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Abstract. A comparison is made of global and local methods for the
shape analysis of logos in an image database. The qualities of the methods
are judged by using the shape signatures to define a similarity metric on
the logos. As representatives for the two classes of methods, we use the
negative shape method which is based on local shape information and a
wavelet-based method which makes use of global information. We apply
both methods to images with different kinds of degradations and examine
how a given degradation highlights the strengths and shortcomings of
each method. Finally, we use these results to combine information from
both methods and develop a new method which is based on the relative
performances of the two methods.
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1 Introduction

We examine three different approaches for classifying images with several com-
ponents in an image database. One approach uses local methods to represent
the image, the second uses global methods, while the third combines both using
an adaptive weighting scheme based on relative performance. The local method
uses so-called negative symbols, as described in [8], to compute a number of
statistical and perceptual shape features for each connected component of an
image and its background. The global method uses a wavelet decomposition of
the horizontal and vertical projections of the global image as described in [5].
As a sample application of well-defined multi-component images, we use logos.

Several studies have reported results on some form of logo recognition. Each
study used either global or local methods. These include local invariants [4, 7],
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wavelet features [5], neural networks [3], and graphical distribution features [6].
The performance in case of certain degradations was examined.

In this paper we compare the local and global methods under the influence
of several image degradations. The performance measure is the ranking of the
original logo after inputing a degraded version of it into the classifier. The re-
sults exhibit the advantages and disadvantages of local methods, based on shape
features, in contrast to global methods, rooted in signal processing. Finally, we
present an algorithm that combines both methods into a single, robust frame-
work by adaptively weighting the contributions of each method according to an
estimate of their relative performance.

2 Preprocessing: Normalization of the images

The classification methods should be scale, translation, and rotation invariant.
To achieve this, we apply some preprocessing steps to the input images before
we start the computation of any features. The logos contained in the UMD-
Logo-Database are gray-scale images that are scanned versions of black and
white logos. Using an empirically determined preset threshold, we transform
the input image into a binary image for which we compute its centroid.After
shifting the image so that the centroid is located at the image center, which
gives us translational invariance, we rotate the image around the centroid so that
the major principal axis is aligned with the horizontal. This gives us rotational
invariance. Finally, we resize the logo component so that its bounding box is
a given percentage of the image size. This accounts for changes in scale of the
input logos. These transformations make it possible to perform the following
computations without reference to orientation, position, and scale.

3 The Wavelet Method

Given a normalized image we compute the horizontal and vertical projections
of this binary image which are defined as P (y) =

∑m
x=1 I(x, y) and P (x) =∑n

y=1 I(x, y). This means that we are counting the number of white pixels for
each column and row. Next, we use a wavelet transform to apply a low-pass
filter to the projections. In our experiments we used the Haar wavelet and the
Daubechies wavelet s8 as implemented in the MATLAB wavelet toolbox and
described in [9]. We do a 4-level Haar wavelet decomposition and for the 256x256
images that we used we get 16 low-pass coefficients per projection. In the case
of the Haar wavelet this amounts to a repeated process of averaging and down-
sampling. Finally, we end up with a 32-dimensional vector describing the logo
as there are 16 coefficients for each of the two coordinate axes. This process is
illustrated in Figure 1. These coefficient vectors, called signatures, are now used
to compare different logos among each other. We use the L1-Norm to compute
the difference between their signatures, because the L1-Norm is known to be
robust against outliers and very fast to compute [9].
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Fig. 1. The Wavelet signatures (from top-down, left-right): original image, normalized
image, horizontal projection, vertical projection, low-pass wavelet coefficients of hori-
zontal projection, low-pass wavelet coefficients of vertical projection (x-axis: index of
coefficient, y-axis: coefficient magnitude).

4 The Negative Shape Method

The novel idea of the negative shape method as defined in [8] for the represen-
tation of symbol-like data such as found in logos is that we compute the shape
features not just on the components of the foreground that constitute the symbol
itself, but also on the components that make up the background of the image
containing the symbol.

4.1 Choice of Shape Features

We start with the normalized images and do a connected component labeling of
the image. For each component of the labeled image, we compute the following
shape features:

1. F1: Invariant moment: The trace of the covariance matrix of the positions
of the pixels that make up the logo, that is the sum of its diagonal entries.

2. F2: Eccentricity: The ratio between the length and width of the axis-
aligned bounding box of the component after the normalization described in
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Section 2. This gives us information about the extent of the elongation of a
component.

3. F3: Circularity: The ratio between perimeter of the component and the
perimeter of a circle of equivalent area: CIRC = Perimeter2

4·π·Area .
4. F4: Rectangularity: The ratio between the area of the component and the

area of its bounding box.
5. F5: Hole Area Ratio: The ratio between the area of the holes inside the

component and the area of the solid part of the component.
6. F6,F7: Horizontal (Vertical) Gap Ratio: The ratio of the square of the

gap count to the area of the component where the gap count is defined as the
number of pixels inside the component that have a right (bottom) neighbor
that does not belong to the component.

4.2 The Classification Procedure

For the negative shape method we define the distance measure between two logos
Logo1 and Logo2 as follows:

1. Normalize the value range for each element of the feature vector over all the
logos of all the images in the dataset.

2. For each component of Logo1 find the component of Logo2 that has the
smallest distance(L2-norm) in feature space to it.

3. The average of these minimal distances over all the components of Logo1

yields a measure for the distance between the two logos.

5 Comparison Between the Methods

All methods were implemented in MatlabTM [1] and were applied to the logos
contained in the UMD-Logo-Database (123 logos) [2]. The system was tested
by providing it with an input logo and ranking the logos in the database based
on their similarity to this logo. All methods always found the matching logo
in the database. In particular, they ranked it first when the input logo is an
uncorrupted version of one of the logos in the database. Below, we investigate
the robustness of the methods when the logos are corrupted using four different
image degradation methods as described in Figures 2a, 3a, 4a, and 5a. For each
method, we degrade the images in the database to a varying degree, input them
into the classifier, and then examine the rank (in terms of feature space distance)
of the original, uncompromised logo. Here we examine the median of the rankings
of the original logo over all the input logos (part b of all the figures) and how
often in terms of the percent of all logos the original logo was ranked among the
closest five of all logos (part c of all the figures). Each graph consists of three
curves: the dashed curve corresponds to the negative shape method, the gray
curve corresponds to the wavelet method, and the solid curve corresponds to
the combined method which has not yet been described. The combined method
was devised based on the results of these experiments and thus we defer its
explanation and the analysis of the results using this method to the next section
(i.e. Section 6) once we understand the pros and cons of the two methods.
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5.1 Additive Random Noise

To model the image degradation that is caused by processes such as fax trans-
missions or photo copying, we add Gaussian noise of zero mean and varying
standard deviation (varying from 0.1 % to 50 % of the maximum possible pixel
value of the image as indicated on the x-axis) to the gray-scale input images
(e.g., Figure 2a).
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Fig. 2. Gaussian Noise: The x-axis denotes the standard deviation of the Gaussian
noise with respect to the maximal pixel value of the original image. The dashed curves
in (b) and (c) correspond to the negative shape method, the gray curves to the wavelet
method, and the solid curves to the combined method.

All the methods perform very well for small amounts of noise, but the wavelet
method outperforms the negative shape noticeably (Figures 2b and 2c) for higher
amounts of noise. Even when applying much noise (e.g., a standard deviation
which is 20% of the possible pixel value), the average rank of the original logo is
close to the top 10 (Figure 2b) and about 80% of the logos are ranked in the top
5 (Figure 2c). If we apply the negative shape method to such a heavily degraded
image, the original logo is ranked in a nearly random manner (median rank 40th
out of 123 logos as seen in Figure 2b) and the percentage of top 5 classifications
is below 10% (Figure 2c).

It is to be expected that the wavelet method outperforms the negative shape
method when adding random noise since the use of isotropic noise with an equal
probability for adding or subtracting pixels should have only a small effect on
the global histogram used in the wavelet method. We use noise of zero mean.
Consequently, on the average, the distribution of white and black pixels in a
row or column should not change much, and thus neither should the projection
change much. On the other hand, in the negative shape method, we compute the
feature vectors only on a small subset of pixels of each component. In this case,
the noise will change the spatial distribution of the pixels more drastically be-
cause of the smaller number of pixels involved. Thus the negative shape method
is less robust towards zero-mean Gaussian noise than the wavelet method.
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5.2 Reduced Resolution

To see how the methods handle differences in image resolution, which is obviously
not offset by the scaling invariance since we work on digitized images, we reduce
the size of the input images through sub-sampling using bilinear interpolation
(e.g., Figure 3). The parameter value is the size ratio between the original and
the sub-sampled image as indicated on the x-axis.
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Fig. 3. Reduced Resolution: The x-axis denotes the ratio between the size of the origi-
nal and sub-sampled images.The dashed curves in (b) and (c) correspond to the nega-
tive shape method, the gray curves to the wavelet method, and the solid curves to the
combined method.

As in Section 5.1, the wavelet method outperforms the negative shape
method, although the negative shape method does not exhibit the same break-
down in performance as in the case of random noise. Since we use the low-pass
wavelet coefficients for the classifier, the reduced resolution does not influence
the performance of the wavelet method drastically. This is because sub-sampling
an image by bilinear interpolation has a similar effect as low-pass filtering the
image. The low-pass wavelet coefficients of a low-pass filtered image are in gen-
eral very similar to the low-pass coefficients computed on the original image due
to the fact that the low frequency components of the image are not affected no-
ticeably by the sub-sampling operation. As before, the negative shape method
is affected by this degradation because even when large scale changes are hardly
visible, local shape features such as circularity, rectangularity and gap ratios are
more susceptible to local changes due to a loss of detail.

5.3 Occlusion

To model the occlusion of parts of a logo, we add a component to the logo image
which in this case is a black rectangle of varying size. The parameter here is the
percentage of the image that is occluded by the rectangle (e.g., Figure 4a).

The performance graphs show that occlusion has a greater effect on the
wavelet method than the negative shape method (Figures 4b and 4c) although
both methods are able to handle small occlusions well.

6



Proceedings of the 4th International Workshop on Visual Form (IWVF4) ,
Lecture Notes in Computer Science 2059, Springer, Berlin, 2001, pp. 769-778

Since the addition of an extra object or the omission of parts of the image
causes global changes to the distribution of pixels in each row or column, the
projections are strongly affected and thus so are the wavelet coefficients. Be-
cause of the local structure of the shape features, the components that are not
occluded are not degraded at all and their feature values are unchanged. In the
classifier we average the best feature vector matches for all the components in
the input image. Since an occlusion is more likely to combine components into
larger aggregates than to break them into many new ones, these few new com-
ponents which do not have a corresponding component in the original image, are
influencing the feature distance only to a small degree. Except for very degener-
ate configurations, the influence of the new components is averaged out by the
continuing good matches of the feature vectors of the remaining uninfluenced
components.

5.4 Swirling the Image

Swirling is a smooth deformation of an image which can be used to model a
non-isotropic stretching of a logo. The relative position of each row is shifted
to the left or right by an offset given by a smooth function, where the offset is
limited to a certain percentage of the image width which is given as a parameter.
This deforms the logo as if we would stretch a rubber sheet in different directions
(e.g., Figure 5a).

This degradation has very different effects on the two methods. The per-
formance of the wavelet method worsens rapidly with increasing swirl until we
basically get a random ranking (our test size is 123, therefore, an average rank-
ing of around 50 is nearly the expected median ranking for a logo that is not in
the database). In contrast, the median rank of the original logo when using the
negative shape method is lower than 10 (Figure 5b). It is possible to locally ap-
proximate this deformation as a combination of translations and rotations. The
local features used by the negative shape method are rotation and translation
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Fig. 4. Occlusion of part of the image: The x-axis denotes the percentage of image area
that is occluded. The dashed curves in (b) and (c) correspond to the negative shape
method, the gray curves to the wavelet method, and the solid curves to the combined
method.
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Fig. 5. Swirl of the image: The x-axis denotes the maximum horizontal displacement of
an image row in percentage of image width. The dashed curves in (b) and (c) correspond
to the negative shape method, the gray curves to the wavelet method, and the solid
curves to the combined method.

invariant due to the component normalization. Therefore, it is much less affected
by this degradation than the wavelet method. Recall that the wavelet method is
only globally rotation and translation invariant due to the global preprocessing,
but not locally.

6 Combination of both Methods

In Section 5 we saw that the wavelet and the negative shape methods perform
very differently if the input logo is corrupted by either local or global degrada-
tions. To take advantage of the respective strengths of both methods we devised
the following performance-dependent weighting scheme. First, for each unde-
graded logo l in the dataset we compute the average feature space distance of l
to all other logos for both the wavelet and the negative shape methods. This is
followed by calculating the average of these average distances for the two meth-
ods which we denote by Aw for the wavelet method and As for the negative
shape method. We define the ratio between these two averages (i.e. Aw

As
) to be

the expected ratio E for the two methods. We determined how this ratio changed
when we applied both methods to degraded inputs. The understanding of this
relationship between the change in ratio and the relative performance of the two
methods when applied to degraded images enabled us to adaptively weight the
respective contributions of the two methods when combining them into a single
distance measure. The relative weights are based on the change in the ratio be-
cause a a large increase of the feature space distance for one method compared
to the other indicates a breakdown in its performance.

When classifying an input logo which has been degraded using one of the
processes described in Section 5, we first compute the feature distances of this
logo to all the other logos for the wavelet method which we denote by W and
for the negative shape method which we denote by S. In addition, we define
the averages of W and S over the whole dataset by Dw and Ds, respectively.
Next, we compare the ratio between Dw and Ds (i.e., Dw

Ds
) to the expected ratio
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between W and S which we assume to be similar to the precomputed value E. If
the difference in the ratios indicates that one of the two methods is performing
worse than expected, we decrease its weight in the final classification and increase
the weight of the other method. The combined feature distance C for a single
degraded input logo is a weighted sum of the wavelet method feature distance
W and negative shape method feature distance S:

C =
E · Ds

Dw
· W

E
+ S (1)

The factor E, that describes the average ratio between W and S, is only in-
cluded in order to facilitate understanding the rationale behind the final weight-
ing method. If we divide W by E, then we effectively normalize W , so that
its magnitude is equal to the magnitude of S. Thus, if the ratio Dw

Ds
equals the

expected ratio E, then we believe that both methods will perform well and we
use an approximately equal weighting of the two feature distances W and S. If
now the ratio Dw

Ds
either grows larger (smaller) than E because the degradation

of the input logo causes the wavelet method to compute feature distances larger
(smaller) than the negative shape method (up to the expected ratio E), then
the contribution of W in equation 1 will be reduced (increased) because we have
less (more) confidence in the wavelet method’s ability to classify the input logo
correctly.

This adaptive weighting scheme increases the robustness of the classification
noticeably. When we examine the performance criteria in Section 5, we see that
the combined method is able to capture the different behavior of the methods
and adapts its weights accordingly. Comparing the performance of the combined
method on images degraded as described in Section 5.1 and Section 5.4 where
the wavelet and the negative shape method exhibit very different performances,
we see that our weighting scheme is able to detect the change in relative perfor-
mance and adjust the weights to mimic the classification of the better performing
method. For the degradations described in Sections 5.2 and 5.3 where the per-
formance difference between the two basic methods is not as pronounced, the
combined method lags slightly behind the better performing method in the me-
dian rank criterion (part (b) of all the Figures), but equals or surpasses the
performance of the better method in terms of the other criterion (part (c) of
all the Figures). This shows that our combined scheme is effective in capturing
global as well as local shape information and is thus able to deal well with the
image degradations of the kind that we described.

7 Summary and Future Work

Both the wavelet as well as the negative shape method are well-suited for cer-
tain kinds of image degradations but are very sensitive to others. This discrep-
ancy in performance can be explained by the difference between local shape
feature-based and global, filter-based methods. On the one hand, we have the
wavelet method that operates on the global image and computes features that
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are relatively invariant to degradations that are isotropic. On the other hand,
we have the negative shape method which operates on local image regions. Thus
its features are relatively invariant to changes that leave the image at other lo-
cations mostly intact such as occlusions or preserve the local image structure
such as the swirl deformation. We take advantage of the fact that both basic
methods perform very differently on images that exhibit degradations of either
local or global nature by devising a performance-dependent weighting scheme
that combines the results of both methods. Our combined algorithm shows a
noticeable improvement in the robustness of the classification by combining the
strengths and avoiding the weaknesses of the respective methods. This weighting
scheme performs the better the more different the performances of the underlying
methods are because this makes it easier to detect if one method is performing
poorly with respect to the other method. Therefore, the wavelet and the negative
shape methods are very well-suited to be combined by a performance-dependent
weighting scheme.

For future work it is planned to improve the synergy between the two meth-
ods by using local image information to estimate how much an image region is
degraded and then use this locality information to adaptively weigh the feature
vectors on the component level.
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