Visualization of Dynamic Spatial Data and Query Results Over
Time in a GIS Using Animation *

Glenn S. Iwerks and Hanan Samet!
Computer Science Department, Center for Automation Research,
Institute for Advanced Computer Studies
University of Maryland, College Park, Maryland 20742
{iwerks,hjs}@cs.umd.edu

Abstract

Changes in spatial query results over time can be visualized using animation to rapidly step
through past events and present them graphically to the user. This enables the user to visually
detect patterns or trends over time. This paper presents several methods to build animations of
query results to visualize changes in a dynamic spatial database over time.

Keywords: dynamic spatio-temporal data, visualization, animated cartography

1 Introduction

To help detect patterns or trends in spatial data over time, animation may be effective [10]. Alert-
ers [2] or triggers [18] may be used to determine when a particular database state has occurred,
but it may be desirable for the user to be aware of the events leading up to a particular situation.
For example, a trigger can notify the user when vehicles enter a particular area of interest. When a
trigger is fired the user knows that an event has occurred but does not know what led up to the event.
In some cases it may be sufficient for the user to simply monitor the display as events occur, but if
the amount of time between events is very long or very short, this may not be feasible. Depending on
the situation, events may take hours, days, or even years to play out. This can make it difficult for
the user to visually detect associations between events that occur far apart in time. One approach is
to render spatio-temporal information in a static map [3, 10] but these can be confusing, and hard to
read. Alternatively, the display output may be captured when data is processed and then sequenced
into an animation. Using animation techniques, changes in spatial query results over time can be
viewed, rapidly stepping through past events. This paper presents several methods to accomplish
this result.

In this paper we address the display of 2D spatial features changing over time in a geographic
information system (GIS). A GIS is a spatial database containing georeferenced data. A spatial
database is defined here as a database in which spatial attributes, such as points, lines, and polygons
can be stored using a relational data model. A table of related attributes is called a relation. A tuple
in a relation is one instance of these related items. Base relations in a relational database are part of

*VISUAL’00, pages 166-177, Lyon, France, November 2000
tThe support of the National Science Foundation under Grant ETA-99-00268 and IRI-97-12715 is gratefully
acknowledged.

VISUAL’00, pages 166-177, Lyon, France, November 2000 2

the relational data model. A view in a relational database is a query defined on base relations and
made available to users as a virtual relation. A view may be materialized, or in other words, stored
on disk so that the view need not be recomputed from the base relations each time it is used in further
queries. Nevertheless, a materialized view must be updated when the base relations are modified
by a transaction. Updating materialized views is also known as view maintenance [4]. A database
transaction is a set of changes to a database state such that the database is left in a consistent state
when the transaction is complete. If a transaction fails to complete, then the database reverts to the
previous state just before the transaction began.

The remainder of this paper is organized as follows. Section 2 discusses background work in the area.
Section 3 presents some algorithms for creating and viewing animations of spatial query results as
they change over time. Concluding remarks and plans for future work are presented in Section 4.

2 Background

Most, if not all, previous applications of animation to this domain have been to visualize changes in
base data rather than to database query results [3, 10, 17]. In general, most previous methods render
spatial data in a bitmap. One bitmap is created for each discrete time step in a series. The bitmaps
are then displayed in succession creating an animation, or in other words, animated maps. This is
also known as animated cartography.

2.1 Animated Cartography

Visualization of georeferenced spatio-temporal data has been a topic of study for over 40 years [3]. One
approach is to use static maps where temporal components are represented by different symbols or
annotations on the map. Another approach is to use a chronological set of ordered maps to represent
different states in time [11], sometimes known as strip maps. With the advent of more powerful
computers and better graphics capabilities, animated maps are increasingly used. Animation is used
in the presentation of meteorological data in weather forecast presentations to show changes over
time [17]. Animated cartography is also used for decision support in disease control to visually
detect patterns and relationships in time-series georeferenced health statistics [14, 13]. Animation is
used in the study of remote sensing time-series data [15, 16]. In [9] animated cartography is used in
the presentation of urban environmental soundscape information for environmental decision support.
The use of animation of spatio-temporal data in non-cartographic fields is presented in [8] and [12]
to visualize dynamic scientific spatio-temporal data. The effectiveness of animation techniques to
present time-series cartographic data to a user is studied in [10]. The study concluded that animation
may be able to help decrease the amount of time needed for a user to comprehend time-series spatial
data and to answer questions about it compared with other methods.

2.2 The Spatial Spreadsheet

The Spatial Spreadsheet [7] serves as a testbed for the algorithms presented in this paper (see
Figure 1). It is a front end to a spatial relational database. In the classic spreadsheet paradigm,
cell values are non-spatial data types whereas in the Spatial Spreadsheet, cell values are database
relations. The purpose of the Spatial Spreadsheet is to combine the power of a spatial database
with that of the spreadsheet. The advantages of a spreadsheet are the ability to organize data, to
formulate operations on that data quickly through the use of row and column operations, and to
propagate changes in the data throughout the system. The Spatial Spreadsheet is made up of a 2D
array of cells. Each cell in the Spatial Spreadsheet can be referenced by the cell’s location (row,
column). A cell can contain two types of relations: a base relation or a query result. A query result

VISUAL’00, pages 166-177, Lyon, France, November 2000 3

is a materialized view [4] defined on the base relations. The user can pose a simple query in an empty
cell. For instance, a cell might contain the result of a spatial join between base relations from two
other cells. Simple queries are operations like selection, projection, join, spatial join [5], window [1],
nearest neighbor [6], etc. Simple queries can be composed to create complex queries by using the
result of one simple query as the input to another. If a base relation is updated, the effects of those
changes are propagated to other cells by way of the query operators.

File - ‘Models Update - Ops Mode Input : Misc - Test i
Cell{0;0) freindiies: 3 Cell(1,0) hostiles § €ell(2,0) -obscurant:

-

Reset

croQuit

Cell(1,2) - query3

Cell(2,2) _ queryd

Figure 1: The Spatial Spreadsheet

3 Movie Mode

In the Spatial Spreadsheet, spatial attributes of a relation can be displayed graphically for each
cell. When a base relation is updated, the change is propagated from cell to cell and the changes
are reflected in each cell’s display. To visualize changes over time, the display layers are saved and
redisplayed in rapid succession like the frames of a movie. In the Spatial Spreadsheet, this is known
as “movie mode”. Each layer in the sequence is a movie animation frame. When contents of a base
relation or a query result change, the old display layer is removed and saved, and then a new layer is
rendered. When the user wants to play back the changes over time, layers are displayed successively
in order from the oldest to the most recent.

3.1 Example Query

For the purpose of illustration, consider an example spatial join query in a spatial database. A join
operation is a subset of the Cartesian product of two relations limited by a query predicate. The
predicate is defined on the attributes of the two relations. For each tuple pair in the Cartesian
product, if the query predicate is true, then the tuple pair is included in the result. A spatial join
uses a query predicate defined on spatial attributes. An example spatial join query expressed in SQL
is shown below.

SELECT *
FROM Observer, Target
WHERE Distance(Observer.Location, Target.Location) < d

VISUAL’00, pages 166-177, Lyon, France, November 2000 4

In this example, the schema of relations Observer and Target is (Name, Location) where Name is
a string and Location is a point. The Distance() function returns the distance between two spatial
attributes. The result of the query contains all the tuples joined from the two relations where
attribute Observer.Location and attribute Target.Location are within distance d of each other.

Suppose at time ¢ relation Observer contains three tuples {(O1, (4,1)), (02,(3,3)), (03,(1,2))},
and Target has one tuple {(T'1,(4,2))} (see Figure 2a). Now consider the spatial join on these
relations as expressed in the SQL query given above where d equals 1. The resulting output is shown
in the first row of Figure 4 and graphically in Figure 3a. Now, suppose at time ¢y + 1 minute, the
Target relation is updated by deleting tuple (71, (4,2)) and inserting tuple (T'1,(3,2)). The output
of the recomputed spatial join is shown in the second row of Figure 4 and graphically in Figure 3b.
Subsequently, suppose at time #y + 4 minutes the target at location (3,2) moves to location (2, 2).
The new spatial join output is shown in the third row of Figure 4 and graphically in Figure 3c.

A A A

OZL 02£ OZL
l o AT1 1l o T1 1 ¢ oT1
03 03 T 03] |
01 01 o1
0,0 t > (0,0 > (0,0 ! >
(a) (b) (c)
to to + 1 minute to + 4 minutes

Figure 2: Graphical representation of spatial attributes in relations Observer and
Target at different times. Point attributes of relation Observer are denoted by the
e symbol and labeled Oi. Point attributes of relation Target are denoted by the o
symbol and labeled Ti.

y N A 'y
ozf
AT oT1] L1
03T §
o1
0,0 = 0. > (0, >
(a) (b) (c)
to to + 1 minute to + 4 minutes

Figure 3: Graphical representation of the spatial join result between relations
Observer and Target within a distance of 1 at different times. Point attributes
of relation Observer are denoted by the e symbol and labeled Oi. Point attributes
of relation Target are denoted by the o symbol and labeled Ti.

3.2 Scan and Display

One can display results after a view is computed, or display results while the view is being com-
puted. Function Scan_And_Display(), given below, is a simple function for rendering a frame from a
materialized view, or base relation after an update. Input parameter R is a relation to be displayed.

VISUAL’00, pages 166-177, Lyon, France, November 2000 5

Time | Namel | Locationl | Name2 | Location2
to 01 (4,1) T1 (4,2)
to+1 | 02 (3,3) T1 (3,2)
to+4 | O3 (1,2) T1 (2,2)

Figure 4: Spatial join result between relations Observer and Target within a dis-
tance of 1 at different times.

Parameter movie is a sequence of animation frames. Each call to Scan_And_Display() adds a new
frame to the animation.

In line 1 Create_New_Frame() creates a new animation frame. The outer foreach loop scans relation
R tuple-by-tuple. The inner foreach loop renders each spatial attribute in a tuple. Procedure
Render() invoked in line 6 is an implementation-specific procedure which performs the mechanics of
rendering a spatial feature into a movie animation frame. Render() may also display the current
animation frame to the user as it is drawn. The ‘| operator, used in line 9, appends the new frame
to the movie sequence. The modified movie sequence is the return value of Scan_And_Display().

function Scan_And_Display(R,movie): return movie sequence
begin
movie_frame < Create_New_Frame()
foreach tuple ¢ in relation R do
begin
foreach spatial attribute a in tuple ¢ do
begin
Render(movie_frame, a)
end
end
movie < movie | movie_frame
return movie
end

O WO ~NO O WN =

e

3.3 Process Movie

Building an animation durring query processing adds processing overhead, but avoids rescanning
the materialized view a second time. A movie frame is rendered durring processing using function
Process_Movie() given below. Input parameter @ is a query to be processed. Parameter movie is a
sequence of animation frames. Each call to Process_Movie() adds a new frame to the animation.

In line 1, a movie animation frame is created. Functions Process_First() and Process_Next(), in lines 2
and 9 respectively, process the query and return the next query result tuple. The while loop processes
each query result tuple ¢ until no more are generated. The foreach loop iterates through the spatial
attributes in tuple ¢. Attributes are rendered in line 7. A new animation frame is appended to the
sequence in line 11. The modified movie animation sequence is the return value of Process_Movie().

function Process_Movie((), movie) : return movie sequence
begin
1. movie_frame < Create_New_Frame()

2. t < Process_First(Q)
3. while(t#0) do

VISUAL’00, pages 166-177, Lyon, France, November 2000 6

4. begin
5. foreach spatial attribute @ in tuple ¢ do
6. begin
7. Render(movie_frame, a)
8. end
9. t < Process_Next(())
10. end
11. movie < movie | movie_frame
12. return movie
end

3.4 Play Movie

Procedure Play_Movie(), given below, is used to play a movie created by either Scan_And_Display()
or Process_Movie(). Parameter movie is a sequence of animation frames. The frame_duration input
parameter controls the animation frame rate. The main loop iterates through the movie sequence
and displays each frame. Procedure Show() is an implementation-specific procedure. It displays the
current_frame to the user. Procedure Wait() halts the execution of Play_Movie() for the time period
specified by frame_duration.

procedure Play_Movie(movie, frame_duration)
begin
foreach current_frame in movie do
begin
Show(current_frame)
Wait(frame_duration)
end
end

g WwWN

3.5 Variable Update and Playback Rates

The algorithms presented so far work well if updates occur at regular intervals. If updates occur
at random intervals, then the perception of temporal relationships between events may be distorted
durring playback. This occurs because procedure Play_Movie() displays each frame for the same
amount of time. Function Process_Variable_Rate(), given below, creates variable rate animations to
support irregular time intervals between updates.

function Process_Variable_Rate(Q, movie, transaction _times)
return two sequences
begin
movie_frame < Create_New_Frame()
transaction_times < transaction_times | Get_Last_Transaction_Time()
t < Process_First(Q)
while (¢ # () do
begin
foreach spatial attribute a in tuple ¢ do
begin
Render(movie_frame, a)
9. end
10. t < Process_Next(())
11. end
12. movie < movie | movie_frame

O ~NO O WN

VISUAL’00, pages 166-177, Lyon, France, November 2000 7

13. return movie and transaction_times
end

Function Process_Variable_Rate() is similar to function Process_Movie(). One parameter is added and
two lines are different. Parameter transaction_times is a sequence of numbers. Each element in
transaction_times is associated with a movie animation frame representing the time at which a
transaction took place resulting in the creation of the associated movie frame. The first element in
transaction_times cooresponds to the first element in movie, and so forth. The time of the last
transaction is returned by Get_Last_Transaction_Time() and is appended to the transaction_times
sequence in line 2. The function return value is the modified movie sequence and the modified
transaction_times sequence.

Procedure Play_Variable_Rate(), shown below, uses the transaction_times data gathered by Process_Variable_Rat:
to determine the duration of animation frames durring playback. At playback, the time between
frames is proportional to the time between update transactions. As an example, consider the query
given in Section 3.1. An update transaction occurs after one minute and the next one occurs after
another three minutes. The resulting animation has three frames. If the animation is played back
so that the duration of the first frame is 0.5 seconds, then it follows that the duration of the second
frame is 1.5 seconds. At this rate, playback is 120 times faster than realtime. The input parameter
dilation_factor controls playback rate. A value greater than 0 but less than 1 is faster than real-
time. A value greater than 1 is slower than realtime. If dilation_factor = 1, then playback will be
close to realtime plus some added time for processing overhead. The algorithm could be made more
precise by subtracting the processing overhead time from the computed frame_duration value. For
simplicity, processing overhead was not considered here.

procedure Play_Variable_Rate(movie, transaction_times, dilation_factor)
begin

1. current_time < first(transaction_times)
2. transaction_times < rest(transaction_times)
3. foreach nezxt_time in transaction_times do
4. begin
5. frame_duration < (next_time — current_time) * dilation_factor
6. current_frame < first(movie)
7. movie < rest(movie)
8. Show(current_frame)
9. Wait(frame_duration)

10. current_time < next_time

11. end

12 current_frame < first(movie)

13. Show(current_frame)

end

In procedure Play_Variable_Rate(), input parameter movie is a sequence of animation frames, and
transaction_times is a sequence of times. The function first(sequence) used in line 1 returns the first
element in a sequence. Function rest(sequence) used in line 2 returns a given sequence with its first
element removed. The foreach loop iterates through the remaining elements of transaction_times.
Each iteration of the loop displays an animation frame in the sequence. The frame durration is
calculated by multiplying the time between transactions by the dilation_factor in line 5. Lines
6 and 7 extract a animation frame from the movie sequence. Procedure Show() in line 8 is an

VISUAL’00, pages 166-177, Lyon, France, November 2000 8

implementation-specific procedure that displays the current_frame. Procedure Wait() halts execu-
tion of the algorithm for a time period specified by frame_duration. Lines 12 and 13 display the
last frame of the movie sequence.

3.6 Variable Update Rate and Fixed Playback Rate

At times, it may be desirable to export an animation using a standard fixed frame rate format for
insertion into a web page, or for some other purpose. Function Convert(), shown below, converts a
variable frame rate animation to a fixed frame rate animation. Basically, the algorithm sees how
many times it can chop up each variable length input frame into fixed length output frames. A
variable length interval is rounded off if the given output frame_duration does not divide evenly.
The remainder is saved and added to the next frame time.

In the Convert() function, parameter frame_duration is the duration of each frame in the fixed
rate output animation. Parameter dilation_factor controls the perceived rate of the output anima-
tion relative to realtime. The first seven lines of Convert() initialize local variables. In Line 7 the
transaction_times sequence is artificially extended by one more value. The value is added so the
last frame of the output animation sequence will have a duration. The duration of the last input
animation frame is arbitrary. In our case, the last input frame is artificially calculated to be equal to
the duration of the first input frame. The foreach loop iterates through all the remaining transaction
times. Each iteration of the loop processes one variable length input frame producing zero or more
fixed length output frames. It is possible that a frame may be droped if the duration of an input
frame is less than the duration of an output frame. For simplicity, this case is assumed rare and
is not considered here. Line 10 computes the dialated duration of an input frame. In line 11, the
variable duration input frame is chopped up into fixed duration output frames. Function floor(z) in
line 11 returns the integral portion of a decimal number z. In lines 12 through 17, the duration of the
input frame is rounded off to a multiple of the output frame duration given by frame_duration. The
remainder is saved to be added back in durring the next iteration of the loop. The modulo funtion
used in line 12 is as defined mod(z,y) = z — floor(z + y). Lines 18 through 21 generate the output
animation frames, and lines 22 through 24 move on to the next frame of the input animation. The
resulting output animation is the return value of Convert(). The output animation can be played
using procedure Play_Movie().

Figure 5 shows a trace of function Convert() on some example input. To see how this works, consider
the example from Section 3.1. In the example the first update transaction occurs after one minute
and the second update occurs after another three minutes. If time is measured in milliseconds,
then the input parameter transaction_times is the sequence (0, 60000, 240000). Let input paramter
frame_duration = 62.5ms (16 frames per second), and parameter dilation_factor = 0.01. Parameter
dilation_factor = 0.01 corresponds to a speed increase factor of 100. The left column of Figure 5
shows at what line number the action for that row was performed. A number in a cell indicates a
variable set to a new value. Boolean values indicate an expression evaluation result. Variables not
affecting the control flow are not shown.

function Convert(movie, transaction_times, frame_duration, dilation_factor)
return movie sequence
begin
movie_out < NULL
remaining_delta < 0
current_frame <+ first(movie)
movie < rest(movie)

Hw N

VISUAL’00, pages 166-177, Lyon, France, November 2000 9

5. current_time <« first(transaction_times)

transaction_times < rest(transaction_times)

7. transaction_times < transaction_times | (last(transaction_times)+
first(transaction_times) — current_time)

8. foreach nezt_time in transaction_times do

o

9. begin
10. delta < ((next_time — current_time) * dilation_factor)+
remaining_delta
11. frame_count < floor(delta + frame_duration)
12. remaining_delta < mod(delta, frame) * frame_duration
13. if remaining_delta > frame_duration + 2 then
14. begin
15. frame_count < frame_count + 1
16. remaining _delta < remaining_delta — frame_duration
17. end
18. for i + 1 to frame_count do
19. begin
20. movie_out < movie_out | current_frame
21. end
22. current_frame < first(movie)
23 movie < rest(movie)
24. current_time < next_time
25. end
26. return movie_out
end

4 Conclusion

Procedure Process_Variable Rate() is used to create a variable frame rate animation. Procedure
Play_Variable_Movie() is used to play that movie. These two algorithms have an advantage in the
Spatial Spreadsheet over other digital animation methods that use bitmaps or fixed frame rates. In
the Spatial Spreadsheet, the frames are maintained as display layers. These layers are stored in
an in-memory tree data structure that allows for zooming and panning. For each frame, the data
structure is quickly traversed and the features valid for a given time are displayed. In this way, the
user can play an animation of query results in the Spatial Spreadsheet, then stop the movie, pan and
zoom, and then replay the movie from the new perspective without loss of fidelity. This allows for a
more interactive animation. If the frames were mere bitmaps, then the image would become grainy
when zooming in too close. A variable frame rate movie may be converted for export to a fixed frame
rate format using the Convert() function described above. A minor difference between variable frame
rate and fixed frame rate is the loss of timeing acuracy between frames in a fixed rate format.

The algorithms presented here require materialized views to be recomputed from scratch after each
update to the view’s base relations. This is acceptable if a sufficiently large percentage of the
base relation tuples are altered during a transaction. In cases where only a few tuples in a base
relation are changed, it is more efficient to use incremental view maintenance algorithms [4] to
update materialized views. These algorithms calculate results using only the data that changed in
the base relations to avoid recomputing the entire result from scratch. To accomplish this, many
incremental view maintenance algorithms use differential tables. A differential table is a relation
associated with a base relation used in the definition of a materialized view. A differential table
contains all the tuples deleted or inserted into a base relation during the last transaction. Future

VISUAL’00, pages 166-177, Lyon, France, November 2000

line next current | delta | remaining | frame | remaining_delta
number | _time | _time _delta _count | > frame_duration + 2

2 0

8 60000

10 600

11 9

12 37.5

13 true

15 10

16 -25

24 60000

8 240000

10 1775

11 28

12 25

13 false

24 240000

8 300000

10 625

11 10

12 0

13 false

24 300000

Figure 5: Example trace of procedure Convert()

VISUAL’00, pages 166-177, Lyon, France, November 2000 11

work includes the development of movie mode algorithms to take advantage of incremental view
maintenance differential tables to improve efficiency.

References

(1]

2]

(3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

W. G. Aref and H. Samet. Efficient window block retrieval in quadtree-based spatial databases.
Geolnformatica, 1(1):59-91, April 1997.

O. Buneman and E. Clemons. Efficiently monitoring relational databases. ACM Transactions
on Database Systems, 4(3):368-382, September 1979.

C. S. Campbell and S. L. Egbert. Animated cartography: Thirty years of scratching the surface.
Cartographica, 27(2):24-46, 1990.

A. Gupta, I. S. Mumick, and V. S. Subrahmanian. Maintaining views incrementally. In Pro-
ceedings of the ACM SIGMOD Conference, Washington, D.C., May 1993.

G. R. Hjaltason and H. Samet. Incremental distance join algorithms for spatial databases. In
Proceedings of the ACM SIGMOD Conference, pages 237248, Seattle, WA, June 1998.

G. R. Hjaltason and H. Samet. Distance browsing in spatial databases. ACM Transactions on
Database Systems, 24(2):265-318, June 1999.

G. Iwerks and H. Samet. The spatial spreadsheet. In Visual Information and information
Systems: Third International Conference Proceedings, VISUAL’99, pages 317-324, Amsterdam,
The Netherlands, June 1999. Springer-Verlag.

B. Jobard and W. Lefer. The motion map: Efficient computation of steady flow animations. In
Proceedings of Visualization ’97, pages 323-328. IEEE, October 1997.

M. Kang and S. Servign. Animated cartography for urban soundscape information. In Proceed-
ings of the Tth Symposium on Geographic Information Systems, pages 116-121, Kansas City,
MO, November 1999. ACM.

A. Koussoulakou and M. J. Kraak. Spatio-temporal maps and cartographic communication.
The Cartographic Journal, 29:101-108, 1992.

M. Kraak and A. M. MacEachren. Visualization of the temporal component of spatial data. In
Proceedings of SDH 1994, pages 391-409, 1994.

K. Ma, D. Smith, M. Shih, and H. Shen. Efficient encoding and rendering of time-varying volumn
data. Technical Report NASA/CR-1998-208424 ICASE Report No. 98-22, National Aeronautics
and Space Administration, Langley Research Center, Hampton. VA, June 1998.

A. M. MacEachren, F. P. Boscoe, D. Haug, and L. W. Pickle. Geographic visualization: De-
signing manipulable maps for exploring temporally varying georeferenced statistics. In IEEFE
Symposium on Information Visualization, 1998, Proceedings, pages 87-94,156. IEEE, 1998.

A. M. MacEachren and D. DiBiase. Animated maps of aggregate data: Conceptual and pratical
problems. Cartography and Geographic Information Systems, 18(4):221-229, 1991.

VISUAL’00, pages 166-177, Lyon, France, November 2000 12

[15] R. E. Meisner, M. Bittner, and S.W. Dech. Visualization of satellite derived time-series datasets
using computer graphics and computer animation. In 1997 IEEE International Geoscience
and Remote Sensing, 1997. IGARSS ’97. Remote Sensing - A Scientific Vision for Sustainable
Development, pages 1495-1498, Oberpfaffenhofen, Germany, August 1997. IEEE.

[16] R. E. Meisner, M. Bittner, and S.W. Dech. Computer animation of remote sensing-based time
series data sets. In IEEE Transactions on Geoscience and Remote Sensing, pages 1100-1106,
Oberpfaffenhofen, Germany, March 1999. IEEE.

[17] F. Schroder. Visualizing meteorological data for a lay audience. IEEE Computer Graphics and
Applications, 13(2):12-14, September 1993.

[18] A. Silberschatz, H. F. Korth, and S. Sudarshan. Database System Concepts. McGraw-Hill, New
York, third edition, 1996.

