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Abstract— Incrementally finding the k nearest neighbors (kNN)
in a spatial network is an important problem in location-based
services. One method (INE) simply applies Dijkstra’s algorithm.
Another method (IER) computes the k nearest neighbors using
Euclidean distance followed by computing their corresponding
network distances, and then incrementally finds the next nearest
neighbors in order of increasing Euclidean distance until finding
one whose Euclidean distance is greater than the current k
nearest neighbor in terms of network distance. The LBC method
improves on INE by avoiding the visit of nodes that cannot
possibly lead to the k nearest neighbors by using a Euclidean
heuristic estimator, and on IER by avoiding the repeated visits
to nodes in the spatial network that appear on the shortest paths
to different members of the k nearest neighbors by performing
multiple instances of heuristic search using a Euclidean heuristic
estimator on candidate objects around the query point. LBC’s
drawback is that the maintenance of multiple instances of
heuristic search (called wavefronts) requires k priority queues
and the queue operations required to maintain them incur a
high in-memory processing cost. A method (SWH) is proposed
that utilizes a novel heuristic function which considers objects
surrounding the query point together as a single unit, instead
of as one destination at a time as in LBC, thereby eliminating
the need for multiple wavefronts and needs just one priority
queue. These results in a significant reduction in the in-memory
processing cost components while having the same reduced cost
of the access to the spatial network as LBC. SWH is also
extended to support the incremental distance semi-join (IDSJ)
query, which is a multiple query point generalization of the kNN
query. In addition, SWH is shown to support landmark-based
heuristic functions, thereby enabling it to be applied to non-
spatial networks/graphs such as social networks. Comparisons
of experiments on SWH for kNN queries with INE, the best
single-wavefront method, show that SWH is 2.5 times faster, and
with LBC, the best existing heuristic search method, show that
SWH is 3.5 times faster. For IDSJ queries, SWH-IDSJ is 5 times
faster than INE-IDSJ, and 4 times faster than LBC-IDSJ.

I. INTRODUCTION

The rising popularity of smartphones and their incorporation

of a GPS capability has led to an increasing activity in spatial

query processing. The functionality has steadily increased

ranging from early systems such as QUILT [27], [35] and

SAND [26] which had a browsing capability to full-fledged

mapping systems such as those from, but not limited to,

Google, Microsoft, and Apple where the focus is on location-

based services. The most typical queries, and the ones we

focus on here, involve finding nearby facilities such as super

markets and gas stations from our current location. This

requires the computation of distance. Since movement in our

everyday life is mostly constrained by network connectiv-

ities, the distance between two locations x and y in our

work is more accurately represented as the network distance

DIST(x,y) rather than the Euclidean distance ||x − y|| [5],

[12], [21]. or variants of it such as a minimum distance to

a block boundary (e.g., [24], [28]) or the Hausdorff distance

(e.g., [18]). For example, given a user location q, the cost

of driving to a gas station at a location p on the opposite

side of a dual-carriage highway will have the network distance

DIST(q,p) which is much greater than the Euclidean distance

||q−p|| (i.e., as the crow flies). Since the driver has to follow

the shortest path along the highway, DIST(q,p) is considered

a more meaningful representation of the cost to travel from q

to p than the Euclidean counterpart.

In this paper, we study the problem of finding the k

nearest neighbors (k NNs) from a query point q in a spatial

network [1], [12], [21], [33], e.g., finding the k nearest gas

stations in a road network rather than blocks (e.g., [25]). Due

to the interactive nature and the need for high performance

of many spatial applications, we focus our algorithm design

effort on a setting where the in-memory processing cost is as

important as the access cost. Specifically, we are particularly

interested in a case where network nodes and edges are

stored in a main memory database system (MMDBS) [6],

[17], which is commonly used in high-performance analytical

applications [3], [13]. In particular, designing algorithms for

an MMDBS requires a careful consideration of factors such

as CPU cost and memory consumption rather than disk access

cost [6], [17].

Many methods have been proposed to find the kNNs. The

classical method simply applies Dijkstra’s algorithm and is the

basis of the INE (Incremental Network Expansion) method

of Papadias et. al [21]. In particular, INE visits the nodes

of the network in order of their increasing network distance

from the query object. This means that it is optimal in the

sense that it does not visit a node or object that is farther

away than the k-th NN. Its drawback is that it does not make

use of any heuristic information to prune the exploration of

nodes from which the k NNs cannot be possibly reached. Such

needless visits are avoided by judicious invocation of the IER

(Incremental Euclidean Restriction) method of Papadias et.

al [21] which uses a best-first algorithm to find the k NNs

in terms of their Euclidean distance (and thus does not use

the network), and then computes their corresponding network

In Proceedings of the 29th IEEE International Conference on Data Engineering

Brisbane, Australia, April 2013, pp. 649-660.



distance using a shortest path algorithm, one at a time. These k

objects form the initial set of candidate k NNs after which the

next nearest objects using the Euclidean distance are retrieved

incrementally and their network distance computed using a

shortest path algorithm until encountering an object whose

Euclidean distance is greater than the current k-th nearest

object in terms of network distance. The shortest paths can

be calculated using the A* algorithm [5].

The main drawback of IER is that computation of the

network distance of each candidate object by IER requires

reinvocation of the network distance calculation process for all

network nodes on the shortest paths to previously encountered

objects. This means that some of the parts of the network graph

must be accessed repeatedly, as is the case when the shortest

paths to the objects have common subgraphs.

The LBC (Lower Bound Constraint) method of Deng et.

al [5] improves on both INE and IER by attempting to

overcome their drawbacks. In the case of INE, LBC makes

use of heuristic information and applies the A* algorithm [9]

to calculate shortest paths from the query point to candidate

destination objects instead of using Dijkstra’s algorithm to

incrementally explore network nodes around the query point

in a single search, thereby avoiding the visit of nodes that

cannot possibly lead to the k nearest neighbors. Specifically,

the heuristic cost function is the Euclidean distance from the

current node to the destination object, which is guaranteed to

be a lower bound on the network distance from the current

node to the destination object. The advantage of this approach

is that the nodes of the network are now visited in increasing

order of the lower bound on the distance to the nearest objects

from the query object on a path that passes through them. In

particular, this approach is more likely to explore nodes that

lie on the paths to the nearest objects than those that do not.

In other words, it visits a node n on the basis of an estimated

total distance from the query object q to a destination object

p on a path through n, rather than just on the basis of the

distance of n from q.

In the case of IER, LBC avoids the repeated access of

some parts of the spatial network by computing the shortest

paths in terms of network distance to the nearest k Euclidean

distance neighbors (i.e., the kNN candidates) in such a way

that each node in the network is accessed just once. This is

achieved by making each of the shortest path calculations (one

per candidate) visit the nodes of the network in the same

order. This is possible because for an arbitrary node n, the

heuristic cost function used by LBC is the minimum of the

Euclidean distances to each of the kNN candidates reached

through all edges emanating from n. The drawback of LBC

is that although each node in the graph/network is accessed

just once, as in the IER method, it still needs separate priority

queues to compute the shortest path to each of the kNN

candidates. In essence, LBC can be characterized as making

use of multiple wavefronts (corresponding to an instance of

heuristic search called A* search), one for each of the kNN

candidates, where each wavefront is managed by a priority

queue for a total of at least k priority queues. Maintenance

of multiple priority queues incurs additional memory space

requirement and priority queue insertion/deletion operations,

which can be costly in terms of in-memory processing.

In this paper, we formulate algorithms to process spatial

queries that are efficient in terms of the access cost as well

as in-memory processing costs. We have the following design

objectives: First, the search order should be maintained by a

single priority queue to reduce the memory consumption and

priority queue maintenance cost. Second, we want to make

use of heuristic information to minimize the graph/network

traversal cost, since a smaller number of nodes to consider

generally translates to less memory consumption and a smaller

effort to maintain the search order. Third, we want the way

in which we compute heuristic values to be computationally

inexpensive. In other words, the effort to compute heuristic

values should not outweigh the benefit in the reduction of the

graph/network traversal cost.

Specifically, we propose the SWH (Single Wavefront

Heuristic) which removes the multiple wavefront drawback

of LBC thereby significantly reducing its storage requirements

and main memory computing costs (priority queue operations)

while still having the same reduced cost as LBC for accessing

the spatial network. This is done by devising a novel heuristic

function that considers destination objects surrounding the

query point together as a single unit (relying on previously

found nearest neighbors to find nearest neighbors quickly),

instead of as one destination at a time as in LBC. Thus only

one priority queue is needed instead of a minimum of k.

Experiments for kNN queries show a significant reduction

in execution time, as well as the number of priority queue

operations and priority queue size, for SWH vis-a-vis LBC.

Since IER is superseded by LBC, no comparisons of SWH

with IER are necessary, while comparisons of SWH with

INE also show SWH to consistently outperform INE. In

addition, we also show how to extend SWH to computing

the incremental distance semi-join (IDSJ) query [10] where

instead of just one query object, we have a set Q of query

objects for which we obtain a significant improvement for

the SWH variant over the LBC and INE variants in the

time needed to compute their NNs in order of increasing

network distance [30].

It is important to note that an alternative and more drastic

approach to reducing the number of visited nodes in the

traversal of the spatial network is to use precomputed distance

information. For example, we can precompute the distances

from each node in the network to a selected subset (called

landmarks) [7], [14], and apply the triangle inequality to derive

an upper bound and a lower bound on the network distance

between any two nodes in the network. Another method

called distance oracle [31], [32], [34] represents approximate

network distances as tuples (X,Y, d) such that for each node

x in X and y in Y , |DIST(x,y) − d| is smaller than a pre-

determined error bound ǫ. Still other notable precomputation-

based techniques include: network Voronoi diagram [16], [36],

which precomputes the NN in a dataset D for each node in the

network, and shortest path quadtree [28], [29], which relies

on precomputation of O(n2) network distances, storing them

using O(n1.5) space, and allowing a shortest path search to be



conducted using O(h) lookup operations, where h denotes the

number of hops between the starting and the destination nodes.

All of these precomputation-based techniques significantly

reduce the number of visited nodes in problems like short-

est path and kNN search. We use the landmark method to

demonstrate how our proposed method can make use of pre-

computed distance information, landmarks distances are easy

to compute/store and are applicable to non-spatial networks. It

is important to note that the precomputation-based techniques

do incur the cost of an additional data structure to store the

precomputed information and a computational effort to keep

shortest path information up-to-date. Nevertheless, these costs

are reasonable for the landmarks method where the number of

landmarks is relatively small vis-a-vis the size of the network.

To summarize, the contributions of this paper are as follows:

(i) Derivation of a heuristic function especially designed for

the kNN query problem and a method to compute this heuristic

function efficiently. (ii) Formulation of a novel spatial-network

kNN algorithm (SWH), which does not result in visiting

additional nodes in the spatial network and is main memory

efficient. (iii) Extendsion of SWH to support the IDSJ query.

(iv) Proofs of correctness and optimality of the algorithms.

(v) Adaptation of SWH to utilize precomputed landmark dis-

tances. (vi) Performance evaluations using a real road network

and experimental results showing that our proposed algorithm

outperforms the two best existing competitors [5], [21] for

both kNN and IDSJ queries.

The rest of this paper is organized as follows. Section II

describes our proposed algorithm (SWH) for the kNN query,

while Section III shows how to adapt it for the incremental

distance semi-join (IDSJ) query. Section IV discusses the

correctness and optimality of our proposed algorithms, while

Section V presents an extension to support landmarks. Results

of an experimental evaluation are reported in Section VI.

Concluding remarks are drawn in Section VII.

II. PROPOSED METHOD

In this section, we present our single-wavefront heuristic

(SWH) search algorithm for the kNN query (Definition 1).

Definition 1 (kNN query): Given a set D of locations and

a query point q, the kNN query finds a set A of locations

such that (i) A is a subset of D, (ii) A contains MIN{|D|, k}
objects; (iii) for each p in A and r in (D \A), DIST(q,p) is

not greater than DIST(q, r), where DIST(q,p) is defined as

the length of the shortest path from q to p.

This section is organized as follows. Section II-A defines

our heuristic function for kNN search. Section II-B describes

the data structures used in the presentation of algorithms in this

section. Section II-C presents a method to efficiently compute

the heuristic function and presents our proposed algorithm

which incorporates the heuristic computation method.

A. Heuristic Function

Our heuristic function is based on the observation that the

problem of finding the NN in D with respect to q in a network

is equivalent to computing the shortest path from q to the

NN in the dataset D. To compute the shortest path from q

to a destination p, for each network node n encountered by

the search, an optimistic estimate of the remaining distance

from n to the destination p is given by the heuristic function:

h(n,p) = ||n − p||. By replacing the target p with a target

location set D, we compute an optimistic estimate of the

distance from a network node n to the dataset D as the

minimum Euclidean distance from q to all points in D. That

is, h(n,D) = MIN{||n− p|| : p ∈ D}.
The same concept can be extended to help find subsequent

k NNs. Specifically, we can decompose the problem of finding

the k NNs in D into finding the first NN p1 in D, and

finding the i-th NN pi in (D\{p1, ...,pi−1}). In other words,

we constantly update the dataset in which we search for the

next result as NNs are incrementally discovered. Hence, when

searching for the i-th NN, we have to remove the first (i− 1)
NNs from D. That is, h(n,D \ A) is MIN{||n − p|| : p ∈
D\A}, where A denotes a list containing the first (i−1) NNs.

B. Data Structure

We use a directed graph to represent a road network contain-

ing unidirectional components. As shown in Figure 1, a one-

way street is represented as a unidirectional edge, a two-way

street is represented as a bidirectional edge, and a dual carriage

highway is represented as two opposing unidirectional edges.

The figure also shows n3 with four immediate neighbors n1,

n2, n4 and n5. Each of these neighbors can be outgoing,

incoming, or both. For example, n1 is an outgoing neighbors

of n3; n5 is an incoming neighbors of n3; n2 and n4 belong

to both types. We use the notations “n.OutgoingNodes()” and

“n.IncomingNodes()” to denote the outgoing-node set and the

incoming-node set of n, respectively.

For ease of exposition, data objects are treated as network

nodes. That is, the dataset D is a subset of the set of nodes in

the network. The same principle presented in this paper is still

applicable to cases where data objects are treated separately.

Fig. 1. Graph with 5 nodes, 1 bidirectional edge and 4 unidirectional edges.

We now describe the priority queue used to provide search

order in our kNN algorithms (Algorithm 2). A priority queue

is used to make sure that we always process a node with

the smallest estimated distance first. Specifically, the structure

organizes its entries so that the one with the smallest key value

is always at the first/top element of the structure. Each entry

consists of the following five attributes. (i) Distance dh (the

sorting key): an optimistic estimate of the total cost from q

to the next NN for this priority queue entry. (ii) Distance d: a

network distance from q to n (via np). (iii) Node n: the node

to which this entry corresponds. (iv) Node np: the previous

node on the path from q. (v) Object x: the Euclidean NN

of n in (D \ A). The distance d is computed as the sum

of the (already obtained) network distance DIST(q,np) and

the weight (e.g., length) of the edge that links np to n. The



distance dh is computed as the sum of the distance d and the

estimated remaining distance h(n,D\A). Each priority queue

entry is expressed as (dh, d,n,np,x) in Algorithm 2.

C. Proposed kNN Algorithm

1) Heuristic computation: Computing h(n,D \A) is con-

sidered a challenge because it requires evaluation of the

Euclidean NN [11], [23] of n in the set (D \ A). Due to

the large number of nodes n for which we need to compute

h(n,D \ A), it is impractical to compute the heuristic value

from scratch each time n is changed even if (D\A) is indexed

in a hierarchical structure [2], [8]. In this subsection, we derive

a novel solution which enables sharing of NN results among

nodes in proximity.

Specifically, our solution utilizes the best-first NN algo-

rithm [11] to incrementally retrieve Euclidean NNs with

respect to the query point q. The Euclidean NN with respect

to each node encountered by our search algorithm is computed

from the Euclidean NNs of q. As a result, evaluation of

h(n,D \A) requires consideration of only a small number of

Euclidean NNs with respect to q rather than iterating through

every single point in (D \ A).
The intuition behind our technique is that we represent the

set D using a smaller subset of objects and the “coverage”

of this subset with respect to a reference point (which is the

query point q in this case). Specifically, we use a Euclidean

NN search to retrieve objects around q and insert them into

a list C of Euclidean NNs with respect to q. As a result, the

coverage of this list is the disc centered at q that minimally

encloses all objects in C, i.e.,

{v : ||q − v|| ≤ MAX{||q − p|| : p ∈ C}}.

We call this disc the known region and we use r to denote its

radius MAX{||q − p|| : p ∈ C}. The Euclidean NN in (D\A)
of any node n can be computed using a much smaller

collection of objects in (C \ A) if the known region is large

enough to guarantee the correctness of the result. Otherwise,

we have to expand the known region by retrieving more

Euclidean NNs with respect to q. The details of this evaluation

process is given as follows.

In order to compute h(n,D\A), we find the nearest object

x in (C \ A) and obtain the Euclidean distance ||n − x||.
Next, we check if it is possible to have any object y outside

the known region that could invalidate x as the object which

minimizes the Euclidean distance from n. That is, ||n−y|| <
||n−x||. We call this process a reliability check. To perform

this reliability check, we adopt the concept of safe region with

respect to a data object [19]. That is, given a known region

with a center of q and a radius of r, we can guarantee that n

is closer to x than any object outside the known region if n

is inside the safe region

S(q,x, r) = {v : ||v − x||+ ||q − v|| ≤ r}. (1)

If this check fails, then we have to keep expanding the known

region to increase the r value and to take more objects into

consideration until this condition is satisfied. Formalization of

the described process is given by Algorithm 1.

Fig. 2. Safe region with respect to Object a.

For a better illustration of this concept, we provide an

example in Figure 2. The figure shows a query point q adjacent

to two network nodes n1 and n2. In this example, we wish to

compute h(n1,D\A) and h(n2,D\A) to determine the order

in which these nodes are accessed. Assume that D contains

{a, b, ..., z} and the answer set A is currently empty. The

figure shows that two objects a and b are retrieved as the first

two Euclidean NNs with respect to q. Hence, the list C is

given as 〈a, b〉. The known region is shown as the gray disc

centered at q with a radius r of ||q − b||.

Algorithm 1: ESTDIST(n, q, C, r,A)

input : (i) Node n, (ii) Query point q, (iii) List C of
Euclidean NNs, (iv) Scope r of the Euclidean
NN Search, (v) Set A of network NNs
obtained so far.

modified input: C, r
output : Pair (||n− x||, x) where ||n − x|| is equal

to MIN{||n − p|| : p ∈ C}.
environment : Dataset D

Object x ← Null;1

Distance dmin ← ∞;2

for each p in (C \ A) do3

Distance d ← ||n − p||;4

if d < dmin then5

x ← p;6

dmin ← d;7

while dmin > r − ||q − n|| do8

(p, r) ← NextEuclideanNN(q, D);9

Insert(p, C);10

Distance d ← ||n − p||;11

if d < dmin then12

x ← p;13

dmin ← d;14

return (dmin, x);15

Evaluation of h(n1,D \ A) is conducted as follows. First,

we iterate through the objects in (C \A) to find the minimum

distance and the nearest object (dmin,x) (Lines 3 to 7) with

respect to n1. As a result, we obtain (||n1−a||,a) in this case.

Second, we check the reliability of a, i.e., if it is possible to

have any unknown object closer to n1 than a (Line 8). This is

done by testing if n1 is inside the safe region S(q,a, r), which

is depicted as the gray elliptic region in the figure. As can be

seen, n1 is in fact inside S(q,a, r), and hence h(n1,D \A)
is equal to ||n1 − a||.

To calculate h(n2,D \ A), we follow the same steps and

first determine that a is the closest object among objects in

C after the for loop (Lines 3 to 7). Next, we check if a is



reliable with respect to n2 (Line 8). As can be seen, n2 is

outside S(q,a, r). This condition implies that we need more

information in order to evaluate h(n2,D\A). This is because,

n2 could be closer to an unknown object y (depicted as a

gray dot outside the known region) than a. Hence, we need

to retrieve more Euclidean NNs with respect to q to expand

the search range r, and to take more objects into consideration

until the condition at Line 8 is broken.

2) Algorithm description: Our proposed algorithm (Al-

gorithm 2) traverses the graph/network in best-first order

according to the heuristic values produced by Algorithm 1

(Lines 11 and 22), and is described as follows. The algorithm

accepts a dataset D, a query point q and the desired number

of kNN results. The initialization (Lines 1 to 7) include the

following steps: creating a priority queue PQ, inserting the

initial priority queue entry into PQ, creating a hash table

VisitedNodes to store the shortest path information from q for

each visited node, and creating an empty set A to store k NNs,

create a list of NN candidates and insert the first Euclidean

NN of q as the first candidate. The heuristic best-first search is

conducted in the control loop (Lines 8 to 23). In the beginning

of each iteration, the head entry (dh, d,n,np,x) is retrieved

from PQ. The rest of the loop consists of the following

parts: (i) heuristic update and validation (Lines 10 to 13),

(ii) labeling and result check (Lines 15 to 19), (iii) expansion

of neighboring nodes (Lines 20 to 23). To provide a clearer

illustration of how Algorithm 2 operates, we provide a sample

execution using the example in Figure 3. Table I shows the

values of the key variables for each iteration of the control loop

(Lines 8 to 23). After the initialization process (Lines 1 to 4),

the priority queue PQ contains a single entry (−, 0, q,−,−)
created from q.

In the first iteration (i = 1), the priority queue entry

corresponding to q is retrieved from PQ. At this point, we

expand the search to the adjacent nodes (n2 and n6) of q by

creating priority queue entries for them. To provide the order

in which these two entries are processed, we need to compute

the heuristic value for each of them. The heuristic value dh
for n2 is evaluated as the sum of (i) the distance d from q so

far (which is still 0 in this case), (ii) the length of the edge

that connects q to n2, and (iii) the euclidean distance between

n2 and b, which is nearest object in {a,b,c,d} from b. This

yields a distance of 2, (0+1+1) units. By following the same

process, we obtain the key value of n6 as 4, (0+2+2) units.

New priority queue entries with these key values are inserted

into PQ.

In the second iteration (i = 2), n2 is identified as the node

with the smallest key. We now consider the adjacent nodes that

have never been visited before, i.e., n1 and b. Using the same

process described in the first iteration, the key value dh of b

and n1 are obtained as 2, (1+1+0), and 7.16, (1+3+3.16),
units. Entries with corresponding nodes and key values are

then inserted into PQ. The same process continues until two

NNs are discovered in the fifth iteration as shown in Table I.

Table II provide the details on how heuristic values are

computed using Algorithm 1 in the context of the running

example. The iteration number i in the first column corre-

sponds to that of Table I. We now consider the first iteration

where we compute estimates for n2 and n6. To compute an

estimate for n2, we find the object in C which minimizes the

Euclidean distance from n2, which is b in this case. We now

check if n2 is in the safe region S(q, b, r) by checking the

condition

||n2 − b||+ ||q − n2|| ≤ r.

This condition fails because we have the distance of (1+1)

units for (||n2 − b|| + ||q − n2||) and the r value of 1.41

units. Consequently, we retrieve the next Euclidean NN of

q, i.e., a. After considering the new object a, the minimum

distance is unchanged but the r value becomes 2.83 units. As

a result, we obtain (||n2 − b|| = 1, b) as the estimate and the

nearest object for n2, respectively.

Algorithm 2: SWH-kNN(D, q, k)

input : Dataset D, Query Point q, Number k of NNs
output : Set A of k NNs in D with respect to q

environment: Dataset D (also input)

Initialize Priority Queue PQ;1

Insert(PQEntry (0, 0, q,−,−), PQ);2

HashTable VisitedNodes ← Create an empty hash table;3

Set A ← Create an empty set;4

List C ← Create an empty list;5

(Object p, Distance r) ← FirstEuclideanNN(q, D);6

Insert(p, C);7

while PQ is not empty do8

PQEntry (dh, d,n,np,x) ← DequeueHead(PQ);9

if Object x is in A and PQ is not empty then10

(Distance de, Object x) ← ESTDIST(n, q, C, r,A);11

if d+ de > TopKeyOf(PQ) then12

Insert(PQEntry (d+ de, d,n,np,x), PQ);13

else if Node n is not in VisitedNodes then14

Insert(Pair (IdOf(n), (d,np)), VisitedNodes);15

if n is a member of D then16

Insert(n, A);17

if |A| is equal to k or |A| is equal to |D| then18

return A19

for each na in OutgoingNodes(n) and na is not in20

VisitedNodes do
Distance da ← d+ WeightOf(EDGE(na,n));21

(Distance de, Object x) ←22

ESTDIST(na, q, C, r,A);
Insert(PQEntry (da + de, da,na,n,x), PQ);23

return A;24

The next step is to repeat the same process to compute

||n6 − a||. After iterating through the list C, we obtain a

and the distance ||n6 − a|| of 2 units as our tentative results.

We now check if a is reliable with respect to n6 using the

condition ||n6 − a||+ ||q − n6|| ≤ r.

Since we obtain (2+2) units on the left hand side and 2.83

units on the other, we need to expand the known region. The

next Euclidean NN of q is c which has the Euclidean distance

r from q of 5.10 units. As we can see, a is still the nearest

object in C for n6. Hence, the pair (||n6 −a||,a) is returned

from the function call ESTDIST(n2, q, C, r,A). The remaining

calculation steps are given in Table II.



TABLE I

EXAMPLE RUN OF ALGORITHM 2 WITH D OF {a, b, c,d}, AND k OF 2.

i PQ Entry A Inserted Entries Priority Queue PQ

1 (−, 0, q,−,−) 〈〉 (2, 1,n2,q, b), (4, 2,n6,q,a) 〈(2, 1,n2,q, b), (4, 2,n6, q,a)〉
2 (2, 1,n2,q, b) 〈〉 (2, 2, b,n2, b),(7.16, 4,n1,n2,a) 〈(2, 2, b,n2, b), (4, 2,n6,q,a), (7.16, 4,n1,n2,a)〉
3 (2, 2, b,n2, b) 〈b〉 (6, 4,n3, b, c) 〈(4, 2,n6,q,a), (6, 4,n3, b, c), (7.16, 4,n1,n2,a)〉
4 (4, 2,n6,q) 〈b〉 (4, 4,a,n6,a), (8.60, 5,n7,n6, c) 〈(4, 4,a,n6,a), (6, 4,n3, b, c), (7.16, 4,n1,n2,a), (8.60, 5,n7,n6, c)〉
5 (4, 4,a,n6,a) 〈b,a〉 - -

Fig. 3. Evaluation of h(n,D \ A) using ESTDIST().
TABLE II

EXAMPLE RUN OF ALGORITHM 1.

i na A Input (C, r) Modified (C, r) de x

1 n2 〈〉 (〈b〉, 1.41) (〈b,a〉, 2.83) 1 b
n6 〈〉 (〈b,a〉, 2.83) (〈b,a, c〉, 5.10) 2 a

2 b 〈〉 (〈b,a, c〉, 5.10) (〈b,a, c〉, 5.10) 0 b
n1 〈〉 (〈b,a, c〉, 5.10) (〈b,a, c,d〉, 7.28) 3.16 a

3 n3 〈b〉 (〈b,a, c,d〉, 7.28) (〈b,a, c,d〉, 7.28) 2 c

4 a 〈b〉 (〈b,a, c,d〉, 7.28) (〈b,a, c,d〉, 7.28) 0 a
n7 〈b〉 (〈b,a, c,d〉, 7.28) (〈b,a, c,d〉, 7.28) 3.60 c

5 - 〈b,a〉 - - - -

We can see how we avoid invoking the Euclidean NN query

for each network node n visited by exploiting spatial locality

of references of the Euclidean NN query. Specifically, the NN

of each node n is computed by identifying the nearest object

in a list C which is smaller than the dataset D. This benefit

becomes more obvious in a setting with a larger dataset D.

III. INCREMENTAL DISTANCE SEMI JOIN

We have shown in the previous section how our proposed

technique, SWH, is used in a single query point setting. In

this section, we consider a generalized case of multiple query

locations. That is, given a set Q of query points, find k points

p in D with smallest minimum distances MIN{DIST(q,p) :
q ∈ Q}. This query type is known as the distance semi join

query, which can be defined formally as follows.

Definition 2 (Distance Semi-join): Given two sets Q and D
of locations, the distance semi-join of Q and D is a set of pairs

(q,p) such that (i) q is a member of Q, (ii) p is a member

of D, and (iii) p is the NN of q.

The incremental distance semi-join (IDSJ) query [10], [37],

[39] incrementally retrieves these pairs (q,p) in ascending

order of the distance DIST(q,p). Based on this definition, we

can consider IDSJ as the incremental NN query with a query

object of Q, a dataset of D and the distance from the query

object Q to a location p in D of MIN{DIST(q,p) : q ∈ Q}.

An example query scenario can be given as follows. Given a

logistics company with a set W of warehouses and a set C of

customers’ locations, the logistics company wishes to find k

customers nearest to any given warehouse in W to give them

discount offers. In this scenario, the IDSJ query can be used to

incrementally find the k locations c in C of the customers with

the smallest distances from the nearest warehouse w in W .

Two examples of how an IDSJ query can be processed are

given in Figure 4. In the first example (Figure 4(a)), we can

perform a distance scan and build shortest path trees [20] with

respect to the query set {q1, q2}. In this way, each object

p in {a, b} is associated with its nearest query point q in

{q1, q2}. Similar to the uninformed kNN search, INE-kNN,

this method performs distance scans with respect to each query

point in the query set Q. In order to retrieve a pair (qi,pk), the

search traverses all nodes n such that the minimum distance

MIN{DIST(q,p) : q ∈ Q} is smaller than DIST(qi,pk). As

shown in Figure 4(a), we need to explore nodes around q1
although none of the data objects is associated with q1.

(a) Uninformed Search (b) Informed (Heuristic) Search

Fig. 4. Illustration of distance semi-join of {a, b} and {q1,q2} with
resultant pairs of (q2,a) and (q2, b).

Figure 4(b) shows that we can tremendously reduce the

search space by using the Euclidean distance as a lower bound.

In this example, we see that Euclidean distances ||q1−a|| and

||q1 − b|| makes q1 highly undesirable in comparison to q2.

As a result, we favor expansion around q2 and in this case,

the results 〈(q2,a), (q2, b)〉 can be produced without having

to consider nodes around q1 at all. Our experimental results

demonstrate the efficiency of our IDSJ extension to the single-

wavefront concept in terms of the graph traversal cost and

memory consumption.

IV. ANALYSIS

A. Correctness and optimality

Dechter and Pearl [4] show that the correctness and optimal-

ity of A* search depends on the consistency of the heuristic

function, i.e., whether the function satisfies the triangle in-

equality. Since our proposed algorithm (Algorithm 2) relies

on the same best-first heuristic search principle as A* search,

we prove that h(n,D) is a consistent and admissible heuristic

function as follows.

Lemma 1 (Consistency and Admissibility): The heuristic

function h(n,D) is consistent and admissible. That is,

(i) consistent: h(n,D) ≤ DIST(n,n′) + h(n′,D); and



(ii) admissible: h(n,D) ≤ MIN{DIST(n,p) : p ∈ D}.
Proof: Let p1 and p2 be objects in D which minimize

the Euclidean distance from n and n′, respectively. That is

||n− p1|| = h(n,D) and ||n′ − p2|| = h(n′,D)

According to the triangle inequality,

||n− p2|| ≤ ||n− n′||+ ||n′ − p2||.

Since p1 has the smallest Euclidean distance from n and the

Euclidean distance is a lower bound of the network distance,

we can replace ||n − p2|| by ||n − p1|| and ||n − n′|| by

DIST(n,n′), respectively. As a result, we have

||n− p1|| ≤ DIST(n,n′) + ||n′ − p2||,

which is equivalent to the consistency condition given in the

definition. Hence, h(n,D) is consistent.

Now, let us consider a special case where DIST(n,n′) is

MIN{DIST(n,p) : p ∈ D}. We have

h(n,D) ≤ MIN{DIST(n,p) : p ∈ D}+ 0.

Hence, the consistency ensures that h(n,D) is admissible.

That is, it cannot overestimate the network distance from n

to the nearest object in D [4], [22].

Since we keep updating the target (D\A), we must ensure

that the heuristic function is still admissible after a change in

(D\A). We use the principle of incremental/adaptive heuristic

search [15], [38] and show in Lemma 2 that an estimate

computed for a previous target can never overestimate the

distance from n to the current target.

Lemma 2 (Incremental Admissibility): Let p1 denote the

network NN of q in D and p2 denote the network NN of

q in (D \ {p1}). For any node n in the spatial network,

h(n,D) ≤ DIST(n,p2). That is, the estimate h(n,D) for

the first NN p1 is also optimistic with respect to the second

NN p2.

Proof: Since p2 is a member of D and the Euclidean

distance is a lower bound of the network distance,

h(n,D) ≤ ||n− p2|| ≤ DIST(n,p2).

As a result, h(n,D) is also smaller than or equal to the net-

work distance DIST(n,p2). Hence, h() is admissible through-

out the incremental search process.

We now provide a proof of correctness of Algorithm 2.

Theorem 1: SWH-kNN(D, q, k), Algorithm 2, produces

correct kNN results.

Proof: Since the traversal order of Algorithm 2 is given

by the heuristic function h(), the correctness of the algorithm

relies on the following two properties of the heuristic function.

(i) The first property is the admissibility of the heuristic

function h() as given by Lemma 1. This property ensures

that h() always gives an optimistic estimate, and hence

the algorithm cannot overlook any node n that may form

the shortest path from q to the nearest object in (D\A).
(ii) The second property is the admissibility of the heuristic

function after an update as given by Lemma 2. This prop-

erty ensures that updates to the heuristic function cannot

cause Algorithm 2 to overlook the next nearest object.

These two properties ensure that the best-first search cannot

overlook the k NNs and the shortest paths from q to them.

Next, we show that the SWH-kNN is optimal in terms of

the number of visited nodes.

Theorem 2: Given a dataset D and a query point q, let N

be the set of nodes visited by SWH-kNN in order to find the

first NN in D with respect to q. The set of nodes visited by

any other admissible algorithm which uses the same heuristic

function as SWH-kNN is a superset of N .

Proof: Since using SWH-kNN to search for the first

kNN is equivalent to using the A* search algorithm to find

the shortest path from q to the nearest object in D, we apply

the proof for the optimality of A* search given by Dechter

and Pearl [4]. Specifically, they proved that if the heuristic

function h() is consistent, then A* search using h() always

visits a subset of nodes visited by another admissible algorithm

which use the same heuristic h().
Since we proved in Lemma 1 that the heuristic function

used by SWH-kNN is consistent, we can conclude that SWH-

kNN is optimistic with respect to all other admissible search

algorithms using the same heuristic to search for the NN.

Now, as we treat the problem of finding the 2-nd NN in D
as one of finding the first NN in (D\{p1}) (where p1 denotes

the first NN in D) and finding subsequent NNs in incremental

steps, the same principle is also applicable to the optimality of

finding the k NNs. The same principle can also be extended

to the IDSJ query.

Note that our algorithms are only optimal with respect to

admissible algorithms which use the same heuristic function.

That is, one may achieve a lower graph access cost by (i)

trading off admissibility for speed, i.e., allowing the search to

miss the best solution and to return an approximate solution

only; (ii) improving on the accuracy of the heuristic function

h(n,D).

B. Comparison with LBC and INE

In this subsection, we compare our proposed algorithm

SWH with LBC and INE. As discussed in the introduction,

LBC makes use of multiple priority queues, where each

priority queue handles a shortest path computation from q to

a kNN candidate object p from a set of possible k NNs in a

dataset D. Specifically, in each priority queue, the search order

of nodes n is determined by the distance key calculated as

(DIST(q,n) + ||n− p||). To maintain a uniform search order

across different priority queues, each insertion and deletion

operation is repeated in each priority queue. As a result, each

priority queue contains the same set of nodes but are organized

differently according to its associated kNN candidate p.

The overall search order is determined by comparing the

minimum distance keys of these priority queues and select the

entry with the overall minimum. Essentially, at each expan-

sion, we explore the node nmin with the minimum distance

MIN{MIN{DIST(q,n) + ||n− p|| : n ∈ Nr} : p ∈ D}, (2)

where Nr denotes the set of unexplored nodes and D denotes

the dataset in which we want to find the next NN.

Let us now show how SWH achieves the same search order

without the need for multiple priority queues. For a graph



traversal, SWH maintains a single priority queue in which

nodes n are organized according to the sum (DIST(q,n) +
MIN{||n − p|| : p ∈ D}). At each expansion, we therefore

explore the node nmin with the minimum distance

MIN{DIST(q,n) + MIN{||n− p|| : p ∈ D} : n ∈ Nr}, (3)

As we can see, the two expressions (2 and 3) are equivalent.

Since both algorithms LBC and SWH share the same starting

condition (i.e., the query point q), we can conclude that they

both share the same search order.

Since LBC and SWH share the same search order, the

difference in their performances has to be determined by the

cost to maintain their search order. At each time a node n

is visited, LBC has to perform a deletion operation of n

and insertion operations of nodes na adjacent to n for each

of the priority queues. SWH, on the other hand, maintains

only one priority queue. Therefore, the same deletion and

insertion operations are conducted once each. However, for

each insertion of an adjacent node na, the computation of

the heuristic value h(na,D) requires consideration of multiple

objects in D. Algorithm 1 shows that we can exploit the spatial

locality of reference and compute h(na,D) by considering

only a small subset of objects around the query point q.

Experimental results show that this cost is much cheaper than

maintenance of multiple priority queues.

We now compare INE with SWH. We can consider INE as

a heuristic search algorithm where the heuristic function h()
only returns a lower bound of 0. Since SWH always produce

a tighter lower bound, we can conclude that SWH accesses a

smaller number of nodes. The difference in the performances

of the two algorithms depends on whether the search space

reduction from using a heuristic function (Algorithm 1) out-

weighs its computational cost. To gain a better insight into

the performance diferences between the three algorithms, we

present experimental studies in Section VI.

V. EXTENSION TO SUPPORT LANDMARKS

So far we have considered the Euclidean heuristic function

and presented an efficient method to compute a heuristic

estimate h(n,D) for the distance from a node n to the nearest

data object in D. This enables us to perform a kNN search

using a single heuristic search operation instead of using

multiple instances of A* search like the existing methods.

In this section, we show that the same concept is still appli-

cable when heuristic estimates are calculated using precom-

puted distances, which is commonly used to derive a heuristic

function when the Euclidean heuristic function is inaccurate

or does not apply. A simple way to make use of precom-

puted distance to derive distance estimates is to precompute

the distances to/from every node in the network from/to a

small subset L of nodes called landmarks. A heuristic search

algorithm can make use of these precomputed distances to

compute a distance lower bound and upper bound for any

two nodes x and y using triangle inequality. For example, for

any node l in L, the distance DIST(x,y) is guaranteed to be

smaller than or equal to (DIST(x, l)+DIST(l,y)). Following

the same principle, a lower bound of DIST(x,y) can be given

as (DIST(x, l)− DIST(y, l)) or (DIST(l,y)− DIST(l,x)). In

other words, it is guaranteed that DIST(x,y) has to be greater

than the maximum of the two lower bounds, i.e.,

MAX{DIST(x, l)− DIST(y, l), DIST(l,y)− DIST(l,x)},

which is denoted as LMDIST(x,y, l) for conciseness. The

overall lower bound across different landmarks in L is given as

MAX{LMDIST(x,y, l) : l ∈ L}. Since landmarks distances

are easy to compute/store and are applicable to non-spatial

networks, we use the landmark estimator to demonstrate how

our proposed method can make use of precomputed distances.

In Algorithm 1, we show that we can avoid considering all

data objects in D every time we need to compute a heuristic

value h(n,D) for a node n by incrementally retrieving data

objects with respect to the query point q and applying triangle

inequality to prune objects that are faraway from n. We apply

the same principle to prune data objects that will result with

large landmark estimates in order to generate a small list C
of NN candidates. Note that if we do not assume a spatial

data structure like the R-Tree, then we need to compute the

landmark estimate for every object in D with respect to q, so

that we can prune data objects p using the distance from q to

n and the distance lower bound from q to p. This distance

computation for the entire dataset happens only once in the

beginning and the cost is amortized as the search progresses.

We are now ready to compute an overall estimate (lower

bound) from a given list C of NN candidates. Recall that the

lower bound of the distance from q to the nearest object in

C is the minimum lower bound across different objects in C.

When the same principle is applied to landmark distances, the

lower bound of the distance from q to the nearest object in C
is given as MIN{MAX{LMDIST(q,p, l) : l ∈ L} : p ∈ C}.

Since we are interested in computing the overall minimum

instead of the lower bound for each object p, we can avoid

considering all (|C| × |L|) possible object-landmark combi-

nations. Specifically, we can apply the alpha-beta pruning

principle to speed up the calculation. For example, let Dmin

denote the minimum distance computed so far as we traverse

the list C. Assume that we are considering object p and find

that LMDIST(q,p, l) is greater than Dmin. This rules out p

as the object that can provide the overall minimum and hence

p can be skipped, since further consideration of p cannot yield

any distance smaller than Dmin.

Furthermore, we can accommodate the pruning process

by carefully organizing the order in which data objects

and landmarks are considered. Ideally, we would prefer

to consider objects p in C that yields small values of

MAX{LMDIST(q,p, l) : l ∈ L} first to improve the pruning

power of Dmin. Similarly, when considering each object

p we also want to process landmarks l that yields large

values of LMDIST(q,p, l) first to increase the chance of

finding one that is greater than Dmin. As future work, we

plan to investigate different ordering methods to speed up

computations of heuristic values.

We can see that our search method which considers data

objects around the query point as a single target enables us to

optimize the computation of lower bounds across different data



objects instead of considering all (|C| × |L|) possible object-

landmark combinations. Since LBC utilizes multiple instances

of A* search, applying landmark distances to the algorithm

can be done by directly replacing the Euclidean heuristic

function with the landmark-based heuristic. Our experimental

studies show that this optimization tremendously reduces the

number of object-landmark combinations in comparison to

LBC, where computations of heuristic values are conducted

on the object-by-object basis.

VI. EXPERIMENTAL STUDIES

This section contains results of a performance comparison

of our proposed algorithms and their competitors. Experiments

were conducted on an Intel i7-2720QM @ 2.20 GHz with

8GB RAM. All algorithms were implemented in Java with

the javac compiler version 1.6.0 22 and OpenJDK Runtime

Environment (IcedTea6 1.10.2).

TABLE III

EXPERIMENTAL PARAMETERS.

Parameter Default Min Max

Number k of resultant objects 5 5 25
Node-to-object ratio r 1,000 100 10,000

Number m of IDSJ query points 10 10 50

Table IV shows road networks of five cities extracted from

openstreetmap.org. Note that we use only city road

networks instead of state or country road networks, because

the kNN query is typically used to search for nearby objects

within a city. As shown in Table III, we studied the effects of

the following parameters on INE-kNN, LBC-kNN and SWH-

kNN as well as on their IDSJ counterparts. The descriptions

of these parameters are as follows.

• Number k of resultant objects: The value of k indicates

the number of resultant objects requested by a user. The

k value ranged from 5 to 25 objects. This range of k

values is typical of the number of results reported by GPS

navigation devices when searching for nearby objects.

• Object sparseness s: The value of s indicates the number

of nodes divided by the number of data objects. For exam-

ple, the default s value of 1000 indicates that there is one

object of interest (e.g., a bank or a gas station) for every

1000 network nodes. We choose a high object sparsity for

our default to reflect the fact that when a user searches

for a particular type of nearby locations the number of

objects that match the user’s interest is likely to be low.

For example, there are 185 USPS locations around the

DC metropolitan area, 8 DMV locations in Washington,

DC; while the network contains 414,712 nodes.

• Number m of IDSJ query points: The value of m indicates

the number of query points for an IDSJ query. The use of

an m value between 10 and 50 locations conforms with

the warehouses-and-customers scenario discussed in Sec-

tion III. This parameter is not relevant for kNN queries.

We used the following measures in the experiments.

(i) Graph traversal cost: the number of nodes visited by

an algorithm. (ii) Execution time: the time to complete a

query. (iii) Priority queue cost (PQ Ops): the number of

priority queue operations. (iv) Priority queue size (PQ Size):

the maximum number of entries in the priority queue(s). Each

result is reported as the average of measurements from 200

independent queries.

A. Overview of the Experimental Results

In this section, we show how the three algorithms perform

in different road networks, which have different sizes. The

characteristics of these networks are given in Table IV. We

use the default values of the parameters given in Table III.

The results are displayed in Table V. The first and sec-

ond columns correspond to the network and the algorithm,

respectively. The next 4 columns contain kNN results in 4

cost measures. The remaining 4 columns contain IDSJ results.

Each cell shows an absolute result and a result relative to the

corresponding SWH result. As can be seen from the table,

changes in the network size have no effect on the graph

traversal cost of any algorithm. This is because we fix the

sparseness s of objects, which means that a given algorithm

has to traverse a similar number of network nodes in order to

find k NNs even though the network size changes. Other cost

measures are also unaffected due to the same reason.

For ease of comparison, Figure 5 shows a histogram of

relative results for the Washington, DC network in the four

cost measures. The figure shows that, for the kNN query, we

obtain similar relative costs (2.18 to 2.51) of INE with respect

to SWH across for all cost measures. This shows that the

reduction in the graph traversal cost of SWH is reflected in

the other three cost measures. Let us now consider LBC, which

has the same graph traversal cost as SWH, but has a greater

number of priority queue operations than SWH (5.57 times).

This is because each visited node is involved in multiple

instances of A* search. In terms of the priority queue size,

LBC’s multiple priority queues have a total size that is 7.45

times greater than SWH, which requires only a single priority

queue to traverse the network. This means that SWH requires

a smaller memory space to operate than LBC.

Finally, SWH is the best performer in terms of the execution

time. Averaging the results from the five road networks, SWH

is 2.5 times faster than INE and 3.5 times faster than LBC

for kNN. For IDSJ, SWH is 5 times faster than INE and 4

times faster than LBC. These results conform with the fact

that SWH dominates INE and LBC in terms of the traversal

cost, number of priority queue operations and priority queue

size for both query types.

We have shown that SWH consistently outperforms INE

and LBC for the default values of the parameters shown in

Table III. In the next subsections, we study the effects of the

parameters described in Table III using the Washington, DC

road network for kNN queries and IDSJ queries. Notice that

in order to be able to visualize the ranges of differences for the

parameters for the different algorithms (e.g., small for some,

and large for others), we had to use log scales which, at times,

result in a reduction in the ability to discern the differences.

For this reason, we often resort to also provide graphs in terms

of relative performance. The overall trends, though, are clear

from looking at the figures.



TABLE IV

CHARACTERISTICS OF THE FIVE ROAD NETWORKS.

Road Network Number of Nodes Number of Edges Latitudes Longitudes Total length Motorway One-way

Austin, TX 174,851 191,354 30.03◦N - 30.53◦N 97.49◦W - 97.94◦W 10,785 km 769 km 2,181 km
Phoenix, AZ 352,803 398,362 33.22◦N - 33.74◦N 111.56◦W - 112.38◦W 26,643 km 1,316 km 2,108 km

Washington, DC 414,712 442,287 38.70◦N - 39.12◦N 76.75◦W - 77.26◦W 12,370 km 874 km 2,145 km
Chicago, IL 807,387 918,574 41.39◦N - 42.35◦N 87.02◦W - 88.56◦W 58,497 km 2,686 km 5,071 km

Los Angeles, CA 1,267,729 1,401,641 33.34◦N - 34.42◦N 117.08◦W - 118.70◦W 80,520 km 5,403 km 7,859 km

TABLE V

EXPERIMENTAL RESULTS ON DIFFERENT ROAD NETWORKS WHERE EACH CELL CONTAINS AN ABSOLUTE RESULT AND A RESULT RELATIVE TO SWH IN

THE FORMAT “absolute (relative-to-SWH)”. NOTE THAT WE OBTAIN SIMILAR RESULTS ACROSS THE FIVE NETWORKS WITH DIFFERENT SIZES.

Method
kNN Query IDSJ Query

Traversal Time PQ Ops PQ Size Traversal Time PQ Ops PQ Size

Austin, TX INE 5,173 (2.65) 5.88 (2.63) 10,428 (2.34) 258 (2.24) 5,145 (5.06) 6.13 (4.57) 11,357 (4.83) 594 (5.08)
(174,851 nodes) LBC 1,951 (1.00) 8.29 (3.70) 27,300 (6.13) 966 (8.33) 1,017 (1.00) 4.60 (3.43) 14,325 (6.10) 1,081 (9.23)

SWH 1,951 (1.00) 2.24 (1.00) 4,453 (1.00) 116 (1.00) 1,017 (1.00) 1.34 (1.00) 2,349 (1.00) 117 (1.00)

Phoenix, AZ INE 4,906 (2.57) 5.99 (2.56) 11,240 (2.45) 342 (2.31) 4,998 (6.35) 6.19 (5.90) 11,447 (6.11) 819 (6.88)
(352,803 nodes) LBC 1,905 (1.00) 8.12 (3.47) 22,203 (4.84) 962 (6.50) 786 (1.00) 3.89 (3.70) 11,489 (6.13) 1,102 (9.26)

SWH 1,905 (1.00) 2.34 (1.00) 4,589 (1.00) 148 (1.00) 786 (1.00) 1.05 (1.00) 1,873 (1.00) 119 (1.00)

Washington, DC INE 5,111 (2.51) 5.70 (2.18) 10,848 (2.42) 224 (2.36) 5,116 (6.36) 6.10 (5.64) 11,096 (6.02) 559 (5.64)
(414,712 nodes) LBC 2,031 (1.00) 7.39 (3.18) 24,947 (5.57) 708 (7.45) 804 (1.00) 4.41 (4.08) 13,915 (7.55) 1,064 (10.74)

SWH 2,031 (1.00) 2.32 (1.00) 4,480 (1.00) 95 (1.00) 804 (1.00) 1.08 (1.00) 1,843 (1.00) 99 (1.00)

Chicago, IL INE 5,042 (2.75) 5.80 (2.78) 11,541 (2.61) 313 (2.32) 5,252 (6.74) 6.08 (6.02) 12,134 (6.50) 793 (6.50)
(807,387 nodes) LBC 1,833 (1.00) 6.99 (3.34) 20,279 (4.58) 793 (5.87) 779 (1.00) 4.30 (3.99) 12,691 (6.80) 1,144 (9.38)

SWH 1,833 (1.00) 2.09 (1.00) 4,426 (1.00) 135 (1.00) 779 (1.00) 1.01 (1.00) 1,867 (1.00) 122 (1.00)

Los Angeles, CA INE 5,202 (2.42) 6.04 (2.35) 11,577 (2.33) 302 (2.25) 5,147 (4.87) 5.83 (4.45) 11,545 (6.18) 704 (5.77)
(1,267,729 nodes) LBC 2,154 (1.00) 10.38 (4.03) 37,274 (7.49) 1057 (7.89) 1,056 (1.00) 5.37 (4.10) 17,156 (9.19) 1,193 (9.78)

SWH 2,154 (1.00) 2.57 (1.00) 4,977 (1.00) 134 (1.00) 1,056 (1.00) 1.31 (1.00) 2,446 (1.00) 115 (1.00)
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Fig. 5. Relative results for the Washington, DC network.

B. Number k of results

In this experiment, we varied the value of k between 5 and

25. Since LBC and SWH yield the same graph traversal cost,

we focus on the in-memory processing cost components and

report results for the total response time, number of priority

queue operations, and priority queue size in Figures 6 and 7.

In terms of the execution time, Figure 6(a) shows that SWH

consistently performs better than INE and LBC. Figure 6(b),

SWH has the smallest priority queue cost in comparison to

INE and LBC. The figure also shows that as k increases,

the difference between the priority queue cost of INE and

those of LBC and SWH becomes smaller. This is because as

k increases, we have more objects around the query point

making searching for k NNs less directional. Figure 6(c),

shows that the results in terms of the priority queue size also

conforms with the previous two cost measures. Figure 7 shows

that the effect of k on the IDSJ algorithms is similar to that

on the kNN algorithms.

Although SWH has a similar performance as INE for

larger numbers k of NNs, in an incremental query processing

environment, a user issues a query and results are displayed

as they become available. The fact that SWH can produce

the first 5 NNs 2.5 times faster than INE means that the

user spends less time waiting for the initial results, while

subsequent NNs can be incrementally reported as the user

considers those currently available. This property can be useful

for slower devices such as mobile phones and GPS navigators.

It is also important to note that in a location-based appli-

cation, a user searching for nearby objects usually specifies

which type of objects they wish to find as search criteria. These

search criteria can then be used to pre-prune candidate objects

when retrieving Euclidean NNs (Line 9 of Algorithm 1). As a

result, we can filter out irrelevant objects in advance thereby

discounting the need to find a large number k of results for

post-pruning.

C. Object sparseness s

We used the maximum and minimum object sparseness s

values of 100 and 10,000 nodes per object, respectively. For

kNN queries, Figure 8(a) shows that INE is significantly faster

than LBC for low values of s. In all cases, SWH is much

faster than LBC. Figure 8(b) shows that as s increases, the

priority queue costs of the three algorithms also increase. This

is because a greater sparseness s means that we have more

network nodes to consider in order to retrieve same number k

of nearest objects. Figure 9 shows that the effects of s on the

IDSJ algorithms are the same as that of the kNN algorithms.
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Fig. 6. The effect of k on kNN algorithms.
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Fig. 9. The effect of s on IDSJ algorithms.

D. Number m of query points (IDSJ only)

Figure 10(a) shows that the execution time of LBC is

significantly greater than that of SWH. Figure 10(b) shows that

as the number m of query points increases, the priority queue

costs of LBC and SWH decrease. This effect can be explained

by the following two reasons. First, a greater number m of

query points increases the tendency that a data object would

be found close to the query point. Second, LBC and SWH

consider only query points that may return IDSJ results (as

illustrated in Figure 4). This cost-saving benefit is accentuated

as the number m of query points increases. Specifically, the

Euclidean distance is used as a lower bound to prune those

query points that are far away from any data object. This cost-

saving benefit is absent in INE since the network expansion

is done in an uninformed manner.
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Fig. 10. The effect m on IDSJ algorithms.

E. Preliminary Experiments on the Landmark Variants

In this section (Figures 11(a) and 11(b)), we report prelim-

inary results of our experiments on the landmark variants of

SWH and LBC (described in Section V). Note that INE is

omitted from this experiment since it is not a heuristic search

algorithm. To compare the performance of SWH and LBC, we

count the number of landmark distance calculations incurred

by each algorithm during an entire search process.
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Fig. 11. The effect k on NN algorithms (with landmarks).



Figures 11(a) and 11(b) shows experimental results on the

Washington, DC road network with 16 and 32 landmarks

respectively. The shows that SWH achieves a much lower

distance calculation cost than LBC for both cases. Please

note that the two figures yield similar results. Although a

greater number of landmarks prunes the search space and

hence needs less time, it requires more distance calculations

which counteracts the reduction in search per landmark.

VII. CONCLUDING REMARKS

We proposed an incremental kNN algorithm called the

single-wavefront heuristic search (SWH) kNN algorithm,

which we showed to be optimal in terms of the graph traversal

cost, i.e., the number of visited nodes. We compared SWH

with the current state-of-the-art algorithm LBC, which is also

optimal in terms of the graph traversal cost. Although both

methods yield the same graph traversal cost, in a setting where

the execution time is dominated by the in-memory processing

cost (e.g., in an MMDBS [6], [17]), SWH has a much lower

execution time than LBC. Note that LBC is outperformed by

an uninformed-search algorithm INE in such a setting.

Experimental results show that SWH possesses both (i) the

single-wavefront benefit found in INE, and (ii) the heuristic

search benefit found in LBC. Specifically, as the value of

k increases, the performance of LBC which makes use of

multiple priority queues drastically degrades in comparison

to both INE and SWH which use only one priority queue to

traverse the network. In a multiple query point setting (IDSJ),

on the other hand, LBC and SWH make use of the heuristic

function, which allows them to consider only query points that

have data objects nearby, while INE has to consider all query

points indiscriminately. In terms of the object sparseness s, we

can see that both INE and SWH significantly outperform LBC

when the object sparseness is low (i.e., high object density).

As s increases, the performance of INE with respect to SWH

degrades drastically, while LBC becomes more competitive

althugh still not as good as either of INE or SWH.

Preliminary results on the landmark variant of SWH demon-

strate a potential of using our method to process kNN queries

in a non-spatial graph. Future work is to improve the efficiency

of our search process when using landmarks.
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