-peer settings. In ICDE, pp. 254–255, Tokyo, Apr. 2005.

[95] E. Tanin, A. Harwood, and H. Samet. Using a distributed quadtree index
in P2P networks. VLDBJ, 16(2):165–178, Apr. 2007.

[96] B. Teitler, M. D. Lieberman, D. Panozzo, J. Sankaranarayanan,
H. Samet, and J. Sperling. NewsStand: A new view on news. In GIS’08,
pp. 144–153, Irvine, CA, Nov. 2008.

[97] W. Wang, J. Yang, and R. Muntz. PK-tree: a spatial index structure
for high dimensional point data. In FODO’90, pp. 27–36, Kobe, Japan,
Nov. 1998.

4


	Introduction
	Methods Based on Spatial Occupancy
	Future Trends
	Concluding Remarks
	References

