
Towards a Deeper Understanding of Training Quantized Neural Networks

Hao Li * 1 Soham De * 1 Zheng Xu 1 Christoph Studer 2 Hanan Samet 1 Tom Goldstein 1

Abstract

Training neural networks with coarsely quan-
tized weights is a key step towards learning on
embedded platforms that have limited comput-
ing resources, memory capacity, and power con-
sumption. Numerous recent publications have
studied methods for training quantized networks,
but these studies have been purely experimental.
In this work, we investigate the theory of train-
ing quantized neural networks by analyzing the
convergence properties of some commonly used
methods. Our main result shows that training al-
gorithms that exploit high-precision representa-
tions have an important annealing property that
purely quantized training methods lack, which
explains many of the observed empirical differ-
ences between these types of algorithms.

1. Introduction
Neural networks (NNs) are an integral part of numerous
state-of-the-art computer vision and natural language pro-
cessing tasks. Because of their high memory require-
ments and computational complexity, networks are usually
trained using powerful hardware. There is an increasing in-
terest in training and deploying neural networks directly on
battery-powered devices, such as cell phones or other plat-
forms. Such low-power embedded systems are, however,
memory and power limited, and in some cases lack basic
support for floating-point arithmetic.

To make neural nets practical on embedded systems,
many researchers have focused on training nets with
coarsely quantized weights. For example, weights may
be constrained to integer/binary values, or represented
using low-precision (8 bits or less) fixed-point num-

*Equal contribution. Author ordering determined by coin flip.
1Department of Computer Science, University of Maryland, Col-
lege Park, MD 2Department of Electrical and Computer Engineer-
ing, Cornell University, Ithaca, NY. Correspondence to: Hao Li
<haoli@cs.umd.edu>, Soham De <sohamde@cs.umd.edu>.

Presented at the ICML 2017 Workshop on Principled Approaches
to Deep Learning, Sydney, Australia, 2017. Copyright 2017 by
the author(s).

bers. Quantized nets offer the potential of superior
memory and computation efficiency, while achieving per-
formance competitive with state-of-the-art high-precision
nets. Quantized weights can dramatically reduce memory
size and access bandwidth, increase power efficiency, ex-
ploit hardware-friendly bitwise operations, and accelerate
inference throughput (Marchesi et al., 1993; Courbariaux
et al., 2016; Rastegari et al., 2016).

Handling low-precision weights is difficult and motivates
interest in new training methods. When learning rates are
small, stochastic gradient methods make small updates to
the weights. Binarization/discretization of weights after
each training iteration “rounds off” these small updates
and causes training to stagnate (Courbariaux et al., 2016).
Thus, the naı̈ve approach of quantizing weights using
rounding yields poor results when weights are represented
using a small number of bits. Other approaches include
classical stochastic rounding methods (Gupta et al., 2015),
as well as schemes that combine full-precision floating-
point weights with discrete rounding procedures (Cour-
bariaux et al., 2015). While some of these schemes seem
to work in practice, results in this area are largely experi-
mental, and little work has been devoted to explaining the
excellent performance of some methods, the poor perfor-
mance of others, and the important differences in behavior
between these methods.

Contributions This paper studies quantized training
methods from a theoretical perspective, with the goal of
understanding the differences in behavior, and reasons for
success or failure, of various methods. In particular, we
show that recent powerful methods like BinaryConnect
(BC) (Courbariaux et al., 2015) are capable of concentrat-
ing on minimizers and solving discrete problems up to a
high level of accuracy. On the other hand, we show that
classical stochastic rounding (SR) methods (Gupta et al.,
2015) lack an important annealing property that is required
for non-convex optimization. This explains the large differ-
ences observed in empirical performance between classical
SR methods and the more powerful BC methods.

2. Related Work
The arithmetic operations of deep networks can be encoded
down to 8-bit fixed-point without significant deterioration

Towards a Deeper Understanding of Training Quantized Neural Networks

in inference performance (Gupta et al., 2015; Lin et al.,
2016a; Hwang & Sung, 2014; Lin et al., 2016b; Li et al.,
2016). The most extreme scenario of quantization is bi-
narization, in which only 1-bit (two states) is available
for weight representation (Kim & Smaragdis, 2015; Cour-
bariaux et al., 2015; 2016; Rastegari et al., 2016; Hubara
et al., 2016; Baldassi et al., 2015).

Previous work on obtaining a quantized neural network
(NN) can be divided into two categories: quantizing pre-
trained models with or without retraining (Hwang & Sung,
2014; Anwar et al., 2015; Lin et al., 2016a; Zhu et al.,
2017; Zhou et al., 2017), and training a quantized model
from scratch (Gupta et al., 2015; Courbariaux et al., 2015;
Rastegari et al., 2016; Courbariaux et al., 2016; Zhou et al.,
2016). We focus on approaches that belong to the second
category, as they can be used for both training and inference
under constrained resources.

For training quantized NNs from scratch, many authors
suggest maintaining a high-precision copy of the weights
while feeding quantized weights into backprop (Cour-
bariaux et al., 2015; Hubara et al., 2016; Rastegari et al.,
2016; Zhou et al., 2016), which results in good empirical
performance. There are limitations in using such meth-
ods on low-power devices, however, where floating-point
arithmetic is not available or not desirable. Another widely
used solution using only low-precision weights is stochas-
tic rounding (Höhfeld & Fahlman, 1992; Gupta et al.,
2015). Experiments show that networks using 16-bit fixed-
point representations with stochastic rounding can deliver
results nearly identical to 32-bit floating-point computa-
tions (Gupta et al., 2015), while lowering the precision
down to 3-bit fixed-point often results in a significant per-
formance degradation (Miyashita et al., 2016). Bayesian
learning has also been applied to train binary networks
(Soudry et al., 2014; Cheng et al., 2015). A more com-
prehensive review can be found in (Rastegari et al., 2016).

3. Training Quantized Neural Nets
We consider problems of the form:

min
w∈W

F (w) :=
1

m

m∑
i=1

fi(w), (1)

where the objective function decomposes into a sum over
many functions fi : Rd → R. Neural networks have objec-
tive functions of this form where each fi is a non-convex
loss function. When floating-point representations are
available, the standard method for training neural networks
is stochastic gradient descent (SGD), which on each itera-
tion selects a function f̃ randomly from {f1, f2, . . . , fm},
and then computes

SGD: wt+1 = wt − αt∇f̃(wt), (2)

for some learning rate αt. In this paper, we consider the
problem of training convolutional neural networks (CNNs).
In CNNs, each convolutional layer i accepts inputs xi and
generates the response corresponding to filter j with linear
transformation ai,j = wi,j ∗ xi + bj , where wi,j represent
the vector of weights of filter j at layer i, and ∗ denotes the
convolution operation. The neuron output is generated by
applying a non-linear activation function h(·) to the filter
response, i.e., xi+1 = h(ai), which is used as the input
to the next layer. Convolutions are expensive; low preci-
sion weights can be used to accelerate the convolutions by
replacing expensive multiplications with binary operations
or dedicated high-performance computer arithmetic.

To train neural networks using a low-precision representa-
tion of the weights, a quantization functionQ(·) is required
that converts a real-valued number w into a quantized ver-
sion ŵ = Q(w). We use the same notation for quantizing
vectors, where we assume Q acts on each dimension of
the vector. Different quantized optimization routines can
be defined by selecting different quantizers, and also by
selecting when quantization happens during optimization.
The common options are:

Deterministic Rounding (R) A basic uniform or de-
terministic quantization function converts a floating point
value to the closest quantized value as:

Qd(w) = sign(w) ·∆ ·
⌊
|w|
∆

+
1

2

⌋
, (3)

where ∆ denotes the quantization step or resolution, i.e.,
the smallest positive number that is representable. One
exception to this definition is when we consider binary
weights, where all weights are constrained to have two val-
ues w ∈ {−1, 1} and uniform rounding becomes Qd(w) =
sign(w).

The deterministic rounding SGD maintains quantized
weights with updates of the form:

Deterministic Rounding: wt+1
b = Qd

(
wtb − αt∇f̃(wtb)

)
,
(4)

where wb denotes the low-precision weights, which are
quantized using Qd immediately after applying the gradi-
ent descent update. If gradient updates are significantly
smaller than the quantization step, this method loses gra-
dient information and weights may never be modified from
their starting values.

Stochastic Rounding (SR) The quantization function for
stochastic rounding is defined as:

Qs(w) = ∆ ·

{
bw∆c+ 1 for p ≤ w

∆ − b
w
∆c,

bw∆c otherwise,
(5)

Towards a Deeper Understanding of Training Quantized Neural Networks

where p ∈ [0, 1] is produced by a uniform random number
generator. This operator is non-deterministic, and rounds
its argument up with probability w/∆−bw/∆c, and down
otherwise. This quantizer satisfies the important property:

E[Qs(w)] = w.

Similar to the deterministic rounding method, the SR op-
timization method also maintains quantized weights with
updates of the form:

Stochastic Rounding: wt+1
b = Qs

(
wtb − αt∇f̃(wtb)

)
. (6)

BinaryConnect (BC) The BinaryConnect algo-
rithm (Courbariaux et al., 2015) accumulates gradient
updates using a full-precision buffer wr, and quan-
tizes weights only just before gradient computations.
BinaryConnect uses updates of the form:

BinaryConnect: wt+1
r = wtr − αt∇f̃

(
Q(wtr)

)
. (7)

Either stochastic roundingQs or deterministic roundingQd
can be used for quantizing the weights wr, but in practice,
Qd is the common choice. The original BinaryConnect
paper constrains the weights to be {−1, 1}, which can be
generalized to {−∆,∆}. A more recent method, Binary-
Weights-Net (BWN) (Rastegari et al., 2016), allows differ-
ent filters to have different scales for quantization, which
often results in better performance on large datasets.

Notation For the rest of the paper, we use Q to denote
both Qs and Qd unless the situation requires this to be dis-
tinguished. We also drop the subscripts on wr and wb, and
simply write w.

4. Analyzing the BinaryConnect (BC) Method
Here we present convergence guarantees for the Bina-
ryConnect (BC) algorithm, with updates of the form (7),
and we show that BinaryConnect has the property of con-
centrating its iterates on minimizers over time. To do
this, we make the following assumptions that are standard
for analyzing convergence rates of optimization algorithms
over convex functions.

Assumption 1. We assume that F is µ-strongly convex,
i.e., it satisfies the following inequality:

〈∇F (w′), w − w′〉 ≤ F (w)− F (w′)− µ

2
‖w − w′‖2.

Assumption 2. We assume that the magnitude of each∇fi
is uniformly upper-bounded as:

‖∇fi(w)‖2 ≤ G2, ∀w ∈ W, ∀i = 1, 2, . . . ,m.

Assumption 3. We assume that the domain is bounded as:

‖w − w?‖ ≤ D, ∀w ∈ W.

In this case, the rounding algorithm clips values that leave
the domain. For example, in the binary case, the rounding
algorithm never returns a value outside of {−1, 1}.

In addition to these standard assumptions, we also assume
the following.

Assumption 4. We assume that the Hessian satisfies

‖∇2Fi(x)−∇2Fi(y)‖ ≤ L2‖x− y‖,

for some constant L2 > 0. Equivalently, this translates to
the condition:

∇Fi(y) = ∇Fi(x) +∇2Fi(x)(y − x) + δ,

where
‖δ‖ ≤ L2

2
‖x− y‖2.

While this is a slightly non-standard assumption, we will
see below that it enables us to gain better insights into the
behavior of the BinaryConnect algorithm. We now analyze
the BinaryConnect algorithm.

Theorem 1. Given Assumptions 1-4 and learning rates
given by αt = 1

µ(t+1) , the BinaryConnect algorithm, with
updates of the form (7) using stochastic rounding quantiza-
tion function Qs, converges as:

E[F (w̄T)− F (w?)] ≤ (1 + log(T + 1))G2

2µT
+
DL2

√
d∆

2
,

where w̄T denotes the iterate average: w̄T =
1

T

T∑
t=1

wt.

Proof. From the update rule (7), we get

wt+1 = wt − αt∇f̃
(
Q(wt)

)
= wt − αt∇f̃

(
wt + rt

)
= wt − αt[∇f̃

(
wt
)

+∇2f̃
(
wt
)
rt + r̂t],

where ‖r̂t‖ ≤ L2

2 ‖r
t‖2 from Assumption 4. Note that in

general rt has mean zero while r̂t does not.

Subtracting by the optimal w?, taking norm, and taking ex-
pectation conditioned on wt, we get:

E‖wt+1 − w?‖2

= ‖wt − w?‖2 − 2αtE〈wt − w?,∇f̃(wt + rt)〉
+ α2

tE‖∇f̃(wt + rt)‖2

≤ ‖wt − w?‖2 − 2αtE〈wt − w?,∇F (wt) + r̂t〉+ α2
tG

2

= ‖wt − w?‖2 − 2αtE〈wt − w?,∇F (wt)〉+ α2
tG

2

− 2αtE〈wt − w?, r̂t〉,

where the inequality uses Assumptions 2 and 4. Using As-
sumption 3 and observing that the quantization error for

Towards a Deeper Understanding of Training Quantized Neural Networks

BC-SGD can always be upper-bounded as ‖rt‖ ≤
√
d∆,

we get:

−2αtE〈wt − w?, r̂t〉 ≤ 2αtDE‖r̂t‖

≤ 2αtD
L2

2
‖rt‖

≤ αtDL2

√
d∆.

Thus, using Assumption 1, we get:

E‖wt+1 − w?‖2 ≤ (1− αtµ)‖wt − w?‖2 + αtDL2

√
d∆

− 2αt(F (wt)− F (w?)) + α2
tG

2.

Re-arranging the terms, and taking expectation we get:

E(F (wt)− F (w?)) ≤
(

1

2αt
− µ

2

)
E‖wt − w?‖2 +

αtG
2

2

− 1

2αt
E‖wt+1 − w?‖2 +

DL2

√
d∆

2
.

Assume that the stepsize decreases with the rate αt =
1/µ(t+ 1). Then we have:

E(F (wt)− F (w?)) ≤ G2

2µ(t+ 1)
+
DL2

√
d∆

2

− µt

2
E‖wt − w?‖2 − µ(t+ 1)

2
E‖wt+1 − w?‖2.

Averaging over t = 0 to T , we get a telescoping sum on
the right hand side, which yields:

1

T

T∑
t=0

E(F (wt)− F (w?))

≤ G2

2µT

T∑
t=0

1

t+ 1
+
DL2

√
d∆

2
− µ(T + 1)

2
E‖wT+1 − w?‖2

≤ (1 + log(T + 1))G2

2µT
+
DL2

√
d∆

2
.

Using Jensen’s inequality, we have:

E(F (w̄T)− F (w?)) ≤ 1

T

T∑
t=0

E(F (wt)− F (w?)),

where w̄T = 1
T

∑T
t=0 w

t, the average of the iterates. The
final convergence result follows.

Thus, we see that BinaryConnect converges until it reaches
an “accuracy floor”, which is determined by the quanti-
zation error ∆ and L2. Now, consider a quadratic least-
squares problem, F (w) = 1

2‖Aw− b‖
2. Here, the gradient

of F is linear: ∇F (w) = Aw − b, and the Hessian is con-
stant. Thus, L2 = 0 and we get the following corollary.

Corollary 1. Assume that F is quadratic of the form
F (w) = 1

2‖Aw − b‖2 and the learning rates are given
by αt = 1

µ(t+1) . Given Assumptions 1-4, the BC algorithm
with updates of the form (7) and using the stochastic round-
ing quantization function Qs, yields

E[F (w̄T)− F (w?)] ≤ (1 + log(T + 1))G2

2µT
.

We see that accumulating the real-valued weights in BC
allows it to converge to the true minimizer of quadratic
losses. Furthermore, this suggests that, when the function
behaves like a quadratic on the distance scale ∆, one would
expect BC to effectively concentrate on minimizers.

5. Analyzing the Stochastic Rounding Method
We can rewrite the update rule (6) of the Stochastic Round-
ing (SR) algorithm as:

wt+1 = wt − αt∇f̃(wt) + rt, (8)

where rt = Qs(w
t−αt∇f̃(wt))−wt+αt∇f̃(wt) denotes

the quantization error on the t-th iteration.

5.1. Bound on Quantization Error

We want to bound the error rt in expectation. To this end,
we present the following lemma.

Lemma 1. The error rt on each iteration t of the Stochas-
tic Rounding algorithm with updates given by (8) can be
bounded, in expectation, as:

E
∥∥rt∥∥2 ≤

√
d∆αtG.

Proof. We want to bound the quantization error rt. Con-
sider the i-th entry in rt denoted by rti . Similarly, we define
wti and ∇f̃(wt)i. Choose some random number p ∈ [0, 1].
The stochastic rounding operation produces a value of rt

given by

rti = Qs(w
t
i − αt∇f̃(wt)i)− wti + αt∇f̃(wt)i

= ∆ ·

αt∇f̃(wt)i

∆
+

⌊
−αt∇f̃(wt)i

∆

⌋
+ 1, for p ≤ q,

αt∇f̃(wt)i
∆

+

⌊
−αt∇f̃(wt)i

∆

⌋
, otherwise.

= ∆ ·

−q + 1, for p ≤ q,

−q, otherwise.

where we write q = −αt∇f̃(wt)i
∆

−

⌊
−αt∇f̃(wt)i

∆

⌋
and

q ∈ [0, 1].

Towards a Deeper Understanding of Training Quantized Neural Networks

Now we have

Ep
[
(rti)

2
]
≤ ∆2((−q + 1)2q + (−q)2(1− q))
= ∆2q(1− q)
≤ ∆2 min{q, 1− q}.

Because min{q, 1 − q} ≤

∣∣∣∣∣αt∇f̃(wt)i
∆

∣∣∣∣∣, it follows that

Ep
[
(rti)

2
]
≤ ∆2

∣∣∣∣∣αt∇f̃(wt)i
∆

∣∣∣∣∣ ≤ ∆
∣∣∣αt∇f̃(wt)i

∣∣∣.
Summing over the index i yields

Ep
∥∥rt∥∥2

2
≤ ∆αt

∥∥∇f̃(wt)
∥∥

1

≤
√
dαt∆

∥∥∇f̃(wt)
∥∥

2
. (9)

Now,
(
E
∥∥∇f̃(wt)

∥∥
2

)2 ≤ E
∥∥∇f̃(wt)

∥∥2

2
≤ G2. Plugging

this into (9) yields

E
∥∥rt∥∥2

2
≤
√
d∆αtG. (10)

From Lemma 1, we see that the rounding error per step
decreases as the learning rate αt decreases. This is intuitive
since the probability of an entry in wt+1 differing from wt

is small when the gradient update is small relative to ∆.

To explain the large observed differences in asymptotic be-
havior between the BinaryConnect and Stochastic Round-
ing algorithms, we now study the asymptotic, long-term be-
havior of the SR algorithm as the learning rate gets small.
Note that Section 5 makes no convexity assumptions, and
the proposed theoretical results are directly applicable to
neural networks.

5.2. Asymptotic Behavior of Stochastic Rounding

Typical (continuous-valued) SGD methods have an impor-
tant exploration-exploitation tradeoff. When the learning
rate is large, the algorithm explores by moving quickly be-
tween states. Exploitation happens when the learning rate
is small. In this case, noise averaging causes the algorithm
to behave more like deterministic gradient descent, where
the algorithm more greedily pursues local minimizers with
lower loss function values. Thus, the distribution of iterates
produced by the algorithm becomes increasingly concen-
trated near minimizers as the learning rate vanishes (see,
e.g., the large-deviations estimates in (Lan et al., 2012)).
BC maintains this property as well—indeed, we saw in
Corollary 1 a class of problems for which the iterates con-
centrate near the minimizer for small αt.

Here we show that the SR method lacks this important
tradeoff: as the stepsize gets small and the algorithm slows

down, the quality of the iterates produced by the algorithm
does not improve, and the algorithm does not become pro-
gressively more likely to produce low-loss iterates.

To understand this problem conceptually, consider the sim-
plified case of a single-variable optimization problem start-
ing at x0 = 0 with ∆ = 1, as depicted in Figure 1. On
each iteration, the algorithm computes a stochastic approx-
imation ∇f̃ of the gradient by sampling from a distribu-
tion, which we call p. This gradient is then multiplied by
the stepsize to get α∇f̃ . The probability of moving to the
right (or left) is then roughly proportional to the magnitude
of α∇f̃ . Note that random variable α∇f̃ has distribution
pα(z) = α−1p(z/α).

Now, suppose that α is small enough that we can neglect
the tails of pα(z) that lie outside the interval [−1, 1]. The
probability of transitioning from x0 = 0 to x1 = 1 using
stochastic rounding, denoted by Tα(0, 1), is then

Tα(0, 1) ≈
∫ 1

0

zpα(z)dz =
1

α

∫ 1

0

zp(z/α) dz

= α

∫ 1/α

0

p(x)x dx ≈ α
∫ ∞

0

p(x)x dx,

where the first approximation is because we neglected the
unlikely case that α∇f̃ > 1, and the second approximation
appears because we added a small tail probability to the es-
timate. These approximations get more accurate for small
α. We see that, assuming the tails of p are “light” enough,
we have Tα(0, 1) ∼ α

∫∞
0
p(x)x dx as α → 0. Similarly,

Tα(0,−1) ∼ α
∫ 0

−∞ p(x)x dx as α→ 0.

What does this observation mean for the behavior of SR?
First of all, the probability of leaving x0 on an iteration is

Tα(0,−1) + Tα(0, 1)

≈ α
[∫ ∞

0

p(x)x dx+

∫ 0

−∞
p(x)x dx

]
, (11)

which vanishes for small α (as also indicated by Lemma 1).
This means the algorithm slows down as the learning rate
drops off, which is not surprising. However, the conditional
probability of ending up at x1 = 1 given that the algorithm
did leave x0 is

Tα(0, 1|x1 6= x0) ≈ Tα(0, 1)

Tα(0,−1) + Tα(0, 1)

=

∫∞
0
p(x)x dx∫ 0

−∞ p(x)x dx+
∫∞

0
p(x)x dx

,

which does not depend on α. In other words, pro-
vided α is small, SR, on average, makes the same deci-
sions/transitions with learning rate α as it does with learn-
ing rate α/10; it just takes 10 times longer to make those

Towards a Deeper Understanding of Training Quantized Neural Networks

Figure 1. The SR method starts at some location x (in this case 0), adds a perturbation to x, and then rounds. As the learning rate α gets
smaller, the distribution of the perturbation gets “squished” near the origin, making the algorithm less likely to move. The “squishing”
effect is the same for the part of the distribution lying to the left and to the right of x, and so it does not effect the relative probability of
moving left or right.

A B

C

0.2

0.2

0.4

0.4

0.2

0.6

0.6 0.2

0.2

A B

C

0.1

0.1

0.2

0.2

0.1

0.3

0.8 0.6

0.6

Figure 2. Markov chain example with 3 states. In the right figure,
we halved each transition probability for moving between states,
with the remaining probability put on the self-loop. Notice that
halving all the transition probabilities would not change the equi-
librium distribution, and instead would only increase the mixing
time of the Markov chain.

decisions when α/10 is used. In this situation, there is no
exploitation benefit in decreasing α.

The above argument is intuitive, but also informal. To make
these statements rigorous, we interpret the SR method as a
Markov chain. On each iteration, SR starts at some state
(iterate) x, and moves to a new state y with some transition
probability Tα(x, y) that depends only on x and the learn-
ing rate α. For fixed α, this is clearly a Markov process
with transition matrix1 Tα(x, y).

The long-term behavior of this Markov process is deter-
mined by the stationary distribution of Tα(x, y). We show
below that for all small α, the stationary distribution of
Tα(x, y) is nearly invariant to α, and thus decreasing α
below some threshold has virtually no effect on the long
term behavior of the method. This happens because, as α
shrinks, the relative probabilities of leaving a state remain
the same, even though the absolute probabilities decrease
(see Figure 2). In this case, there is no exploitation benefit
to decreasing α.

Theorem 2. Let px,k denote the probability distribution for

1Our analysis below does not require the state space to be fi-
nite, so Tα(x, y) may be a linear operator rather than a matrix.
Nonetheless, we use the term “matrix” as it is standard.

the kth entry in ∇f̃(x), the stochastic gradient estimate at
x. Assume there is a constant C1 such that for all x, k, and
ν we have

∫∞
ν
px,k(z) dz ≤ C1

ν2 , and some C2 such that
both

∫ C2

0
px,k(z) dz > 0 and

∫ 0

−C2
px,k(z) dz > 0. Define

the matrix

Ũ(x, y) =

∫∞

0
px,k(z) z∆ dz, if x−k = y−k, yk = xk + ∆,∫ 0

−∞ px,k(z) z∆ dz, if x−k = y−k, yk = xk −∆,

0, otherwise,

where x−k = y−k denotes that x and y are equal except
at coordinate k. Define the associated markov chain tran-
sition matrix

T̃α0
= I − α0 · diag(1T Ũ) + α0Ũ , (12)

where α0 is the largest constant that makes T̃α0
non-

negative. Suppose T̃α has a stationary distribution, de-
noted π̃. Then, for sufficiently small α, Tα has a stationary
distribution πα, and

lim
α→0

πα = π̃.

Furthermore, this limiting distribution satisfies π̃(x) > 0
for any state x, and is thus not concentrated on local mini-
mizers of f .

Proof. Let the matrix Uα be a partial transition matrix de-
fined by Uα(x, x) = 0, and Uα(x, y) = Tα(x, y) for
x 6= y. From Uα, we can get back the full transition matrix
Tα using the formula

Tα = I − diag(1TUα) + Uα.

Note that this formula is essentially “filling in” the diagonal
entries of Tα so that every column sums to 1, thus making
Tα a valid stochastic matrix.

Let’s bound the entries in Uα. Suppose that we begin an
iteration of the stochastic rounding algorithm at some point

Towards a Deeper Understanding of Training Quantized Neural Networks

x. Consider an adjacent point y that differs from x at only
1 coordinate, k, with yk = xk + ∆. Then we have

Uα(x, y)

=
1

α

∫ ∆

0

px,k(x/α)
x

∆
dx+

1

α

∫ 2∆

∆

px,k(x/α)
2∆− x

∆
dx

= 1
α

∫∆/α

0
px,k(z)αz∆ αdz + 1

α

∫ 2∆/α

∆/α
px,k(z) 2∆−αz

∆ αdz

≤ α
∫ ∆/α

0

px,k(z)
z

∆
dz +

∫ ∞
∆/α

px,k(z) dz

= α

∫ ∞
0

px,k(z)
z

∆
dz +O(α2). (13)

Note we have used the decay assumption:∫ ∞
ν

px,k(z) ≤ C

ν2
.

Likewise, if yk = xk−∆, then the transition probability is

Uα(x, y) = α

∫ 0

−∞
px,k(z)

z

∆
dz +O(α2), (14)

and if yk = xk ±m∆ for an integer m > 1,

Uα(x, y) = O(α2). (15)

We can approximate the behavior of Uα using the matrix
Ũ(x, y), and we define the associated markov chain transi-
tion matrix T̃α as in (12).

Let α0 be the largest scalar such that the stochastic linear
operator T̃α0

has non-negative entries. For α < α0, T̃α has
non-negative entries and column sums equal to 1; it thus
defines the transition operator of a markov chain. Let π̃
denote the stationary distribution of the markov chain with
transition matrix T̃α0

.

We now claim that π̃ is also the stationary distribution of
T̃α for all α < α0. We verify this by noting that

T̃α = (I − α · diag(1T Ũ))π̃ + αŨπ̃

=(1− α

α0
)I +

α

α0
[I − α0 · diag(1T Ũ) + α0Ũ]

=(1− α

α0
)I +

α

α0
T̃α0 (16)

and so T̃απ̃ = (1− α
α0

)π̃ + α
α0
π̃ = π̃.

Recall that Tα is the transition matrix for the Markov chain
generated by the stochastic rounding algorithm with learn-
ing rate α. We wish to show that this markov chain is well
approximated by T̃α. Note that

Tα(x, y) =
∏

k,xk 6=yk

Tα(x, x+ (yk − xk)∆ek) ≤ O(α2)

when x, y differ at more than 1 coordinate. In other words,
transitions between multiple coordinates simultaneously

become vanishingly unlikely for small α. When x and y
differ by exactly 1 coordinate, we know from (13) that

Tα(x, y) = αU(x, y) +O(α2).

These observations show that the off-diagonal elements of
Tα are well approximated (up to uniform O(α2) error) by
the corresponding elements in αU. Since the columns of Tα
sum to one, the diagonal elements are well approximated as
well, and we have

Tα = (I−α ·diag(1TU)) +αU +O(α2) = T̃α +O(α2).

To be precise, the notation above means that

|Tα(x, y)− T̃α(x, y)| < Cα2, (17)

for some C that is uniform over (x, y).

We are now ready to show that the stationary distribution
of Tα exists and approaches π̃. Re-arranging (16) gives us

α0T̃α + (α− α0)I = αT̃α0 .

Combining this with (17), we get

‖α0Tα + (α− α0)I − αT̃α0
‖∞ < O(α2),

and so

‖α0

α
Tα + (1− α0

α
)I − T̃α0

‖∞ < O(α). (18)

From (18), we see that the matrix α0

α Tα + (1 − α0

α)I ap-
proaches T̃α0

. Note that π̃ is the Perron-Frobenius eigen-
value of T̃α0 , and thus has multiplicity 1. Multiplicity
1 eigenvalues/vectors of a matrix vary continuously with
small perturbations to that matrix (Theorem 8, p130 of
(Lax, 2007)). It follows that, for small α, α0

α Tα + (1 −
α0

α)I has a stationary distribution, and this distribution ap-
proaches π̃. The leading eigenvector of α0

α Tα + (1− α0

α)I
is the same as the leading eigenvector of Tα, and it follows
that Tα has a stationary distribution that approaches π̃.

Finally, note that we have assumed
∫ C2

0
px,k(z) dz > 0 and∫ 0

−C2
px,k(z) dz > 0. Under this assumption, for α < 1

C2
,

T̃α0(x, y) > 0 whenever x, y are neighbors the differ at a
single coordinate. It follows that every state in the Markov
chain T̃α0

is accessible from every other state by traversing
a path of non-zero transition probabilities, and so π̃(x) > 0
for every state x.

While the long term stationary behavior of SR is relatively
insensitive to α, the convergence speed of the algorithm is
not. To measure this, we consider the mixing time of the
Markov chain. Let πα denote the stationary distribution of
a Markov chain. We say that the ε-mixing time of the chain
is Mε if Mε is the smallest integer such that (Levin et al.,
2009)

|P(xMε ∈ A|x0)− π(A)| ≤ ε, ∀x0, ∀ subsets A ⊆ X. (19)

Towards a Deeper Understanding of Training Quantized Neural Networks

We show below that the mixing time of the Markov chain
gets large for small α, which means exploration slows
down, even though no exploitation gain is being realized.

Theorem 3. Let px,k satisfy the assumptions of Theorem 2.
Choose some ε sufficiently small that there exists a proper
subset of states A ⊂ X with stationary probability πα(A)
greater than ε. Let Mε(α) denote the ε-mixing time of the
chain with learning rate α. Then,

lim
α→0

Mε(α) =∞.

Proof. Given some distribution π over the states of the
markov chain, and some set A of states, let [π]A =∑
a∈A π(a) denote the measure of A with respect to π.

Suppose for contradiction that the mixing time of the chain
remains bounded as α vanishes. Then we can find an inte-
ger Mε that upper bounds the ε-mixing time for all α. By
the assumption of the theorem, we can select some set of
states A with [π̃]A > ε, and some starting state y 6∈ A. Let
e be a distribution (a vector in the finite-state case) with
ey = 1, ek = 0 for k 6= y. Note that [e]A = 0 because
y 6∈ A. Then

|[e]A − [π̃]A| > ε.

Note that, as α → 0, we have ‖Tα − T̃α‖ → 0 and thus
‖TMε

α − T̃Mε
α ‖ → 0. We also see from the definition of T̃α

in (12), limα→0 T̃α = I. It follows that

lim
α→0
|[TMε

α e]A − [π̃]A| = |[e]A − [π̃]A| > ε,

and so for some α the inequality (19) is violated. This is a
contradiction because it was assumedMε is an upper bound
on the mixing time.

6. Experiments
To explore the implications of the theory above, we train
two types of networks, VGG-like CNNs (Simonyan & Zis-
serman, 2015) and Residual networks (He et al., 2016), on
CIFAR-10 and CIFAR-100. VGG-BC is a high-capacity
network used for the original BC model (Courbariaux et al.,
2015). We use the same architecture as in (Courbariaux
et al., 2015) except using softmax and cross-entropy loss
instead of SVM and squared hinge loss, respectively.
ResNets-56 has 55 convolutional layers and one linear
layer, and contains three stages of residual blocks where
each stage has the same number of residual blocks. We
also create a wide ResNet-56 (WRN-56-2) that doubles the
number of filters in each residual block as in (Zagoruyko &
Komodakis, 2016). We use ADAM (Kingma & Ba, 2015)
as the baseline optimizer, and train with the three quan-
tized algorithms mentioned in Section 3, i.e., R-ADAM,
SR-ADAM and BC-ADAM. All methods start with the

Table 1. Test error after training with binarized initial weights.

CIFAR-10 CIFAR-100

VGG-BC ResNet-56 WRN-56-2 ResNet-56

ADAM 7.12 8.10 6.62 33.98
R-ADAM 21.88 33.56 27.90 68.39

BC-ADAM 8.21 8.83 7.17 35.34
SR-ADAM 20.56 26.49 21.58 58.06

same binary weight initialization of random ±1s. The im-
age pre-processing and data augmentation procedures are
the same as (He et al., 2016). Similar to (Rastegari et al.,
2016), here we only quantize the weights in the convolu-
tional layers, but not linear layers, during training. We set
the initial learning rate to 0.01 and decrease the learning
rate by a factor of 10 at epochs 82 and 122 for CIFAR-10
and CIFAR-100 (He et al., 2016). The default minibatch
size is 128. Following (Courbariaux et al., 2015), we do
not use weight decay during training. We implement all
quantization algorithms in Torch7 (Collobert et al., 2011)
and train the quantized models with NVIDIA GPUs.

Results The overall results are summarized in Table 1. The
binary model trained by BC-ADAM has comparable per-
formance to the full-precision model trained by ADAM.
SR-ADAM outperforms R-ADAM, which verifies the ef-
fectiveness of Stochastic Rounding. There is a perfor-
mance gap between SR-ADAM and BC-ADAM across all
models and datasets. This is consistent with our theoret-
ical results in Sections 4 and 5, and keeping track of the
real-valued weights to quantize the binary weights in BC-
ADAM seems to really help empirically.

7. Conclusion
The training of quantized neural nets is essential for de-
ploying machine learning models on embedded and ubiq-
uitous devices. In this work, we provided a theoretical
analysis to better understand the BinaryConnect (BC) and
Stochastic Rounding (SR) methods for training binary nets.
We showed that BC algorithms have the desirable property
of being able to concentrate on minimizers. For general
non-convex problems, however, we proved that SR differs
from conventional stochastic methods in that it is unable
to exploit greedy local search. Experiments confirm these
findings, and show that the mathematical properties of SR
are indeed observable (and very important) in practice.

Acknowledgments T. Goldstein was supported in part
by the US National Science Foundation (NSF) under grant
CCF-1535902, by the US Office of Naval Research under
grant N00014-17-1-2078, and by the Sloan Foundation. C.
Studer was supported in part by Xilinx, Inc. and by the US
NSF under grants ECCS-1408006, CCF-1535897, and CA-
REER CCF-1652065. H. Samet was supported in part by
the US NSF under grant IIS-13-20791.

Towards a Deeper Understanding of Training Quantized Neural Networks

References
Anwar, Sajid, Hwang, Kyuyeon, and Sung, Wonyong. Fixed point

optimization of deep convolutional neural networks for object
recognition. In ICASSP. IEEE, 2015.

Baldassi, Carlo, Ingrosso, Alessandro, Lucibello, Carlo, Saglietti,
Luca, and Zecchina, Riccardo. Subdominant dense clusters al-
low for simple learning and high computational performance
in neural networks with discrete synapses. Physical review let-
ters, 115(12):128101, 2015.

Cheng, Zhiyong, Soudry, Daniel, Mao, Zexi, and Lan, Zhen-
zhong. Training binary multilayer neural networks for im-
age classification using expectation backpropagation. arXiv
preprint arXiv:1503.03562, 2015.

Collobert, Ronan, Kavukcuoglu, Koray, and Farabet, Clément.
Torch7: A matlab-like environment for machine learning. In
BigLearn, NIPS Workshop, 2011.

Courbariaux, Matthieu, Bengio, Yoshua, and David, Jean-Pierre.
Binaryconnect: Training deep neural networks with binary
weights during propagations. In NIPS, 2015.

Courbariaux, Matthieu, Hubara, Itay, Soudry, Daniel, El-Yaniv,
Ran, and Bengio, Yoshua. Binarized neural networks: Training
deep neural networks with weights and activations constrained
to +1 or -1. arXiv preprint arXiv:1602.02830, 2016.

Gupta, Suyog, Agrawal, Ankur, Gopalakrishnan, Kailash, and
Narayanan, Pritish. Deep learning with limited numerical pre-
cision. In ICML, 2015.

He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun, Jian.
Deep Residual Learning for Image Recognition. In CVPR,
2016.

Höhfeld, Markus and Fahlman, Scott E. Probabilistic rounding in
neural network learning with limited precision. Neurocomput-
ing, 4(6):291–299, 1992.

Hubara, Itay, Courbariaux, Matthieu, Soudry, Daniel, El-Yaniv,
Ran, and Bengio, Yoshua. Quantized neural networks: Train-
ing neural networks with low precision weights and activations.
arXiv preprint arXiv:1609.07061, 2016.

Hwang, Kyuyeon and Sung, Wonyong. Fixed-point feedforward
deep neural network design using weights+ 1, 0, and- 1. In
IEEE Workshop on Signal Processing Systems (SiPS), 2014.

Kim, Minje and Smaragdis, Paris. Bitwise neural networks.
In ICML Workshop on Resource-Efficient Machine Learning,
2015.

Kingma, Diederik and Ba, Jimmy. Adam: A method for stochas-
tic optimization. ICLR, 2015.

Lan, Guanghui, Nemirovski, Arkadi, and Shapiro, Alexander.
Validation analysis of mirror descent stochastic approximation
method. Mathematical programming, 134(2):425–458, 2012.

Lax, P.D. Linear Algebra and Its Applications. Number v. 10
in Linear algebra and its applications. Wiley, 2007. ISBN
9780471751564. URL https://books.google.com/
books?id=e7FJM6aqZD8C.

Levin, David Asher, Peres, Yuval, and Wilmer, Elizabeth Lee.
Markov chains and mixing times. American Mathematical
Soc., 2009.

Li, Fengfu, Zhang, Bo, and Liu, Bin. Ternary weight networks.
arXiv preprint arXiv:1605.04711, 2016.

Lin, Darryl, Talathi, Sachin, and Annapureddy, Sreekanth. Fixed
point quantization of deep convolutional networks. In ICML,
2016a.

Lin, Zhouhan, Courbariaux, Matthieu, Memisevic, Roland, and
Bengio, Yoshua. Neural networks with few multiplications.
ICLR, 2016b.

Marchesi, Michele, Orlandi, Gianni, Piazza, Francesco, and
Uncini, Aurelio. Fast neural networks without multipliers.
IEEE Transactions on Neural Networks, 4(1):53–62, 1993.

Miyashita, Daisuke, Lee, Edward H, and Murmann, Boris. Con-
volutional neural networks using logarithmic data representa-
tion. arXiv preprint arXiv:1603.01025, 2016.

Rastegari, Mohammad, Ordonez, Vicente, Redmon, Joseph, and
Farhadi, Ali. XNOR-Net: ImageNet Classification Using Bi-
nary Convolutional Neural Networks. ECCV, 2016.

Simonyan, Karen and Zisserman, Andrew. Very Deep Convolu-
tional Networks for Large-Scale Image Recognition. In ICLR,
2015.

Soudry, Daniel, Hubara, Itay, and Meir, Ron. Expectation back-
propagation: Parameter-free training of multilayer neural net-
works with continuous or discrete weights. In NIPS, 2014.

Zagoruyko, Sergey and Komodakis, Nikos. Wide residual net-
works. arXiv preprint arXiv:1605.07146, 2016.

Zhou, Aojun, Yao, Anbang, Guo, Yiwen, Xu, Lin, and Chen,
Yurong. Incremental network quantization: Towards lossless
cnns with low-precision weights. ICLR, 2017.

Zhou, Shuchang, Wu, Yuxin, Ni, Zekun, Zhou, Xinyu, Wen, He,
and Zou, Yuheng. Dorefa-net: Training low bitwidth convo-
lutional neural networks with low bitwidth gradients. arXiv
preprint arXiv:1606.06160, 2016.

Zhu, Chenzhuo, Han, Song, Mao, Huizi, and Dally, William J.
Trained ternary quantization. ICLR, 2017.

https://books.google.com/books?id=e7FJM6aqZD8C
https://books.google.com/books?id=e7FJM6aqZD8C

