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Abstract—Techniques are reviewed for representing multi-
dimensional spatial data geometrically and textually based on
sorting it. These ideas are also used for metric data where only
a distance function indicating the degree of similarity between
all object pairs in the dataset are available.
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I. OVERVIEW

Spatial data has traditionally been specified geometrically
and explicitly. The ability to access it quickly depends on
its representation and is important in game programming,
computer graphics, visualization, solid modeling, computer
vision and geographic information systems (GIS), not to
mention mapping applications on smartphones which are
largely the direct result of web-based location services such
as Microsoft Bing Maps, Google Maps and Earth, as well as
Apple Maps. In fact, in 2016 O’Beirne observed that Google
Maps had 1 billion unique users every month which means
that 1 out of 8 people in the world uses it each month1.
The efficient representation and manipulation of such data

means that it must be stored in a database and be capable
of quick retrieval which involves search. Invariably, the
efficiency of searching is dependent on the extent to which
the underlying data is sorted. The conventional definition of
the term sort is that it is a verb meaning:

1) To put in a certain place or rank according to kind,
class, or nature

2) To arrange according to characteristics.

The sorting is encapsulated by the data structures that are
used to represent the spatial data thereby making it more
accessible. In fact, the term access structure or index is often
used as an alternative to the term data structure in order to
emphasize the importance of the connection to sorting.
Notwithstanding the above definition, sorting usually im-

plies the existence of an ordering. Orderings are fine for one-
dimensional data. For example, in the case of individuals we
can sort them by their weight, and given an individual such
as Bill, we can use the ordering to find the person closest in
weight to Bill. Similarly, we can use the same ordering to
also find the person closest in weight to John. Unfortunately,
in two dimensions and higher, such a solution does not

1https://www.justinobeirne.com/cartography-comparison

always work. In particular, suppose we sort all cities in the
US by their distance from Chicago. This is fine for finding
the closest city to Chicago, say with population greater than
200,000. However, we cannot use the same ordering to find
the closest city to New York with population greater than
200,000, without resorting the cities.
The problem is that for two dimensions and higher, the

notion of an ordering does not exist unless a dominance
relation holds (e.g., [41])—that is, a point a = {ai|1 ≤
i ≤ d} is said to dominate a point b = {bi|1 ≤ i ≤ d}
if ai ≤ bi, 1 ≤ i ≤ d. Thus the only way to ensure the
existence of an ordering is to linearize the data as can be
done with a space-filling curve (e.g., [54]). The problem
with such an approach is that the ordering is explicit. Instead,
what is needed is an implicit ordering so that we do not need
to resort the data when, for example in our sample query, the
reference point for the query changes (e.g., from Chicago to
New York). Such an ordering is a natural byproduct when
we sort objects by spatial occupancy.
Spatial data has traditionally been overwhelmingly spec-

ified geometrically (e.g., in two dimensions, as latitude-
longitude pairs of numbers). Unfortunately, users of many
new applications find the geometric specification to be cum-
bersome as they don’t think of a location in this way, don’t
know it in this way, and are not accustomed to communicate
it to others in this way. Instead, they are used to specify a
location textually. The advantage of a textual specification
is that it is easy to communicate especially on smartphone
devices where a keyboard is always present. The text also
acts like a polymorphic type in the sense that one size fits
all. In particular, depending on the application which makes
use of this information, a term such as “Washington” can
be interpreted both as a point or as an area, and the user
need not be concerned with this question. The drawback
of the textual specification of location data is that it is
ambiguous. In particular, there are many possible locations
named ”Washington” and they must be resolved (toponym
resolution) [32], [34], [35], [43], [55]. Moreover, in some
cases we are not even sure that the term “Washington”
denotes a location as it could be a reference to the name of
a person (toponym recognition) [31]. This can be the case
when processing documents such as newspapers [33], [57],
[60], [64], tweets [13], [14], [24], [72], [80], [81], blogs,
etc. Being able to handle textual specifications enables the
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development of map query interfaces to a wide range of
spatially-referenced data thereby enabling the development
of new applications such as disease tracking [28], [29], brand
remediation [1], crime tracking [78], and the Wikipedia [42].
Another growing trend is to specify locations implicitly

via, for example, an embedded GPS which provides the
user’s physical location. Most common is a combination of
an implicit and explicit specification to yield an approximate
specification. In particular, a map, coupled with the ability to
pan and to vary the zoom level at which the world is viewed,
provides an inherent granularity to the location specification
process which facilitates this approximate specification.
In fact, the act of pointing at a location (i.e., by the

appropriate positioning of a pointing device with the aid
of panning) and making the interpretation of the precision
of this positioning specification dependent on the zoom
level is equivalent to using spatial synonyms, which are
the hallmarks of approximate specifications. For example,
a user posing a query seeking a concert in Manhattan would
be satisfied by a concert in Harlem by proximity, New
York City by containment, and Brooklyn by being a sibling
borough of New York. Thus users no longer need to know
the exact name or position of the sought location. Thus
the touch interface is an implicit access structure to the
data accomplished with direct manipulation. Of course, an
index must be built whose access is achieved by software
that translates the screen coordinates using nearest neighbor
techniques as in a “pick” operation in computer graphics.
This tutorial provides a brief overview of hierarchical

spatial data structures and related algorithms that make use
of them. We describe hierarchical representations of points,
lines, collections of small rectangles, regions, surfaces, and
volumes. For region data, we point out the dimension-
reduction property of the region quadtree and octree, as well
as how to navigate between nodes in the same tree, thereby
leading to the popularity of these representations. We also
demonstrate how to use these representations for both raster
and vector data. In the case of nonregion data, we show how
these data structures can be used to find nearest neighbors
which is critical when using machine learning techniques. In
particular, we show how to do it in an incremental fashion
so that the number of objects need not be known in advance
(e.g., [16], [17], [18]). These methods are not restricted to
a setting where proximity is measured in terms of “as‘the
crow flies,”but instead can also be used to support proximity
in a graph such as a road network (e.g., [66], [67], [68], [69],
[70], [71]). They can also be used with different metrics such
as a Hausdorff distance [39].
These spatial data structures have been used in

VASCO [9] which consists of a set of spatial index JAVATM

applets at http://www.cs.umd.edu/∼hjs/quadtree/ that enable
web users to experiment with a number of hierarchical
representations (e.g., [51], [52], [54]) for different spatial
data types, and see animations of how they support a number
of search queries (e.g., nearest neighbor and range queries).

They have also been used in the SAND Spatial Browser [10],
[12], [56] and the QUILT system [59], [74] as well as in
peer-to-peer settings [77]).

II. METHODS BASED ON SPATIAL OCCUPANCY

There are two methods of representing spatial data. The
first uses an object hierarchy that initially aggregates objects
into groups based on their spatial proximity and then uses
proximity to further aggregate the groups thereby forming
a hierarchy. Queries are facilitated by also associating a
minimum bounding box with each object and group of
objects (e.g., the R-tree [15] and R∗-tree [8]) as this makes
it easy to test if a point can possibly lie within the area
spanned by the object or group of objects. A negative answer
means that no further processing is required for the object
or group. A positive answer means that further tests must
be performed. Thus the minimum bounding box serves to
avoid wasting work.
The drawback of the object hierarchy approach is that the

resulting hierarchy of bounding boxes leads to a non-disjoint
decomposition of the underlying space. This means that if a
search fails to find an object in one path starting at the root,
then it does not mean that the object will not be found in
another path starting at the root.
The second method is based on a recursive decomposition

of the underlying space into disjoint blocks so that a subset
of the objects are associated with each block. There are
several ways to proceed. The first is to simply redefine the
decomposition and aggregation associated with the object
hierarchy method so that the minimum bounding rectangles
are decomposed into disjoint rectangles, thereby also im-
plicitly partitioning the underlying objects that they bound.
In this case, the partition of the underlying space is heavily
dependent on the data and is said to be at arbitrary positions
(e.g., the k-d-B-tree [44] and R+-tree [73]).
The second way is to partition the underlying space at

fixed positions so that all resulting cells are of uniform size,
which is the case when using the uniform grid (e.g., [27]),
also the standard indexing method for maps. The drawback
of the uniform grid is the possibility of a large number
of empty or sparsely-filled cells when the objects are not
uniformly distributed. This is resolved by using a variable
resolution representation such as one of the quadtree variants
(e.g., [54]) where the subset of the objects that are associated
with the blocks are defined by placing an upper bound on
the number of objects that can be associated with each block
(termed a stopping condition for the recursive decomposition
process) and also often referred to as a bucket capacity. In
this case we can say that the objects are sorted into cells
which act like bins (i.e., buckets). The PR quadtree [40], [52]
and its bucket variants are examples of such a structure for
points, while the PM quadtree family [20], [36], [62] (see
also the related PMR quadtree [19], [38]) is an example of a
variable resolution representation for collections of straight
line segment objects such as those found in polygonal
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subdivisions as well as higher dimensions (e.g., faces of
three-dimensional objects as in the PM octree [7]). An
alternative, as exemplified by the PK-tree [53], [79], makes
use of a lower bound on the number of objects that can
be associated with each block (termed an instantiation or
aggregation threshold).
Quadtrees [23], [26] and their three-dimensional octree

analogs [22], [37]. have also been used widely to represent
and operate on region data in two and three dimensions,
respectively In particular, algorithms have been devised for
converting between them and many representations includ-
ing rasters [48], medial axis transforms [47], [49], terrain
models [75], as well as operations such as connected compo-
nent labeling [63], distance [45], and image dilation [2], [3].
Many of these operations are implemented by traversing the
actual quadtrees/octrees and performing the appropriate op-
eration on each node and its neighbors [30], [46], [50], [61].
Quadtrees and their variants are distinguished from pyramids
(e.g., [76]) which are multiresolution data structures useful
in spatial data mining [4].
The drawback of the disjoint method is that when objects

have extent (e.g., line segments, rectangles, and any other
non-point objects), then an object may be associated with
more than one block. This means that queries such as those
that seek the length of all objects in a particular spatial
region must remove duplicate objects before reporting the
total length. Nevertheless, methods have been developed that
avoid these duplicates by using the geometry of the type of
the data that is being represented (e.g., [5], [6], [11]). Note
that the result of constraining the positions of the partitions
means that there is a limit on the possible sizes of the result-
ing cells (e.g., a power of 2 in the case of a quadtree variant).
This means that the underlying representation is good for
operations between two different data sets (e.g., a spatial
join [21], [25]) as their representations are in registration
(i.e., we can correlate occupied and unoccupied space in
the two data sets, which is not easy when the positions
of the partitions are not constrained as happens in object
hierarchy methods even though the resulting decomposition
of the underlying space is disjoint).

III. REPRESENTATIONS FOR SIMILARITY SEARCHING

Methods analogous to those that we described have also
been used in cases where the only information that we
have available is a distance function that indicates the
degree of similarity (or dis-similarity) between all pairs of
the N objects. Usually the distance function d is required
to obey the triangle inequality, be non-negative, and be
symmetric, in which case it is known as a metric and also
referred to as a distance metric. Given a distance function,
we usually partition and index the objects with respect to
their distance from a few selected objects. There are two
basic partitioning schemes: ball partitioning and generalized
hyperplane partitioning [54]. In ball partitioning, the data
set is partitioned based on distances from one distinguished

object, into the subset that is inside and the subset that is
outside a ball around the object In generalized hyperplane
partitioning, two distinguished objects p1 and p2 are chosen
and the data set is partitioned into two sets based on which
of the two distinguished objects is the closest. Observe that
both schemes partition the underlying data set into spatial-
like zones. The difference is that the boundaries of the zones
are more well-defined for ball partitioning methods as they
can be expressed explicitly using a small number of objects
and a known distance value. In contrast, for generalized
hyperplane partitioning methods, the boundaries of the zones
are usually expressed implicitly in terms of the distinguished
objects, instead of explicitly, which may require quite a bit of
computation to determine. In fact, very often, the boundaries
cannot be expressed explicitly as, for example, in the case
of an arbitrary metric space (in contrast to a Euclidean
space) where we do not have a direct representation of the
‘generalized hyperplane’ that separates the two partitions.
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