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Abstract

The problem of converting paper maps into digital

formats is a major concern today with the emergence

of geographical information systems (GIS) as replace-

ments of the traditional paper map. One of the ma-

jor problems in this conversion is that a paper map is

nothing more than an abstraction. The information

found in maps is mainly symbolic rather than an ac-

curate graphical description of the region covered by

the map.

A system is presented that utilizes the symbolic

knowledge found in the legend of the map to drive ge-

ographic symbol recognition. The geographic symbol

layer(s) of the map are �rst scanned. The legend of the

map is located and segmented. The geographic symbols

are identi�ed, and their semantic meaning is attached

to them. This information is used to build an initial

training set that is then used to classify geographical

symbols in input maps using statistical pattern recog-

nition. User interaction is required at �rst to assist

in building the training set to account for variability

in the symbols. The training set is built dynamically

by entering only instances that add information to to

it. The training set library is stored in an appropriate

spatial data structure, and a highly e�cient nearest

neighbor �nding algorithm is used to search it. The

system then proceeds to identify the geographical sym-

bols in the input maps automatically. The system can

be �ne-tuned by the user to suit speci�c needs. An ex-

perimental study was conducted on a large amount of

data. Results of the experiment are presented. The

system can achieve recognition rates of over 95%.

1 Introduction

The paper map has long been the traditional rep-

resentation of spatial data. Today, we are seeing the

emergence of geographic information systems (GIS)

as a replacement. One of the central issues in GIS is

data acquisition. In particular, we must �nd ways of

converting the data that is stored on maps to a repre-

sentation that is compatible with the GIS. The most

commonmeans of performing this conversion is by use

of a digitizing tablet. This process is very time con-

suming, expensive and inaccurate. Recently optical

scanners have been put to use for this purpose. The

maps are �rst scanned, the raster data is then con-

verted into vector format with very heavy user inter-

vention in order to assure the quality of this conversion

[14].

There has been some research in recent years on

automating this process. Most researchers have fo-

cussed on raster-to-vector conversion [10]. Unfortu-

nately, this does not yield accurate and useful results.

One of the reasons for the poor performance is that

the conversion must be accomplished by some knowl-

edge, which we term map recognition. One problem in

map recognition is that a paper map is nothing more

than an abstraction. The information found in maps

is mainly symbolic rather than an accurate graphi-

cal description of the region covered by the map. For

example, the width of a line representing a road has

little to do with its true width. Instead, most often it

is determined by the nature of the road (i.e., highway,

freeway, rural road, etc.). The color and size of city

names on the map convey information about the pop-

ulation of a city. Many graphical symbols are used to

indicate the location of various sites such as hospitals,

post o�ces, recreation areas, scenic areas etc. The
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key to this symbolic information may be found on the

map itself in the form of the legend.

In this paper we describe a system built by us that

uses the legend of the map to drive the geographic

symbol recognition. The legend of the map is �rst

located and segmented. The geographic symbols are

identi�ed, and their semantic meaning is attached to

them. This information is used to build an initial

training set that is then used to classify geographi-

cal symbols in input maps using statistical pattern

recognition [5]. User interaction is required at �rst to

assist in building the training set to account for vari-

ability in the symbols. The system then proceeds to

identify the geographical symbols in the input maps

automatically.

Another problem in map recognition is the high

level of obstruction of geographical symbols due to

the map making process. A map is composed of sev-

eral layers. The symbols in each layer do not occlude

each other. But, once these layers are composed, the

objects from the di�erent layers may intersect and oc-

clude each other making the problem of segmentation

and object recognition very complex. To alleviate this

problem, the input to our system are raster images

of the separate map layers. Separate map layers may

not always be as readily available as integrated layer

maps, yet the extra work required to get this data is

well worth it. The results of the map recognition are

guaranteed to be an order of magnitude better than

those that would result from using the composite map.

Thus much less human time will be required to verify

and correct the results of the automatic process.

Most of the prior research in map recognition

has concentrated on skeletonization and vectorization

methods [1, 16]. Some research has been done on sep-

arating the layers of scanned maps [15, 17]. The maps

included road maps [7] and cadastral maps [3, 8]. In

the latter, the focus was on locating polygons rep-

resenting parcels of land, buildings, and roads. As

mentioned above, the emphasis of our approach is on

utilizing the legend of the map to build a system to

extract the symbolic information in the map layers,

rather than trying to vectorize the entire map. The

focus here is on tourist symbols such as campsites, ho-

tels, recreation areas, etc., although we have used our

methods to handle other types of graphical documents

such as oor plans [12].

The rest of this paper is organized as follows. Sec-

tion 2 outlines the main components of our system.

Section 3 describes the legend-driven training of our

system. Section 4 discusses the geographic object

recognition process. Section 5 presents our evaluation

method along with experimental results. Section 6

contains concluding remarks.

2 System Overview

The input to the system is a raster image of the

symbols layer. This map image is divided into tiles of

size 512 � 512 pixels (see Figure 1). These tiles are

processed one-by-one.
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Figure 1: Map layer acquisition and splitting

process.

2.1 Legend Acquisition

The tile(s) containing the legend is identi�ed. This

tile is passed to the legend acquisition module (see

Figure 2). The legend is segmented. A feature vector
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Figure 2: Legend acquisition module.

is computed for each connected component. The geo-

graphic symbols are isolated and their semantic mean-

ing is attached to the feature vectors corresponding to

them. An initial training set is constructed contain-

ing one instance of each symbol in the map. This is

done manually. Automating this process is a subject

of future research.

2.2 Symbol Recognition

Each non-legend tile is input into the symbol recog-

nition system. The system maywork in two modes. In

the user veri�cation mode, the user veri�es the classi�-

cations before they are input to the GIS. The training

set is modi�ed to correct the erroneous classi�cations.

In the automatic mode, the classi�cations are gener-

ated by the system and input directly to the GIS. The

user determines the mode in which the system oper-

ates. In general, the �rst tiles will be interpreted in

user veri�cation mode. Once the user is satis�ed with
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the recognition rate achieved, the system is placed in

automatic mode to process the remaining tiles. There

are �ve basic modules in the system (see Figure 3 for

a block diagram).
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Figure 3: Block diagram of the legend-driven

geographical symbol recognition system.

2.2.1 Preprocessing and Segmentation Mod-

ule

In the preprocessing and segmentation module, var-

ious image processing techniques are applied to en-

hance the image. The image is then segmented into

its constituent elements using a connected component

labeling algorithm (e.g., [11]). The output of this mod-

ule is a labeled image in which each pixel has a region

number as its value. Regions that are smaller than a

certain threshold are labeled 0 (unde�ned).

2.2.2 Feature Extraction Module

The input to this module is the labeled image output

by the preprocessing and segmentation module. For

each region in the labeled image, a set of features is

computed. The system uses some global and some

local shape descriptors [9] that have been identi�ed

as features that best discriminate between geographic

symbols. These features are invariant to scale, ori-

entation, and translation. The results of the feature

computation are composed into a feature vector. The

center of gravity (i.e., centroid) of each region is also

computed, and the x and y coordinates of this lo-

cation are termed a location vector. The output of

this stage is the feature vector which is a point in the

n-dimensional feature space, and the location vector

which is a point in the 2-dimensional location space.

2.3 Object Classi�cation Module

The input to this module are the feature and lo-

cation vectors output by the feature extraction mod-

ule, the current training set library, and some param-

eters set by the user. The training set library, con-

structed by the legend acquisition module, initially

consists of one feature vector for each geographical

symbol along with its semantic meaning (i.e., its clas-

si�cation). This is the class that the system should

assign to each instance of the same symbol. Depend-

ing on the quality of the raster image, this may suf-

�ce. However, in most cases, the instances of each

symbol vary and several instances of each symbol are

required in order to build a representative training set

library that will produce reasonable recognition rates.

The current training set library is used to assign can-

didate classi�cations to each input feature vector. A

value approximating the certainty of the correctness of

these classi�cations is attached to each classi�ed ob-

ject (see Section 4 for more details). The output of this

module consists of the classi�cations that were made

along with the corresponding location of the symbols

on the map and the certainty of the classi�cations.

In terms of a GIS, the output is point data where the

classi�cations and certainty values are alphanumerical

attributes of the point.

2.3.1 User Veri�cation Module

This module is only active when the system in work-

ing in user veri�cation mode. The input to this mod-

ule are the feature vectors and the classi�cations that

were output by the object classi�cation module. An

image containing the symbols that were identi�ed is

composed. This image is displayed next to the orig-

inal image. The user indicates which symbols have

been classi�ed incorrectly, and informs the system of

the correct classi�cation. This module outputs the lo-

cation, classi�cation (as approved or corrected by the

user), and a certainty of 1 for all the symbols found

in the map tile. In addition, it outputs the feature

vectors corresponding to the erroneous classi�cations

along with their correct classi�cations.

2.3.2 Library Modi�cation Module

This module is only active when the system is working

in user veri�cation mode. The input to this module

is a list of feature vectors along with their respective

classi�cations. These vectors will be used to classify

subsequent input symbols, and thus they comprise the

training set for the classi�cation process. The library

is stored as an adaptive k-d tree [6]. See section 3 for

more details about the storage and retrieval methods

employed for managing the library. The output of

this module is the current training set library, which

is used by the object classi�cation module.
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2.4 Geographic Information System

The input to the GIS is a set of points, correspond-

ing to the location of the symbols found in the maps.

For each point, its several possible classi�cations and a

certainty value approximating the correctness of each

classi�cation, are given. This input comes either di-

rectly from the object classi�cation module or from

the user veri�cation module depending on the mode

in which the system is working.

3 Managing the Training Set Library

Realizing that a feature vector is a point in n-

dimensional space, we use methods borrowed from

computational geometry and spatial data structures to

spatially sort the training set. The data structure that

we use is the adaptive k-d tree of Friedman, Bentley,

and Finkel [6]. This is a variant of a binary search tree

with two pieces of information stored at each node: a

dimension number d indicating the discriminating di-

mension, and a discriminating value v which is usually

the median value of dimension d of the set of points

stored below this node. The discriminating dimension

is chosen to be the dimension for which the spread of

values of that dimension is a maximum. The spread

is measured as the distance from the minimum to the

maximum value normalized with respect to the me-

dian. All points with values less than or equal to the

discriminating value are inserted in the left subtree,

and all points with values greater than the discrim-

inating value are inserted in the right subtree. This

process is continued recursively until only a few points

are left in the set, at which time the decomposition

ceases and the result is termed a bucket. The compo-

nents of the bucket are represented by a linked list.

Figure 4 shows an example of some instances of geo-

graphic symbols in a 2 dimensional feature space (i.e.,

a feature vector with two components) with the cor-

responding adaptive 2-d tree.

In order to build an adaptive k-d tree, all points

must be known a priori.The training set in our system

is built in stages while the system is working in user

veri�cation mode, as described in Section 2. Initially,

the training set only contains one instance of each

symbol, as output by the legend acquisition module.

Later, for each tile that is interpreted in user veri�ca-

tion mode, only those instances of symbols that were

not classi�ed correctly by the current training set are

added to it. At this stage, the adaptive k-d tree is

reconstructed in order to ensure that it remains bal-

anced. Since the system is working in user veri�cation
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Figure 4: Adaptive k-d tree: (a) set of symbol

instances in 2-space. (b) corresponding 2-d

tree.The 2-space corresponds to 2 features of

the symbol; not the location of the symbol.

mode it is not very fast at this point. Thus it is reason-

able to spend a little more time to rebuild the adaptive

k-d tree, and ensure that future classi�cations will be

made as e�ciently as possible.

This method of dynamically constructing the train-

ing set guarantees that the training set will remain

small without compromising the results of classi�ca-

tion using this training set. The reason for this is that

there is no redundant information in the training set.

Thus it is very e�cient and yields results similar to

those obtained using a condensing technique to mini-

mize the size of the training set [5].

4 Classifying Geographic Symbols

Geographic symbols identi�ed in the map tiles are

classi�ed using a slight modi�cation on the k-nearest

neighbor rule that is widely used in non-parametric
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statistical pattern recognition. A classi�er using the

k-nearest neighbor rule �rst �nds the k vectors in the

training set that are nearest to the input vector. Each

of these neighbors gives one vote for its class. The

class with the most votes is chosen as the class of the

input vector. Our modi�cation is to use a weighted k-

nearest neighbor rule. The k (chosen empirically) vec-

tors in the training set nearest to the input vector are

found, as before. To determine the class of the input

vector, each one of the neighbors is given a vote whose

strength is inversely proportional to its distance from

the input vector, rather than giving each neighbor one

vote. The vote is given by

VoteL =
1

dist(FL; F I)2

where FL and F I are the feature vectors of the library

instance and the input symbol, respectively. The votes

for each class C are summed.

VotesC =
X

L3class(L)=C

VoteL

and the input vector is assigned the class C for which

VotesC is maximum. The distance between two vec-

tors is de�ned to be the weighted Euclidean distance

given by

dist(FL; F I) =

vuut NX
i=1

wi(F
L

i
� F I

i
)2

where FL

i
is the ith feature of the library vector, F I

i

is the ith feature of the input vector, and wi is the

ith weighting factor. The weighing factor is computed

so that features with a smaller variance have a larger

weight as described in [4].

In order to limit the search space, the user sets a

threshold for the maximum distance in the normal-

ized feature space allowed between an input symbol

and the nearest symbol in the training set (termed

the window size). Any symbol whose nearest neigh-

bor is not within the window de�ned by the window

size is classi�ed as invalid.

The k-nearest neighbors in the training set are

found using the priority k-d tree search algorithm [2].

This algorithm visits the buckets of the k-d tree in in-

creasing order of the distance from the input vector.

The search is complete when the distance from the in-

put vector to the closest remaining bucket is greater

than the distance to the k-closest library vector found

so far.

In addition to assigning the input vector the class C

for which VotesC is maximum, the system computes a

certainty value for this classi�cation. The system also

computes certainty values for the classes represented

by the remaining k-nearest neighbors. This value ap-

proximates the certainty that the input vector belongs

to the particular class to which it is assigned. For each

of the candidate classes, Ci, the certainty value is a

function (not given here) of the average distance of Ci

from the input vector, and the average distance of Ci

from the library feature vector that is closest to the

input vector. The classi�cation module outputs all of

the candidate classi�cations along with their certainty.

The class assigned using the weighted k-nearest neigh-

bor rule will have the highest certainty value.

5 Experimental Study

The system was tested on the red sign layer of the

GT3map of Finland. The scale of the map is 1:200000.

The layer was scanned at 240dpi. See Figures 5 and 6

for a sample tile of the red sign layer of the map com-

pared to the same tile when all layers are composed.

Figure 5: Example map tile - all layers

A portion of the map containing part of the legend rel-

evant to this layer can be found in Figure 7. Notice

that there are many symbols in the map tile that are

not found in the legend. These are mainly numbers,

names, and markers that are related to other layers.

These symbols, termed invalid symbols, should all be

classi�ed as invalid by the system. The layer was split

into 425 tiles of size 512 � 512. These tiles were ex-

amined in a random order to give the system a chance
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Figure 6: Example map tile - red sign layer

Figure 7: Legend portion containing tourist

symbols

to see a large variety of symbols in the user veri�-

cation phase as some symbols tend to appear clus-

tered in the map. The legend was identi�ed manually,

and the classi�cations were attached to the feature

vectors representing the geographic symbols that the

system should identify. There were 25 such symbols.

The system processed the �rst 50 tiles in user veri�-

cation mode. At that stage the training set contained

80 instances of symbols and the current recognition

rate was determined su�cient. The remaining tiles

were processed automatically. See Section 5.3 for the

results of this fully automatic recognition. The re-

sults of this classi�cation were input into QUILT[13],

a geographic information system that has been devel-

oped at the University of Maryland. This system is

a quadtree-based GIS which is able to deal with both

spatial and attribute data. Map tiles can be retrieved

from QUILT according to their contents by means of

spatial and non-spatial queries. For example, the user

may request to display all tiles containing camping

sites within 3 miles of �shing sites.

5.1 Evaluation Method

In order to evaluate the system, the following three

error categories, common in optical character recogni-

tion (OCR) evaluation, were de�ned:

� substitution errors | an object that should have

been classi�ed as a particular valid symbol was

classi�ed as another valid symbol.

� deletion errors|an object that should have been

classi�ed as a valid symbol was classi�ed as in-

valid.

� insertion errors | an invalid symbol was classi-

�ed as a valid symbol, or a valid symbol was clas-

si�ed as another valid symbol in addition to be-

ing classi�ed correctly. The latter situation arises

when all of the candidate classi�cations among

the k-nearest neighbors are considered.

Substitution errors and deletion errors may cause the

GIS to overlook tiles that should be retrieved for a

given query. Insertion errors and substitution errors

may cause the GIS to retrieve superuous map tiles

for a given query. In the context of a GIS or an image

database, the insertion errors are the least severe. The

purpose of the map recognition is to enable the system

to retrieve just those map portions that are relevant

to a given query. Retrieving too many tiles is not as

severe as missing tiles. The user can always weed out

those tiles that do not actually conform to the query.

5.2 Experiment Description

50 sample tiles were chosen from the tiles that were

not used for training the system. These tiles were

used as input to the system. For each symbol in each

tile, the system output the classes of the k nearest

neighbors to the symbol's feature vector along with a

certainty value as described in Section 4. The class
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assigned to the symbol using the weighted k-nearest

neighbor rule (i.e., the one with the highest certainty

value) was compared manually to the correct classi-

�cation, as found in the raw image. The number of

errors of each type for each tile was recorded. In ad-

dition, the classes of the remaining neighbors which

were output by the system with a lower certainty value

were compared to the correct classi�cation. The num-

ber of errors of each type for this case were recorded.

The certainty value assigned by the system for each

correct classi�cation was noted. This was done in or-

der to determine whether inserting into the GIS more

than one candidate classi�cation per symbol with an

appropriate certainty value yields better results than

just inserting the class selected using the weighted k-

nearest neighbor rule (i.e., the one with the highest

certainty value).

This experiment was repeated �ve times varying the

value of the maximumdistance in the normalized fea-

ture space allowed between an input symbol and the

nearest symbol in the training set (termed the win-

dow size). Any symbol whose nearest neighbor is not

within the window de�ned by the window size is classi-

�ed as invalid. The values selected for the window size

were 0:01; 0:02; 0:04; 0:08;0:16. As the window size in-

creases, more neighbors representing more classes will

be found in the window. Thus we expect to have fewer

substitution and deletion errors, at the cost of more

insertion errors. See Section 5.3 for the results of our

experiments.

5.3 Results
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Figure 8: Valid symbol recognition rate for

various window sizes.
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Figure 9: Invalid symbol recognition rate for

various window sizes.

Figures 8 and 9 show the recognition rate for valid

and invalid symbols respectively. Valid symbols are

those input symbols that were identi�ed as valid geo-

graphic symbols (i.e., the ones acquired in the legend

acquisition phase). For the purpose of this analysis,

an input symbol is categorized as valid or invalid ac-

cording to the ground truth data, i.e. by inspection

of the raw images that were input to the system. The

number of valid and invalid input symbols in the 50

test tiles was recorded. All percentages reported here

are of these numbers. The valid symbol recognition

rate indicates what percent of the valid input symbols

were classi�ed by the system as the correct geographic

symbol. Invalid symbols are input symbols occurring

in the map that did not appear in the legend and will

not be recognized (i.e, classi�ed as invalid). They in-

clude numbers, letters, etc. The invalid symbol recog-

nition rate indicates what percent of the invalid in-

put symbols were in fact classi�ed by the system as

invalid. The \Voted" plot shows the recognition rate

when considering only the class assigned to the symbol

by the voting process among the k-nearest neighbors

(referred to as the voted classi�cation and corresponds

to the one with the highest certainty value). The \All"

plot shows the rate when considering the classes of all

of the k-nearest neighbors regardless of their certainty

(referred to as the probabilistic classi�cation).

As expected, as the window size increases, the valid

symbol recognition rate increases and the invalid sym-

bol recognition rate decreases. The reason for this is

that there are more candidate classes when the win-

dow is larger. Thus the chance that a symbol from the

correct class lies in the window increases as does the
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substitution error occurred) for various win-
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chance that some valid symbol from the library will

lie in the window of an invalid symbol. Recall that

a symbol is classi�ed as invalid if it is has no neigh-

bors in the window. From Figure 8 we also see that

considering the classes of all the neighbors increases

the valid symbol recognition rate. The requirement

in this case is only that the correct classi�cation be in

the window with any certainty value. Thus more valid

symbols will be classi�ed correctly. However, this will

increase the insertion error rate since more than one

classi�cation may be recorded in the GIS per symbol.
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Figure 12: Percent of valid input symbols that

were classi�ed as invalid symbols (i.e., dele-

tion error occurred) for various window sizes.
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Figure 13: Error rates using the voted classi-

�cation for various window sizes.

This can be seen in Figure 10 which shows the percent

of invalid input symbols classi�ed as valid symbols or

valid symbols classi�ed as other valid symbols besides

being classi�ed correctly (i.e., an insertion error oc-

curred). In particular, notice the higher values of the

\All" plot.

Figures 11 and Figure 12 analyze the cause of

the erroneous valid symbol classi�cations. Figure 11

shows what percentage of those input symbols that

were determined to be valid symbols by the ground

truth data were classi�ed by the system as valid sym-

bols but not as the correct symbol (i.e., a substitu-

tion error occurred). Figure 12 shows what percent-

age those input symbols that were determined to be

valid symbols by the ground truth data were classi-
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Figure 14: Error rates using the probabilistic

classi�cation for various window sizes.
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Figure 15: Correct valid symbol classi�ca-

tions per certainty value range.

�ed by the system as invalid symbols (i.e., a deletion

error occurred). Recall that a deletion error occurs if

no neighbors are found within the speci�ed window.

From these two �gures we see that the substitution

error rate is only slightly e�ected by the window size,

whereas the deletion error rate is highly e�ected by

the window size and shows a sharp drop at a win-

dow size of 0:04. From this we may conclude that

the increase in the valid symbol recognition rate with

an increase in window size is mainly attributed to a

sharp reduction in the number of deletion errors rather

than to a signi�cant change in the number of substitu-

tion errors. The only way to decrease the substitution

error rate is to consider all classes found among the

k-nearest neighbors in the given window as indicated

in Figure 11 by the lower values of the \All" plot com-

0

10

20

30

40

50

60

70

80

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
rr

on
eo

us
 C

la
ss

if
ic

at
io

ns
 (

%
)

Certainty Value

Figure 16: Erroneous classi�cations per cer-

tainty value range.

pared to the \Voted" plot. These above conclusions

are also apparent in Figures 13 and 14 which show

the rate of the various error types as a function of the

window size. The plot representing the substitution

errors is rather at, whereas the plots representing in-

sertion and deletion errors change signi�cantly with

the window size.

The window sizes of 0:04 and 0:08 appear to be best

for this data set. A valid symbol recognition rate of

over 92% was achieved, while about 20% of the invalid

symbols were classi�ed as some valid symbol (i.e., an

insertion error) with this window size. The ideal win-

dow size should however be selected according to the

requirements of the application. If it is critical for the

GIS not to miss any tiles when responding to a query,

then a larger window size should be selected. This

will result in incorporating more insertion errors into

the GIS, while ensuring that a minimum of deletion

errors are incorporated into the GIS. This means that

the GIS overlooks fewer tiles at the cost of retriev-

ing superuous tiles that will need to be weeded out

manually. If accuracy is not as important as the time

required to weed out the tiles manually, then a smaller

window size should be selected. As our results indi-

cate, it is possible to achieve valid recognition rates

of over 95% with a large enough window, and invalid

symbol recognition rates of 100% with a small enough

window.

Figure 15 shows the certainty values assigned to

those input symbols that were determined to be valid

symbols by the ground truth data and were classi-

�ed by the system as the correct valid symbol (i.e.,

no error occurred). Similarly, Figure 16 shows the

certainty values assigned to those input symbols that
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were determined to be valid symbols by the ground

truth data and were classi�ed by the system as the

wrong valid symbols (i.e., an erroneous classi�cation

due to a substitution or insertion error). The vast

majority of correct classi�cations were assigned a cer-

tainty value above 0:9, whereas the certainty values of

the erroneous classi�cations are more spread out. The

user may set the minimum certainty value required

for considering a classi�cation. By selecting a mini-

mum certainty value of about 0:7 the user may elim-

inate many of the substitution and insertion errors.

Thus weeding out automatically most of the superu-

ous tiles while overlooking only a small number of the

required tiles.

6 Concluding Remarks

A legend-driven geographic symbol recognition sys-

tem has been described. The system utilizes the fact

that most of the data found in maps is symbolic, and

that the key to understanding the symbols can be

found in the legend of the map. The system is e�cient

and exible. The training set is built dynamically by

entering only instances that add information to to it

thereby creating a small but e�ective training set. The

training set library is stored in an appropriate spatial

data structure, and a highly e�cient nearest neighbor

�nding algorithm is used to search it, thus enabling

quick classi�cation. Users may �ne-tune the perfor-

mance of the system to their requirements by setting

the window size and minimum certainty values to �t

their particular application.

An experimental study was conducted on a large

amount of data. The experimental results showed that

the system can achieve recognition rates of 95% with

little user intervention. However, with more user inter-

vention the system may reach 100% recognition rates.

At present, the legend acquisition process is mostly

manual. Automating it is subject of future research.

The system can be easily adapted to interpret other

graphical documents and we have used similar meth-

ods for the interpretation of oor plans [12]. This sys-

tem is designed for map layers containing geographic

symbols. In order to provide full map recognition,

other methods need to be developed to interpret lay-

ers containing additional types of symbolic informa-

tion such as roads, bodies of water, etc. Once this is

done, the results can be integrated into a GIS to pro-

vide a comprehensive tool to utilize the vast amount

of data that is found in paper maps.
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