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Abstract—Techniques for the specification and representation
of the locational component of multimedia data are reviewed. The
focus is on how the locational component is specified and also on
how it is represented. For the specification component we also
discuss textual specifications. For the representation component,
the emphasis is on a sorting approach which yields an index to
the locational component where the data includes both points as
well as objects with a spatial extent.

I. INTRODUCTION

The increasing availability of computing power has led to
a wider accessibility of multimedia data. Multimedia data
comes in many forms and includes documents, images, videos,
and audio as well as spatial data of multiple dimensionality
such as points, vectors, regions, and volumes. In addition, the
multimedia data may have a spatial component corresponding
to its location which is usually, but not always, a point in
the associated vector space in which the multimedia data is
embedded. The multimedia data may also have a temporal
component where the key parameters are transaction time and
valid time. When the data has both a spatial and temporal
component, then it is termed spatiotemporal data. Multidi-
mensional spatial data is differentiated from conventional
multidimensional data by the fact that the spatial data has
extent, but this need not always be the case.
In this paper we focus on the specification and represen-

tation of the locational component of multimedia data. Sec-
tion II discusses the various ways of specifying the locations
of multimedia data while Section III reviews a number of
representations of the location of multimedia data as well as
multidimensional multimedia spatial data with extent. Con-
cluding remarks are drawn in Section IV.

II. SPECIFICATION OF LOCATIONS OF MULTIMEDIA DATA

The rise of the use of the world wide web and the ease with
which multimedia objects can be accessed, regardless of their
nature and/or physical location has had a significant impact on
our life and how we interact with our environment, Multimedia
data is now often online and can be queried by location.
Viewing the results can be enhanced by adding the ability
to view them dynamically through actions such as browsing
(e.g., [13], [72], [73], [94] in the case of spatial data that is
represented on a map) or manipulating what is termed a spatial
spreadsheet [24]. In particular, the web has made it easier
to find and retrieve multimedia data by location (i.e., index
it) regardless of whether the location is specified explicitly
or, increasingly more importantly, implicitly by virtue of the
physical location of the user.

The explicit specification of location has traditionally been
geometric (e.g., as latitude-longitude pairs of numbers). Unfor-
tunately, this is not easy as most people don’t usually know of
a location in this way. Even more important is the fact that they
don’t know where to obtain this information and are not used
to communicate or receive it from others in this way. Instead,
they are used to specify a location textually which includes
verbally. A textual specification has numerous benefits. First
of all, it is very useful for multimedia data in the form
of documents whhch have undergone limited preprocessing.
Second, it is very easy to communicate it in this way especially
when using smartphones where a textual capability for such
communication is always present. Of course, there is always
the verbal communication option which is closely related
to the textual option especially when making use of speech
generation and recognition as is done, for example, by Siri on
Apple devices.
Another important advantage is that a textual specification

acts like a polymorphic type in the sense that one size fits
all. In particular, depending on the application which makes
use of this information, a term such as “Los Angeles” can be
interpreted both as a point or as an area, and the user need
not be concerned with this question.
The principal drawback of the textual specification of loca-

tion data is that it is potentially ambiguous. First of all, we
must be sure that the textual entity actually corresponds to a
location (termed a toponym) rather than the name of a person,
an organization, or an object, to name a few of many possible
alternative interpretations. The process of determining whether
a textual entity is a toponym is termed toponym recognition
(e.g., [34]). Moreover, having identified the textual entity
as a toponym such as “San Jose”, there are many possible
locations named “San Jose” and they must be resolved. This
process is known as em toponym resolution (e.g., [35], [70]).
Moreover, in some cases we are not even sure that the term
”Washington” denotes a location as it could be a reference to
the name of a person. Both of these issues can arise when
processing documents such as newspaper articles [36], [71],
[75], [82], [98], tweets [14], [25], [91], blogs, etc. The process
of understanding and converting location text to its geometric
specification is known as geotagging(e.g., [1], [3], [28], [33],
[37], [38], [41], [48], [49]) and is beyond the scope of this
paper.
The implicit specification of location is achieved in a

number of ways. The simplest is to use the IP address of
device used to connect to the Internet. However, the most
common is through the use of an embedded GPS capability
which provides the user’s physical location. Nevertheless,

1



In Proc. of the IEEE International Symposium on Multimedia (ISM2015),

Miami, FL, December 2015.

many users disable this feature for privacy reasons. This is
especially noticeable when looking at tweets and observing
how few tweeters actually transmit their location along with
their tweets.
Touch interfaces on smartphone devices are increasingly

being used to combine an implicit and an explicit specification
to yield an approximate specification. In particular, observe
that a map, coupled with the ability to pan and to vary the
zoom level at which the underlying data is viewed, facilitates
this approximate specification. For example, as we zoom in
on Los Angeles on a map, we are targeting more specific
parts of it. This has a direct effect on queries for objects at
particular locations. For example, if we are seeking an art
exhibit in Hollywood, then depending on the zoom level we
would be satisfied by the return of an art exhibit in Burbank
(by being in proximity) or by Los Angeles (by containment).
Thus we see the touch interface serving as an implicit access
structure to the data accomplished with direct manipulation.
Of course, an index is still required along with software that
translates the screen coordinates (via use of some nearest
neighbor techniques) to the ones used by the index.

III. REPRESENTATIONS OF LOCATIONS OF MULTIMEDIA

DATA

Applications involving multimedia data increasingly make
use of its location and is increasingly being stored in a
database. The existence of the database means that the data
stored therein must be retrieved and this involves search.
Search is facilitated by sorting the underlying data. The
conventional definition of the verb sort is:

1) To put in a certain place or rank according to kind, class,
or nature

2) To arrange according to characteristics.

The location data that is sorted is known as spatial data and
range from including just the location of the data to also
including its extent (i.e., the space that it spans). The sorting
is captured by the data structure that is used to represent
the spatial data. This data structure is usually referred to as
an access structure or index to emphasize the connection to
sorting.
Notwithstanding the above definition, sorting usually im-

plies the existence of an ordering. Orderings are fine for one-
dimensional data. For example, in the case of individuals we
can sort them by their weight and find people closest in weight
to different individuals without having to resort the data. This
is not the case in two dimensions and higher where changing
the reference point to which we are finding the nearest means
having to resort the data. One way to achieve an ordering is
to linearize the data as can be done, for example, using a
space-filling curve (e.g., [51], [68]). The problem with such
an approach is that the ordering is explicit. Instead, what is
needed is an implicit ordering so that we do not need to
resort the data when, for example in our two-dimensional
example, the reference point changes (e.g., from St. Louis to
Los Angeles). Such an ordering is a natural byproduct when
we sort objects by spatial occupancy, and is the subject of the
remainder of this section.
Methods that are based on sorting the spatial objects by

spatial occupancy essentially decompose the underlying space
from which the data is drawn into regions called buckets where
objects in close proximity are ideally in the same bucket or at
least in buckets that are close to each other in the sense of the

order in which they would be accessed in the case of a false
hit.
There are two principal methods of representing spatial

multimedia data. The first is to use an object hierarchy that
initially aggregates objects into groups based on their spatial
proximity and then use proximity to further aggregate the
groups thereby forming a hierarchy. Queries are facilitated by
also associating a minimum bounding box which could also
be a sphere with each object and group of objects to enable
a quick determination if a point can possibly lie within the
area spanned by the object or group of objects. A negative
response means that no further processing is required for the
object or group, while a positive response requires more tests
(e.g., R-tree [15] and R∗-tree [9]).
The drawback of the object hierarchy approach is that the

resulting hierarchy of bounding boxes leads to a non-disjoint
decomposition of the underlying space. Therefore, if a search
fails in one path starting at the root, then it is not necessarily
the case that no other object will be found in another path
starting at the root.
The second method is based on a recursive decomposition

of the underlying space into disjoint blocks so that a subset of
the objects are associated with each block. There are several
ways to proceed. The first way is to redefine the decomposition
and aggregation associated with the object hierarchy method
so that the minimum bounding boxes (rectangles in this case)
are decomposed into disjoint rectangles, thereby partitioning
the underlying objects that they bound (e.g., k-d-B-tree [50]
and R+-tree [92]).
The second way is to partition the underlying space at fixed

positions so that all resulting cells are of uniform size, which
is the case when using the uniform grid (e.g., [31]), The
drawback of the uniform grid is the possibility of a large
number of empty or sparsely-filled cells when the objects
are not uniformly distributed. This is overcome by making
use of a variable resolution representation such as one of the
quadtree variants (e.g., [68]) where the subset of the objects
that are associated with the blocks are defined by placing an
upper bound on the number of objects that can be associated
with each block (termed a stopping condition for the recursive
decomposition process) and also often referred to as a bucket
capacity. The PR quadtree [47], [66] and its bucket variants are
examples of such a structure for points, while the PM quadtree
family [20], [40], [77], [84] (see also the related PMR
quadtree [19], [43], [44]) is an example of a variable resolution
representation for collections of straight line segment objects
such as those found in polygonal subdivisions as well as higher
dimensions (e.g., faces of three-dimensional objects as in the
PM octree [8]). An alternative known as a PK-tree [67], [100],
makes use of a lower bound on the number of objects that
can be associated with each block (termed an instantiation or
aggregation threshold).
Quadtrees [23], [30] and their three-dimensional octree

analogs [22], [42]. have also been used widely for representing
and operating on image data in two and three dimensions,
respectively (e.g., [63]) and find use in GIS and medi-
cal applications. In particular, algorithms have been devised
for converting between them and numerous representations
such as binary arrays [52], boundary codes [12], [53], [83],
rasters [54], [60], [93], medial axis transforms [59], [61],
terrain models [95], boundary models [96], constructive solid
geometry (CSG) [78], as well as operations such as con-
nected component labeling [56], [80], [81], perimeters [55],
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[79], distance [57], image dilation [4], [2], computing Euler
numbers [11], and ray tracing [64]. Many of these operations
are implemented by traversing the actual quadtrees/octrees
and performing the appropriate operation on each node and
its neighbors [32], [58], [62], [64], [76]. Quadtrees and their
variants are to be distinguished from pyramids (e.g., [97])
which are multiresolution data structures useful in spatial data
mining [5], [99].
The drawback of the disjoint method is that when the objects

have extent (e.g., line segments, rectangles, and any other non-
point objects), then an object may be associated with more
than one block. This means that objects will be reported a
multiple number of times. Nevertheless, methods have been
developed that avoid these multiple reports by making use of
the geometry of the type of the data that is being represented
(e.g., [6], [7], [10]). Note that the result of constraining the
positions of the partitions means that there is a limit on the
possible sizes of the resulting cells (e.g., a power of 2 in
the case of a quadtree variant). However, this means that
the underlying representation is good for operations between
two different data sets (e.g., a spatial join [21], [26], [27])
as their representations are in registration. This means that
it is easy to correlate occupied and unoccupied space in the
two data sets. This is hard to do in methods based on an
object hierarchy where the positions of the partitions are not
constrained as is the case for the quadtree variants. For a recent
empirical comparison of these representations with respect to
multidimensional point data, see [29].

IV. CONCLUDING REMARKS

We have reviewed a number of ways of specifying the
locations of multimedia data as well as the representations
of its location and its extent. It is important to note that
the choice of these representations is often influenced by the
type of operations that are applied to the data. The most
common operation is one of retrieval and this is what has
the highest influence on the choice that is made. Another
important operation is similarity retrieval based on the use
of a similarity measure which ideally is a distance metric.
This means means that it must obey the triangle inequality
(i.e., transitivity), be non-negative, and be symmetric. In this
case, the objects are represented in a space on the basis of their
distance from one or more reference objects. In the latter case,
the objects are associated with their nearest reference object.
These representations are often similar to the methods that are
used to index data in a vector space with the difference that
the partitions of the underlying metric space are implicit rather
than explicit as is the case in the vector space. For more on
these representations, see [18], [68].
As we pointed out, the ability to sort spatial and metric data

is particularly useful for proximity queries usually where prox-
imity is measured in terms of as “the crow flies” (e.g., [16],
[17], [69]). However, these representations can also be used to
support proximity in a graph such as a road network (e.g., [46],
[74], [85], [86], [87], [88], [89], [90]). They can also be used
with different metrics such as a Hausdorff distance [45].
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