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Abstract

A new approach to incremental view maintenance of spatial joins is presented. To update
materialized views after a transaction it is often more efficient to recompute the query in terms of
changes to the base relations instead of recomputing the query from scratch. Changes to the base
relations are stored in separate differential tables during a transaction. The differential tables
are used by an incremental view maintenance algorithm to update the view at the end of the
transaction. In the case of a join, a join operator is applied multiple times to a combination of
differential tables and base relations. There are many ways to implement the join operator used
within an incremental view maintenance algorithm. For spatial joins, a join operator algorithm
created specifically for the task can be more efficient than a conventional join algorithm.

In this paper a new spatial join operator algorithm designed for use within an incremental view
maintenance algorithm is presented. Other algorithms used as join operators within the incremen-
tal view maintenance algorithm are described for purposes of comparison. The incremental view
maintenance algorithm in which these join operators are used is presented along with a rigorous
proof of its correctness. The performance of these join operator algorithms, as used within the
incremental view maintenance algorithm, is evaluated via experiments.
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1 Introduction

In a relational database a relation is a table of values where each column represents an attribute of a
particular data type or domain (e.g. integers, strings, points, etc.). Each row in a relation is a set of
related values over the attribute domains called a tuple. The schema is the set of names associated
with each column of a relation.

A spatial database is a database in which spatial attributes can be stored. A spatial database also
stores non-spatial data. For instance, spatial data types may consist of points, lines, and polygons.
Numbers and character strings are examples of non-spatial data.

Among the operations available in a database is the join operation. A join involves two input relations
and a join condition. The result is a subset of the cross product of the input relations for which the
join condition holds. A spatial join uses a condition defined on spatial attributes.
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For example, let 7(R) and s(S) be relations. The schemas of relations r and s are R and S, respec-
tively. Let attribute o € R and 8 € S be point attributes. Let d be a nonnegative scalar value. The
following SQL query finds all the tuples in 7 X s where .« and s.8 are within distance d of each
other.

SELECT *
FROM r, s
WHERE Distance(r.a,s.8) < d

Relations are updated during transactions. A transaction is a set of changes to a database state such
that the database is left in a consistent state when the transaction completes. The database state
may not change by any other means. If a transaction fails to complete, then the database reverts to
its state just before the attempted transaction.

A wview is a virtual relation defined by a database query expression. When the base relations upon
which a view is defined are updated through a transaction, the view is recomputed to reflect the
change. This virtual relation can then be treated the same as base relations in their use in subsequent
queries. A materialized view is a view that is stored to disk.

The heuristic of inertia [7] states that updates to relations involve only a small fraction of tuples
found in a relation. Assuming this heuristic, many researchers have developed techniques to update
materialized views incrementally. Only the portion of the view affected by the change is recomputed.
This is known as incremental view maintenance.

There are several strategies for incremental view maintenance including periodic update, deferred
update, and immediate update. Periodic updates are performed on snapshots [2, 12] only occasionally.
This approach allows for fast queries and updates, but can only be used in systems that can tolerate
stale data in the query results. Deferred updates [1, 5] delay updating views until the view is
needed in a query. This allows faster updates but slower query processing times. Immediate updates
are performed at the end of each transaction that modifies a base relation upon which a view is
defined. Algorithms for immediate incremental view maintenance updates are presented in [4, 7].
A comparison of immediate, deferred and query modification [15] is discussed in [8] along with a
performance analysis by experiments. A system that uses immediate, deferred, and periodic update
strategies in the same environment is described in [6].

Most, if not all, previous research on view maintenance has focussed on incremental maintenance
of views involving non-spatial data. In this paper we compare some different approaches to view
maintenance of spatial join queries. A new approach specifically designed for spatial join view
maintenance is presented. This is compared with two other view maintenance approaches for spatial
joins. A non-incremental method is also compared.

Section 1.1 defines the notation used in this paper. The incremental view maintenance algorithm for
joins is presented in Section 1.2. A rigorous proof of the algorithm presented in Section 1.2 is given
in Section 1.3. The algorithms for spatial join operators are described in Section 1.4 including the
new algorithm. Section 1.5 presents the results of our experimental evaluation of the different spatial
join operator algorithms. Conclusions are drawn in Section 2.

1.1 Notation

A schema is a set of attribute names denoted by an uppercase letter. The ordering of attributes
within the schema is not significant. For example, schema S = {a, 8} = {8, a} where o and g are
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attribute names. Relation names are denoted by lower case letters. To show that relation s is a
collection of related tuple values over the domain of schema S we write s(S). For a given relation,
the name of its schema is the same as the name of the relation, except that it is an uppercase letter,
unless otherwise stated. If S = {ay, a1, ..., ap_1} where each attribute o; (0 <4 < n) is an attribute
name, then we express the domain of a; as Dy;. The domain of S is Dg = Dgy X Doy X ... X Dq,,_,
and thus s C Dg. For some tuple 75 € s we denote the value of attribute « in tuple 75 as 7s[ap]-

The join of two relations ¢(Q) and r(R) is denoted g Xp r where P is a predicate defined on the
schema, attributes Q U R. Sometimes we write ¢ X r where P is understood. The concatenation of
two tuples 7, € ¢ and 7, € r is written 747,. The domain of tuple 747, is Dg x Dg. Without loss
of generality, we do not consider the order of attributes within a tuple to be significant, and thus
74Ty = Tr7q. If the schemas @ N R # (), then we assume that attributes are renamed as appropriate
to avoid ambiguity when a tuple 7,7, is joined.

Let r(R) and s(R) be relations. Let the function insert(r,s) return all the tuples from relation r
and relation s as one relation (duplicates allowed). Let the function delete(r, s) return the tuples
found in relation r that have no equivalent counterpart among the tuples of relation s. In the case
of duplicates, only one duplicate tuple is deleted for r for each match found in s. As a means of
shorthand, let insert(r, s) = r W s and delete(r, s) = r — s. The insertion of a tuple 7, into relation s is
written s W7,.. The size or number of tuples contained in a relation r is denoted as |r|. For example,
suppose relation » = {(a,b),(a,b)} and relation s = {(a,b)} then r ¥ s = {(a,b),(a,b),(a,b)}, r —s =
{(a,b)}, and |r| = 2.

A differential table is an auxiliary relation associated with a base relation or intermediate query
result. A differential table contains all the tuples inserted into, or all the tuples deleted from, a
relation during a transaction. If s is the state of a relation before some transaction ®, then s’ denotes
the state of a relation after transaction ®. Symbol i; denotes the relation of tuples inserted into s
during transaction ®, and d; is the relation of tuples deleted during the transaction. Relations i,
and dg are the differential tables for relation s.

1.2 Incremental Update of Spatial Join Views

The view maintenance algorithm is described in terms of insert, delete and join operations on rela-
tions. Once the correctness of the incremental view maintenance algorithm is established, different
algorithms used for the join operation are described. These are compared experimentally and the
results presented.

Here are some assumptions. A tuple can be deleted and then reinserted during the same transaction.
A join operation is a binary operation in that it joins two input relations. Joins of more than two
relations can be achieved by nesting operations, e.g. ((r X s) X t). It is assumed that no attempt
will be made to delete a tuple from a base relation that is not already in the relation, in other words
(ds C s). Relations may contain duplicate tuples. If a relation has no specified key or discriminator,
then the value of the whole tuple is assumed to be the tuple disciminator. It is assumed that the old
version of each base relation (e.g. state of joined tables the last transaction) is available. It is also
assumed that differential tables i; and ds are available for each input relation.

The differential tables used here are similar to hypothetical relations [16]. For some relation r, the
intersections 4, Nr and 4, Nd, are not necessarily empty. This is in contrast to the disjoint property of
the tables described in [4]. The difference between hypothetical relations and our differential tables
is that no extra attributes are required. The schema of each differential table is the same as its
associated base relation. Another characteristic of this algorithm is that it does not require the use
of keys, or any addition bookkeeping information to accompany base relations or query results.
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Base relation update: Let relation ¢; be the tuples inserted into relation s during transaction ®.
The insertion update to s is expressed as s’ = sWi,. Let relation dg be all tuples deleted from relation
s during the same transaction. The deletion update to s is expressed as s’ = s — ds. By combining
these two expressions we get s’ = (s Wis) — ds. The parentheses show proper precedence needed in
the case that a tuple is inserted and deleted during the same transaction.

View update: Now, consider all views v in a database system. An update v resulting in v’ can be
expressed in terms of differential tables v' = (v Wi,) — d,. After the base relations in a system are
updated by a transaction, the differential tables are then computed for each view. Views depending
only on base relations are computed first followed by views depending on other views where their
dependencies have already been computed. The dependencies must not be circular. After all differ-
ential tables are computed for all views, the views are updated by inserting tuples contained in the
i, differential tables followed by deleting the tuples contained in the d, differential tables. Once this
is finished, the differential tables are cleared and the system is ready for another transaction. This
process allows for incremental updates of nested views.

Join update: Let j' = I’ X r be a join operation update after relation [ is updated during some
transaction ®. By substitution this expression can be rewritten in terms of the relation I’s differential
tables and the state of | before the transaction as 7' = (({ W4;) — d;) X r. The join operation is
distributive over the W and — operations, so this expression can be rewritten as j' = ((I X r) W (4; X
r)) — (d; X r). Substituting j for (I X r) the expression becomes j' = (j W (iy X r)) — (d; X r). The
(77 X r) term is the expression for the insert differential table of relation j, and the term (d; X r) is
the expression for the delete differential table for relation j. This gives us a simple expression for the
case when only one of the joined relations changes during a transaction.

The case when both of the joined relations change during a transaction is more complicated. Here
we derive an expression to compute the differential tables involving changes in both of the joined
relations. To create an incremental view maintenance algorithm for join, the following expressions
are used.

EXp. 1.2.1 ' = ((l G} ’il) — dl)

Exp. 1.2.2 o' =((rwi,) —d,)

Exp. 1.23 j' =1U'X7

Exp. 1.24 ' =((W4) —dy) X ((r¥i,) —d,)

Expressions 1.2.1 and 1.2.2 represent the update of two relations after a transaction. Expression 1.2.3
represents a join of those relations in terms of the state of the joined relations after a transaction. By
substitution of expression 1.2.1 and 1.2.2 into expression 1.2.3, the join operation can be expressed in
terms of the states of the joined relations before the transaction, and the differential tables. This is
shown in expression 1.2.4. To make expression 1.2.4 useful, the joins are distributed over the relation
addition (W) and subtraction (—) operations to produce expression 1.2.5. A proof of the correctness
of expression 1.2.5 is given in Section 1.3.

Exp. 1.2.5

3= (G Xr) 8 (I X60) (i Xip)) = (i X dyp)) = (ir X dy)))
— (((r X d) & (I X dy)) = (dr X dy))

The subexpressions of expression 1.2.5 form the basis for an algorithm to calculate the join view
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differential tables i; and d; (see expressions 1.2.6 and 1.2.7 below). Section 1.4 explains the algorithm
derived from these subexpressions.

Exp. 1.2.6
i = (G X ) 8 (X)) W (i X)) — (i X dy)) — (i X dy)
Exp. 1.2.7
dj = (((r X dy) & (I X dy)) — (dr X dy))

1.3 Correctness

In this section we prove the correctness of expression 1.2.5. Formal definitions of the addition, sub-
traction and join of relations are presented. Following the definitions, we present six rewrite rules
used in the proof of expression 1.2.5.

Definition 1.3.1 Addition of relations: Given relations s(S) and ¢(S), sWt = {7 : 7 € sV 7T € t},
duplicates allowed.

Definition 1.3.2 Subtraction of relations: Given relations s(S) and ¢(S), s—t={7:7 € sAT ¢ t}
where only one tuple element of s is removed for each matching element in .

Definition 1.3.3 Join of relations: Given relations s(S) and ¢(7) and predicate P defined on a subset
of SUT, sXpt={rem:7s € sAT €t AP(r5,71)}.

In the following, rewrite rules s, ¢t and v are relations and X, —, and W are binary operations on
relations. A sample proof of a rewrite rule is found in Appendix 3.

Rule 1: Distribution of join over subtraction
(s—t) Mo+ (sXv)—(tXv)

Rule 2: Distribution of join over addition
(sWi) Mo+ (sXo)W (t X o)

Rule 3: Commutativity of join
sHNt+—tNs

Rule 4: Associativity of subtraction
s—(tWo) «— (s—t)—w

Rule 5: Associativity of addition
(sWt)Wov+— s (tWw)

Rule 6: Associativity of subtraction of subset relations
(s"Wt)—v+—sW(t—v)ifvCtVsnu=10
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Rule 7: Commutativity of addition
s”Ut<+—1tWs

By successively applying rules 1, 2 and 3 to expression 1.2.4, the join operators are pushed down
to the lowest possible level. Rules are then applied to rearrange the join terms. The rewrite rules
used for each step are indicated by the numbers inside curly braces at the end of each line. For ex-
ample, {3,5} indicates one or more applications of rule 3 followed by one or more applications of rule 5.

Proof:

j’ = ((l L'!'Jil) - dl) X ((T w 7;1") - dr)
{expression 1.2.4}

= ((l w il) X ((r Lﬂir) - dr)) - (dl X ((T & 7;7*) - dr))

{1}
= (((r¥iy) X (1 ¥4)) — (dr X (1 W4))))
= (((rwir) X d) — (dr X dy))
{3,2}
= (((r ¥ wa)) W (i X (W5))) — (X dy) ¥ (i X dy)))
— (((r X dy) W (i X dy)) — (dr X dy))
{3,2}
=(((EXr) (i X))y (X)W (i Xir)))
— (I Xdp) ¥ (i X dy))) — (((r Xdy) & (ir X dy)) — (dr X dy))
{3,2}
=((UXr) e (X)) ([ X i) (i Xip)))
= (X dr) W (i M dy)) W (((r Xdy) W (i X dy)) — (dr X dy))) 0
4
e d. C r is true by assumption.
e d. Cr=(dXd)) C(rXNd)
= (dr X dl) - ((7‘ X dl) W (ir X dl))
3= (X)W (i X)) (X i) W (i Xir)))
= ((((t ™dp) W (i X dr)) W ((r X dy) W (ir X dy))) — (dr M dy)) ©
6
= (I Xr) (o X)) (X)W (i X))
= (@ Xdp) W (I X dy) & ((r X dy) W (i X dy)))) = (dr X dy)) 75
7,5

(I Xr) @ (5 X)) @ (X)W (5 X))
— (o Xodr) & ((ir Xody) W ((r X dy) (I X dy)))) — (dr X dy))
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{7,5}

= (X)W (@ X)) e (X)W (i X))
— ((((a X dy) & (i Xodp)) ® ((r X dy) © (I X dy))) = (dr X dy))

{5}

e d, C r is true by assumption.
e d. Cr=(dXd)) C(rXNd)
= (dr X dl) - ((7‘ X dl) & (l X dr))
Jh = Xr)w (i X)) @ (X)W (4 M)
= (@ Xdp) W (ir Xdy)) W (((rXdy) W (IXdyr)) = (dr X dyp))) ©
6

= (X)W (i Xr) W (M) W6 X))
= (i X dy) W (i X dy))) — (((r X dp) & (I Xd,)) — (dr X dy))

{4}

= (™)@ (0 X)W (X)) @ (i X))
- ((ll X dr) W (ir X dl))) - ((("" X dl) W (l X dr)) - (dr X dl))

{5}

e dy CIAd, Cristrue by assumption.
e d; Cl= (iy Xdy) C (ir XI)
ed, Cr=(iyXd,) C (4 Xr)
o (i, Xdy) C (4 WI) A (4 Xd) C (5 X7)
= (0 X dp) W (i X dy)) C((( X)W (I X6r))
= (0 X dp) W (ip X dy)) C (@ X)W (M) (i Xir)))
= (X)W (6 Xr) Y (X)W (G X))
= ((a™dp) W (i X dy))) — (((rXd) W (I Xdy)) = (dr X dy)) ©
6

= (X)W (((( X)W (X)W (i X))
- (il X dr)) - (ir X dl))) - (((T X dl) w (l X dr)) - (dr X dl))

{4}

= (™) 8 ((((( X r)©(X) W (i X))
— (i X dy)) = (ir X dy))) = (((r X i) & (X dy)) = (dr X dy))

{5}

= expression 1.2.5
{substitution of j for (I X r)}



Technical Report CS-TR-4175, CAR-TR-952, University of Maryland, College Park, MD, August 20008

1.4 Spatial Join Operator Algorithms

Converting expression 1.2.5 into an algorithm is straightforward. Given below is the function
Incremental _View_Update(). It computes the differential relations for an incremental join update
after a transaction ® has taken place. The resulting relation i; contains all the new tuples to be
added to the join result, and d; contains the tuples to be deleted. Input relations [ and r are the
state of the joined relations before the transaction. Input relations i; and 4, are the tuples inserted
into the joined relations as a result of transaction ®, and relations d; and d, are the deleted tuples.
The superscripts shown on the join operators in the following algorithm distinguish them to aid in
further discussion.

function Incremental_View_Update(l, i, dj, 7, i, d;)
return two relations
begin
ij < (4 X0 T)
1 i W (l XL ir)
1 i; ¥ (4 X2 ir)
ij iy — (4 X3 dy)
1j 15 — (ir X4 dy)
d]' — (7" X5 dl)
dj < d; W (I X6 d,)
d; « d; — (dr X7 dy)
return ¢; and d;
end

The question is how to implement the join operations used in Incremental View_Update(). Here
we describe different algorithms for join operations. Each of the join operation algorithms will be
compared experimentally for performance within function Incremental_View_Update() in Section 1.5.

The nested loop join [14] is a classic algorithm to implement spatial and non-spatial joins. The
following function implements a nested loop join. Parameters s and ¢ are the relations s(S) and ¢(7')
to be joined. Parameter P is the join predicate defined on a subset of S UT. For two given tuples
7s € s and 7y € t, if P(74,7¢) is true, then the tuples are included in the join result; otherwise they
are omitted. Relation j is returned as the function value. The schema of j is the concatenation of
schemas S and T where attribute names in the intersection of S and T are appropriately renamed
to avoid conflict.

function Nested_Loop_Join(s,#,P) : return relation
begin
G0
foreach tuple 75 € s do
foreach tuple 7 €t do
if P(7r5, %) = TRUE then
J JWUTsTy
endif
endfor
endfor
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return j
end

When predicate P is a check for some minimum distance between spatial attributes, then the join is
called a spatial join. For example, P = distance(7s[c], 7t[8]) < d where @« € S and 8 € T and d is
a nonnegative scalar value. The Nested_Loop_Join() requires |s| scans of relation ¢ and one scan of
relation s.

Using an indexed spatial join algorithm, the number of disk accesses can be greatly reduced. The
indexed spatial join algorithm that we use in our experiments is called the incremental spatial join [9].
We denote this algorithm as Incremental_Spatial_Join(). The algorithm works using spatial indices
on the join attributes of each relation. In our case, the type of spatial index used is the PMR
quadtree [13]. The indices form a tree structure where nodes cover a spatial extent defined by a
polytope whose faces are orthogonal to the coordinate axes (e.g., a 2D rectangle, a 3D parallelepiped,
etc.). Each bucket contains either a collection of spatial features (leaf nodes), or smaller buckets (gray
nodes). The algorithm works by descending the index trees and maintaining a priority queue of object
pairs (buckets or features), one object from each index, sorted by distance. When a pair of objects
(A1, A2) is pulled off the priority queue and one of the objects, say A1, is a bucket, then for each
object w found in bucket A1, a pair (w, Ag) is reinserted into the priority queue. When the next pair
of objects pulled off the queue are both features, then they are reported to the caller. The algorithm
is used by initializing a search, then repeatedly calling a function that reports one pair of features
for each call. Each pair of features reported is incrementally farther apart than the previous.

Function One_Index_Spatial_Join() shows a new spatial join operation algorithm. It is designed for
use when the size of one of the join relations is known to be very small relative to the other.

function One_Index_Spatial_Join(s, a, ¢, 3, d)
: return relation

begin
1. 5«0
2. foreach tuple 75 € s do
3. Initialize_Incremental Nearest_Neighbor(7s[c], £, 8, d)
4. while Incremental_Nearest_Neighbor_Not_Finished() do
5. 7¢ < Next_Incremental_Nearest_Neighbor()
6. ¢ J W Ty
7. endwhile
8. end
9. return j
end

Parameters s and ¢ are relations such that |s| << |t|. Parameter « € S and § € T and are both
spatial attributes. Parameter d is a nonnegative scalar value. It is assumed that an index on the
spatial join attribute § of relation ¢ is maintained. The algorithm iterates through each tuple of
relation s. For each tuple 7, € s it invokes the incremental nearest neighbor algorithm as described
in [10].

The incremental nearest neighbor algorithm incrementally reports each successive tuple 74 € t where
7¢[B] is the next closest spatial feature to 75[a]. The incremental nearest neighbor algorithm is
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initialized in line 1. The while loop in lines 4 to 7 iterates until all tuples 7 in relation ¢ have been
reported such that distance(7s[a], 7[(]) < d.

1.5 Analysis

The join operations used in Incremental_View_Update() are the focus of the analysis. We compare the
performance between three different versions on some test data sets and queries. We also compare
these three incremental methods to that of recomputing queries from scratch after updates.

Each join operation in algorithm Incremental_View_Update() is identified with a superscripted number
to distinguish it in the following discussion. For example, the join operation shown in the sixth line
of Incremental_View_Update() , dj < (r X° d;), is identified as join operation X°. A range of join
operations is indicated using a hyphen. For example, the notation X' ~3 refers to join operations X1,
M2, and X3. A list of join operations is indicated using a comma. For example, the notation X2*
refers to join operations X2, and X*.

Version 1 of the incremental update algorithm uses the nested loop join to implement all the
join operations. In other words, for all the join operations in Incremental_View_Update(), X0~ 7=
Nested_Loop_Join(). By the heuristic of inertia, differential tables are much smaller than base re-
lations. The outer loop iterates over base relations when joining a base relation with a smaller
differential table. We refer to this as version 1.

Version 2 of the incremental update algorithm uses the indexed spatial join algorithm to implement
all the join operations. That is, for each spatial join operation in Incremental_View_Update() the
Incremental_Spatial_Join() algorithm is used. We refer to this as version 2.

Version 3 is a little more complicated. Joins between a differential table and a base relation (e.g. rela-
tion [ or r) are performed by One_Index_Spatial_Join(). In other words, X%!>6= One_Index_Spatial_Join()
For the other join operations X?3%7= Nested_Loop_Join(). We refer to this new algorithm as version
3 or the Spatial_Join_Incremental_Update() algorithm.

1.6 The Spatial Spreadsheet

The Spatial Spreadsheet [11] serves as a testbed for the algorithms presented in this paper (see
Figure 1). It is a front end to a spatial relational database. In the classic spreadsheet paradigm,
cell values are non-spatial data types whereas in the Spatial Spreadsheet, cell values are database
relations.

The purpose of the Spatial Spreadsheet is to combine the power of a spatial database with that
of the spreadsheet. The advantages of a spreadsheet are the ability to organize data, to formulate
operations on that data quickly through the use of row and column operations, and to propagate
changes in the data throughout the system. The Spatial Spreadsheet is made up of a 2D array of cells.
Each cell in the Spatial Spreadsheet can be referenced by the cell’s location (row, column). A cell
can contain two types of relations: a base relation or a query result. A query result is a materialized
view [7] defined on the base relations or other materialized views. The user can pose a simple query
in an empty cell. For instance, a cell might contain the result of a spatial join between base relations.
Simple queries are operations like selection, projection, join, spatial join [9], window [3], nearest
neighbor [10], etc. Simple queries can be composed to create complex queries by using the result of
one simple query as the input to another. If a base relation is updated, the effects of those changes
are propagated to other cells. This is known as view maintenance. Due to the nature of the Spatial
Spreadsheet, view maintenance is performed immediately. The displays of the spreadsheet must be
updated immediately to reflect changes for the user.
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Figure 1: The Spatial Spreadsheet

1.7 Experiment Results

In the experiment, a test spatial join query @ is performed between two base relations a and b. Each
base relation initially contains 1000 tuples. Each tuple has a 2D point feature attribute. All point
features are distributed uniformly over a square area. The range of possible z and y coordinate values
for each point is [0,1). Each relation is updated 30 times from transactions during each experimental
run. A fixed number of N tuples are changed per relation during each of the 30 transaction updates
within a run. The number N varies from run to run but not from transaction to transaction within a
run. A tuple is changed by deleting it and replacing it with a new tuple. A deleted tuple is replaced
with a new tuple such that the coordinate values of the new point feature within the tuple are within
5% of the coordinate values of the old point feature. For example, a point feature at (0.5,0.5) may
be moved to (0.54,0.54) but not to (0.6,0.6) since (0.54 — 0.5) < 0.05 (less than 5% change), but
(0.6 —0.5) > 0.05 (more than 5% change). The test query @ joins the point features found in relation
a to point features in relation b that are within a distance of 0.05 coordinate units of each other.
Distance is measured using the Euclidean distance metric. The number of tuples changed per relation
per update varies over 5 sets of runs where N =2,4,8,16, and 32.

Figure 2 presents a graphical summary of the experiments. The z-axis is the number of tuples changed
per update. The y-axis is the time needed to recalculate the spatial join result in microseconds. Each
data point is the average update time calculated from the 30 updates in each run. The wversion 1
algorithm is never faster than any of the other algorithms. Only two data points are shown for the
version 1 algorithm because the runtime is very large for values of N greater than 4. The non-
incremental algorithm, version 2, and the version 3 algorithm converge at around 32 changed tuples
per transaction update per relation. When the base relations change by 8 tuples per transaction
update per relation, the wversion 2 algorithm is 6.8 times faster than the non-incremental method,
the version 3 algorithm (our new Spatial_Join_Inc_Update() algorithm) is 3.4 times faster than the
version 2 algorithm, and is 23.1 times faster than the non-incremental algorithm.

2 Conclusion

The Spatial_Join_Inc_Update() algorithm, known as wversion 3, yields significant performance im-
provements under experimental conditions. The next best algorithm is version 2, which uses the
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Figure 2: Experiment results

Incremental_Spatial_Join() for all join operations.

The operation j' = (5 W (i; X r)) — (d; X r) requires three indices (2 new ones) for an index-based
spatial join algorithm such as the incremental spatial join [9], one for each relation r, i;, and d;.
The size of the tables i; and d; are small, 4| << |r| and |d;| << |r|, so the time needed to create
the indices is relatively small; however, they will still require some disk accesses during processing.
Differential tables can be loaded into memory once and used over and over again if no indices need
to be created on them. This is one reason why the new Spatial_Join_Inc_Update() algorithm (version
3) performs better for small values of N. To more fully characterize the conditions under which the
version 3 algorithm outperforms the others, more testing is needed. For future work we plan to vary
the size of the base relations, vary the join distance, and join other types of spatial features in our
experiments.
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3 Appendix: Rewrite Rule Proof

In this appendix, a sample proof of one of the rewrite rules is presented. The following definitions
are used in the proof.

e Definition 3.1 Equality of tuples: Let tuple 74 € s(S) and tuple 74 € ¢(S). If Vo € S : 75[ar] = 7¢[q]
then 74 = 7.

e Definition 3.2 Subtraction of tuples: Let tuple 7, € s(S) and tuple 7, € t(S). If 7, = 7 then
7o — T =0 else T, — T = T,

e Definition 3.3 Join of tuples: Let tuple 75 € s(S) and tuple 74 € ¢(T'). Consider a join operation
s Mp t. P is a predicate defined on a subset of SUT. If P(7,7¢) is true then 7,1 € (s Xp ) else
TsTt & (s Mp t).

In the following proof we consider a distinct set of tuples 75 € s(S), 7 € t(S), and 7, € v(V), and a
join operation Xp where P is a predicate defined on SU V.

Rule 1: (s —t)Xuv+— (s Xv) — (£t X )

Proof:

The proof is presented in the form of truth table in Figure 3. The first three columns of the truth
table represent all the possible cases that we need to consider. The cases where predicate 7, = 74 is
true and P(7g,7,) # P(7¢,7y) are not shown. These states are not possible. If 7, = 7 is true, then
P(7s,Ty) = P(7¢, 7y) must be true. The value of the predicate in column 4, 75 € (s —t), is the inverse
of predicate 7, = 1. This follows from the definition of equality of tuples (Def. 3.1) and the definition
of the subtraction of tuples (Def. 3.2). The value of the predicate in column 5, 7,7, € ((s — t) Xp v),
is false if predicate P(7s, 7,) in column 2 is false by the definition of the join of tuples (Def. 3.3). The
value of the predicate in column 5 is also false if 75 € (s — t) is false in column 4 since a tuple can not
be joined if it doesn’t exist. If P(7g,7,) is true and 75 € (s — t) is true, then 757, € ((s — t) Xp v) is
true. The predicate 757, € (s Xp v) in column 6 is true if predicate P(7, 7,), column 2, is true, else it
is false. This follows from the definition of the join of tuples (Def. 3.3). The predicate 747, € (t Xp v)
in column 7 is true if predicate P(7, 1), column 3, is true, else it is false. This also follows from the
definition of the join of tuples (Def. 3.3). Finally, in column 8, predicate 757, € ((s Xp v) — (t Xp v))
is true if predicate 747, € (s Xp v) in column 6 is true and 747, € (t Xp v) in column 7 is false. It is
also true if 747, € (s Xp v) in column 6 is true, and 747, € (¢ Xp v) is true, and 7, = 7¢ in column
1 is false. In all other cases, predicate 757, € ((s Xp v) — (¢ Xp v)) is false. This follows because if
TsTo € (8 Mp v) is false, then 747, does not exist in the left operand of the subtraction, and will not
be in the result of the subtraction. If 747, does exist in the left operand of the subtraction operation,
then it can be removed if there exists an equivalent tuple in the right operand (Def. 3.2). Otherwise
it will not be removed and 7,7, will be included in the resulting relation of the subtraction operation.
By examining the table in Figure 3 we see that either 757, ¢ ((s —t) Xp v) A 757y & ((s Xp v) — (t Xp
v)) is true or 757, € ((s — t) Xp v) A 757y € ((s Xp v) — (¢ Mp v)) is true. In other words, column 5,
TsTw € ((8 —t) Xp v), and column 8, 7,7, € ((s Xp v) — (t Xp v)), match in every row. Therefore rule
1 holds. O

The proofs of the other rewrite rules are similar.
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Ts =1 | P(7s,70) | P(7t,70) Ts € TsTy € TsTy € TiTy € TsTy €
((s—t)Xp o) || (sXpw) | (tXpwv) | ((sXpwv)—(tXpwv))

w
= | 33 A

H| 3| ™| = | =
RS Rl R 1 Resl Res
H| = 3| = 3| =
sl RS Rl R sl Res'
H| = 3|3 ==
1 Res] sl et Rl les!
IRl Rl RestRes

Figure 3: Truth table where T is TRUE and F is FALSE. The conditions (73 = 7¢) =
T and P(7s,7y) # P(7¢, 7») are not shown since these states are not possible.

The proofs of the other rewrite rules are similar. Due to space limitaitons they are not presented
here.



