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ABSTRACT
Reliable trajectory prediction is paramount in Air Traffic
Management (ATM) as it can increase safety, capacity, and
efficiency, and lead to commensurate fuel savings and emis-
sion reductions. Inherent inaccuracies in forecasting winds
and temperatures often result in large prediction errors when
a deterministic approach is used. A stochastic approach can
address the trajectory prediction problem by taking environ-
mental uncertainties into account and training a model using
historical trajectory data along with weather observations.
With this approach, weather observations are assumed to
be realizations of hidden aircraft positions and the transi-
tions between the hidden segments follow a Markov model.
However, this approach requires input observations, which
are unknown, although the weather parameters overall are
known for the pertinent airspace. We address this problem
by performing time series clustering on the current weather
observations for the relevant sections of the airspace.

In this paper, we present a novel time series clustering
algorithm that generates an optimal sequence of weather
observations used for accurate trajectory prediction in the
climb phase of the flight. Our experiments use a real trajec-
tory dataset with pertinent weather observations and demon-
strate the effectiveness of our algorithm over time series clus-
tering with a k-Nearest Neighbors (k-NN) algorithm that
uses Dynamic Time Warping (DTW) Euclidean distance.
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1. INTRODUCTION
Trajectories are usually discussed for cars along roads [28]

with an emphasis on queries (e.g., [20, 21, 24, 27]), Here we
are interested in aircraft trajectory prediction which is a cru-
cial process for Air Traffic Control (ATC) as the more accu-
rate and reliable the predicted trajectories the more safe and
efficient the deconfliction of flights. In order for ATC to at-
tain this goal, the trajectory prediction tools should be able
to provide high levels of accuracy for an adequate horizon of
time. Although prior trajectory prediction research and de-
velopment activities have been able to meet the challenge to
some extent, dealing with congested airspace and environ-
mental factors still remains the challenge when a determin-
istic approach is used in the trajectory prediction process
[2, 4, 6, 14]. Hence due to the uncertainties contributing to
trajectory prediction errors, we take a stochastic approach
to address these issues. The past efforts addressing aircraft
trajectory prediction using probabilistic methods are sim-
ilar to our approach in a way that they aim at modeling
uncertainties to describe potential changes in the future tra-
jectory of an aircraft. However, many of them [17, 18, 19,
29] either lack empirical validation or use a simulated set
of aircraft trajectories instead of actual track data in their
evaluations.

We define airspace as a set of spatio-temporal cuboids
where each cuboid is considered as an atomic unit. Weather
parameters such as temperature, wind speed, wind direction,
and humidity considered homogeneous within the cuboid
during a period of time. Other parameters that describe
the cuboid include its center coordinates along with a time
stamp. These spatio-temporal cuboids form the overall airspace.
Next, we adapt historic raw trajectories to the cuboids. Us-
ing adapted trajectories in the form of 4D joint cuboids, we
train our model with the historical data and choose a state
sequence that best explains the current weather observa-
tions. Due to the nature of interconnected cuboid centroids
forming a trellis, we use the Viterbi algorithm [32] to effi-
ciently generate the optimal trajectory by joining the multi-
ple segments together, where one segment is only dependent
on the previous segment. However, the Viterbi algorithm
requires input observations, which are unknown, although
the weather parameters overall are known for the airspace.

We use a time series clustering approach to this problem.
We basically perform time series clustering on the current
weather observations for the cuboid centroids that were tra-
versed by historic trajectories. Our time series clustering
algorithm computes a cost value for each weather observa-
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tion based on its frequency per time period, and ranks them.
The process yields a matrix, where each matrix element cor-
responds to a weather observation with its cost. Using DP,
our algorithm computes the optimal sequence of weather
observations, a set with the minimum cumulative cost that
satisfies the continuity constraint. We finally feed the output
cluster into the Viterbi process to probabilistically generate
the best sequence of trajectory segments.

Our experiments use a real trajectory dataset with per-
tinent weather observations and demonstrate that our al-
gorithm outperforms time series clustering with a k-Nearest
Neighbors (k-NN) algorithm that uses DTW Euclidean dis-
tance [13]. The results suggest that our algorithm can be
of significant value for predicting aircraft trajectories even
during the climb phase of the flight. Trajectory prediction
for the climb and descent phases of flight is difficult because
of the uncertainty of rates of climb and descent due to the
effects of outside air temperature on engine power and there-
fore climb/descent rates.

In summary, the contributions of this paper are as follows:

• We propose a novel time series clustering algorithm
that is based on a cost value computed by the fre-
quency of weather observations at each time period.
Next, we feed the series of cluster centroids as obser-
vations into our aircraft trajectory prediction system
that is based on a stochastic model, HMM to predict
trajectories for the climb phase of a flight.

• We conduct experiments based on actual track data
and weather observations and demonstrate that our
time series clustering algorithm outperforms time se-
ries clustering with k-NN algorithm that uses DTW
Euclidean distance by yielding cluster centroids that
result in more accurate trajectory predictions for the
climb phase of a flight.

The rest of the paper is organized as follows. Section 2
introduces the aircraft trajectory prediction system. Sec-
tion 3 presents generic time series clustering and discusses
our algorithm. Section 4 details experiments, and Section 5
concludes the paper and outlines some future work.

2. AIRCRAFT TRAJECTORY PREDICTION
SYSTEM

This section presents the system that enables testing of
our time series clustering algorithm. The prediction system
used in this paper is an advanced version of [3] and distin-
guished from the previous version in the following respects:

• The new system uses a more granular reference grid
and defines airspace as a set of spatio-temporal cuboids.

• The new system utilizes more extensive weather ob-
servations by including humidity to the existing set of
temperature, wind speed, and wind direction.

• It employs our novel time series clustering algorithm
to aid in the prediction process.

The system predicts aircraft trajectories in three steps: i)
Training data processing, ii) Test data processing, and iii)
HMM and Viterbi processing, detailed in [3].

In training data processing step, the system accurately
fuses weather parameters for each sample point of a raw
trajectory. To achieve this, the system uses the National
Oceanic and Atmospheric Administration (NOAA) GFS Rapid
Refresh (RAP) weather model’s 3D grid network as the ref-

Figure 1: Illustration of a spatio-temporal cuboid
formed around an aligned trajectory segment on the
reference system in Google Earth.

erence system. Due to fact that the lateral resolution of GFS
RAP weather model’s 3D grid network is 13km, the system
densifies the lateral resolution by splitting the original grids
in half in east-west direction, resulting in a new 3D grid net-
work formed by rectangles of 13km x 6.5km. This new grid
network allows the system to define an airspace of cuboids.

To compute additional weather values for the derived grid
points, the system performs Sinusoidal interpolation [1]
on the original weather data. The weather parameters in
resampled distinct buckets are fused with spatial data for
each grid point. The process yields training data where each
historical raw trajectory becomes a set of 4D joint spatio-
temporal cuboids as illustrated in Figure 1.

Test data processing generates the input observations for
the Viterbi process. Note that the observation sequence
needs to be known in order for the system to compute the
maximum probability of the optimal state sequence being
generated by HMM. Although the reference points covering
the entire airspace volume of interest are known, it is not
known which of these should be fed into the Viterbi process.
To identify the observation sequence, time series clustering
is performed on the extensive observation set. Section 3
presents our novel time series clustering algorithm in detail.

In the final step, the system performs HMM and Viterbi
processing. To achieve this, the system computes HMM pa-
rameters; states, transition probabilities, emission probabil-
ities, and initial probabilities, denoted by λ = {S,A,B, π},
respectively. The next step in the process is to choose a cor-
responding state sequence that best explains the observation
sequence using the Viterbi algorithm [32].

3. TIME SERIES CLUSTERING
Clustering is the general problem of partitioning a set of

observations into a number of groups where the similarity is
minimized within the group and the dissimilarity is maxi-
mized between the groups [16]. Han et al. classified cluster-
ing methods into five categories: partitioning, hierarchical,
density-based, grid-based, and model-based methods [11].

A time series is a sequence of real numbers collected at
regular intervals over a period of time. Time series clus-
tering is a critical analysis technique which can be used as
a preprocessing step for further data mining and it mostly
relies on classic clustering methods, either by replacing the
default distance measure with an alternative one or by trans-
forming time series into static data so that classic clustering
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Algorithm 1 OBSERVATIONPATHS

Input: observation matrix Om
Output: observationPaths op
1: Coc← {}, Cmoc← {}, Cm← {}, Pm← {} // colum-

nwise observation counts, columnwise max observation
counts, costs matrix, and pointers matrix, respectively
/* STEP 1: Compute counts */

2: for c ∈ Om.cols do
3: Coc.o ← COUNT(o ∈ c)
4: end for
5: for c ∈ Om.cols do
6: Cmoc.c ← MAX(Coc)
7: end for

/* STEP 2: Build pointers and costs matrices */
8: while c 6= 0 (c ← |Om.cols|-1) do
9: for r ∈ Om.rows do

10: Cm[r][c] ← Cmoc[c] - COUNT[Om[c]]
11: if c 6= |cn−1| then
12: if r = 0 then
13: mn ← MIN(Cm[r][c+1], Cm[r+1][c+1])
14: Cm[r][c] ← Cm[r][c] + mn
15: if mn = Cm[r][c+1] then
16: Pm[r][c].concat(r, Om[r][c+1])
17: end if
18: if mn = Cm[r+1][c+1] then
19: Pm[r][c].concat(r+1, Om[r+1][c+1])
20: end if
21: else if r = |Om.rows|-1 then
22: mn ← MIN(Cm[r-1][c+1], Cm[r][c+1])
23: Cm[r][c] ← Cm[r][c] + mn
24: if mn = Cm[r-1][c+1] then
25: Pm[r][c].concat(r-1, Om[r-1][c+1])
26: end if
27: if mn = Cm[r][c+1] then
28: Pm[r][c].concat(r, Om[r][c+1])
29: end if
30: else
31: mn ← MIN(Cm[r-1][c+1], Cm[r][c+1],

Cm[r+1][c+1])
32: Cm[r][c] ← Cm[r][c] + mn
33: if mn = Cm[r-1][c+1] then
34: Pm[r][c].concat(r-1, Om[r-1][c+1])
35: end if
36: if mn = Cm[r][c+1] then
37: Pm[r][c].concat(r, Om[r][c+1])
38: end if
39: if mn = Cm[r+1][c+1] then
40: Pm[r][c].concat(r+1, Om[r+1][c+1])
41: end if
42: end if
43: end if
44: end for
45: c ← c-1
46: end while

/* STEP3: Compute observation paths */
47: procedure ObsPathsDp((psf , r, c, cc))

Procedure is detailed in the next algorithm
48: end procedure
49: ic ← s ∈ MIN(Cm.cols[0])
50: for ic ∈ ic[0] do
51: p ← [Om[ic][0]]
52: ObsPathsDp(p, ic, 0, Cm[ic][0])
53: end for

Algorithm 2 OBSERVATIONPATHS DP

1: procedure ObsPathsDp((psf , r, c, cc))
Input: pathSoFar psf , row r, colmn c, cumulativeCount cc
Output: observationPaths op
2: if c = |Om.cols|-1 then
3: return op ← psf , (c + Cm[r][c])
4: end if
5: for p ∈ Pm[r][c] do
6: psf .concat(p[1])
7: ObsPathsDp(psf , p[0], c+1, cc + Cm[r][c])
8: psf .pop(-1)
9: end for

10: end procedure

methods can be directly used. Liao et al. [16] classified time
series clustering approaches into three major categories: i)
raw-based [15, 23], ii) feature-based [10, 31], and iii) model-
based [9] approaches, depending on whether they work di-
rectly with raw data, indirectly with features extracted from
the raw data, or indirectly with models built from the raw
data. In this paper, we follow a raw-based approach.

Although many clustering criteria to identify the simi-
larity and dissimilarity have been proposed, the minimum
within the cluster sum of squared distances is the most com-
monly used measure [12]. To represent a cluster, a centroid
is used that is defined as the data point that minimizes the
sum of squared distances to all other points. Hence, us-
ing the distance measure is critical in computing centroids.
Finding such a centroid is known as the Steiner’s sequence
[25]. The centroid is computed with the arithmetic mean
property, when Euclidean distance is used [7]. In the realm
of time series clustering, DTW is the most widely used mea-
sure to compare time-series sequences with alignment [23].
Hence, we evaluate our time series clustering algorithm by
comparing it with the state-of-the-art k-NN algorithm that
uses DTW Euclidean distance. Unfortunately, using an
arithmetic mean to find a single representative data point
for each time interval along the time series often doesn’t
generate an accurate centroid as we present in Section 4.

Now, we propose a novel time series clustering algorithm
for multivariate weather observations of the same length to
aid in the aircraft trajectory prediction process.

Suppose we have a time series of weather observations be-
tween departure and arrival airports for the same flight over
a period of time. We can represent this time series with
an n x m matrix, where each row contains a set of periodic
weather observations recorded along the aircraft’s trajectory
as the flight progresses. As the flight takes place the next
time, a new row is added to the matrix. Assuming that the
flight occurs once a day, each matrix cell corresponds to an
observation recorded at a particular time interval during the
flight in a particular day. Note that each observation is com-
posed of the major weather parameters affecting the aircraft
trajectory, that is temperature, wind speed, wind direction,
and humidity. Given those observations, we want to trace
an optimal weather observation path that best represents
the underlying observation set. This objective translates to
finding a single representative centroid for each time interval
and optimally concatenating them as we move forward.

Formally, given n observation sets, each with length of
m, O1 = [o1,1, o1,2, ..., o1,m], O2 = [o2,1, o2,2, ..., o2,m], ...
On = [on,1, on,2, ..., on,m], we want to come up with the op-
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timal observation path, OOP = [oi,1, oj,2, ..., ok,m], which is
subject to continuity constraint that is defined as:

Continuity: Given oi,j = (a, b), then oi,j−1 = (a′, b′),
where a− a′ ≥ 0 and b− b′ ≥ 0. This restricts the allowable
steps in the observation path to adjacent cells (including di-
agonal adjacent cells). There are exponentially many obser-
vation paths that satisfy the continuity constraint. However,
we are only interested in the path, OOP that minimizes the
cumulative cost denoted by

OOP = arg min
c

m∑
i=1

ci

where cost of a cell ci,j is computed based on the pertinent
observation’s frequency at that time period.

To solve the optimization problem, we perform prepro-
cessing by computing: i) Column-wise observation counts
Coc, and column-wise maximum observation counts Cmoc,
ii) A costs matrix Cm of size n x m where each matrix cell
corresponds to a cost value, and a pointers matrix Pm of
size n x m where each matrix cell corresponds to the adja-
cent observation (including diagonally adjacent), the origi-
nal observation can connect to. Next, we perform Dynamic
Programming (DP) in reverse order i.e. beginning with the
last column to iteratively select the next weather observa-
tion that satisfies both conditions, continuity and minimum
cumulative cost at each time period of the series.

Algorithm 1 illustrates the preprocessing steps line 1–46.
In line 49–53, Algorithm 1 iteratively calls the ObsPathsDp
procedure detailed in Algorithm 2 to dynamically find the
next optimal sequence. Feeding the output cluster centroids
into the Viterbi algorithm finalizes the process to generate
the best sequence of trajectory segments.

4. EXPERIMENTS
In this section, we describe the experiments performed

using our algorithm versus k-NN clustering with DTW on
the weather observations along the time series.

Our experiments used real trajectory and weather data:
The Delta Airlines’ flight DAL2173, departing from Atlanta
International Airport and arriving at Miami International
Airport was studied for the period of May 2010 through
December 2015. The dataset has a total of 1624 trajectories
and 183797 points. Figure 2 shows 3D raw trajectories.

The main data sources for our Aircraft Trajectory Pre-
diction System are the FAA’s Aircraft Situation Display to
Industry (ASDI) and NOAA’s RAP data, detailed in [3].
Before training data processing, time series data interpo-
lation and filtering processes took place that reduced the
number of historical recordings from 183797 to 137689. In
the training data processing, we split the weather parame-
ters into buckets as shown in Table 2. Next, the following
HMM parameters were computed:

• 7292 distinct states, S were generated.

• A sparse transition matrix, A of size 7292 x 7292 =
53173264 was generated.

• An emission matrix, B of size 495 x 7292 = 3609540
was generated.

• An initial matrix, π of size 38 x 1 was generated.

To evaluate our prediction system, we performed boot-
strapping by drawing many trajectory samples with replace-
ment from the historical trajectories. The trajectory sample

Figure 2: 3D raw trajectories of flight DAL2173 for
the period of May 2010 through December 2015 in
Google Earth. Climb phase is colored white, cruise
and descent phases are colored gray.

for May 18, 2015 was chosen at random to be used as an ex-
ample of the process for trajectory samples.

In test data processing, we performed time series cluster-
ing, using DTW and our algorithm. The input to the pro-
cess was 1206 time series of 78 weather observations, where
each observation contained temperature, wind speed, wind
direction, and humidity parameters. Our first round evalu-
ation tested the k-NN clustering with k=1 that used DTW
Euclidean distance for the similarity measure. The resulting
set of cluster centroids for the first round evaluation iden-
tified by weather parameters defined the first observation
sequence Ys1. The second round evaluation tested our time
series clustering algorithm with the identical input. This
defined the second observation sequence Ys2. As the final
step of the process, we fed the first and second observa-
tion sequences, Ys1, Ys2, respectively along with pertinent
HMM parameters into the Viterbi algorithm, one at a time.
The algorithm returned the optimal state sequence with the
maximum probability per observation sequence.

Here, we present our evaluation results. Our evaluation
was based on bootstrapping by drawing 7 trajectory samples
with replacement from the historical trajectories. This way,
we performed two series of comparisons:

• We compared the cluster centroids generated by both
time series algorithms against the ground truth, the
weather observations along the sample trajectories.

• We compared climb phases of the predicted trajecto-
ries aided by both algorithms against the ground truth,
flight DAL2173’s aligned sample trajectories.

Then, we rank ordered the means to estimate the 2.5 and
97.5 percentile values for 95% CI. Time series clustering
with k-NN algorithm that uses DTW Euclidean distance
correctly found 34 centroids on the average out of full 78
original centroids formed by weather observations temper-
ature, wind speed, wind direction, and humidity of ground
truth. This corresponds to 43.6% accuracy. Time series
clustering with our algorithm correctly found 55 centroids
on the average out of full 78 original centroids formed by
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Table 1: Mean and standard deviation values for
cross-track and vertical errors for flight DAL2173
on trajectory samples.

k-NN Our algorithm

Mean error (µ)
µ(ecross) µ(evert) µ(ecross) µ(evert)
1.490nm 1697.042ft 0.982nm 259.588ft

Standard deviation (σ)
σ(ecross) σ(evert) σ(ecross) σ(evert)
3.100nm 1299.931ft 3.296nm 653.612ft

weather observations of ground truth, which corresponds to
70.5% accuracy. Hence, our time series clustering algorithm
outperformed time series clustering with a k-NN algorithm
that uses DTW Euclidean distance by 61.8%, in accuracy.

Figure 3 shows a lateral view of the actual aligned trajec-
tories in white overlaid on top of spatio-temporal cuboids
for the flight’s climb phase on May 18, 2015. On the left,
cuboids in red were generated upon time series clustering
using k-NN with DTW algorithm. On the right, cuboids
in blue were generated upon time series clustering using
our own algorithm. The predicted trajectory in the form
of spatio-temporal cuboids in red on the left substantially
deviates from the aligned trajectory in white as soon as
the aircraft departs. The deviation from the aligned tra-
jectory during the departure is relatively less significant for
the spatio-temporal cuboids in blue on the right. Both sets
of spatio-temporal cuboids in red and blue align well with
the actual trajectories in white as the flight progresses.

Our quantitative evaluation is based on trajectory predic-
tion accuracy metrics as outlined in [22]. The cross-track
error, denoted by ecross is computed based on the actual
position of the aircraft AC, predicted trajectory segment
containing the previous predicted position TR1, current pre-
dicted position TR2, and the angle θ between the two vec-

tors,
−−−−−−→
|TR1AC| and

−−−−−−−→
|TR1TR2|. Hence, ecross =

−−−−−−→
|TR1AC|sinθ.

The vertical error represents the difference between the ac-
tual altitude of the aircraft AA and predicted altitude of the
aircraft PA. Hence, evert = AA− PA.

Table 1 captures mean error µ and standard deviation
σ values for the entire trajectory samples. The first two
columns correspond to cross-track and vertical errors gen-
erated upon time series clustering using k-NN with DTW
algorithm. The last two columns correspond to cross-track
and vertical errors generated upon time series clustering us-
ing our own algorithm. Note that both the cross-track and
vertical errors are signed errors. However, the signs of the
errors are omitted in the computation of the mean values
along the climb phase of the trajectory.

Figure 4 illustrates the histograms for cross-track errors
for flight DAL2173’s climb phase on May 18, 2015. On the
left, the graph in red illustrates the histogram generated
upon time series clustering of k-NN with DTW algorithm.
On the right, the graph in blue illustrates the histogram gen-
erated upon our own algorithm. The area of the histograms
is an indication of overall performance.

5. CONCLUSIONS
In this paper, we presented a novel time series clustering

algorithm that generates an optimal sequence of weather
observations used in accurate trajectory prediction for the

Table 2: Buckets for weather parameters
Temperature (temp)

No Bucket Value (kelvin)
1 temp ≤ 220 220
2 220 < temp ≤ 240 240
3 240 < temp ≤ 260 260
4 260 < temp ≤ 280 280
5 280 < temp ≤ 300 300
6 300 < temp ≤ 350 350

Wind speed (ws)
No Bucket Value (knots)
1 ws ≤ 30 30
2 30 < ws ≤ 60 60
3 60 < ws ≤ 90 90
4 90 < ws ≤ 120 120
5 120 < ws ≤ 150 150

Wind direction (wd)
No Bucket Value (degrees)
1 wd ≤ 45 45
2 45 < wd ≤ 90 90
3 90 < wd ≤ 135 135
4 135 < wd ≤ 180 180
5 180 < wd ≤ 225 225
6 225 < wd ≤ 270 270
7 270 < wd ≤ 315 315
8 315 < wd ≤ 360 360

Humidity (hmdty)
No Bucket Value (percent)
1 hmdty ≤ 20 20
2 20 < hmdty ≤ 40 40
3 40 < hmdty ≤ 60 60
4 60 < hmdty ≤ 80 80
5 80 < hmdty ≤ 100 100

climb phase of the flight. Our algorithm computes a cost
value for each weather observation and ranks them. The
process generates a matrix, where each matrix element cor-
responds to a weather observation with its cost value. Us-
ing DP, the algorithm computes the optimal sequence of
weather observations that satisfy the continuity constraint.
We evaluated our algorithm and demonstrated its effective-
ness over time series clustering with k-NN algorithm.

Figure 3: Actual flown lateral trajectory in white
overlaid on top of spatio-temporal cuboids for flight
DAL2173’s climb phase on May 18, 2015. (left) k-
NN with DTW, (right) our algorithm.
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Figure 4: Histograms for flight DAL2173’s climb
phase on May 18, 2015. (left) k-NN with DTW,
(right) our algorithm.

In the future, we plan to handle time series of weather ob-
servations with unequal length, utilize our algorithm in pre-
dicting full trajectories including cruise and descent phases
of the flight, as well as look into adding a spatial browsing
capability (e.g., [5, 8, 26]) and operating in a distributed
environment [30].
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