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Abstract— The popularity of location-based services and the
need to do real-time processing on them has led to an interest in
performing queries on transportation networks, such as finding
shortest paths and finding nearest neighbors. The challenge
is that these operations involve the computation of distance
along a spatial network rather than “as the crow flies.” In
many applications an estimate of the distance is sufficient,
which can be achieved by use of an oracle. An approximate
distance oracle is proposed for spatial networks that exploits the
coherence between the spatial position of vertices and the network
distance between them. Using this observation, a distance oracle
is introduced that is able to obtain the ε-approximate network
distance between two vertices of the spatial network. The network
distance between every pair of vertices in the spatial network
is efficiently represented by adapting the well-separated pair
technique to spatial networks. Initially, use is made of an ε-
approximate distance oracle of size O( n

εd ) that is capable of
retrieving the approximate network distance in O(logn) time
using a B-tree. The retrieval time can be theoretically reduced to
O(1) time by proposing another ε-approximate distance oracle
of size O( n logn

εd ) that uses a hash table. Experimental results
indicate that the proposed technique is scalable and can be
applied to sufficiently large road networks. A 10%-approximate
oracle (ε = 0.1) on a large network yielded an average error of
0.9% with 90% of the answers making an error of 2% or less and
an average retrieval time of 68µ seconds. Finally, a strategy for
the integration of the distance oracle into any relational database
system as well as using it to perform a variety of spatial queries
such as region search, k-nearest neighbor search, and spatial joins
on spatial networks is discussed.

I. INTRODUCTION

The popularity of web-based mapping applications such as
Mapquest, Yahoo Maps, and the subsequent enhancements
available in Google Maps and Microsoft Live Search, as well
as the increasing pervasiveness of GPS-enabled devices such
as PDAs, have led to an expectation of real-time execution for
queries on transportation networks, such as computing shortest
paths and finding nearest objects from a set S (e.g., restaurants,
department stores, and gas stations). For example, suppose
that we found the shortest distance from gas station A to the
nearest restaurant B, which serves Italian food, and we wish
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to determine how much farther it is to go to another restaurant
C, which serves Chinese food.

The challenge is that these operations involve the compu-
tation of distance along a spatial network rather than “as the
crow flies.” This computation is usually the byproduct of the
use of shortest path algorithms to accumulate the node to node
distances. The requirement that these distances be computed in
real-time precludes the use of conventional graph-based algo-
rithms (e.g., the INE and IER methods [1] and improvements
on them [2], and hierarchical graph methods [3], [4]) which
usually incorporate Dijkstra’s shortest-path algorithm [5] in at
least some parts of the solution [6]. It is well-known that the
problem with Dijkstra’s algorithm is that although it reports
the shortest path from a starting vertex s to every other vertex
v in increasing order of distance from v, it must visit every
vertex that is closer to s via the shortest path from s than the
vertices associated with the desired objects in S. Thus it ends
up visiting a very large number of the vertices, even though
the shortest paths to the objects in S do not pass through them.

A drastic alternative to the use of Dijkstra’s algorithm is to
precompute and store the shortest paths between all possible
vertices in the spatial network. The drawback of this approach
is that, for n vertices, the amount of storage could be as high
as O(n3). The necessary storage can be reduced to O(n2)
by taking advantage of the fact that the shortest paths from
vertex u to all remaining vertices can be decomposed into
subsets based on the first edges on the shortest paths to them
from u [7], [8], [10]. This comes at the cost of a slower
process of retrieving the shortest path which makes use of
a sequence of point location operations (e.g., [9]). We have
shown that the storage necessary for these subsets can be
reduced substantially further to O(n1.5) [7], [8] by noting
the spatial coherence of the subsets and representing them
using a shortest-path quadtree, which is a variant of the region
quadtree, where the blocks are decomposed until all vertices
in the block are in the same subset. Note that the use of
the quadtree in that context is primarily to take advantage of
its dimension-reducing property [11] to decrease the storage
requirements instead of for speeding up operations such as ray
tracing [12], [13].

The above algorithms exploit the spatial coherence of the
destination vertices of the spatial network to reduce the storage
requirements of the collection of precomputed shortest paths
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from a specified source vertex. In this paper we continue our
work [7] by showing how to also take advantage of the spatial
coherence of the source vertices to further reduce the space
requirements. In particular, we observe that given a set of
source vertices A and a set of destination vertices B such
that A and B are sufficiently far away from each other, while
the vertices comprising them are close to one another, then
the shortest paths between them may share common vertices,
which in turn implies that the network distance between
any source vertex in A to any destination vertex in B will
more or less be the same. Figure 1 is an example of such
a configuration where all the 30,000 shortest paths between
vertices in A and in B have many vertices in common, while
the network distances between them can be approximated by
a single value.

Figure 1: The 30,000 shortest paths between all pairs of
vertices in sets A and B in the spatial network of Silver Spring,
MD are marked in a darker shade. These network distances
can be approximated by a single value as their shortest paths
have many vertices in common.

The techniques that we develop in this paper are based on
our inference that given our assumptions on the proximity
of the vertices that comprise A and those that comprise B,
and the lack of proximity between A and B, that the network
distance between the vertices in A to B will more or less
be similar and can be approximated by a single value. The
novelty of our approach is that in the case of the computation
of the distance between two vertices, we show how to correlate
the extent of this reduction of the space requirements with
the approximation error in the value of the distance that is
obtained. This is achieved via the introduction of a more
general construct, termed an approximate distance oracle for
spatial networks, that is capable of responding to network
distance queries between any two vertices of the spatial
network with a specified approximation ε—that is, given a
start vertex s and a destination vertex w in spatial network G,
the network distance Sε(s,w) produced by the oracle Sε is no
more or less than an ε fraction of the actual network distance
dG(s,w) between s and w in G.

The utility of the oracle, as can be inferred from Figure 1,
is that the network distance between all vertices of a pair of
collections of spatially coherent source vertices and spatially
coherent destination vertices can be approximated by a single
value. This is based on our observation that the distance
distortion (i.e., the ratio of the network distance to the spatial
distance between two vertices in a spatial network) decreases

as the separation between the vertices increases and our
demonstration that it has a reasonable bound. Assuming d-
dimensional data (usually d = 2), the latter, coupled with
the path coherence property, enable us to devise an O( n

εd )
size oracle represented using a B-tree that is capable of
retrieving the ε-approximate network distance in O(logn) with
a deterministic guarantee on the error. We also present a
theoretical analysis of an alternative oracle that can further
reduce the retrieval time further to O(1) with an increase in
space to O( n logn

εd ) using a hash table.

We achieve our results by showing how to efficiently
represent the network distance between the spatially coher-
ent collections of source vertices and the spatially coherent
collections of destination vertices. This is done by adapting
the notion of a well-separated decomposition of a point set,
originally proposed by Callahan and Kosaraju [14] and used
by others (e.g., [15], [16]) for a point set, to a spatial network.

It is important to note that one of the ways of evaluating
the significance of our work lies in determining the extent to
which we can improve on the storage costs that we obtained in
our earlier work [7] where we represent the spatially coherent
destination vertices by a shortest-path quadtree, which had a
factor of O(n0.5). Clearly, if we choose ε to be very small, then
our space requirements, which, although appearing to be linear
(i.e., O(n/εd)), will become sufficiently large to counteract any
advantage drawn from the use of this linear-size oracle. How-
ever, the execution time of the distance computation process is
also quite fast when using the linear-size oracle as the shortest-
path quadtree method [7] does not explicitly store the distances
between the vertices (instead, it stores distance intervals), and
thus whenever it wants to compute the distance between a pair
of vertices, it must compute the shortest path between them
(with a possible halt once the required approximation error
threshold is attained). This usually involves a large number of
refinement operations, which can be slow.

At this point, we mention a few related methods, but we first
present a few definitions. A spatial network can be abstracted
to form an equivalent graph representation G = (V,E), where
V is the set of vertices, E is the set of edges, n = |V |, and
m = |E|. Given e ∈ E, w(e) ≥ 0 denotes the distance along
that edge. In addition, for every v ∈ V , p(v) denotes the
spatial position of v with respect to S, a spatial domain, also
referred to as an embedding space (i.e., a reference coordinate
system). We define the network distance dG(u,v) to be the
distance along the shortest path between u and v in the spatial
network. Similarly, we define the spatial distance dS(u,v) to
be a function of the position of the vertices u and v on the
embedding plane. For example, in the case of a road network
the network distance between two vertices is the shortest
distance in miles, or the time taken to travel the road network,
while the spatial distance (e.g., ”crow flying” distance) is a
function of latitude/longitude positions of the vertices.

Furthermore, we assume that for some spatial networks
(e.g., the road networks), the network distance between any
two vertices is bounded from above and below by two con-

2



Proceedings of the 25th IEEE International Conference on Data Engineering (ICDE), pp. 652–663, Shanghai, China, April 2009

stants γL,γH (presumably large), such that

γL ≤
dG(u,v)
dS(u,v) ≤ γH ; γL,γH > 0.

The constants γL,γH are termed the minimum and maximum
distortions of G. Narasimhan and Smid [17] provide a sim-
ple technique for estimating the value of γH for Euclidean
networks which is easy to adapt to spatial networks. Our
experiments show γH to be large for road networks.

The technique that we propose is similar to the RNE
technique of Shahabi et al. [18] (and a recent improvement
by Kriegel et al. [19]) who apply a Lipschitz embedding [20]
to spatial networks. The RNE technique embeds the vertices
of the spatial network in a high-dimensional vector space,
such that vertices of the spatial network are now points in
a high-dimensional vector space. A simpler distance measure
(e.g., L∞ metric) between these high-dimensional vector space
points approximates the network distance between the corre-
sponding vertices in the spatial network. The RNE technique
uses O(n

√
n) storage, has a distortion of O(logn) and an

approximate network distance query takes O(
√

n) time. On
the other hand, our linear-size oracle can also be viewed as
an embedding technique with the difference that the vertices
are retained in their original embedding space (i.e., two-
dimensional for road networks), while having superior space
and execution times and a distortion that lies between (1− ε)
and (1 + ε). This bounded distortion, instead of being a
function of n, is what leads to the linear size of our oracle
in contrast to RNE’s O(n

√
n) storage requirements. Another

difference between our proposed method and that of Shahabi et
al. [18] and Kriegel et al. [19] is that our distance oracle
decouples the spatial network from the objects that lie on it.
Thus, once an approximate distance oracle of a spatial network
has been computed, it can be reused for any dataset lying on
the spatial network which is not the case for the other methods.

The concept of an approximate distance oracle has been pro-
posed for a variety of graph networks. Thorup and Zwick [21]
show that it is possible to construct an approximate oracle of
size O(kn1+ 1

k ) for general graphs that can answer approximate
distance queries in O(1) time. The distortion of the approxi-
mate oracle of Thorup and Zwick lies between 1 and (2k−1),
where k≥ 1 is an integer. Gudmundsson et al. [16] construct an
approximate oracle of size O(n logn) for geometric t-spanner
graphs, such that the shortest path queries can be performed
in O(1) time with a distortion of (1+ε). Gao and Zhang [15]
propose an approximate oracle of size O(n logn) for unit-disk
graphs that can retrieve approximate network distance in O(1)
time, with a distortion of (1+ ε). Our work goes beyond the
work of Gudmundsson et al. [16] on geometric t-spanners and
Gao and Zhang [15] on unit-disk graphs by dealing with spatial
networks, while taking advantage of the spatial positions of the
vertices to provide efficient search structures, such as B-trees,
and hash tables, to the oracle.

The rest of this paper is organized as follows. Section II
reviews the well-separated pairs technique. Sections III–V de-
scribe oracles of unit, O(n), and O(n logn) sizes, respectively.

Section VI contains the results of experiments. Section VII dis-
cusses strategies to integrate the distance oracle into a database
system while concluding remarks are drawn in Section VIII.

II. WELL-SEPARATED PAIRS
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Figure 2: Example of a well-separated pair decomposition
(WSPD) of a one-dimensional point set containing 5 points.
The separation factors for the decompositions are (a) s = 1
and (b) s = 0.25.

Given a set of points A, the diameter of A is the maximum
possible distance between any two points belonging to A. Sim-
ilarly, given two sets of points A and B, the minimum distance
between A and B is the minimum possible distance between
a point in A and a point in B. Two sets of points A and B are
said to be well-separated if the minimum distance between
A and B is at least s · r, where s > 0 is a separation factor
and r is the larger diameter of the two sets. The pair (A,B)
is termed a well-separated pair (WSP). A well-separated pair
decomposition (WSPD) of a point set S, decomposes S into
pairs of subsets (A,B), such that ∀p,q ∈ S, p 6= q, there exists
exactly one WSP (A,B), such that p ∈ A,q ∈ B. The simplest
WSPD of a point set S of n points contains n · (n− 1) pairs
of singleton element subsets (p,q) ∀p,q ∈ S, p 6= q. The key
motivation for using WSPD is that for data of dimension d,
and a separation factor s, we can always construct a WSPD
containing O(nsd) pairs in O(n logn + nsd) time [22]. Thus,
the number of pairs is reduced to O(n) as s is usually a fairly
small constant independent of n.

As an example, consider the set of 5 one-dimensional
points a, b, c, d, and e at positions 1.5. 3.5, 9.5, 12.5, and
14.5, respectively. There are a number of possible WSPDs
for this dataset. Letting s = 1, one decomposition consists
of M = ({d,e},{c}), N = ({c,d,e},{a,b}), O = ({a},{b})
P = ({a,b},{c,d,e}), Q = ({b},{a}), R = ({c},{d,e}), T =
({e},{d}), and U = ({d},{e}). This decomposition can be
visualized by treating the individual pairs that make up the
WSPD as rectangles in a two-dimensional space, where the
axes correspond to the elements that make up the two sets
involved in the WSP. For example, Figure 2a illustrates the
WSPD described above for s = 1, while Figure 2b illustrates
another decomposition for the same points with s = 0.25.
Notice that from the figure, we can see that any vertical (or

3



Proceedings of the 25th IEEE International Conference on Data Engineering (ICDE), pp. 652–663, Shanghai, China, April 2009

horizontal) line L through one of the points, say p (e.g., b
in Figure 2a), will cut the disjoint rectangles through which it
passes so that the projection of their constituent points onto the
y (or x) axis covers all of the points in S with the exception of
p which means that, given any point p′, p′ 6= p, in the dataset,
there is exactly one WSP A,B in the WSPD such that p ∈ A
and p′ ∈ B. Also observe that just because the WSP (A,B)
is a member of a WSPD does not necessarily mean that the
symmetric pair (B,A) need be a member of the same WSPD.
For example, consider the WSPD in Figure 2b where the
symmetric pairs of Z = ({a,b,c},{d,e}), M = ({d,e},{c}),
and V = ({d,e},{a,b}) are not present.

III. ORACLES OF UNIT SIZE

We first assume that the ratio between the network and
spatial distances is bounded both from above and below, and
then show how these bounds can be attained. Note that the
following is true for any finite graph.

Assumption 1: Given s, t ∈ V , γL ≤ dG(s,t)
dS(s,t) ≤ γH , where

γL and γH > 0, albeit large.
Given a spatial network G(V,E), Lemma 3.1 provides a

simple method to determine the minimum γL distortion of G.
Lemma 3.1: The minimum γL distortion of a spatial net-

work G(V,E) containing m edges, satisfying assumption 1, is
given by: γL = mini=m

i=0 {
w(πi,πi+1)
dS(πi,πi+1)

}, where (πi,πi+1) is an edge
in G.

Proof: Let π be a shortest path of length p in G. Let πi
be the ith vertex in π, such that π1 is the source vertex and
πp+1 is the destination vertex. Suppose that the distortion γL =

γ =
dG(π1,πp+1)
dS(π1,πp+1)

of π is the minimum possible distortion among
the O(n2) shortest paths in G. Now, let γ∗i be the distortion of
the ith edge φi = (πi,πi+i) in π comprising the shortest path
π. We know that

dG(π1,πp+1) = γdS(π1,πp+1) =
p

∑
i=1

γ∗i dS(πi,πi+1) (1)

dS(π1,πp+1) =
p

∑
i=1

γ∗i
γ

dS(πi,πi+1). (2)

Note that in Equation 2, from our initial assumption, γ∗i
γ ≥ 1.

From the triangle inequality, we have that

dS(π1,πp+1) ≤
p

∑
i=1

dS(πi,πi+1) (3)

Combining Equations 2–3, we get

dS(π1,πp+1) =
p

∑
i=1

γ∗i
γ

dS(πi,πi+1)≤
p

∑
i=1

dS(πi,πi+1).

Hence, γ = γ∗1 = γ∗2 = γ∗3... = γ∗p. This means that γL =

min{ w(πi,πi+1)
dS(πi,πi+1)

}.
Narasimhan and Smid [17] provide an algorithm that is

based on WSPD of vertices for estimating an upper bound
on the maximum distortion of a spatial network. We omit the

description of the algorithm in this paper and provide a lemma
below which captures their result.

Lemma 3.2: Given a spatial network G, we can compute
an upper bound γ∗H of the maximum distortion γH of G in
O(n logn) time such that γ∗H ≤ (1+δ)γH and δ, 0 < δ < 3, is
the desired approximation [17].

We define a simple approximate distance oracle that uses
the values of γL and γH to provide an approximate network
distance between two vertices, though with a large approxi-
mation error.

Theorem 3.3: Given a spatial network G(V,E) with min-
imum γL and maximum γH distortions, Sε = {γL,γH} is an
ε-approximate distance oracle of unit size such that the ap-
proximate network distance between a source vertex u and a
destination vertex v is given by Sε(u,v) = γL+γH

2 dS(u,v), where
ε≤ γH−γL

γH+γL
, which can be computed in O(1) time.

The drawback of the above oracle is that the resulting error
is dependent on the nature of the input spatial network G as
the values of γL and γH may vary for different G. Moreover,
γH can be quite large. which means that the resulting error of
the distance oracle is also very large. Hence, Sε is unsuitable
for any meaningful query processing on spatial networks.

Distortion Spectrum: The behavior of the unit size oracle
in Theorem 3.3 can be improved by noting that the minimum
and the maximum distortion values of a spatial network
depend on the spatial distance between a given source s
and destination u. That is, usually for small spatial distances
on G, the distortion γ values are large. However, distortion
values quickly decrease as the spatial distance between the
source and the destination increases. We can capture this
relationship between the spatial distance and the distortion
using a distortion spectrum, which provides the minimum
and the maximum distortion values for different ranges of
values of the spatial distances on G. The idea in capturing
the distortion spectrum of a spatial network, instead of just
computing the minimum γL and maximum γH distortion values
of G, is that the resulting oracle while still taking O(1)
space and answering queries in O(1) time, will provide better
approximations, at least for large spatial distances on G.

Given a spatial network G, we first compute the spatial
distance between the closest dc and the farthest d f pairs
(diameter) of vertices in V . We then break up the distance
interval [dc,d f ] into l arbitrary sub-intervals. Now for each of
the l distance intervals, the minimum and maximum distortion
values are computed using an algorithm similar to that of
Narasimhan and Smid [17], except that we prune away WSPs
that do not lie inside the specified distance interval. The
distortion spectrum of G stores l spatial distance intervals
and their corresponding minimum and maximum distortion
values. Our experimental analysis does indeed confirm our
earlier hypothesis that large distortions occur at small spatial
distances. Moreover, the distortion values quickly reduce to
smaller values as the sources and destinations get farther. An
approximate distance oracle Sε defined using the distortion
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spectrum of G would provide better approximation, at least
when s and u are far apart in G.

IV. O(n) DISTANCE ORACLE

Given a source vertex s and a destination vertex w, an
ε-approximate distance oracle Sε provides an ε-approximate
network distance Sε(s,w) such that:

(1− ε) ·Sε(s,w)≤ dG(s,w) ≤ (1+ ε) ·Sε(s,w).

Sε takes advantage of the path coherence [7], [8] in spatial net-
works which states that shortest paths from proximal sources
to proximal destinations share common vertices. This can be
seen in Figure 1 and was discussed in Section I.

We define a distance oracle Sε of a spatial network as
follows: Sε = {(A,B,dAB

G )|A,B ⊂ V,dAB
G ∈ R

+}. That is, we
partition V into triples of the form (A,B,dAB

G ) such that A
is a set of source vertices, B is a set of destination vertices,
and dAB

G is a value that approximates the network distances
of all the shortest paths from elements of A to elements of
B. The partitioning of the vertices into appropriate subsets of
source and destination vertices is achieved by appealing to the
well-separated pair decomposition [22], [23], and conditions
under which it is satisfied for a spatial network are specified
in this section. The ε-approximate network distance between
a source u and a destination w is obtained by searching Sε,
which is indexed by a B-tree, for a triple (A,B,dAB

G ) such
that A contains u and B contains w, in which case dAB

G is the
ε-approximate network distance of dG(u,w). In this section,
we develop a distance oracle Sε for spatial networks that is
linear in the number of vertices in G, and that can produce
an ε-approximate network distance in O(logn) time using a
B-tree.

A. Preliminaries

Given a point set R in a d-dimensional space, we construct
a WSPD on R by first constructing a PR quadtree [6], [24] on
R. For simplicity, we assume that R is contained in a unit
[0,1]d d-dimensional hypercube. This hypercube forms the
root block of the PR quadtree T on R. The PR quadtree is
obtained by recursively decomposing the block into C = 2d

congruent children blocks. The process continues until each
block contains at most one point. Unfortunately, if two points
in R are close to one another, it may lead to a long path
of trivial blocks of which only one block would form an
internal node. Callahan and Kosaraju’s construction [14] did
not incur this problem because they used a fair-split tree which
is a data-dependent decomposition. Fischer and Har-Peled [25]
remedy this problem through the use of a variant of a path-
compressed quadtree which is obtained from the PR quadtree
by compressing such trivial paths into one compressed link.
The advantage of the path-compressed quadtree over the PR
quadtree is that its use yields a tree with a total of O(n) blocks.

When applying the WSPD on the set of vertices V on
a spatial network, our discussion does not need to resort
to the path-compressed quadtree while still using regular

decomposition because of certain assumptions that we make
about the distribution of the vertices in the embedding space.
In particular, letting ∆ be the ratio of the diameter of the set of
vertices V to the distance between the closest pair of vertices
in V and letting T be a PR quadtree on V , the height h of T is
O(log∆). We make use of a pointerless quadtree representation
known as the Morton representation [26], [27] which stores for
each block b a collection of bits corresponding to the path from
the root block of the PR quadtree to b. Consequently, given a
vertex v in V , the Morton representation of p(v), the spatial
position of v, would be O(log∆) bits long. Assuming, without
loss of generality, that the closest pair of vertices are one unit
apart and that the embedding space is two-dimensional, we
can pack as many as ∆2

2 vertices into our domain, where each
vertex is in a cell of the appropriate width. Therefore, ∆ is
at least O(

√
n). In our analysis we assume that not all of

the cells have vertices associated with them. In particular, we
allow for ∆ to be as large as O(n) which is not unreasonable
as demonstrated by our experiments with real road networks.
From a practical standpoint, with respect to our experience
with real road network data, we observe that the minimum
geodesic distance between any two vertices on a road network
is at least 1 meter. A PR quadtree on a sphere corresponding
to the Earth with radius 6378 km and depth 24 has a 1 meter
resolution at the equator. For such data, the size of the Morton
code for a vertex on the road network using geographical
coordinates is at most 48 bits in length.

The decomposition of R into WSPs is a realization on T ,
i.e., subsets Ai,Bi of R forming a WSP (Ai,Bi) in R⊗ R
are pairs of blocks in R. The algorithm decomposes R into
WSPs using T and s (i.e., the separation factor) as inputs.
The algorithm uses a list Q that is initialized to the pair
(T,T ) corresponding to the root of the quadtree on R. In
each iteration of the algorithm, a pair (A,B) of blocks in T is
retrieved from Q. If (A,B) is well-separated, it is reported as
a WSP. Otherwise, new pairs are obtained by replacing A and
B with their C = 2d children blocks, which are inserted into
Q. The algorithm terminates when Q is empty.

Suppose that a pair (u,v) is reported as a WSP by the
algorithm. This would indicate that (P(u),P(v)) is not well-
separated, where P(b) denotes the parent block of a block b.
Suppose further that the maximum possible diameter of P(u)
(or P(v)) is x. The total number of blocks that are not well-
separated from P(u) is bounded by the number of blocks of
diameter x that are contained within a hypersphere of diameter
(2s + 1)x centered at P(u), which contains a maximum of
O(sd) blocks. Since T has O(n) nodes, the algorithm creates
a maximum of O(sdn) WSPs. This result and proof sketch is
due to Callahan and Kosaraju [14] and we restate it below as
Lemma 4.1, which is referenced in the subsequent discussion.

Lemma 4.1: Given a point set S containing n d-dimensional
points, a fixed separation factor s≥ 2, the WSPD of S, S⊗S
has O(sdn) WSPs [14].
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B. Construction of the Oracle

We now describe an algorithm to construct the distance
oracle Sε of a spatial network G(V,E). The algorithm takes
V as input and produces pairs of sets (u,v), such that u,v ⊂
V,u∩v = /0. The pair (u,v) has the property that the maximum
and the minimum network distance between any source vertex
s in u and any destination vertex w in v can be approximated
by the exact network distance dG(pu, pv) between a source
pu vertex in u and a destination vertex pv in v, with both
pu and pv chosen at random. The source pu and destination
pv vertices are termed the representative points of u and v,
respectively. For simplicity, the discussion below assumes that
G is undirected. Note, however, that the results below are
equally applicable to directed spatial networks as well.

The construction of the oracle proceeds as follows. Al-
gorithm BUILDORACLE takes the spatial network G, a PR
quadtree T [6] on the spatial positions of the vertices in G,
and the desired approximation ε as inputs. The output of the
algorithm is a list L of Morton codes [26], such that a Morton
code m in L uniquely corresponds to a pair of blocks (u,v) in
T . Another equivalent interpretation of m is that it corresponds
to a pair of subsets (k, l) of vertices, such that k(l) is the
set of vertices contained in the subtree of T with u(v) as the
root block. Henceforth in this paper, we assume that the three
interpretations of m — block pair, Morton code, and pair of
subsets of V — are all equivalent.

The algorithm uses a list Q of block pairs in T . At the start
of the algorithm, Q is initialized with a block pair formed by
the root block of T , as shown in line 1. The output list L is
initially empty.

Each iteration of the algorithm retrieves the top block pair
(u,v) in Q. If u and v are the same (as is the case with the first
iteration of the algorithm, when the block pair (ROOTOF(T ),
ROOTOF(T )) is retrieved), then u and v are both split into
their C children blocks, and the resulting C2 block pairs are
inserted into Q as shown in lines 4–7.

If u and v point to different blocks in T , then the algorithm
examines if the block pair (u,v) is well-separated. We first
choose two representative points pu ∈ u, pv ∈ v at random
(line 10). We then estimate the network diameter (or an over-
approximation of the network diameter) of the blocks u and v,
which is defined as the farthest vertex from pu (or pv) in u (or
v) using a network distance measure (line 12). Estimating the
diameter r can be done in a number of ways and is described
in more details in Section IV-C. If the ratio of the network
distance dG(pu, pv) to the diameter r is greater than or equal
to s = 2

ε , the block pair is well-separated and the block pair
(u,v) is added to the output list L (lines 13–14). We later
show in Section IV-E that if u,v are well-separated using a
separation factor s = 2

ε , then dG(pu, pv) is an ε-approximation
of the network distance between any source vertex in u and
destination vertex in v.

If the block pair (u,v) is not well-separated, then u (v) is
split into its C children blocks if u (v) is not a leaf block, else

it is not split. The resulting block pairs are inserted into Q as
shown in lines 16–26.

Algorithm 1
Procedure BUILDORACLE[G, T , ε]
Input: G ← spatial network G(V,E)
Input: T ← PR quadtree on the spatial positions of V
Input: ε ← desired approximation; ε > 0
Output: L ← set of Morton codes; initially empty
(∗ s ← 2

ε ; separation factor ∗)
(∗ Q ← list of pairs of blocks in T ; initially empty ∗)
1. INSERT(Q, ROOTOF(T ), ROOTOF(T ))
2. while (ISNOTEMPTY(Q)) do
3. (u,v) ← TOP(Q)
4. if (u = v) then
5. (∗ reject the pair if u (v) is a LEAF block ∗)
6. split u,v each into C children blocks
7. insert C2 children block pairs of u,v into Q
8. else
9. (∗ Choose representative points ∗)
10. pu ← CHOOSEREP(u); pv ← CHOOSEREP(v)
11. (∗ Estimate diameter of u and v ∗)
12. r ← MAX(DIAMETER(u), DIAMETER(v))
13. if ( dG(pu,pv)

r ≥ s) then
14. INSERT(L, MORTONCODE(u,v), dG(pu, pv))
15. else
16. if ISNOTLEAF(u) then
17. bu ← C children blocks of u
18. else
19. bu ← u
20. end-if
21. if ISNOTLEAF(v) then
22. bv ← C children blocks of v
23. else
24. bv ← v
25. end-if
26. INSERT all possible pairs in bu×bv in Q
27. end-if
28. end-if
29. end-while
30. return L

It is not difficult to see that Algorithm 1 is a WSPD of
the set of vertices in G into a set of block pairs L. Hence,
given a vertex pair a,b, the properties of a WSPD guaranty
that there exists exactly one pair (u,v,dG(pv, pu)) in L, such
that u contains a and v contains b.

C. Estimating Network Diameter

Given a vertex pu and a set of vertices u⊂V , the network
diameter r of u is the farthest vertex from pu in u using a
network distance measure. One simple strategy to computing
the network diameter of u is to obtain the network distance
from pu to every vertex in u and then to take the maximum
value. However, this can be expensive to compute. Our strategy
is to compute an over-approximation r of the network diameter
of u that is easier to compute than the exact network diameter
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of u. However, this strategy has the unfortunate consequence
that as r is an over-approximation of the network diameter of
u, Algorithm 1 would have to split the block pairs even further
in order to make them well-separated. Consequently, there is
a trade-off between the time spent on computing the network
diameter of a block and the total storage space needed for the
oracle. Below, we discuss several strategies to compute the
network diameter of a set of vertices.

1) Given a block pair (u,v), we first obtain the network
distance dG(pu, pv) between the representative points
pu ∈ u and pv ∈ v. We then apply an early terminating
variant of Dijkstra’s algorithm from pu (pv) that takes
advantage of the incremental nature of Dijkstra’s algo-
rithm. That is, Dijkstra’s algorithm with pu (pv) as a
starting vertex visits vertices in G in an increasing order
of their network distance from pu (pv). The algorithm
terminates when it encounters a vertex that is farther than
dG(pu,pv)

s from pu (pv). We now check to see if all the
vertices in u (v) were visited by the Dijkstra algorithm.
If yes, then u and v are well-separated.

2) If r′ is the diameter of the geometric bounding box of
u, the network diameter of u can be over-approximated
by γHr′, which can be computed using Theorem 3.3, or
using the distortion spectrum of the spatial network.

3) Use the approach of Goldberg and Harrelson [28] which
first selects a set of vertices, termed landmarks, at ran-
dom. The network distance from each of the landmark
vertices to all the vertices in G is precomputed. Once
precomputed, the diameter of u(v) can be upper bounded
using the triangle inequality and the network distance to
the nearest landmark.

D. Querying the Oracle

The output of Algorithm 1 is a list L of Morton codes. For
each of the Morton codes in L, we associate the exact network
distance between the representative points. Moreover, given a
source and a destination vertex, an access structure (e.g., a B-
tree or a hash table) aids efficient searching on L for a block
pair containing the source and the destination vertices.

Given a source vertex u and a destination vertex w, the
oracle obtains the ε-approximate network distance by first
computing the Morton code corresponding to the spatial
positions of u and w. Using the access structure on L, we are
able to obtain the ε-approximate network distance of u and
w, which is the network distance between the representative
points of the block pair (A,B) in L, such that A contains u and
B contains w.

E. Analysis

This section provides bounds on the size of the distance
oracle of G by appealing to the equivalence between the
decomposition of a spatial network in Algorithm 1 and the
WSPD of a point set. We now show how to extend the notion
of a WSPD in terms of a spatial distance to one in terms of
a network distance. This is captured by Lemma 4.2 below.

Lemma 4.2: Given an s-WSPD of the vertices V of a spatial
network G(V,E) based on a spatial distance also yields a s′-
WSPD of V using a network distance with s′ = s · γL

γH
.

Proof: Given an s-WSP, (A,B) in the decomposition of
V⊗V using the spatial distance measure, the minimum spatial
distance between A and B is at least s · r, where r is the larger
of the diameters of A and B.

Consider two vertices u,v in A (or B). We have dG(u,v)≤
γH · dS(u,v) ≤ γH · r as dS(u,v) ≤ r by virtue of r being the
diameter of A or B. r′, the maximum value of dG(u,v), is the
diameter of A (and B) using a network distance measure and
we have that r′≤ γH ·r. Therefore, the spatial distance diameter
of A (or B) is scaled by at most a factor of γH to obtain the
network distance diameter r′.

Considering a vertex pair (a,b), such that a ∈ A,b ∈ B, we
have from the WSP condition and Assumption 1 that:

s · r ≤ dS(a,b)≤ dG(a,b)

γL
(4)

Replacing r with r′
γH

in (4), we obtain s · r′
γH
≤ dS(a,b) ≤

dG(a,b)
γL

. The above relationship between the minimum and
maximum bounds on dS(a,b) can be rewritten as r′ · s · γL

γH
≤

dG(a,b). Now, letting s′ = s · γL
γH

, leads to the desired result
s′ · r′ ≤ dG(a,b), which is equivalent to saying that A and B
are well-separated using the network distance measure with a
separation factor of s′.

We now show that a WSPD of the vertices of a spatial
network is a realization of an approximate distance oracle.

Lemma 4.3: Let (A,B) be a WSP in the s-WSPD of G
using a network distance measure, such that u∗,v∗ are the
representative points of A and B, respectively. The network
distance dG(u∗,v∗) between the representative points is an
ε = 2

s approximation of the network distance dG(u,v) between
any pair of vertices (u,v), such that u ∈ A and v ∈ B.

Proof: Given a pair of vertices (u,v), such that u∈ A,v∈
B, we know from the triangle inequality that

dG(u∗,v∗)−dG(u,u∗)−dG(v∗,v)≤ dG(u,v)
dG(u,u∗)+dG(u∗,v∗)+dG(v∗,v)≥ dG(u,v)

Without loss of generality, we assume that dG(v∗,v) ≥
dG(u,u∗). Substituting above, we get

dG(u∗,v∗)−2dG(v∗,v)≤ dG(u,v)
dG(u∗,v∗)+2dG(v∗,v)≥ dG(u,v)

dG(u∗,v∗)(1− 2dG(v∗,v)
dG(u∗,v∗) )≤ dG(u,v)

dG(u∗,v∗)(1+
2dG(v∗,v)
dG(u∗,v∗) )≥ dG(u,v)

In line 13 of Algorithm 1, we ensure that the condition
dG(u∗,v∗)
dG(v∗,v) ≥ s is satisfied for all vertices in B. Substituting it

above,

(1− 2
s )dG(u∗,v∗)≤ dG(u,v)≤ (1+

2
s )dG(u∗,v∗)

7
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Substituting, ε = 2
s , we get

(1− ε)dG(u∗,v∗)≤ dG(u,v)≤ (1+ ε)dG(u∗,v∗)

At this point, having established that ε = 2
s , we now obtain

a bound on the size of the distance oracle.
Lemma 4.4: For a given value of ε = 2

s , the size of the
oracle produced by Algorithm 1 is no worse than O(( γH

εγL
)dn).

Proof: Let (A,B) be a WSP, such that u∗,v∗ are the
representative points of A and B, respectively. We assume that
A (B) is contained in a bounding hypersphere of diameter r.
The network diameter of A and B is bounded by

γLr ≤ DIAMETER(A)≤ γHr
γLr ≤ DIAMETER(B)≤ γHr

As (A,B) is a WSP, dG(u∗,v∗) can be similarly bounded by

dG(u∗,v∗)≤ γHrs.

The effective separation factor s′ of the WSPD is sγH
γL

. Hence,
the worse case storage requirement of the oracle is O(( γH

εγL
)dn).

This leads us to the final result of this section:
Theorem 4.5: Given a spatial network G(V,E), we can

construct an oracle of size O( n
εd ) to retrieve the ε-approximate

network distance between any vertex pair in O(logn) time.
The real utility of the above theorem is to establish the

linear size of our distance oracle. Note that the constants
of proportionality estimated using an empirical analysis were
found to lie, in most cases, between 1.5 and 3 which is much
smaller than the worse case bound of ( γH

γL
)d established in

Lemma 4.4.

V. O(n logn) DISTANCE ORACLE

We now describe an oracle of size O( n logn
εd ) that can produce

ε-approximate network distances in O(1) time using a hash
table. We first introduce an alternative WSPD of a point set R
into pairs of the form (p,B), where p is a point in R and B is
a subset of R. Such a pair is termed a one-to-many WSP (OM-
WSP) and the resulting decomposition of R into OM-WSPs is
termed an one-to-many WSPD (OM-WSPD) of R.

Lemma 5.1: Given a point set R containing n points and a
separation factor s > 2, a WSPD of R can be decomposed into
O(sdnh) OM-WSPs of the form ({a},B), where a∈ R, B⊂ R,
and h is the height of the PR quadtree on R.

Proof: Let T be a PR quadtree of height h on the
spatial positions of R. Suppose that a block i in T containing
si points is paired up with ai other blocks in T during the
construction of the WSPD of R. As a result, siai OM-WSPs
are created. The total number of OM-WSPs generated by O(n)

nodes in T is given by ∑O(n)
i=1 aisi, which is O(sd)∑O(n)

i=1 si, as
O(sd) upper-bounds ai. In a PR quadtree of height h, we
know that ∑O(n)

i=1 si = O(nh). Substituting the above result in

O(sd)∑O(n)
i=1 si, we obtain that the total number of OM-WSPs

created by the algorithm is O(sdnh).
Recall from Section IV-A that the height h of a PR quadtree

T on the position of vertices on a spatial network is given by
h = O(log∆), where ∆ is the the ratio of the diameter of the
set of vertices V to the distance between the closest pair of
vertices in V . Furthermore, in Section IV-A, we assumed that
the value of ∆ cannot be more than O(n) which means that
h = O(logn). Substituting, h = O(logn) and s = 2

ε , we get that
the WSPD of a spatial network containing O( n

εd ) WSPs can
be further decomposed in to O( n logn

εd ) OM-WSPs.
We now show that given a source vertex s and a destination

vertex w, the OM-WSP containing the pair can be found in
O(1) using the properties of a WSPD. Given a OM-WSPD of
a spatial network, for each vertex u ∈ V , let Pu be the set of
pairs of the form {u,B} in the decomposition. Furthermore,
we construct distance classes D j using the OM-WSPs in Pu,
such that D j contains all the pairs (u,B) in Pu satisfying the
condition (1− ρ) j ≤ dS(u,R(B)) ≤ (1 + ρ) j, where R(B) is
the representative point of B and ρ > 0. The following lemma
shows that given a source s and a destination w, we can find
the OM-WSP (s,B) containing s and w ∈ B in O(1) time, as
the distance class D j containing (s,B) only contains c other
OM-WSPs, where c only depends on ρ, ε, γL, γH , and d and
not on the number of vertices n on a spatial network. We omit
the proof of the lemma for the sake of conciseness but the
interested reader is referred to [22].

Lemma 5.2: Given a vertex pair s,w ∈ V , the number of
OM-WSPs of the form {s,B} in the canonical realization,
such that dS(s,B)≤ dS(s,w) and dS(s,R(B))∈D j is a constant
depending only on ρ, ε, γL, γH , and d.

This leads us to the main result of this section:
Theorem 5.3: Given a spatial network G(V,E), we can con-

struct an oracle of size O( n logn
εd ) to retrieve the ε-approximate

network distance between any vertex pair in O(1) time.
Proof: We define a hash H data structure as follows.

The WSPs in the O(sdn) distance oracle in Theorem 4.5 are
first decomposed into O(sdn logn) OM-WSPs. Next, for every
vertex u ∈ V , we aggregate OM-WSPs of the form {u,Bi}
and add Bi to a set Bu. For a suitably defined value of ρ, we
partition the elements Bi comprising Bu based on the minimum
a and maximum b spatial distance between u and Bi into
different distance classes D j. Note that the spatial distance
interval [a,b] of Bi can span more than one (but bounded
by a small constant) distance classes in D j in which case Bi
is added to all the intersecting distance classes. Lemma 5.2
provides that after all the elements in Bu have been assigned to
different distance classes, the number of elements contained in
each distance class is independent of n. Finally, all the vertices
in V along with their distance classes are stored on disk and
the resulting representation is the hash data structure H. Now,
given a source u and destination v, we first compute the spatial
distance dS(u,v) which determines which distance class D′j of
u contains the OM-WSP containing {u,v}. We then examine
all the elements in D′j until we find an OM-WSP {u,B} such
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that B contains v. The approximate network distance value
associated with {u,B} approximates dG(u,v). Note that the
total work performed in retrieving {u,B} only depends on ρ,
ε, γL, γH and d, but not on n.

VI. EXPERIMENTAL RESULTS

In this section we perform an experimental evaluation of
the oracles of size O(1) and O(n) described in this paper.
We did not evaluate the O(n logn)-size and O(1) execution
time oracles as they were presented primarily as a theoretical
exercise to show the interplay between optimal execution time
and space requirements, although, of course, there is really no
justification for its use. The experiments were carried out on
a Linux (2.4.2 kernel) quad 2.4 GHz Xeon server with one
gigabyte of RAM. We implemented our algorithms using GNU
C++. A number of publicly available road network datasets
were used in the evaluation. These were obtained from the
US Tiger Census [29] and the National Atlas [30] websites. In
particular, we used a dataset containing all the major roads in
the USA (i.e., more than 380,000 vertices and 400,000 edges).
Sample random rectangular regions were drawn from the
dataset and the road network segments contained completely
within them were extracted to serve as inputs to the evaluation.
By taking the samples at random we were able to account
for variations of road networks such as rural versus urban,
and spatial network configurations that would lead to different
sizes of the oracle.
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Figure 3: Maximum distortion γH of different road networks.

Figure 3 shows the maximum distortion γH of spatial
networks obtained by applying the algorithm of Narasimhan
and Smid [17], which is captured by Lemma 3.2, to spatial
networks of varying sizes. The value of γL for all the input
spatial networks was one. Note that this need not always be
the case. For example, if the edge weights are in terms of
the time taken to travel the edge, and spatial distance is in
miles, then the value of γL would correspond to distortion of
the edge in the spatial network with the lowest speed limit.
From Figure 3, we see that the value of γH for road networks
can be very large and ranges between 10 and 1000. An O(1)-
size oracle, described in Theorem 3.3, that uses γL and γH
to provide approximate network distances cannot provide a
reasonable answer for query processing as the resulting error
ε = γH−γL

γH+γL
≈ 1(100%) is very large.

Next, we computed the distortion spectrum of a large road
network dataset corresponding to the important roads in the

 1
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Figure 4: Distortion spectrum of the eastern seaboard road
network dataset containing 91,113 vertices.
eastern seaboard states of USA, consisting of 91,113 vertices
and 114,176 edges, shown in Figure 4. As we can see, the
maximum distortion for small spatial distances (less than 2
miles) can be very large. However, as the spatial distance
between the source and destination increases (and is greater
than 50 miles), the maximum distortion quickly reduces to a
low value. Note that an approximate distance oracle of size
O(1) that uses the distortion spectrum of a spatial network
may be suitable when the spatial distance between a given
source vertex and destination vertex is large.
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Figure 5: Size of the oracle in terms of the number of Morton
codes, normalized by n/εd .

We now examine the characteristics of the O(n)-size oracle
that has deterministic guarantees on the quality of the approx-
imate answers it provides. We built the oracles by applying
Algorithm 1 to the same road networks of different sizes used
to obtain Figure 3. Figure 5 shows the effect of the size of
the road networks, in terms of the number of vertices n, on
the size of the resultant distance oracle, which is measured in
terms of the number of Morton codes normalized by n/εd. We
chose s = 8 and d = 2 for this set of evaluations. It is easy
to see that the size of the oracle does indeed follow c ·n/εd ,
where c is estimated empirically to lie between 1 and 6 and in
most cases lies between 1.5 and 3 for the road networks used
in our experiments. This study shows the applicability of our
technique to large road networks as the size of the oracle is
linear in n and that the constants involved are small, typically
between 1.5 and 3. The large value of γH shown in Figure 3
seems to have little effect on the size of the oracle.

Next, we built O(n)-size oracles on the Washington, DC
dataset containing 12,304 vertices for varying values of ε
ranging between 0.50 and 0.0078, i.e., s = 4 to 256, which
is shown in Figure 6a. In Figure 6b we recorded the size of
the oracles for the eastern seaboard dataset containing 91,113
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Figure 6: The size of the oracle in terms of number of Morton
codes, normalized by n/εd applied to a) Washington, DC b)
eastern seaboard datasets.
vertices for values of ε varying between 0.50 and 0.0625, i.e., s
= 4 to 32. Again, we recorded the size of the resulting distance
oracle in terms of the number of Morton codes, normalized
by n/εd. We can see that the constants of proportionality are
small values that vary between 1 and 10.
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Figure 7: The maximum, average, and the standard deviation
errors for 100,000 network distance queries on the various
oracles in Figure 6 on a) Washington, DC, and b) eastern
seaboard datasets.

For each of the distance oracles computed in Figure 6a–
b, we made 100,000 ε-approximate distance queries between
a vertex pair chosen at random. We computed the actual
network distance between the pairs, and recorded the max-
imum, average, and the standard deviation of the error due
to the approximation. The resultant error for the oracles is
shown in Figure 7. We can see that while the maximum
error is within the prescribed bounds, the average and the
standard deviation of the error are much lower than the actual
value of ε. For example, for the distance oracles on the
Washington, DC dataset shown in Figure 7a, the average error,
standard deviation and the maximum error (in percentage)
of the answers provided by the ε = 0.1 (10% error) oracle
are 0.5%, 2.7%, and 9.0%, respectively. In the case of the
eastern seaboard dataset, shown in Figure 7b for ε = 0.1,
the corresponding average error, standard deviation and the
maximum error (in percentage) values are 0.9%, 1.8%, and
7.3%, respectively. These low average errors (i.e., less than 1
%) mean that, in practice, the quality of the answers provided
by this oracle is very close to the exact network distance.

Figure 8a tabulates the resulting errors in the answers
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Figure 8: a) Percentages of queries along with their associated
errors and b) maximum error of 90% of the queries, for the
oracles in Figure 6b.

provided by the distance oracles as a percentage of the total
number of queries for the 100,000 queries on the eastern
seaboard dataset of Figure 6b. For example, Figure 8a shows
that for ε = 0.25 (i.e., 25% approximation), 12.9% of the
queries are provided with more or less exact answers (i.e., less
than 0.5% error). Moreover, 90% of the queries have errors of
less than 5% as can be seen from Figure 8b, which tabulates
the maximum error of 90% of the queries. We note from our
data (not shown here) that while the maximum possible error
of the oracle is 25%, less than 1% of the answers to queries
have errors of more than 10%.
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Figure 9: Average time to retrieve an ε-approximate network
distance for values of ε between a) 0.1 and 0.5 for Washington,
DC, and b) 0.08 and 0.5 for the eastern seaboard dataset.

Finally, we computed the average time taken to retrieve an
ε-approximate network distance for some of the oracles in
Figure 6a. Figures 9a–b show that the average time taken to
compute an ε-approximate network distance is on the order of
tens of microseconds with maximums of 100 microseconds for
the Washington, DC dataset in Figure 9a, and 86 microseconds
for the eastern seaboard dataset in Figure 9b. Note that
this time can be further reduced by using a more efficient
implementation of the B-tree structure.

VII. DATABASE INTEGRATION

A major data engineering problem in databases is that
spatial networks cannot be easily represented using a relational
model and, furthermore, operations on it cannot be easily cast
in terms of relational operators namely selection, projection,
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and joins, etc. In this paper, we introduced an approximate
distance oracle which can be represented as a relation in a
database system indexed by a B-tree. We now show how
operations on spatial networks can be cast as relational op-
erations on the distance oracles. In particular, we demonstrate
how to cast region search, k nearest neighbor queries, and
spatial join queries in terms of relational operations on the
oracle relation using the SQL language. Such a setup is very
efficient as, now, all operations can be performed in the
context of a database system. Our work opens up the use of a
commercial database for building interactive applications (e.g.,
GIS applications [31]) on spatial networks.

In the rest of the Section, we restrict our discussion to
a spatial network that is embedded in a two-dimensional
space (e.g., road networks) where the position of an object
is represented by its location in terms of, say, latitude and
longitude. We first define a new object type called Morton
which consists of a code and a level. Given a two-dimensional
point object u, the code is the bit-interleaved representation [6]
of the x and y-dimensional components of u of length 2 · level
bits. For all practical purposes, we will restrict the length of the
Morton code to 58 bits (29 each for x and y-dimensions) and
assign 6 bits to encode the level (i.e., depth) of the Morton
code which yields a resolution of roughly 7.46 cms at the
equator of earth. The level and the code of the Morton blocks
are packed into a single 64 bit-integer thereby taking advantage
of the bit-level parallelism in 64 bit machines. Let Z : R

2→N

be the transformation function from a two-dimensional object
to a Morton object which is packed into a 64-bit integer. Such
a transformation can be performed in O(1) time entirely using
bit operations. We also define a comparator function for the
Morton objects which given two Morton objects, orders them
based on their relative positions in a Morton space filling curve
in O(1) time. In particular, two Morton objects u,v are said
to be equal if u contains v, or v contains u. In addition, we
define another transformation function Z4 : (R2,R2)→ N that
transforms a pair of two-dimensional points into a 128 bit
Morton block. In this case, 30 bits are assigned to each of the
four dimensions with 8 bits assigned to storing the levels.

An ε-approximate distance oracle O is given by the relation
(ZAB

4 ,dε) where O.ZAB
4 is a four-dimensional Morton object

such that A is a set of sources, B is a set of destinations, and
dε is the ε-approximate network distance that approximates the
network distance between any location in A to any location in
B. The attribute O.ZAB

4 is indexed using a B-tree. Note that we
only store the four-dimensional Morton object corresponding
to A, B in the relation O and there is no need to store the
graph representation, or for that matter even the positions of
the vertices and edges of a spatial network. This leads us to
an SQL query to obtain the ε-approximate network distance
by applying a “selection” operator on the oracle relation.
Network Distance Query: Given source p and destination q,
find the ε-approximate network distance between them.
SELECT O.dε FROM O WHERE O.ZAB

4 = Z4(p,q)

An alternate representation of the oracle O is a relation

of schema (ZA,ZB,dε) which is similar to the one described
above except that instead of storing A and B as a single four-
dimensional Morton object, we store them as two separate
two-dimensional Morton blocks, namely ZA and ZB. We now
construct a two-dimensional B-tree on (ZA,ZB) which is a B-
tree is on ZA whose leaves are B-trees on ZB for the tuples
that have the same value of ZA.

We now discuss how to perform spatial queries on a spatial
network using the ε-approximate network distance oracle.
Assume the following setup. O is an ε-approximate distance
oracle of a predefined approximation. Let R be a relation of
restaurants of schema (pos, type), where pos is the position
of the restaurants given by a two-dimensional point object,
and type is the type of the cuisine served by the restaurant.
Furthermore, we assume that there is a B-tree on Z(R.pos).
We also define another relation Q of coffee shops given by the
same schema as R such that Z(Q.pos) is also indexed using a
B-tree. We present the following queries on a spatial network.
Region Search: Given a query location q, find all restaurants
in R that are within 10 miles of q.
SELECT R.pos, O.dε FROM O, R WHERE

O.ZA = Z(q) and O.ZB = Z(R.pos) and O.dε ≤ 10 miles

k-Nearest Neighbor Search: Given a query location q, find
the k closest restaurants in R to q that serve Italian cuisine.
SELECT R.pos, O.dε FROM O, R WHERE

O.ZA = Z(q) and O.ZB = Z(R.pos) and R.type = “Italian”
ORDER BY O.dε LIMIT k

Distance Join Operator: Given that R,S are relations of
restaurants and coffee shops, respectively. Find the k closest
pairs of restaurants and coffee shops such that closest is
defined in terms of the network distance [32].
SELECT R.pos, Q.pos, O.dε FROM O, R, Q

WHERE O.ZA = Z(R.pos) and O.ZB = Z(Q.pos)
ORDER BY O.dε LIMIT k

Each of the above operations are simple relational opera-
tions on the oracle relation that uses a B-tree. A commercial
database can optimize complicated query processing scenarios
involving B-trees. For example, the ε-approximate network
distance query and the region search are simple selection
operators that uses the B-tree index. The rest of the queries
involve simple join operations aided by a B-tree which can
be efficiently performed by a query optimizer. In short, query
processing on spatial networks can be easily integrated into a
traditional database system. Finally, our strategy relies on the
precomputation of a distance oracle for a pre-specified value of
ε. For example, a distance oracle for the road network of USA
can be precomputed and commercially distributed. This will
then enable query processing on any spatial dataset residing
on the road network of USA using a commercial database.
Moreover, the wide use of such an oracle will justify the large
cost of the precomputation.

VIII. CONCLUDING REMARKS

In this paper, we presented three approximate oracles for
spatial networks that can answer approximate network distance
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queries. Our first oracle took unit space and could answer
approximate network distance queries in O(1) time. The
drawback of this oracle was that the resulting error was
large and dependent on the characteristics of the given spatial
network. This led us to propose an oracle of size O(n) that
took advantage of the path coherence in spatial networks
by decomposing the spatial network into sets of coherent
source vertices and coherent destination vertices such that the
network distances between them are represented by a single
value that approximated them. Such an oracle could answer
queries in O(logn) time using a B-tree. We also presented
a theoretical analysis of a third variant that took O(n logn)
space, but which could retrieve approximate network distances
in O(1) time with the aid of a hash table. Experiments were
performed on the O(n)-size oracle that confirmed its linear
storage requirements, while enabling us to answer approximate
network distance queries on the order of tens of microseconds.
Our experiments also demonstrated that the average and the
standard deviation of the approximation error were low and,
in fact, on the average, the error was much lower than the
theoretical maximum ε value. For example, in the case of
an oracle with ε = 0.1 (10% approximation) on the eastern
seaboard dataset, our average error was just around 0.9%
with 90% of the queries making less than 2% errors which
is negligible. This means that our oracle can be used as an
efficient construct to provide near exact network distances in
real time. Finally, we showed how to integrate our distance
oracle with a relational database system and demonstrated
its use in complicated query processing scenarios involving
datasets residing on a spatial network.
Acknowledgments: We have benefited greatly from discussions
with Houman Alborzi.
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