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Cars, aircraft, mobile cell phones, ships, tanks, and mobile robots all have the common property

that they are moving objects. A kinematic representation can be used to describe the location

of these objects as a function of time. For example, a moving point can be represented by the

function p(t) = −→x0 + (t − t0)−→v , where −→x0 is the start location, t0 is the start time, and −→v is

its velocity vector. Instead of storing the location of the object at a given time in a database,

the coefficients of the function are stored. When an object’s behavior changes enough so that

the function describing its location is no longer accurate, the function coefficients for the object

are updated. Because the location of each object is represented as a function of time, spatial

query results can change even when no transactions update the database. We present efficient

algorithms to maintain k-nearest neighbor, and spatial join queries in this domain as time ad-

vances and updates occur. We assume no previous knowledge of what the updates will be be-

fore they occur. We experimentally compare these new algorithms with more straight forward

adaptations of previous work to support updates. Experiments are conducted using synthetic

uniformly distributed data, and real aircraft flight data. The primary metric of comparison is

the number of I/O disk accesses needed to maintain the query results and the supporting data

structures.
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1. INTRODUCTION

Consider the following queries. For a cell phone, keep track of the nearest cell
tower. For a suspect getaway car, keep track of the nearest police cruiser. For
a robot explorer, keep track of the nearest maintenance robot. For a ship, keep
track of the nearest sonar tracking station. For each airplane, keep track of
every other airplane that is too close for safety. For each tank, keep track
of each target that is within firing range. For each robot explorer in a swarm
of robots, keep track of all neighboring robots that are within radio range.
For each unmanned air vehicle, keep track of every observation target within
5 miles.

Cars, aircraft, mobile cell phones, ships, tanks, and mobile robots all have
the common property that they are moving objects. They can all be modeled
conceptually as values that change as a function of time. In particular, this
article addresses geo-located objects whose position is represented as a function

of time p(t) = −→x0 + (t − t0)−→v , where −→x0 is the start location, t0 is the start time,

and −→v its velocity vector. These function coefficients −→x0 , t0, −→v , are stored in a
database. When the error, between the object’s actual location and the function
in the database describing its location, exceeds a predefined threshold, the
database is updated (i.e., the object’s course and speed are updated). Updates
consist of a set of insertions and deletions to the base relations. These are
applied incrementally to a query result in a manner similar to incremental
materialized view maintenance [Gupta et al. 1993].

The motion of objects can change the query result independently of up-
dates. An event is said to occur when the motions of a set of objects cause
the query result to become incorrect. An event is characterized by a set of
objects and the time at which the motion of those objects causes the query
result to become incorrect. One or more events can be precomputed and then
processed in temporal order to maintain the query result. When an event oc-
curs, the information about the objects involved in the event is used to cor-
rect the query result. It is important to note that an update is not an event
as it is defined here, but both events and updates can change the query
result.

One may observe that the first four of our motivational examples belong to
the category of nearest neighbor queries, while the other four are to spatial
join queries, and all of them need their answers maintained over time. This is
precisely the goal of this paper, to address the efficient maintenance of spatial
join and k-nearest neighbor queries on moving points.
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In maintaining queries, we assume no advance knowledge of what changes
may occur before they occur, as is the case in a real time system. Additionally,
we do not keep track of any past information about a point’s motion beyond the
last update.

Previous work on spatial k-nearest neighbor queries on static data includes
Arya et al. [1998], Hjaltason and Samet [1999], and Roussopoulos et al. [1995],
and for spatial join on static data includes Arge et al. [2000], Brinkhoff et al.
[1993], Hjaltason and Samet [1998], Lo and Ravishankar [1996], and Patel and
DeWitt [1996]. Objects represented as a function of time have been studied
in other domains such as simulation [Fujimoto 1990; SCIS 1996], and compu-
tational geometry [Basch et al. 1997]. For moving object databases, past re-
search includes indexing methods [Agarwal et al. 2000; Agarwal and Procopiuc
2002; Jensen and Saltenis 2002; Mokbel et al. 2003; Pfoser 2002; Saltenis et al.
2000; Tao et al. 2003a; Tayeb et al. 1998], ad-hoc queries [Saltenis et al. 2000;
Sistla et al. 1997], and continuous queries such as continuous window [Saltenis
et al. 2000; Sistla et al. 1997], within [Iwerks et al. 2003; Tao and Papadias
2003], nearest neighbor and k-nearest neighbor (k-nn) [Benetis et al. 2002;
Iwerks et al. 2003; Mokhtar et al. 2002; Raptopoulou et al. 2003; Song and
Roussopoulos 2001; Tao and Papadias 2003], spatial join [Tao and Papadias
2003], spatial semijoin [Iwerks et al. 2004], selectivity estimation [Tao et al.
2003b], and uncertainty [Pfoser and Jensen 1999; Wolfson et al. 1998]. Tem-
poral databases [Özsoyoǧlu and Snodgrass 1995] are a related topic to moving
object databases. See Güting and Schneider [2005] for a detailed survey of mov-
ing object databases.

Although there is a large body of works that have addressed problems similar
to the ones that we tackle in this paper (see Section 5), the distinct characteristic
of our work is that we assume settings in which the information about the
moving objects is represented function of time. This representation and, in
particular, the nature of the application domains and the impact that they have
on the updates of the moving objects, pose unique challenges for the efficient
maintenance of the correctness of query results. To the best of our knowledge,
none of the existing approaches would be appropriate for the domain in which
we conduct our experiments, that is, continuously moving aircraft data.

Our main contributions in this article are query maintenance algorithms
for k-nn and spatial join queries on continuously moving points that support
updates to the base relations. Although the examples given in this article are
1-dimensional (1D) and 2-dimensional (2D) and show static query points, the
techniques and algorithms are general and applicable to higher dimensions and
moving query objects.

The rest of this article is organized as follows: Section 2 contains definitions
and background on event-driven query processing. Section 3 presents event-
driven query maintenance algorithms for k-nearest neighbor and spatial join
queries. Section 4 presents experimental results. Section 5 describes some pre-
vious related work in this area. Conclusions and directions for future work are
discussed in Section 6. The Appendix gives more detailed pseudocode for the
algorithms presented in this article.
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2. EVENT DRIVEN QUERY PROCESSING FOR MOVING POINTS

2.1 Data Types

A common representation for moving points are sampled locations (sometimes
known as discretely moving points) [Nascimento et al. 1999]. For example, the
motion of an aircraft can be represented by sampling its location using radar
every 6 seconds and updating its position in the database each time the location
of the aircraft changes. The problem with this representation is that the costs
of updating the location of every aircraft in flight in a database every 6 seconds,
and maintaining queries between updates, are prohibitive.

Kinematic points are an alternative to the sampled location represen-
tation described in the previous paragraph. The location of a kinematic
[Nakamura and Yamane 2000]1 point is modeled as a function of time. In partic-
ular, the motion of a linear kinematic point is represented by the linear function

p(t) = −→x0 + (t − t0)−→v , where −→x0 is the start location, t0 is the start time, and −→v
its velocity vector. The coefficients of this function are stored in the database for
each point. When the actual location of the point diverges from the function by
some error threshold, the database is updated. For example, if the function in-
dicating the position of a particular aircraft shows it to be more than 2 nautical
miles from the position detected by radar, then the database is updated.

2.2 Events

Events are used to maintain query results on kinematic points as time ad-
vances. Events are processed to keep the query result consistent as the points
move. To support the maintenance of the results of these queries, we distinguish
between two basic types of events: within events (w-event), and order change
events (oc-events).

The first basic event type, the within event (w-event), occurs when a point
moves to a specified distance (say distance d ) from a query point. If a point is
moving closer to the query point, then the w-event is called an enter event. If a
point is moving farther away from the query point, then the w-event is called
an exit event. For example, imagine a circle of radius d centered on a query
point in a 2D space. An enter event occurs when a point moves from the outside
of the circle to the inside, and the reverse is an exit event. For a moving point,
the time of a within event is based on solving the Euclidean distance equation
|p(time), q(time)| = d for time, where p and q are two moving points. This
results in a closed form quadratic equation. See Raptopoulou et al. [2003] and
Tao and Papadias [2003] for more details on the computation of events between
pairs of moving points.

The other basic type of event is the order change event (oc-event). The oc-event
occurs when two points change order with respect to their distance from a query
point. For query point q, and two other points p1 and p2, the time of their oc-
events is based on solving the equation |p1(time), q(time)| = |p2(time), q(time)|

1Kinematics is defined as the branch of mechanics that studies the motion of a body or a system of

bodies without giving any consideration to its mass or the forces acting on it.
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for time (see Raptopoulou et al. [2003] and Tao and Papadias [2003] for details).
A special case of an oc-event is a nearest neighbor event (nn-event). Given a
query point and its current kth neighbor, the next nn-event is the soonest oc-
event to occur in the future out of all possible future oc-events between the
query point, the current kth neighbor, and any other point in the data set.
For example, suppose that q is a query point, pk is its current kth neighbor,
and S is a set of moving points S = {s1 · · · sn}. For each point si ∈ S, if si is
closer to q than pk , then the next oc-event ei of point si occurs the next time
when si moves to become farther from q than pk . On the other hand, if si is
farther from q than pk , then the next oc-event ei of point si occurs the next time
when si moves to become closer to q than pk . The next nn-event for q, pk , and
S is the soonest oc-event ei of all future oc-events {e1 · · · en}. The time of the
next nn-event is the next time in the future when the kth neighbor of q will
change.

2.3 Notation

A particular instance of a kinematic point is denoted as pt(x0, v, t0), where x0 is
the start location, t0 is the start time, and v is the velocity vector. We assume an
object-relational database environment in which a kinematic point data type is
an attribute in a relation r, referred to as a moving point, or simply a point. The
object attribute for the kinematic moving point object stores the last known
position (x0 at time t0) and velocity (v) of a point. When an update occurs,
the old x0, v and t0 are discarded, and replaced by new values. No previous
information about a point’s movement prior to the last update is saved, just as
no future information (i.e., future updates) is known or stored in the relation.
For simplicity, and without loss of generality, we consider relations having one
moving point attribute. The instance of a moving point attribute for some tuple
τ ∈ r is denoted P(τ ). Each instance of a moving point attribute value has its
own unique identifier. This allows us to index a relation on the point’s id and
retrieve the tuple to which the instance belongs. To indicate the tuple containing
some point instance p we write Tuple(p). The Euclidean distance between point
instances p and q at time t is ‖p, q, t‖ = |p(t), q(t)| =

√
(q(t) − p(t))2.

A w-event instance is denoted as w(p, t) where p is the moving point, and t
is the time of the event. It is important to remember that the query point and
distance are part of the query, and not explicitly represented in the w-event
notation.

An oc-event instance is denoted as oc(p, t) where p is the point involved, and
t is the time. This notation is only meaningful in the context of a k-nn query
where the current state of the query is known at time t. For example, consider
three points q, a and b where q is the query point for a 1-nn query. Now suppose
point a is the nearest neighbor to q and that point b is farther from q than a
just before time t. Also suppose that point b becomes the new nearest neighbor
after time t. Points a and b are equidistant from q at time t. This nn-event is an
order change event denoted as oc(b, t). There is no need to explicitly represent
query point q or the nearest neighbor a in the oc-event notation because they
are understood in the context of the query.
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Fig. 1. Example snapshots of 1D moving point attributes and events for time interval 1 ≤ t ≤ 7.5.

Arrow lengths indicate the distances traveled in one time unit.

For a given event e (either a w-event or an oc-event), P(e) denotes the moving
point explicitly represented in that event (e.g., P(w(p, t)) = p). The time of an
event is denoted as Time(e) (e.g., Time(w(p, t)) = t). For a null event (denoted
e = ∅), Time(∅) = ∞.

2.4 Event Example

For illustration, we present an example from Iwerks et al. [2003]. Figure 1
shows snapshots of a 1-dimensional data set {a, b, c} of moving points, and
a query point q at different instances of time where a = pt(1, 0.5, 1), b =
pt(3.5, 0.5, 1), and c = pt(6.5, −0.5, 1). The query point is q = pt(5.5, 0, 1), and
the query distance is d = 1.5. The shaded area around q indicates the region
along the line that is within distance d = 1.5 of q. A w-event, w(b, 2), takes
place at time t = 2 when point b comes within distance d = 1.5 of query point
q. An oc-event oc(b, 4) is shown at time t = 4 when point b is moving closer
to q than point c. At time t = 4, point c is the nearest neighbor prior to the
event.

2.5 Event Driven Query Processing Without Updates

In this section we present some simple algorithms to maintain the correctness
of the queries when there are no updates to the database over the duration of
the query. This section serves as a tutorial to give the reader a better sense of
how events are used in query processing, and of the properties of the different
types of events. Section 3 describes more sophisticated algorithms for query
maintenance that support updates.

Event-driven query processing is used to maintain queries on kinematic data
types. This is similar to event-driven simulation [Fujimoto 1990], but instead
of maintaining a simulation state, events are used to maintain query results as
time advances. Events are processed in turn to keep query results consistent
as points move.

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.
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Fig. 2. Simple Within().

Event-driven within query processing is performed by examining all within
events in temporal order while updating the result appropriately.2 Figure 2
gives a simple event-driven algorithm Simple Within() for maintaining a within
query. For example, consider the 1D scenario in Figure 1, and a query to find
all points within distance d = 1.5 of q. Initially, relation r containing tuples
with moving point attributes {a, b, c}3 is scanned (lines 2–6) in order to find the
initial result at time t = 1, W = {c}, and the next w-event for each point. The w-
events are inserted into priority queue Q , so that Q = {w(b, 2),w(c, 6),w(a, 7)}.
Function Dequeue(Q) removes the next event from Q and returns it. Function
next w event(p, q, d , t) returns the next event after time t when point p will
be at distance d from q, or it returns a null event with time stamp ∞ if no
such event exists. This is a simple computation based on solving the equation
|p(time), q(time)| = d for time. Since the positional components of a moving
point are expressed as linear functions of time, for dimensionality greater than
1, this is a quadratic equation with a closed form solution. If the roots exist
and are real numbers, then the next one greater than t is returned. Events are
processed one-by-one (Figure 2, lines 7–14). Lines 9–12 process enter events
by adding the incoming point to the within result and computing the next exit
event. Line 13 processes exit events by removing the point from the within
result. No new events are generated by exit events. Figure 3 shows a trace of
the event processing portion of the algorithm (lines 7–14) up to time t = 7 for
the 1D example in Figure 1.

An event-driven k-nn query processing algorithm finds the soonest oc-event
to occur in the future out of all possible oc-events. This is called the nearest
neighbor event (nn-event) because it will cause the k-nn query result to change.
A nn-event is an oc-event, but not every oc-event is a nn-event. Figure 4 outlines
a simple event-driven algorithm to maintain a simple nearest neighbor query.

The algorithm first scans r to find the nearest neighbor nn. The algorithm
then examines every point to find the next oc-event for that point. Function
next oc event(p, q, nn, t) returns the next oc-event for p after time t with respect

2There are cases when a point may only “touch” the event threshold and then move back (closer or

farther) to its former state. To simplify the presentation, these cases are not discussed here.
3For brevity, only the moving attributes of tuples are shown.
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Fig. 3. A trace of the Simple Within() algorithm for the example in Figure 1 through time t = 7.

Fig. 4. Simple Nearest Neighbor().

to query point q, and the nearest neighbor nn. This is a simple computation
based on solving the equation |p(time), q(time)| = |nn(time), q(time)| for time.
Once again, for dimensionality greater than 1 this is a quadratic equation with
a closed form solution. If the roots exist and are real numbers, then the next one
greater than t is returned. If no such event exists, then next oc event() returns
a null event with time stamp ∞. Recall that a null event e is denoted by e = ∅,
and the time of a null event is Time(∅) = ∞. When the next nn-event comes
due, the algorithm again examines every point and computes their oc-events to
find the next nn-event. Figure 5 shows a trace of the event processing portion
of the algorithm (lines 6–14) up to time t = 7.5 for the 1D example in Figure 1.

Note that Simple Nearest Neighbor() does not have a queue for events. This
is because the nearest neighbor changes on each nn-event thereby rendering
previously computed oc-events irrelevant. The asymptotic running time for
Simple Nearest Neighbor() is O(Enn ∗ N ) where Enn is the number of nn-events
processed throughout the course of the query maintenance, and N is the car-
dinality of r. The asymptotic running time for Simple Within() is O(N + Ew)
where Ew is the number of w-events processed throughout the course of the
query maintenance.

These simple algorithms serve to illustrate the fundamental differences in
processing nn-events vs. processing w-events. The oc-events from which the
nn-event is chosen are dependent on the query result which changes when an
nn-event occurs. This makes all previous oc-events computed with respect to
the old query result irrelevant. This requires computing new oc-events when
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Fig. 5. Simple Nearest Neighbor() algorithm trace for the example from Figure 1 through time

t = 7.5.

the query result changes. On the other hand, pending w-events do not become
irrelevant when the query result changes because w-events are independent of
the query result.

3. ALGORITHMS

In this section we describe event-driven query maintenance algorithms for k-nn
and spatial join queries on moving points with updates. We assume no prior
knowledge of updates before the updates occur.

Our Continuous Windowing (CW) algorithm presented in Iwerks et al. [2003]
filters the points considered for the k nearest neighbors using a circular window
query of fixed size. The size of the circular window must be large enough to
have at least k points inside the window throughout the entire life of the query.
Consequently, the size of the window needed is data dependent. The size of the
window used by the algorithm presented in Iwerks et al. [2003] was chosen in
an ad-hoc manner and remained fixed throughout the life of the query. This
leads to a window size that may be much larger than needed in many cases.

In this section, we present an improved CW algorithm (iCW) that dynami-
cally adjusts the window size when underflow occurs (see Figure 6). Addition-
ally, we also support updates to the query point in the iCW algorithm which
was not supported in the old CW algorithm presented in Iwerks et al. [2003].
The iCW algorithm is compared experimentally with the ETP algorithm from
Iwerks et al. [2003] which has also been enhanced to support updates. A de-
tailed version of the iCW algorithm is given in Appendix A.2, and a detailed
version of the ETP algorithm is given in Appendix A.1. In Section 4 we compare
the performance of these algorithms using both real data as well as synthetic
data. This extends the quality of the experimental observations reported in
Iwerks et al. [2003] which used only synthetic data, not real data.

In this section, we also present two new algorithms for the maintenance of
spatial join queries on moving points with updates. Maintenance of spatial join
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Fig. 6. Dynamic window resizing (left) allows the window to be small when query point starts in

a dense region of points. The window becomes larger when the query point moves to a less dense

region. A fixed window size (right) must be large enough from the beginning to never underflow

when the query point moves.

queries was not addressed in Iwerks et al. [2003] nor in Iwerks et al. [2004].
Iwerks et al. [2004] addressed spatial semi-join queries. A semi-join query can
be thought of as a massively scaled nearest neighbor query. That is, for every
moving point in one relation (a relation of query points) we find the nearest
neighbor (or k-nn’s) in the other relation. On the other hand, the variant of
the spatial join query that we consider in this article finds all pairs of moving
points, one from each relation, that are within a given query distance of each
other.

The approach for the spatial semi-join algorithm presented in Iwerks et al.
[2004] used a filtering technique similar to CW to find all the points within a
circular window, or about to enter a circular window centered on each query
point called the fuzzy set. This circular window is a different size for each query
point, and must be resized when underflow occurs (i.e., less than k points are
in the window). A spatial join can be conceptualized similarly in that for each
query point (all the points in one relation), all the points are found from the
other relation that are within a circular window around each query point. The
main difference in these problems is that (1) in the spatial join, the circular
window is the same size for each query point, and (2) in the spatial join there
is no underflow condition to worry about. If there are no points in the circular
window, then there are no tuples in the output for a given query point.

Another significant difference between our semi-join algorithm presented in
Iwerks et al. [2004] and the spatial join algorithms presented in this article is
that the semi-join algorithm presented in Iwerks et al. [2004] does not use a
w-event queue. The spatial join algorithms presented in Section 3.3 below use
a w-event queue to process w-events as they come due. This is used to keep the
query result as up-to-date as possible. On the other hand, the spatial semi-join
algorithm in Iwerks et al. [2004] stores w-events in a B-tree index. The index
is used to keep track of the fuzzy sets for each query point. The fuzzy sets are
examined when nn-events come due, not when w-events come due.

3.1 Extended TP (ETP)

In this section we describe the extended TP (ETP) algorithm originally pre-
sented in Iwerks et al. [2003] for maintaining the query result of a k-nn query.
The ETP algorithm is our extension of the continuous TP KNN algorithm
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Fig. 7. Example snapshots in time of 1D moving points, events, and updates up to time t = 3.5.

The arrow length indicates distance traveled in one unit of time. The shaded area indicates the

window used by the iCW algorithm presented in Section 3.2.

[Tao and Papadias 2003] wherein we add support for updates to the data points.
We further modified the algorithm here slightly from Iwerks et al. [2003] to
support updates to the query point. Figure 7 shows a 1D example.4 The ETP
algorithm is given below.5

procedure ETP(r, q, k)
1. Find the k nearest neighbors of query point q and the next nn-event using an

index on the points in relation r.
2. while true do
3. if a tuple is inserted into r then
4. if the new point in the tuple is closer to the query point q than the current

kth neighbor then
5. Report the change to the query result (the kth neighbor just became the

kth + 1 neighbor).
6. Find the new next nn-event (changing the kth neighbor invalidated the

old next nn-event).
7. else replace the current nn-event if the new point introduces a sooner

nn-event.
8. else if a tuple is deleted from r then
9. if the deleted point is in the query result then

10. Compute the k nearest neighbors and report any changes from the
previous query result, the new next nn-event, and update the query
result.

11. else if the deleted point is part of the next nn-event then
12. Find the new next nn-event.
13. end if-then
14. else if q is inserted then
15. Find and report the k nearest neighbors of q and the next nn-event.
16. else if q is deleted then
17. Report the query result as the empty set, and set the next nn-event to the

null event.
18. else if the next nn-event comes due then

4In our examples, the query point is not moving, but the ETP and iCW algorithms support moving

query points.
5We assume that there is no more than one query point at any given time.
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Fig. 8. ETP Events (k = 1).

19. if one of the points involved in the next nn-event is not already in the query
result then

20. Report the change to the query result.
21. end if-then
22. Find the new next nn-event.
23. end if-then
24. end while

The ETP algorithm employs an index to find the k nearest neighbors, or to
find the next nn-event (i.e., lines 1, 6, 10, 12, 15 and 22). In particular, the TPR-
tree [Saltenis et al. 2000] index can support k nearest neighbor queries and
next nn-event queries on moving point objects (see Sections 5.1.1, 5.2, and 5.4
for more details). The query result can be derived without resorting to the index
in the case of line 5 where we already have the k + 1 nearest neighbors, the old
query result, and the new point. Likewise, the query result can be computed
without using the index in line 19 since this is when a new point enters the set
of k nearest neighbors, and the old kth neighbor becomes the k + 1 neighbor.

An example nn-event and updates are given in Figures 8 and 9, respectively,
where K is the k-nn query result, enn is the nn-event, and tpr are the points in
the index (see Section 2.3 for notational conventions).

A trace of the ETP algorithm is given in Figure 10. At time t = 2.5, point p =
pt(2.75, 2.5, 2.5) is inserted. The oc-event for the new point p comes before the
oc-event of any other point in the entire data set, so p becomes the new nn-event
enn ← oc(p, 3.5). Point p is deleted at time t = 3.25. This means the oc-events
of the points in the data set must be examined again to find the next to occur.
In this case, the oc-event for b becomes the next nn-event. When the current
nearest neighbor c is deleted at time t = 3.5, point b becomes the new nearest
neighbor. The only other point in the data set now is point a with nn-event enn =
oc(a, 7.5).

3.2 Improved Continuous Windowing KNN (iCW)

In this section we describe the Improved Continuous Windowing k-nn algo-
rithm (iCW). The iCW is an improvement over the old CW algorithm presented
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Fig. 9. ETP Updates (k = 1).

Fig. 10. ETP trace for the example in Figure 7. Column 1 indicates the current time for each row.

Column 2 shows the update or event (if any) at time t. Column 3 shows the nearest neighbor (nn)

at time t. Column 4 gives the next nn-event enn.

in Iwerks et al. [2003]. Here we expand on the work done in Iwerks et al.
[2003] by introducing the ability to dynamically resize the circular query win-
dow when too few points are contained in it. This leads to an overall smaller
window size resulting in fewer w-events on the queue. In addition, the iCW
algorithm also extends the CW algorithm to support updates to the query
point.

The iCW algorithm is based on the observation that window queries are
easier to maintain on moving points than k-nn queries, because w-events
are fundamentally less expensive to process than oc-events (see Section 2 for
more background on event processing). The iCW algorithm filters points to
be considered as nearest neighbor candidates using a within query around
the query point. The within query must select at least k + 1 points as oth-
erwise underflow occurs. Figure 11 gives an illustrative example. Only the
points within this circular window are considered when finding the k near-
est neighbors and for computing the next nn-event. The iCW algorithm is given
below.6

6We assume that there is no more than one query point at any given time.
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Fig. 11. 2D example illustrating the iCW approach, where ⊗ is the query point q, d indicates

the radius of the circular window, • denote points inside the circular window, and ◦ denote points

outside the window. Figure (a) shows an example just before point p is deleted. Figure (b) shows

the same example just after point p is deleted leading to underflow and subsequent expansion of

the circular window.

procedure iCW(r, q, k, x)
1. Create a circular window containing k + x points centered on query point q in

relation r.
2. Compute and report the k–nn result, and compute the next nn-event (from the

points in the window).
3. Enqueue the next w-event, if any, for each point in r.
4. while true do
5. if a tuple is inserted into r then
6. Enqueue the next w-event, if any, for the new point in the new tuple.
7. if the new point is inside the circular window then
8. if the new point is closer to q than the current kth neighbor then
9. Report the change in the k–nn result, and compute the next nn-event.

10. else if the new point introduces a sooner nn-event then
11. replace the next nn-event.
12. end if-then
13. end if-then
14. else if a tuple is deleted from r then
15. if the deleted point is inside the circular window then
16. if the deleted point causes the circular window to underflow then
17. Enlarge the circular window to contain k + x points.
18. Compute and report the k–nn result, and compute the next nn-event.
19. Clear the queue and enqueue the next w-event, if any, for each point

in r.
20. else
21. Remove any w-event involving the deleted point from the queue.
22. if the deleted point is in the k–nn result then
23. Report the change in the k–nn result, and compute the next

nn-event.
24. else if the deleted point is involved in the next nn-event then
25. Compute a new next nn-event.
26. end if-then
27. end if-then
28. else remove any w-event involving the deleted point from the queue.
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29. else if q is inserted then initialize the k–nn query result and data structures,
as in lines 1, 2, and 3.

30. else if q is deleted then clear the k–nn query result and data structures.
31. else if a w-event comes due then
32. if the w-event is an enter event then
33. Enqueue the exit w-event for the point entering the circular window.
34. Replace the next nn-event if the entering point introduces an nn-event

that will occur sooner.
35. else if the w-event is an exit event that causes the window to underflow

then
36. Enlarge the circular window to contain k + x points.
37. Compute the next nn-event (the k-nn result won’t change).
38. Clear the queue and enqueue the next w-event, if any, for each point in r.
39. end if-then
40. else if the next nn-event come due then
41. Report the change to the k-nn result, and compute the next nn-event.
42. end if-then
43. end while

When the circular window is created or enlarged (lines 1, 17, 29, and 36), its
radius is computed as the average distance to the k + x closest points and the
k + x + 1 closest point to the query point q. For example, k = 1 and x = 2 in
Figure 11. These points are found by scanning the base relation and retaining
the k + x + 1 closest points. All the points in the window, or that will enter the
window in the future are kept in memory so that the k-nn query result and
the next nn-event can be computed from them without going back to the index
(lines 2, 9, 11, 18, 23, 25, 29, 34, 37, 41). A second scan of the base relation
is needed whenever the window is created or enlarged to compute the next w-
event for each point in r (lines 3, 19, 29, 38). The w-events can not be computed
during the first scan since the size of the circular window is not known until the
first scan is complete. Although there can be more than one future w-event for
any point in r, only the next w-event to occur for any given point is enqueued.
There is at most one w-event for each point in r on the queue. If a point in r
is outside the window, and will not enter the window sometime in the future,
then no w-event for that point will be enqueued. In general, a smaller window
leads to a smaller event queue since fewer points will enter it, so we can expect
the number of events on the queue to be significantly less than the number of
points in r. Note that there is only one pending nn-event at any given time,
whereas there are multiple pending w-events on the queue. Additionally, we
assume there can be 0 or at most 1 query point q at any given time (line 29).

Figure 12 shows an example trace of the iCW algorithm. At time t = 2.5, a
tuple with moving point p = pt(2.75, 2.5, 2.5) is inserted into relation r. Location
p(2.5) is farther from q than d = 1.5 so a new w-event w(p, 3) is added to the
priority queue Q . At time t = 3, the w-event is processed and p is added to
the set of points within the circular window W . Since the oc-event of p comes
before the oc-event of any other point in W , it becomes the new nn-event enn ←
oc(p, 3.5). At time t = 3.25, p is deleted, and the new nn-event, enn ← oc(b, 4), is
computed by examining the remaining elements of W = {b, c}. At time t = 3.5,
the nearest neighbor c is deleted.
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Fig. 12. A trace of the iCW algorithm applied to the example in Figure 7 where d = 1.5. Column 1

indicates the current time for each row. Column 2 shows the update or event (if any). Column 3

shows the nearest neighbor (nn). Column 4 gives the next nn-event enn. Column 5 shows the w-

events on Q .

Fig. 13. iCW Events (k = 1).

Figure 13 gives another example illustrating how events are processed by the
iCW algorithm. Point q is the query point. The set of points inside the circular
window is W . The query is k = 1, so the result set has one element K = {a}.
Q is the w-event queue, and enn is the next nn-event. The length of the arrows
indicate the direction and distance each point will move in one unit of time.
At time t = 0.5, point c enters the query circle. When this happens, point c is
added to set W , and its exit event is enqueued in Q . The next nn-event, enn is
also replaced since c will become the next nearest neighbor before b. At time
t = 1, the nn-event oc(c, 1) comes due. The result set K is updated, and the
next nn-event is computed.

Figure 14 illustrates how updates affect the data structures. First, the point
g is deleted. Since g is in the circular window, it is removed from W . A check
is made to see if g was involved in the next nn-event enn. Since it was, a new
nn-event must be computed from the points in the circular window. If g was not
within the circular window at the time of deletion, then the nn-event would not
need to be checked. The example also shows an insertion of point a processed
after the deletion of point g. Since point a is closer to the query point than the
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Fig. 14. iCW Updates (k = 1).

Fig. 15. Example spatial join of 1-dimensional moving points.

previous nearest neighbor d, point a becomes the new nearest neighbor, and a
new nn-event is computed.

3.3 AE and NE Algorithms

In this section, we use the general event-based query maintenance algorithm
approach to maintain spatial join queries on moving points while the base
relations are updated throughout the duration of the query. Given relations l (L)
and r(R), a spatial join is the join l �‖αl ,αr ,now‖≤d r where αl ∈ L and αr ∈ R are
the moving point spatial attributes in their schemas, d ≥ 0, and ‖αl , αr , now‖ is
the Euclidean distance metric at the current time. As with the k-nn algorithms,
we assume no previous knowledge about the updates prior to the arrival of the
update.

Figure 15 is an example of the dynamics involved in the maintenance of
the continuous spatial join on two relations, l and r, of 1-dimensional moving
points. Initially, l = {a, b} and r = {x}. Each row in the figure shows the state
of the moving points, as well as the modifications to the underlying relations,
as the current time ct advances. The join distance is illustrated by the shaded
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Fig. 16. Trace of the example join query given in Figure 15. Column 1 is the current time ct.
Column 2 gives the event or update at time ct. Column 3 gives the join result J after the event or

update occurs.

areas extending for 8 distance units around points in relation r. Points b, and
x are moving at speed 1. Points a, c, and y are moving at speed 2. The arrows
indicate their direction of movement. Although the example is 1-dimensional,
the algorithms presented in this paper work for any dimension D > 0, D ∈
N. Figure 16 shows how updates and events affect the query result as time
advances. For brevity, only the moving point attributes of tuples are presented.

Recall from above that event-based query maintenance involves the pro-
cessing of events and updates to maintain a consistent query result as time
advances. For example, in the sample query in Figure 15, events occur at times
1 and 3 resulting in a change to the query result. The occurrences of one or more
events are computed in advance and placed in a priority queue sorted by time.
Thus, when the time of the event arrives, the query result is modified, and more
events are possibly computed. Updates may also change the query result. For
example, in Figure 15, updates occur at times 2, 4, 5, 6, and 7. The query re-
sult can be updated using techniques similar to incremental view maintenance
techniques [Gupta et al. 1993] when an update occurs. Additionally, the events
in the queue may also be modified when updates occur.

In this section we present the All Events (AE) and the Next Event (NE) al-
gorithms. For both algorithms, the initial join is computed, then w-events that
will cause the query result to change are computed and enqueued in a tempo-
ral priority queue. Time is divided into segments of equal length called event
generation cycles. Only events that occur during the current event generation
cycle are considered for processing. The first event generation cycle starts at
the current time (i.e., now), and lasts for some finite time interval. The basic
differences between AE and NE are the times at which events are computed
and placed on the queue. The AE algorithm enqueues all events up to the end of
the current event generation cycle. The NE algorithm enqueues only the next
event to occur for each moving point in one designated join relation (by con-
vention this is the left relation l). Neither algorithm enqueues any event that
occurs beyond the end of the current event generation cycle.

3.3.1 All Events (AE). The AE algorithm maintains all currently pending
events on the queue that occur between the current time and the end of the
current event generation cycle. This means there can be up to |l |× |r| elements
on the queue. This algorithm can be thought of as an extension of the continuous
spatial join (CSJ) algorithm for future queries presented in Tao and Papadias
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Fig. 17. Trace of the All Events (AE) algorithm for the example from Figure 15 where the event

generation cycle is 12 time units long. The first cycle starts at time ct = 0 and ends at time ct = 12.

Column 1 is the current time ct. Column 2 gives the event or update at time ct. Column 3 gives

the join result J , and column 4 shows the contents of the event queue Q for the AE approach after

each event or update is processed.

[2003] to support updates. The approach of this extension is to run the CSJ
future query for some finite time in the future to find all the events in that
time period and place them on an event queue. If an update occurs, modify the
join result, and modify the event queue to reflect the changes introduced by the
update. The AE algorithm is given below. A more detailed version of the AE
algorithm is given in Appendix A.3.

procedure AE(l , r, d )
1. Compute and report the initial join result.
2. while true do
3. Enqueue all w-events that will occur in the current event generation cycle.
4. while not at the end of the current event generation cycle do
5. if a w-event comes due then
6. Report changes to the join result.
7. else if a tuple is inserted into l (r) then
8. Join the new point with r (l ) and report the result as inserted to the join

result.
9. Find all the w-events between the new point and points in r (l ) that

occur during the current event generation cycle and enqueue them.
10. else if a tuple is deleted from l (r) then
11. Join the deleted point with r (l ) and report the result as deleted from the

join result.
12. Remove all w-events involving the deleted point from the queue.
13. end if-then
14. end while
15. Advance to the next event generation cycle and enqueue all the w-events that

will occur in it.
16. end while

It is assumed that an index is maintained for each relation on its moving
points (e.g., the TPR-tree [Saltenis et al. 2000]). The indexes are used to compute
joins (lines 1, 8, and 11), and w-events (lines 3, 9, and 15).

A trace of this algorithm is given in Figure 17, for the example presented
in Figure 15. The figure shows w-events placed on priority queue Q sorted by
time in the context of the spatial join query J = (l �pred r), where the join
predicate is pred = (‖αl , αr‖ ≤ d ). A w-event is denoted by w(pl , pr , t), where
pl represents an instance of moving point attribute αl , pr represents an in-
stance of moving point attribute αr , and t is the time at which pl and pr move
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Fig. 18. AE Events.

to be at the distance d of each other. For example, the enter event in line
ct = 3 of Figure 15 is denoted as w(b, x, 3), and the exit event in line ct = 1
of Figure 15 is denoted by w(a, x, 1). Notice that when y is inserted into r at
time ct = 2, there is no exit event inserted in the queue for point b. This is
because the exit event for b and y does not occur until the next event gener-
ation cycle. Similarly, the enter and exit events between point c and point x
do not occur during the current event generation cycle. Note also that no exit
event between point c and point y exists because the points have the same
velocities.

Figure 18 shows a 2D example illustrating how events are handled in the AE
approach. The figure shows the spatial join of two data sets. Relation r initially
contains the points {x, y}. Relation l contains the points with names from the
beginning of the alphabet, such as {a, b, c, d }. The join distance is indicated
by the circles around the points in relation r. J is the query result. Q is the
w-event queue. All w-events between a point in l , and a point in r, occurring in
an immediate and finite future time period, are computed in advance an placed
on Q . At time t = 1, event w(c, x, 1) occurs. After dequeuing, the type of event
(enter or exit) is checked. In this case it is an exit event, so the pair 〈c, x〉 is
removed from the query result J . At time t = 2, enter event w(a, x, 2) results
in the addition of pair 〈a, x〉 to J . Figure 19 illustrates how updates affect the
data structures in the AE approach.

3.3.2 Next Event (NE). The NE algorithm enqueues just the next pending
w-event for each moving point from one designated join relation (relation l
by convention) that occurs during the current event generation cycle. In other
words, the queue Q contains at most one event, the next w-event, for each
point in relation l . This can be thought of as a scaled up version of the window
query of the iCW algorithm the differences being that (1) there is no notion of
underflow, (2) the window size never changes throughout the life of the query,
and (3) the NE algorithm enqueues only the next w-event for a given point if
it occurs during the current event generation cycle. The iCW algorithm, on the
other hand, enqueues the next w-event no matter how far into the future it
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Fig. 19. AE Updates.

may occur. The NE algorithm is given below. A more detailed version of the NE
algorithm is given in Appendix A.4.

procedure NE(l , r, d )
1. Compute and report the initial join result.
2. while true do
3. Enqueue the next w-event for each point in l occurring during the current

event generation cycle.
4. while not at the end of the current event generation cycle do
5. if a w-event comes due then
6. Report changes to the join result.
7. Enqueue the next w-event between the point in l involved in the current

event and points in r if the event occurs during the current event
generation cycle.

8. else if a tuple is inserted into l then
9. Join the new point with r and report the result as inserted to the join

result.
10. Enqueue the next w-event between the new point and points in r if they

occur during the current event generation cycle.
11. else if a tuple is inserted into r then
12. Join the new point with l and report the result as inserted to the join

result.
13. for each w-event e between the new point and points pl ∈ l do
14. if e is now the next w-event for pl and occurs in the current event gen.

cycle then
15. Enqueue it replacing any old w-event for pl on the queue.
16. end if-then
17. end for-each
18. else if a tuple is deleted from l then
19. Join the deleted point with r and report the result as deleted from the

join result.
20. Remove any w-event involving the deleted point from the queue.
21. else if a tuple is deleted from r then
22. Join the deleted point with l and report the result as deleted from the

join result.
23. Remove all w-events involving the deleted point from the queue.
24. for each point pl ∈ l that was involved in the deleted w-events do
25. Enqueue the next w-event for pl if it occurs during the current event

generation cycle.
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Fig. 20. Trace of the Next Event (NE) algorithm for the example from Figure 15 where the event

generation cycle is 12 time units long. The first cycle starts at time ct = 0 and ends at time ct = 12.

Column 1 is the current time ct. Column 2 gives the event or update at time ct. Column 3 gives the

join result J , and column 4 shows the contents of the event queue Q for the NE approach after

each event or update is processed.

26. end for-each
27. end if-then
28. end while
29. Advance to the next event generation cycle queueing the next w-event for each

point in l that will occur in it.
30. end while

Like the AE algorithm, it is assumed that an index is maintained for each
relation on its moving points, and is used to compute joins (lines 1, 9, 12, 19,
22), and w-events (lines 3, 7, 10, 13, 25, 29). Updates to relation r incur the most
penalty in terms of index overhead. This is because a point in r may be involved
in any number of next w-events for the points in l . All the points in relation l
that are affected by an update to r must be reexamined, possibly resulting in
many index queries and queue updates.

Figure 20 shows a trace of the NE approach with respect to the example given
in Figure 15. Note that no w-event for point c in relation l is enqueued because
the next w-event for point c does not occur in the current event generation cycle
(0 ≤ ct < 12).

Figures 21 and 22 illustrate how events and updates, respectively, are pro-
cessed in the NE approach. These are the same examples as shown in Figures 18
and 19. The only difference is in the contents of the data structure Q . Whereas
all events in the near future were enqueued in Q for the AE algorithm, only
the next event for a given point in l is enqueued in the NE algorithm. As a
result, the size of Q is smaller, but when an event is processed, a new event
must be found and enqueued. For example in Figure 21, when within event
w(a, x, 2) occurs, the next event w(a, y , 5) for point a must be computed and
enqueued.

4. EXPERIMENTS

In this section we present the results of experiments comparing the ETP al-
gorithm with the iCW algorithm, and the AE with the NE algorithm. Exper-
iments were conducted using both real aircraft data and synthetic data. Our
primary metric for cost is the number of disk accesses needed to compute and
maintain a query. This is because accessing data on disk is several orders of
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Fig. 21. NE Events.

Fig. 22. NE Updates.

magnitude slower than accessing data in memory. Implementation issues are
also discussed.

4.1 Data Sets

We used the same data sets as those described in Iwerks et al. [2004]. Both real
aircraft flight data and synthetic uniformly distributed data are used in our
experiments. One significant difference between the real and synthetic data
is in the size of the data set at any given time. The number of points for the
synthetic data stays constant, but the real flight data changes as flights land
and take off.

Data sets consist of an initial set of moving points described as a linear

function of time (p(t) = −→x0 + (t − t0)−→v ), and updates to the function coefficients

(−→x0 , t0, −→v ) over time. A data set is characterized by the mean and standard
deviation in the number of moving points (cardinality) at any given time, the
period of time covered by the data set, and the average update interval. The
average update interval (UI) is the average length of time between updates for
any given point.
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Fig. 23. Snapshot of the aircraft flight data.

All synthetic uniformly distributed data sets were generated using a data
generation tool developed by Saltenis et al. [2000]. The synthetic moving points
are uniformly distributed over a 1000×1000 coordinate space. The speed of each
point is uniformly distributed between 0 and 3/60 = 0.05 coordinate distance
units per time unit. All synthetic moving points are inserted at the start time
of the dataset. Updates change the velocity, but not the current location of
each point. The number of moving points stays constant. The average update
interval (UI) for our synthetic data is 600 time units. Each synthetic data set
covers 3600 time units. The UI and speed relative to the size of the coordinate
space of the synthetic data were chosen to be similar to the aircraft flight data
for comparability.

Real commercial aircraft flight data was acquired as location data sampled
at one minute intervals. Figure 23 shows an example snapshot in time to see
how the data is clustered. The latitude-longitude of sampled locations were
converted to linear functions describing aircraft motion by first applying the
Douglas–Peucker line simplification algorithm [Douglas and Peucker 1973] to
the 2D latitude-longitude points forming a polyline from earliest to latest sam-
pled location in time. In our application of the Douglas–Peucker algorithm,
we used a maximum error bound of 0.06 degrees. Distortions introduced by
the latitude-longitude projection onto the Earth’s surface were ignored. The
resulting vertices serve as the start locations for each update. Each vertex has
an associated time stamp. The line segment to the next vertex divided by the
time difference between their time stamps gives the velocity vector for each
update. The result was an average update interval of 700–735 seconds. The
aircraft data sets cover a window [20◦, 60◦] latitude by [−135◦, −60◦] longi-
tude. Since only about 5000 aircraft are in the air at any one time, larger data
sets are generated by combining flights on different days during the same time
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Fig. 24. Statistics on the aircraft data sets. Each column corresponds to a different aircraft data

set. Row 1 is the mean number of flights at any given time (μ). Row 2 is the standard deviation in

the number of flights (σ ). Row 3 is the average update interval (UI) in seconds.

Fig. 25. Example EB-tree with one root node, and two leaf nodes.

period. Figure 24 shows statistics for the aircraft flight data sets used in the
experiments.

Finally, subsets of the aircraft data were derived by dividing the flight data
into 12 subsets starting at different times along the temporal dimension. The
time duration covered by each subset overlapped neighboring subsets. The time
domain of each subset was then transformed to start at time 0. The cross product
of these subsets was taken to generate pairs of data sets as input for experi-
ments. For the k-nn experiments, the query point is taken randomly from one
dataset to find the nearest neighbors in the other data set. For the spatial join
experiments, a join was performed on each pair of data sets.

4.2 Implementation

We used the code provided by Saltenis et al. [2000]7 from their original imple-
mentation of the TPR-tree. We extended this with implementations of all the
index operations used by our algorithms. In Iwerks et al. [2003], we did not find
a significant difference between depth first and best first versions of the TPR-
tree index search algorithms (i.e., incremental distance query, next nn-event
query), (see Iwerks et al. [2003] for more details) so we use only the best first
versions of the algorithms in the experiments presented here.

To implement the iCW priority queue, we use a B+-tree variant of a priority
search tree called the Event B-tree (EB-tree). In our implementation, every
point has a unique id. The priority queue is a B+-tree ordered by the point
ids. In addition to propagating the min-max key up the B+-tree, the earliest
event time of all events in each subtree is also propagated up to the root. The
earliest event in the tree is found by following the minimum event time down
the branches of the tree to the leaf in which it is stored. The time of the next
event can be found by just examining the root node. Figure 25 shows an example
EB-tree.

For the spatial join, two B+-trees are used to support deletion of events
based on an id from either relation. One B+-tree is sorted by ids (idl ) of objects
from the first join relation l , while the second B+-tree is sorted by ids (idr )
of objects from the second join relation r. This results in a mapping of the
form idl → {idr , t}, and idr → {idl , t}. Like the EB-tree, both the minimum

7A special thanks to Saltenis et al. and Tao et al. for making their code available for use and study.
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and maximum id keys and the minimum event time are propagated up the
trees.

Both the TPR-tree and B+-trees were implemented using the generalized
search tree (GiST) [Hellerstein et al. 1995] version 0.9beta1 code. The code was
compiled using gcc 2.95. The experiments were run on several VLSI 80686 CPU
based machines running Linux.

4.3 ETP and iCW Experiments

4.3.1 Performance Issues for ETP and iCW. Analysis of algorithms for
kinematic data is difficult without making many simplifying assumptions. Per-
formance is dependent on many factors such as data set size, location distri-
bution, velocity distribution, distribution of updates over space, and update
frequency distribution. Instead of attempting a rigorous analysis on an overly
constrained subset of these factors, this section discusses some key performance
issues of the ETP and iCW algorithms, and how these factors play a part in the
performance of each algorithm.

We assume that for large data sets, the majority of the data is stored on disk.
Accesses to disk are orders of magnitude slower than accesses to memory, so
cost is measured in number of disk accesses. For the sake of this discussion, we
assume that all moving point data and query points share the same location,
velocity, and update rate distributions. Ignoring esoteric cases, assume that all
points are moving relative to the query point, and that they are not all moving
in the same direction and at the same speed. For the purpose of this discussion,
we assume a B+-tree is used to implement the iCW event priority queue (QiCW),
and a TPR-tree for the ETP algorithm index.

Initial Build. Both methods require at least one initial scan of some relation
r. ETP scans r to build the TPR-tree index. iCW scans the relation once to find
the query result and then a second time to find pending w-events.

Data Structure Size. Let n be the size of the point data set. The asymptotic
upper bound for the TPR-tree, and QiCW data structures is O(n). The lower
bounds for each data structure are not the same. The best case for iCW is when
no points will enter the circular window in the future. Let W be the set of points
inside the circular window. In this case, the only points involved in events in
QiCW are those inside the circular window giving a lower bound of �(|W |). In
general, the size of QiCW is proportional to the selectivity of the circular window
over all time [Tao et al. 2003b]. We assume that |W | � n. Given this assumption,
it is likely that the size of QiCW will be much smaller than the TPR-tree.

Scanning the Base Relation. Let UI be the average time period between two
updates for a single object. By experimentation, Saltenis et al. [2000] deter-
mined that the performance of the TPR-tree degrades after time UI because
almost all the entries have been updated by that time thereby causing the abil-
ity of the index to distinguish between the data objects to degenerate due to
increasing overlap of the index nodes. They conclude that the TPR-tree should
be rebuilt when time UI is reached. Rebuilding the TPR-tree requires scanning
the base relation, or scanning the entire TPR-tree to construct a new tree. Two
scans of the base relation are required for the iCW algorithm each time the
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query point is updated or the query circle underflows. For the iCW algorithm,
assume that the expected time between updates to the query point is the same
as that for the TPR-tree (i.e., UI). The number of scans needed overall for the
iCW algorithm depends heavily on the characteristics of the data. We assume
that updates to any given point happen on average once every UI time units.
Given this assumption, we would expect the iCW algorithm to scan the base
relations at least twice as many times as the TPR-tree.

Number of Events. Only the nn-events are processed in the ETP approach.
This makes the ETP approach optimal in the number of events processed
throughout the course of a query. There is only one event pending at any one
time. iCW processes additional w-events. The number of w-events over the
course of a query, or on the event queue at any one time, depends on the selec-
tivity of the circular window and on the motion characteristics of the data.

Cost of Events. The cost of processing each event for each method is not the
same. The iCW algorithm requires no disk accesses to examine other points
when either a w-event or an nn-event is processed because all the points that
need to be examined are in set W which is already in main memory. The only
cost in disk accesses for the iCW algorithm is in updating the event queue which
is O(log n) (i.e., to delete an old w-event and, if needed, to insert a new w-event
in the B+-tree). In the ETP approach, the cost of processing an event is O(n) for
the incremental distance query [Hjaltason and Samet 1999] (see Section 5.1.1).
The worst case for the incremental distance query happens when all points are
at the same distance from the query point which is in practice an unlikely case
for low dimensional data sets. The ETP method has no event queue. The entire
cost of the ETP method lies in the TPR-tree operations.

4.3.2 Results for ETP and iCW. Default parameter values for each experi-
ment, unless otherwise specified in the description of an individual experiment,
are as follows. The duration of each experiment is 1000 time units (the time
duration in Iwerks et al. [2003] was only 60 time units). Disk page size is 4096
bytes. Experiments that do not vary by k use k = 1. Experiments that do not
vary by data set size are run on a data set of 50000 points for uniform data,
and an average of 50822 points for aircraft data. The number of pages in the
cache for the TPR-tree index is 64 pages. The event queue disk cache is 8 pages.
Each cache uses a least recently used (LRU) page replacement policy. For the
iCW algorithm, the number of extra points to find (parameter x in the iCW
algorithm, Section 3.2) is x = 4. Disk accesses are computed as an average
over 100 experiments for a given set of parameters. All results report statistics
accumulated after the initial loading of the data structures, and flushing of the
disk-based data structure caches.

For the iCW algorithm, whenever there is a query point update or an un-
derflow of the window, the base relation is scanned twice. We assume one page
access for every 186 moving point objects in the data set at the time the rela-
tion is scanned. This number was derived as follows. A 2D kinematic point is
represented by 5 floating point numbers of 4 bytes each, two floats for the start
location coordinates, two for the velocity vector, and one for the start time. Each
moving point also has a unique identifier represented by a 2 byte short. This
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Fig. 26. Number of disk accesses vs. data set size for aircraft data.

Fig. 27. Number of disk accesses vs. data set size for uniform data.

gives a total of (5 ∗ 4 bytes) + 2 bytes = 22 bytes per object. Each page is 4096
bytes. Therefore �4096 bytes per page/24 bytes per object� = 186 objects per
page.

The purpose of the first experiment is to determine which algorithm, iCW or
ETP, performs better in terms of disk accesses for different data set sizes. The
results are given in Figures 26 and 27 for aircraft and uniform data respec-
tively. For the aircraft data set, the iCW algorithm has over 17 times fewer disk
accesses than the ETP algorithm for the largest data sets tested. For the uni-
form synthetic data, the iCW algorithm has over 29 times fewer disk accesses
than the ETP algorithm for the largest data sets tested.

An additional experiment was conducted to examine the relative perfor-
mance of the two algorithms when there are no updates. The results are given
in Figure 28 for both an aircraft data set size of approximately 50k points,
and uniform data set size of 50k points. The results were obtained by simply
ignoring all subsequent updates once the experiment started and processing
events only. Two pairs of vertical bars are shown for each data set. The black
bar on the left indicates the number of disk accesses for the ETP algorithm, and
the white bar on the right indicates the number of disk accesses for the iCW
algorithm. When there are no updates, the ETP algorithm has 72 times fewer
disk accesses than the iCW algorithm for aircraft data, and 57 times fewer disk
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Fig. 28. Number of disk accesses when there are no updates.

Fig. 29. Number of entries in the corresponding data structures vs. data set size for aircraft data.

Fig. 30. Number of entries in the corresponding data structures vs. data set size for uniform data.

accesses for uniform data. This is because the ETP algorithm processes just
nn-events, whereas the iCW algorithm processes both w-events and nn-events.
However, the number of disk accesses even for the iCW algorithm, is relatively
small (<1000).

The performance differences shown in Figures 26 and 27 are likely due to the
size of the disk based structures obtained running each algorithm. Figures 29
and 30 plot the number of data structure entries entries vs. the data set size for
each algorithm. This supports our suspicion discussed in Section 4.3.1 that the
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Fig. 31. Number of entries in the data structure vs. data set size for the iCW algorithm on uniform

and aircraft data.

Fig. 32. Number of disk accesses vs. number of neighbors for aircraft data.

event queue for the iCW algorithm will generally be much smaller than the
spatial index used by the ETP algorithm. This also seems to indicate that the
cost of rescanning the base relations when the query point is updated, or when
the iCW circular window underflows, is much less than the overhead of main-
taining and querying the TPR-tree index. For the largest data set, the iCW
event queue has 33 times fewer entries than the ETP TPR-tree index for the
aircraft data, and 96 times fewer entries for the uniform data.

Figure 31 shows the same results as in Figures 29 and 30, but for only the
iCW algorithm to emphasize how the different data set types affect the size
of the event queue. The figure indicates that the non-uniformly distributed
aircraft data results in more events placed on the queue on average. This may
be due to initially large windows moving into regions of higher density data.
Extending the algorithm to shrink the window size when an overflow level is
reached may counteract this effect; however, the tradeoff would be additional
scans of the base relations when resizing the window.

The purpose of the next experiment is to determine how the number of
neighbors sought by the queries affect performance. The results are given in
Figures 32 and 33 for aircraft and uniform data respectively. The results show
that an increase in the number of neighbors has a relatively small effect on the
overall performance.
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Fig. 33. Number of disk accesses vs. number of neighbors for uniform data.

Fig. 34. Number of disk accesses vs. extra neighbors for the iCW algorithm.

The next experiment is designed to give us some insight into the tuning of the
iCW algorithm by varying the number of extra points contained in the circular
window when it is initially created or enlarged. Recall that parameter x of the
iCW algorithm controls this behavior where the number of initial points in the
window is k + x. Figure 34 gives the results of this experiment. For uniformly
distributed data, increases in x seem to degrade the performance somewhat,
but for the nonuniformly distributed aircraft data the performance remains
relatively constant at a value of x = 4 or greater. This may reflect a balance
between the selectivity of larger windows vs. the number of underflow states
encountered. A larger initial window is less likely to underflow. A value of x = 1
is not used because this can lead to a degenerative state where the query circle
repeatedly underflows.

The purpose of the next experiment is to determine how the size of the disk
cache affects performance for each algorithm. Figure 35 shows the results of
varying the cache size for the event queue of the iCW algorithm. Figure 36 shows
the results of varying the cache size for the TPR-tree of the ETP algorithm.
This experiment was used in choosing the default disk cache sizes for other
experiments.

The purpose of the final experiment on the ETP and the iCW algorithms is
to study the relative performance of the two algorithms as the average update
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Fig. 35. Number of disk accesses vs. number of disk cache pages for the iCW algorithm.

Fig. 36. Number of disk accesses vs. number of disk cache pages for ETP algorithm.

Fig. 37. Number of disk accesses vs. average update interval for uniform data.

interval (UI) changes. Figure 37 gives the results for uniform data. This ex-
periment was only run on synthetic data since precise control of the average
update interval is much easier for synthetic data than for real data. It appears
from the graph that changes in UI result in nearly constant performance for the
iCW algorithm. In contrast, the number of disk accesses for the ETP algorithm
appears to grow quadratically as UI decreases. This represents a significant
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improvement for the new iCW algorithm given here over the original iCW algo-
rithm presented in Iwerks et al. [2003]. The CW algorithm given in Iwerks et al.
[2003] showed quadratic growth as UI decreased. For the original CW algorithm
given in Iwerks et al. [2003], the query window size was fixed at a relatively
large size so that overflow would not occur. This resulted in many more entries
in the event priority queue than necessary. A larger queue size increases the
likelihood that a queue element needs to be modified when an update occurs.
The underflow handling of the iCW algorithm presented in this paper allows
for a much smaller initial window size. The smaller window results in fewer
w-events and a smaller priority queue. This also means that updates to points
involved in events on the queue are less likely. Many updates don’t affect any
events, and thus do not incur any disk accesses for the iCW algorithm. On the
other hand, every update requires an update to the TPR-tree used by the ETP
algorithm.

4.4 AE and NE Experiments

The size of the TPR-tree indexes are the same for both the AE and NE ap-
proaches, but the size of the AE event queue can be larger than the NE event
queue. On the other hand, the AE approach is simpler in that it does not have
the added overhead that the NE algorithm does when w-events come due in
using the indexes to find the next event. The trade-off is between a large queue
size for the AE algorithm vs. the overhead of additional index access in the NE
algorithm.

The worst case for the AE algorithm arises when the join result is initially
empty, and every pair of moving points in the Cartesian product of the join
relations, l × r, are in the result set and then leave the result set at some time
in the future before the next event generation cycle. This leads to two events
for each pair of points, or O(|l | ∗ |r|) events in the queue. On the other hand,
the maximum size for the NE queue is the size of one relation since only the
next event is computed for each point in one join relation. There can be at most
O(|l |) events in the queue in the worst case in the NE event queue.

The cost of accessing the event queue for the NE algorithm should be cheaper
than for the AE algorithm with its smaller queue, especially at the beginning of
an event generation cycle where the queues will be at their largest. The TPR-
trees will be accessed more often in the NE algorithm since the NE algorithm
needs them to compute the next event during event processing. The AE event
algorithm does not use the TPR-tree indexes during event processing. This
would seem to indicate that for large event generation cycles then AE queue
can be large, so we might expect the cost of a large queue to dominate. For small
event generation cycles the AE queue is small, so we might expect the cost of the
index overhead to dominate. Given this trade-off between the size of the event
queue, and the frequency of use of the TPR-tree indexes, plus the overhead of
maintaining the indexes and queues during updates, it is not apparent which
algorithm may be better through analysis alone.

4.4.1 Results for AE and NE. The experiments measure the total number
of disk accesses over the duration of a query. Since we are concerned with the

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.



518 • G. S. Iwerks et al.

Fig. 38. Total number of disk accesses for our simple adaptation of Tao and Papadias’s CSJ algo-

rithm to support updates as compared to the NE and AE algorithms.

maintenance portion of the query, the disk accesses used to compute the initial
join result are not included. Pairs of data sets were chosen randomly without
replacement from all possible combinations for a total of 110 joins per query.
The number of disk accesses was averaged to yield the experiment results for
a given query.

Independent variables are mean data set size (μ), join distance (d ), event
generation cycle length (EG), query duration (tQ ), and disk cache size (|cache|).
A disk page size of 1024 bytes was used in all experiments. For aircraft flight
data, the defaults are μ = 9021 flights, d = 0.08 degrees, tQ = 100 seconds,
and |cache| = 32 pages. For synthetic uniform data, the defaults are μ = 10000
points, d = 8 distance units, tQ = 100 time units, and |cache| = 32 pages.
Values for EG, and values other than the defaults are stated for each individual
experiment below.

Each TPR-tree index and each B+-tree has a cache of size |cache|. Every
cache uses a least recently used (LRU) replacement policy. For a page size
of 1024 bytes, leaf nodes of the TPR-tree (B+-tree) hold 50 (22) entries, and
internal nodes hold up to 28 (66) entries.

The purpose of the first experiment is to establish a baseline for a perfor-
mance comparison between a naive adaptation of the continuous spatial join
(CSJ) algorithm presented in Tao and Papadias [2003], the NE algorithm, and
the AE algorithm. The CSJ algorithm is a future query and does not support
updates (see Section 5.5 for more details). A simple naive adaptation of the
CSJ algorithm to support updates is to re-invoke the TP portion (the part that
finds the events) of the algorithm at the time of the update to find the events
for the remainder of the event generation cycle. Nondefault parameters for this
experiment are EG = 11, tQ = 10, and |cache| = 12. Figure 38 examines the
total number of disk accesses (number of spatial index I/O’s + number of event
queue I/O’s) vs. the mean number of objects. The figures show an advantage of
the AE and NE algorithms over our simple adaptation of CSJ by nearly two
orders of magnitude.

The purpose of the next experiment is to determine for which EG values
does the overhead of computing the next event in the NE algorithm dominate
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Fig. 39. Aircraft flight data (x-axis is log scale) (a) The total number of disk accesses for the aircraft

flight data further broken down into (b) those used in conjunction with the TPR-tree index and (c)

those used in the priority event queue.

Fig. 40. Uniform synthetic data (x-axis is log scale) (a) The total number of disk accesses for the

synthetic data further broken down into (b) those used in conjunction with the TPR-tree index and

(c) those used in the priority event queue.

the overhead of having a larger event queue in the AE algorithm. This exper-
iment was run using EG values of 1, 6, 12, 25, 50, 100, and 200. All other
parameters were set to the default. The results are given in Figures 39 and 40.
Graph (a) reveals that the optimal performance for both methods is around
EG = 6. Graph (b) in each figure reveals that the extra TPR-tree overhead for
finding the next event in the NE algorithm is nearly constant with respect to
EG. Graph (c) shows that the cost of a larger queue for the AE approach grows
rapidly as EG increases. The event queue cost for the NE approach grows as
well, but at a slower rate than the AE algorithm. As we expect, the TPR-tree
performance dominates for small EG value and the event queue dominates for
larger EG values.

The next experiment shows how the join query distance affects the perfor-
mance of the AE and NE approaches. Figure 41 shows the results for different
join query distance for two different EG values as shown in Figure 41. For
Aircraft data, distance is measured in degrees. For simplicity, distortions in-
troduced by measuring distance in this way at different latitudes are ignored.
These distortions are relatively small for the region covered by our experimen-
tal data. In a fielded system, degrees would need to be converted to another
metric (i.e., kilometers, miles) for accuracy, but for our experiments the data
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Fig. 41. Number of disk accesses vs. join distance for different data sets and different values of

the event generation cycle (EG).

exhibits the desired characteristics of motion and distribution in either case.
All other parameters were set to their default values. The number of disk ac-
cesses seems to vary quadratically with distance for small values of EG, but
varies linearly with distance for larger values of EG. The complex interaction
between the TPR-tree indexes, and the event queue makes it unclear why linear
behavior is observed for larger EG values.

The final experiment shows how the size of the join relations affects the
performance of the AE and NE approaches. Results are given in Figure 42. The
number of disk accesses seems to follow a quadratic growth rate as a function
of data set size. This is consistent with our expectations since the selectivity of
a static join exhibits a quadratic growth rate with respect to join relation size.

5. PREVIOUS RELATED WORK

In this section, we present a detailed survey of related work, and how it is
related to this article. In particular, some of this related work is use by our
algorithms to answer subqueries, for example, the incremental within event
query in Section 5.3. Other related work consists of solutions to problems similar
to maintaining queries over time on moving objects.
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Fig. 42. Number of disk accesses vs. the mean number of moving points (per relation) for different

data sets and different values of the event generation cycle (EG).

5.1 Spatial Queries on Static Data

Some of the most widely researched queries on static spatial data include
within, window, spatial join, k-nearest neighbor (k-nn), and spatial semijoin.
A within [Samet 1990] query returns all objects within a given distance d ≥ 0
from a query object. A window query is a special case of a within query where
the query object is a hyper-rectangle and the distance is zero (i.e., returns all
objects inside the hyper-rectangle). A knn query [Arya et al. 1998; Roussopoulos
et al. 1995] returns the closest k > 0 spatial objects to a given query object. A
spatial join [Arge et al. 2000; Brinkhoff et al. 1993; Lo and Ravishankar 1996;
Patel and DeWitt 1996] returns all pairs of objects in the Cartesian product of
two relations that are within a given distance d ≥ 0 of each other. A spatial
semijoin [Hjaltason and Samet 1998] is a subset of a spatial join A� B where a
tuple in the result 〈a, ∗〉 appears only once for any given a ∈ A, denoted A � B.
An additional constraint is imposed in the spatial context of semijoins which
stipulates for any tuple 〈a, b〉 in the result that b ∈ B is the closest neighbor to
a out of all objects in B. Each of these spatial queries also has an incremental
[Hjaltason and Samet 1998, 1999] version in which the query result is incre-
mentally computed and reported one tuple at a time until some termination
condition is satisfied.
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5.1.1 Incremental Nearest Neighbor and Incremental Distance Query. The
incremental nearest neighbor algorithm [Hjaltason and Samet 1999] returns
objects sorted by distance from a query object q one at a time. This algorithm
can be used for both within queries, and k-nn queries. Retrieving all the objects
within distance d < ∞ from q is an incremental within query [Hjaltason and
Samet 1999]. Retrieving the first k objects and then stopping, with d = ∞, is
a k-nn query. The incremental nearest neighbor algorithm assumes a spatial
tree index where, as in the case of the R-tree [Guttman 1984] spatial index,
the internal nodes have bounding boxes (BB) that spatially contain all objects
in the subtree. It makes use of a priority queue of objects and internal nodes
sorted by distance from q. The queue is initialized with the root BB of the
index. Spatial data objects and internal nodes are successively removed from
the queue. Data objects are reported as they are dequeued. Internal nodes are
expanded when they are dequeued by inserting each element in the node into
the queue. This process continues until a maximum number of elements are
reported, a maximum distance is reached, it is terminated by the user in an
online session, or there are no more elements in the queue. The incremental
nearest neighbor algorithm was used to implement some subqueries for our
experiments. It was also expanded upon in Tao and Papadias [2003] to find
next within events (see Section 5.3).

5.1.2 Incremental Spatial Join Query. An incremental spatial join
[Hjaltason and Samet 1998] returns all pairs of objects within a given distance
d of each other by increasing order of distance. Like the incremental nearest
neighbor algorithm (see above), this algorithm uses a priority queue where each
element on the queue is a pair of objects. Ordered by distance, closer pairs of
objects come before further pairs on the queue. The algorithm assumes uses two
spatial indexes, one for each set of objects to be joined. The queue is initialized
with the pair of root bounding boxes from each index. Elements on the queue
are processed in succession. If an element is a pair of spatial data objects, then
they are reported to the user. If at least one of the element pair is an internal
index node, then it is expanded and new pairs consisting of the children are
enqueued. This process continues until the maximum distance is reached, or
by some other means as in the incremental nearest neighbor algorithm. The
incremental spatial join query was expanded upon in Tao and Papadias [2003]
to develop a continuous spatial join query (see Section 5.5), which in turn is
related to our spatial join algorithms.

5.2 Indexing

Spatial indexes are used to support spatial queries. They help aggregate objects
and prune the search space by organizing objects either in an object hierarchy,
such as the R-tree [Guttman 1984], or a spatial decomposition, such as the
quadtree [Samet 1990]. More recently, the indexing of moving objects has also
been addressed [Saltenis et al. 2000; Tayeb et al. 1998].

One index that has received much attention is the Time Parameterized R-
tree (TPR-tree) [Saltenis et al. 2000]. The TPR-tree indexes moving objects de-
scribed as a function of time. It is a disk-based object hierarchy R-tree variant.

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.



Maintenance of K-nn and Spatial Join Queries on Continuously Moving Points • 523

In the R-tree, each node is stored in one disk page. Each node has an asso-
ciated minimum bounding box (MBB). Leaf nodes contain the MBBs for the
indexed objects themselves. Each internal node has an MBB for each subtree
spatially bounding the objects in the subtree. In the TPR-tree, a bounding box
(BB) is a moving hyper-rectangle specified by two moving points corresponding
to opposite corners of the BB. The corner points are chosen so that the BB will
always spatially contain the moving objects within it. The BBs in the TPR-tree
rarely stay minimal, tending to grow faster than what would be the minimum
bounding box at any given time. This is partly compensated for by the TPR-tree
update algorithms. As an update occurs, the BB is adjusted to be minimal at
the time of the update. Another compensatory action is that the TPR-tree inser-
tion algorithm tries to insert objects moving in a similar manner (e.g., speed,
direction), or to a similar destination, into the same leaf node. Saltenis et al.
[2000] use the TPR-tree to support ad-hoc spatio-temporal window queries. The
query algorithms presenting in Saltenis et al. [2000] did not maintain the query
results over time as ours do. The TPR-tree was used in our implementations
for indexing moving points.

5.3 Incremental within Event Query

An incremental within event query [Tao and Papadias 2003] is similar to an
incremental distance query, except that an event time metric is used instead of
a distance metric. An incremental within event query returns all the objects and
the time at which they will enter the region within a given distance d around a
query object q, one at a time, in increasing order of event time. If the distance
d = 0, then the event time will be the time the objects will intersect, or cease to
intersect one another. Tao and Papadias [2003] present such an algorithm. This
algorithm assumes an object hierarchy tree index on the moving objects (e.g., the
TPR-tree) for which internal nodes have bounding boxes (BB) that continually
contain all the moving objects in each subtree. The algorithm is identical to the
incremental distance query [Hjaltason and Samet 1999] (see above), except that
the priority queue is sorted by within event time instead of by the distance from
q. The within event time for an internal node BB will always be less than or
equal to the within event times of the objects it contains. This algorithm can be
used as is to maintain query results of within distance queries, but only if there
are no database updates to the moving objects, that is, they never change course
or speed. This algorithm was used in our implementation for some subqueries
in our experiments.

5.4 Next NN Event Query

A next nn-event query finds the next nearest neighbor event given a query
object and its current nearest neighbor. Tao and Papadias [2003] describe two
methods, depth-first and best-first, for finding the next nn-event given a query
object, the current kth-nearest neighbor, and a set of data points indexed in a
TPR-tree. We describe just the best-first method here. To find the next nn-event,
the bounding box (BB) of each child at the root is examined and the oc-event
for the BB is computed. These nodes are then placed on a global priority queue
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sorted by their oc-event time. The first node on the queue is then dequeued and
expanded by computing the oc-event for the BB of each child node and inserting
the children into the priority queue. This process is repeated recursively until
a leaf node is encountered. When a leaf node is examined, the object in the leaf
with the soonest oc-event time is saved along with its event as the candidate
nn-event. Once the first candidate nn-event is found, the oc-event of the first
node on the priority queue and the candidate nn-event are compared. If the first
node on the queue has an oc-event sooner than the candidate nn-event, then it
is expanded, and the process continues until a leaf node is again encountered,
or there are no more nodes on the priority queue with an oc-event time sooner
than the candidate nn-event. If another leaf node is encountered, then the oc-
event time for each object in the leaf node is computed. If any oc-event time is
sooner than the candidate nn-event, then the candidate nn-event is replaced by
the object with the soonest oc-event time in the leaf. If, at any time, the next BB
on the queue has an oc-event time later than that of the candidate nn-event,
then processing stops, and the candidate nn-event is returned as the answer.
As long as the oc-event time of the first node on the priority queue is sooner
than that of the event time of the candidate nn-event, processing continues.

The next nn-event query supports the time parameterized k-nn algorithm
(TP KNN) presented in Tao and Papadias [2003]. This computes a k-nn query on
kinematic objects, and then finds the next nn-event that will change the result.
The algorithm presented in Tao and Papadias [2003] can then efficiently find
many subsequent nn-events. This algorithm can be used to maintain the query
result over time, but does not support updates as our iCW and ETP algorithms
do. The TP KNN algorithm was used in our implementations to for some sub-
queries in our experiments.

5.5 Spatial Join Future Query

Tao and Papadias [2003] describe a continuous spatial join (CSJ) algorithm
which is a continuous future spatial join query. Each event involves two data
objects and the time when they either start intersecting, or stop intersecting
each other. Events are retrieved in increasing order of event time until some
termination condition is satisfied (e.g., maximum time, maximum number of
events, etc.). The event processing component is an incremental distance join
algorithm [Hjaltason and Samet 1998] (see Section 5.1.1) where the distance
metric is replaced by event time as the metric. Like the TP KNN algorithm
(Section 5.4), the CSJ algorithm can be used to maintain a query results over
time, but it does not support updates to the query result as our AE and NE
algorithms do.

5.6 Spatio-temporal and Moving Objects Databases

Mokbel et al. [2004] and Xiong et al. [2004, 2005] present a scalable method
for processing range queries and k-nn queries called the shared execution
paradigm. This approach works by converting many previously separate
queries into one large spatial join query, joining together a set of data objects
with a set of query objects. Moving objects are represented as points. These
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points are updated as the objects move. Query objects are also represented
as points, rectangles, or circles. Motion of queries is achieved by updating, or
sampling, the locations of the query objects. In general, the shared execution
approach updates the query result at periodic intervals. For example, the ex-
periments in Mokbel et al. [2004] used a default query refresh rate of every
10 seconds, whereas the average update rate of a single object was once every
100 seconds. This gives an average of 10% of the object’s locations updated be-
tween every query refresh. This is acceptable for relatively slow moving objects,
or when a relatively large error between query results and the real situation is
acceptable (e.g., people walking through an amusement park). This approach
becomes problematic for fast moving objects where a small amount of error is
required. For example, many ground tracking radar for commercial aircraft up-
date every 6 seconds. This equates to 100% of the moving objects updating their
locations every 6 seconds in the database. With a significant number of aircraft,
this would most likely overwhelm any disk storage sampling based approach,
and would not work for the data we used in our experiments. One advantage
the shared execution approach has is the ability to handle erratically moving
objects where their motion can not be described easily using functions of time.

A scalable adaptive approach to indexing moving objects represented by lin-
ear functions of time is presented in Gedik et al. [2004]. Although the motion
of objects is represented as a linear function of time, the algorithms for spatial
queries on the index only refresh periodically. In their experiments, this refresh
interval was every 30 seconds. Because of this relatively long refresh time, this
approach may also not adapt well to fast moving objects like the aircraft data
used in our experiments.

A main memory solution to moving object queries is presented in
Kalashnikov et al. [2004]. The algorithms presented in Kalashnikov et al. [2004]
are scalable, and support moving data objects, but query objects are static. This
algorithm also refreshes the query result periodically, but does so in just a few
seconds in the experiments that were presented. This algorithm may be ap-
plicable for fast moving aircraft against stationary ground query objects, but
would not be applicable if both data and query objects are moving. Our algo-
rithms presented in this paper support both fast moving data objects and query
objects.

In this article, we did not address queries pertaining to the complete past
motion where the database has the complete information about the object’s past
trajectory. Processing of spatio-temporal queries in these settings has already
been addressed in the literature. In particular, Güting et al. [2000] presents an
in-depth analysis of the types and operators used, and Lema et al. [2003] gives
the specification of the algorithms that implement the operators. Likewise, we
did not address queries in systems that have full future knowledge of an ob-
jects’ trajectory. This class problems is addressed in Trajcevski et al. [2004b].
Although the focus of Trajcevski et al. [2004b] is on the impact of the uncertainty
on processing range queries, an important characteristics of this approach (full
future trajectory knowledge) is that a particular future-abnormality, for exam-
ple, an accident in a given road segment, may affect the parameters used in
constructing the trajectories. This, in turn, has an impact to the answers to
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the spatio-temporal queries that pertain to various geographic locations in the
after-abnormality future (cf. Trajcevski et al. [2004a]).

6. CONCLUSION

In this article, we present several approaches to the problem of maintaining k-
nn and spatial join query results on continuously moving points where the loca-
tions of points are represented as functions of time stored in a database. These
functions can be updated in the database by changing the apparent velocity and
position of these points as time advances. Our algorithms support these updates
when no future knowledge of changes to the data is known, while maintaining
constancy of the query results and supporting data structures when updates
occur. Both data points and query points may be in motion.

An improved version of the Continuous Windowing k-NN algorithm (iCW)
was presented in Section 3. Like the original CW algorithm introduced in Iwerks
et al. [2003], the iCW algorithm filters the points considered for the nn-event
using w-events to maintain the set of points close to the query point. We ex-
tended the original CW algorithm to support updates to the query point, and
to dynamically adjust the size of the circular window when underflow occurs.
The cost of adjusting the window size is expensive since the base relation must
be scanned twice: once to find the k + x + 1 nearest neighbors to the query
points, and once to find all the w-events. We also extended the ETP algorithm
presented in Iwerks et al. [2003] to support updates to the query point for com-
parison. The ETP algorithm originally presented in Iwerks et al. [2003] is the
Tao and Papadias [2003] continuous TP KNN algorithm extended by us to sup-
port updates. The ETP algorithm uses a TPR-tree index on the data points to
find each subsequent nn-event.

The iCW method outperformed the ETP algorithm by more than an order
of magnitude in experiments. Additionally, the dynamic window resizing re-
sults in an algorithm that exhibits nearly constant performance as the average
update interval (UI) of the data set changes (see Figure 37). The original CW
algorithm presented in Iwerks et al. [2003] showed a growth rate similar to
that of the ETP algorithm as UI increased.

Event-based query algorithms to maintain spatial join queries on moving
points were also presented in Section 3. These algorithms also support updates
to the base relations. Two new approaches were compared that differ in the
number of events placed on the queue. The All-Event (AE) approach can be
thought of as an extension of the continuous spatial join (CSJ) algorithm pre-
sented in Tao and Papadias [2003] to support updates in the same way that
the ETP algorithm is an extension of the continuous TP KNN algorithm [Tao
and Papadias 2003] to support updates in k-nearest neighbor queries. The AE
approach stores all within events to occur in the near future in a priority event
queue. The more novel Next-Event (NE) approach only stores the next event to
occur for each query point in the event queue. The time period considered for
future events is limited to the current event generation cycle.

Both the AE and NE approaches outperform a simpler adaptation of the CSJ
algorithm to support updates by up to two orders of magnitude. When the event
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generation cycle is short, the AE approach results in fewer disk accesses than
the NE algorithm. When the event generation cycle is long, the NE approach
results in fewer disk accesses because the size of the event queue is kept small.

Updates to the TPR-tree and B+-tree based indexes are costly. Future work
should focus on developing more update-efficient data structures to support
these algorithms. Some work has been done towards this already [Jensen and
Saltenis 2002], but more work is needed. For example, updates in our aircraft
data usually consisted of changes in velocity. This was handled as a deletion
followed by an insertion, but one can imagine more efficient methods for han-
dling this case. With these algorithms to support the maintenance of spatial
queries on point kinematic data types, more update-efficient disk-based data
structures should help improve their performance and improve their scalabil-
ity. Other spatial indexing structures such as the STAR-tree [Procopiuc et al.
2002], which maintains tighter bounding boxes on the index nodes, may also
result in improved performance and are also worthy of future study.

APPENDIX A. DETAILED ALGORITHM IMPLEMENTATIONS

In the algorithms, r is a relation with a moving point attribute in its schema.
Variable q is the query point. Variable k is the number of neighbors that are
sought. Variable x ≥ 2 is an integer. Variable enn is the next nn-event. Variable
tpr is a TPR-tree index. Variable p is a moving point. Variable d is the window
distance. Variable W is the window within query result set. Variable K is the
k-nn query result. Variable Q is the w-event priority queue.

Function Dequeue(Q) removes the next event from Q and returns it. Func-
tion Kth(K ) returns the kth neighbor in set K at the current time. Function
next w event(p, q, d , t) returns the next event after time t when point p will
be at distance d from q, or it returns a null event with time stamp ∞ if no
such event exists (Section 2.5). Function next oc event(wi, q,Kth(K ),now) re-
turns the next oc-event for point p after time t with respect to query point
q, and kth neighbor nn (Section 2.5). Function Time(e) returns the time of
event e. The Euclidean distance between point instances p and q at time t
is ‖p, q, t‖ = |p(t), q(t)| =

√
(q(t) − p(t))2.

The next nn-event query is the algorithm described in Section 5.4. The incre-
mental distance query is the algorithm described in Section 5.1.1.

A.1 ETP Algorithms

procedure ETP(r, q, k)
1. Build TPR-tree index, tpr on the moving points in r.
2. Let K ← first k points returned by the incremental

distance query on index tpr for query point q.
3. Let enn ← result of next nn-event query on index tpr

for query point q and kth neighbor Kth(K ).
4. while true do
5. Sleep until there is an update, or event enn comes due.
6. if there is an update to r then
7. ETP Update Data Relation(r, q, k, enn, tpr, K )
8. else if there is an update to q then
9. ETP Update Query Point(q, k, enn, tpr, K )
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10. else ETP Process Nn Evt(q, k, enn, tpr, K )
11. end while

procedure ETP Update Data Relation(r, q, k, enn, tpr, K )
1. Let p be the point just inserted or deleted in r.
2. if p was inserted into r then
3. Insert p into index tpr.
4. if there is no current query point then return.
5. if ‖q, p,now‖ < ‖q,Kth(K ),now‖ then
6. K ← (K \Kth(K )) ∪ {p}.
7. Let enn ← result of next nn-event query on

index tpr for query point q and new Kth(K ).
8. else /* Kth(K ) closer to q than p */
9. Let eoc ←next oc event(p, q,Kth(K ),now).

10. if Time(eoc) <Time(enn) then enn ← eoc.
11. end if-then
12. else /* p was deleted from r */
13. Remove p from index tpr.
14. if there is no current query point then return.
15. if ‖q, p,now‖ ≤ ‖q,Kth(K ),now‖ then
16. Let pk ← kth point returned by incremental

distance query on index tpr for query point q.
17. K ← (K \ {p}) ∪ {pk}.
18. Let enn ← result of next nn-event query on

index tpr for query point q and new Kth(K ).
19. else if p is involved in event enn then
20. Let enn ← result of next nn-event query on

index tpr for query point q and new Kth(K ).
21. end if-then
22. end if-then

procedure ETP Update Query Point(q, k, enn, tpr, K )
1. if inserting q then
2. Let K ← first k points returned by incremental

distance query on index tpr for query point q.
3. Let enn ← result of next nn-event query on

index tpr for query point q and Kth(K ).
4. else /* deleting q */
5. K ← ∅.
6. enn ← ∅.
7. end if-then

procedure ETP Process Nn Evt(q, k, enn, tpr, K )
1. Let p ← non-kth neighbor data point involved in enn.
2. if p will be closer to q than Kth(K ) after event then
3. K ← (K \ K th(K )) ∪ {p}.
4. end if-then
5. Let enn ← result of next nn-event query on index tpr

for query point q and kth neighbor Kth(K ).

A.2 iCW Algorithms

procedure iCW(r, q, k, x)
1. iCW Adjust Window(r, q, k, x, d , W, Q)
2. iCW Compute Knn Result(q, k, enn, W, K )
3. while true do
4. Sleep until there is an update, or an event comes due.
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5. if there is an update to r then
6. iCW Update Data Relation(r, q, k, x, d , enn, W, K , Q)
7. else if there is an update to q then
8. iCW Update Query Point(r, q, k, x, d , enn, W, K , Q)
9. else if a w-event has come due then

10. iCW Process Within Evt(r, q, k, x, d , enn, W, K , Q)
11. else iCW Process Nn Evt(q, enn, W, K )
12. end while

procedure iCW Adjust Window(r, q, k, x, d , W, Q)
1. Let W ← ∅; Q ← ∅
2. Scan r and find the closest k + x + 1 points to

q at the current time, and assign them to set S.
3. Sort points in S by distance to q at the current time.
4. Let d ← (‖q, sk+x ,now‖ + ‖q, sk+x+1,now‖)/2.
5. Let W ← first k + x points in S.
6. for each point pi ∈ r
7. e ←next w event(pi , q, d ,now)
8. if e �= ∅ then Q ← Q ∪ {e}
9. end for-each

procedure iCW Compute Knn Result(q, k, enn, W, K )
1. Let K be the closest k points to q in set W

at the current time sorted by distance to q.
3. enn ← ∅ /* note: Time(∅) = ∞ */
4. for each point wi ∈ W ∧ wi �=Kth(K ) do
5. eoc ←next oc event(wi , q,Kth(K ),now)
6. if Time(eoc) <Time(enn) then enn ← eoc
7. end for-each

procedure iCW Update Data Relation(r, q, k, x, d , enn, W, K , Q)
1. if there is no current query point then return.
2. Let point p be the point just inserted or deleted from r.
3. if p was inserted into r then
4. if ‖q, p,now‖ ≤ d then
5. Let Q ← Q ∪ {next w event(p, q, d ,now)}.
6. Let W ← W ∪ {p}.
7. if ‖q, p,now‖ < ‖q,Kth(K ),now‖ then
8. Let K ← (K \Kth(K )) ∪ {p}.
9. Let enn ← soonest oc-event from points in W after current time.

10. else
11. Let eoc ←next oc event(p, q,Kth(K ),now)
12. if Time(eoc) <Time(enn) then enn ← eoc
13. end if-then
14. else if next w event(p, q, d ,now) < ∞ then
15. Let Q ← Q ∪ {next w event(p, q, d ,now)}.
16. end if-then
17. else if p has a w-event in Q then
18. Remove the w-event involving p from Q .
19. if p in W then
20. Let W ← W \ {p}.
21. if |W | ≤ k then /* underflow */
22. iCW Adjust Window(r, q, k, x, d , W, Q)
23. iCW Compute Knn Result(q, k, enn, W, K )
24. else if p in K then
25. iCW Compute Knn Result(q, k, enn, W, K )
26. else if p involved in enn then
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27. Let enn ← soonest oc-event from points in W after current time.
28. end if-then
29. end if-then
30. end if-then

procedure iCW Process Within Evt(r, q, k, x, d , enn, W, K , Q)
1. ew ←Dequeue(Q).
2. Let p be the data point involved in ew.
3. if ew is an enter event then
4. Let W ← W ∪ {p}.
5. Let Q ← Q ∪ {next w event(p, q, d ,now)}.
6. Let eoc ←next oc event(p, q,Kth(K ),now).
7. if Time(eoc) <Time(enn) then enn ← eoc.
8. else /* ew is an exit event */
9. W ← W \ {p}.

10. if |W | ≤ k then /* underflow */
11. iCW Adjust Window(r, q, k, x, d , W, Q)
12. end if-then
13. end if-then

procedure iCW Update Query Point(r, q, k, x, d , enn, W, K , Q)
1. if query point q was inserted then
2. iCW Adjust Window(r, q, k, x, d , W, Q)
3. iCW Compute Knn Result(q, k, enn, W, K )
4. else let K ← ∅, Q ← ∅, enn ← ∅.

procedure iCW Process Nn Evt(q, enn, W, K )
1. Let p ← non-kth neighbor data point involved in enn.
2. if p will be closer to q than Kth(K ) after event then
3. K ← (K \ K th(K )) ∪ {p}.
4. end if-then
5. Let enn ← soonest oc-event from points in W

after current time.

A.3 AE Algorithms

Input parameter j to the AE Detailed() and the NE Detailed() algorithms defines
the continuous spatial join query. Associated with j are the two relations j .l
and j .r to be joined. Relation j .l has a TPR-tree index j .tprl on moving point
attribute αl ∈ L where L is the schema of j .l . Relation j .r has a TPR-tree index
j .tprr on moving point attribute αr ∈ R where R is the schema of j .r. Events
are stored in a queue j .Q sorted by time in increasing order. The scalar value
j .dist is the join distance, and scalar j .generation length is the event generation
cycle duration.

Function pair(e) joins the tuples that contain the moving points involved
in the event e and returns them. Function Find Within Dist() is a within
distance query that returning the tuples from j .r with points indexed
by j .tprr that are within distance j .dist of query point pl . The function
All Within Events( j .tprr , pl , j .dist, �t) returns all the w-events at distance
j .dist from query point pl during the next �t with the moving points indexed
by j .tprr . Function All Within Events() is implemented using the incremental
within event query described in Section 5.3, stopping when the maximum time
�t is reached. Function Next Within Event( j .tprr , pl , j .dist, �t) returns the next
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w-event at distance j .dist from query point pl during the next �t time units
with the moving points indexed by j .tprr . It returns a null event if no such next
event exists. Function Next Within Event() (not given here) is implemented us-
ing the incremental within event query described in Section 5.3, stopping after
the first event is returned.

procedure AE Detailed( j )
1. Perform initial join and report result J .
2. AE Generate Events( j )
3. while true do
4. Sleep until there is an update, or an event comes due,

or the end of the event generation cycle is reached.
5. if an event came due then
6. AE Process Next Event( j )
7. else if there is an update then
8. if tuple was inserted in j .l then
9. AE Insert L( j )

10. else if tuple was deleted from j .l then
11. AE Delete L( j )
12. else if tuple was inserted in j .r then
13. AE Insert R( j )
14. else /* tuple was deleted from j .r */
15. AE Delete R( j )
16. end if-then
17. else /* end of event generation cycle was reached */
18. AE Generate Events( j )
19. end if-then
20. end while

procedure AE Process Next Event( j )
1. Event e ←Dequeue( j .Q)
2. if event e is an enter event then
3. Report pair(e) inserted into result J .
4. else if event e is an exit event then
5. Report pair(e) deleted from result J .
6. end if-then

procedure AE Insert L( j )
1. Let τl be the new tuple that was inserted into j .l .
2. Let pl be the instance of moving point attribute αl in τl .
3. Let �t be the time between now and the end of the current event generation cycle.
4. for each tuple τ ∈ Find Within Dist( j .tprr , j .r, pl , j .dist)
5. Report joined tuple τl τ inserted into result J .
6. end for-each
7. for each event e ∈ All Within Events( j .tprr , pl , j .dist, �t)
8. Enqueue event e on queue j .Q .
9. end for-each

10. Insert point pl into index j .tprl .

procedure AE Delete L( j )
1. Let τl be the tuple that was deleted from j .l .
2. Let pl be the instance of moving point attribute αl in τl .
3. Remove all events involving pl from j .Q .
4. for each tuple τ ∈ Find Within Dist( j .tprr , j .r, pl , j .dist)
5. Report joined tuple τl τ deleted from result J .
6. end for-each
7. Delete point pl from index j .tprl .

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.



532 • G. S. Iwerks et al.

AE Insert R() is symmetric with AE Insert L( j ). In particular, replacing τl τ

with ττr in line 5 of AE Insert L( j ), and then swapping symbols l with r yields the
AE Insert R( j ) algorithm. Similarly, AE Delete R() is symmetric with procedure
AE Delete L( j ). In particular, AE Delete R( j ) is derived from AE Delete L( j ) by
replacing τl τ with ττr in line 5, and then swapping symbols l with r.

procedure AE Generate Events( j )
1. Let �t be the time between now and the end of the current event generation cycle.
2. for each leaf node n ∈ j .tprl
3. for each moving point pl ∈ n
4. for each event e ∈ All Within Events( j .tprr , pl , j .dist, �t)
5. Enqueue event e in queue j .Q .
6. end for-each
7. end for-each
8. end for-each

A.4 NE Algorithms

procedure NE Detailed( j )
1. Perform initial join and report result J .
2. NE Generate Events( j )
3. while true do
4. Sleep until there is an update, or an event comes due,

or the end of the event generation cycle is reached.
5. if an event came due then
6. NE Process Next Event( j )
7. else if there is an update then
8. if tuple was inserted in j .l then
9. NE Insert L( j )

10. else if tuple was deleted from j .l then
11. NE Delete L( j )
12. else if tuple was inserted in j .r then
13. NE Insert R( j )
14. else /* tuple was deleted from j .r */
15. NE Delete R( j )
16. end if-then
17. else /* end of event generation cycle was reached */
18. NE Generate Events( j )
19. end if-then
20. end while

procedure NE Process Next Event( j )
1. Event e ←Dequeue( j .Q)
2. Let pl be the moving point in j .l involved in e.
3. Let �t be the time between now and the end of the current event generation

cycle.
4. if event e is an exit event then
5. Report pair(e) deleted from result J .
6. else if event e is an enter event then
7. Report pair(e) inserted into result J .
8. Let eexit be the exit event following e for the points involved in e.
9. if event eexit occurs before now + �t then

10. Let �t be the time between now and eexit.
11. end if-then
12. enext ← Next Within Event( j .tprr , pl , j .dist, �t)
13. if event enext is not null then enqueue enext in j .Q .
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procedure NE Insert L( j )
1. Let τl be the new tuple that was inserted into j .l .
2. Let pl be the instance of the moving point in τl .
3. Let �t be the time between now and the end of the current event generation

cycle.
4. for each τ ∈ Find Within Dist( j .tprr , j .r, pl , j .dist)
5. Report joined tuple τl τ inserted into result J .
6. Let eexit be the exit event between the points in τl and τ .
7. if event eexit occurs before now + �t then
8. Let �t be the time between now and eexit.
9. end for-each

10. enext ←Next Within Event( j .tprr , pl , j .dist, �t)
11. if event enext is not null then enqueue enext in j .Q .
12. Insert point pl into index j .tprl .

Procedure NE Delete L( j ) is identical to AE Delete L( j ) with the exception
that there is at most one item to be removed from Q .

procedure NE Insert R( j )
1. Let τr be the new tuple that was inserted into j .r.
2. Let pr be the instance of moving point attribute αr in τr .
3. Let �t be the time between now and the end of the current event generation

cycle.
4. for each τ ∈ Find Within Dist( j .tprl , j .l , pr , j .dist)
5. Report joined tuple ττr inserted into result J .
6. for each e ∈ All Within Events( j .tprl , pr , j .dist, �t)
7. Let pl be the point from j .l that is involved in e.
8. if there is no event already in j .Q involving pl then
9. Enqueue event e in j .Q .

10. else
11. Let eprev be the event involving pl in j .Q .
12. if eprev occurs after e then
13. Replace eprev with e in j .Q .
14. end if-then
15. end if-then
16. end for-each
17. Insert point pr into index j .tprr .

procedure NE Delete R( j )
1. Let τr be the tuple that was deleted from j .r.
2. Let pr be the instance of moving point attribute αr in τr .
3. Let �t be the time between now and the end of the current event generation

cycle.
4. Delete point pr from index j .tprr .
5. for each event w(pl , pr , t) ∈ j .Q
6. Remove w(pl , pr , t) from j .Q .
7. e ←Next Within Event( j .tprr , pl , j .dist, �t)
8. Enqueue e in j .Q .
9. end for-each

10. for each τ ∈ Find Within Dist( j .tprl , j .l , pr , j .dist)
11. Report joined tuple ττr deleted from result J .
12. end for-each

procedure NE Generate Events( j )
1. Let �t be the time between now and the end of the current event generation

cycle.
2. for each leaf node n ∈ j .tprl
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3. for each moving point pl ∈ n
4. for each event e ∈ Next Within Event( j .tprr , pl , j .dist, �t)
5. Enqueue event e in queue j .Q .
6. end for-each
7. end for-each
8. end for-each
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GÜTING, R. H. AND SCHNEIDER, M. 2005. Moving Objects Databases. Morgan-Kaufmann, San Fran-

cisco, CA.

GUTTMAN, A. 1984. R-trees: a dynamic index structure for spatial searching. In Proceedings of
the ACM SIGMOD Conference (Boston, MA). ACM, New York, 47–57.

HELLERSTEIN, J. M., NAUGHTON, J. F., AND PFEFFER, A. 1995. Generalized search trees for database

systems. In Proceedings of the 21st International Conference on Very Large Data Bases (Zurich,

Switzerland). 562–573.

HJALTASON, G. R. AND SAMET, H. 1998. Incremental distance join algorithms for spatial databases.

In Proceedings of the ACM SIGMOD Conference (Seattle, WA). ACM, New York, 237–248.

HJALTASON, G. R. AND SAMET, H. 1999. Distance browsing in spatial databases. ACM Trans. Datab.
Syst. 24, 2 (June), 265–318. (Also University of Maryland Computer Science TR–3919).

IWERKS, G. S., SAMET, H., AND SMITH, K. 2003. Continuous k-nearest neighbor queries for contin-

uously moving points with updates. In Proceedings of the 29th International Conference on Very
Large Data Bases (Berlin, Germany). 512–523.

IWERKS, G. S., SAMET, H., AND SMITH, K. 2004. Maintenance of spatial semijoin queries on moving

points. In Proceedings of the 30th International Conference on Very Large Data Bases (Toronto,

Ont., Canada).

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.



Maintenance of K-nn and Spatial Join Queries on Continuously Moving Points • 535

JENSEN, C. S. AND SALTENIS, S. 2002. Towards increasingly update efficient moving-object indexing.

IEEE Bull. Tech. Comm. Data Eng. 25, 2 (June), 35–40.

KALASHNIKOV, D. V., PRABHAKAR, S., AND HAMBRUSCH, S. E. 2004. Main memory evaluation of mon-

itoring queries over moving objects. Distrib. Para. Datab. 15, 2 (Mar.), 117–135.
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