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Abstract

A method for representing geographic symbols for storage and re-
trieval in an image database is presented. Symbols are characterized by
a collection of features that describe their shape. Many of these geo-
graphic symbols are composed of a circle (or rectangle) enclosing one or
more small shapes. A new representation of such symbols based on their
interior with the shapes considered as holes, termed a negative symbol, is
described. A set of shape features used to characterize geographic sym-
bols is presented. These features are appropriate for symbols that are
represented by their negation as well as for symbols that are composed of
only one part and thus are not represented by their negation. Negative
symbols along with these features have been used successfully to index
maps in a map image database system. Results of experiments testing
the accuracy of the database using these features are given.

1 Introduction

Consider a database containing a large number of images each composed of
several symbols that have some meaning (e.g., the symbol on a paper map
that represents a museum). Such images are called symbolic images and their
domain includes maps, engineering drawings, and floor plans. For example,
suppose that we wish to find all of the images in the database that contain a
particular symbol. There are generally two methods of achieving this capabil-
ity. In the first method, termed classification, each symbol in each image is
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classified (i.e., it is replaced by its symbolic meaning). In the second method,
termed abstraction, each symbol is represented by some properties of its visual
representation (e.g., shape, length, connectivity, genus, etc.) termed a feature
vector. Classification can potentially be performed using template matching.
However, template matching is limited to cases where all instances of the same
symbol have the same scale and orientation. Therefore, classification should
be performed using a more robust method such as statistical pattern recog-
nition based on some descriptive features of the symbols. In both methods
for storing images it is desirable to represent a symbol by a small number of
numeric descriptors.

In our work, we concentrate on databases consisting of images that contain
geographic symbols. These images could be, for example, the symbol layer of
a tourist map. An interesting characteristic of such symbols 1s that many of
them tend to be composed of a circle (or rectangle) enclosing one or more
small shapes (e.g., the beach and hotel symbols in Figure 1 which shows the
geographic symbols that we have studied along with their semantic meaning).
Ideally, we would like to represent each symbol in the database with only one
feature vector in order to simplify the search process at query time. Therefore,
for symbols that are composed of several shapes, we must select one of these
shapes to represent it. This may lead to ambiguity and as a result we may
not be able to distinguish between some symbols. In order to overcome this
problem, we propose to represent such symbols by the interior of the circle
with the small shapes considered as holes in this object (termed a negative
symbol). For example, the “beach” symbol in Figure 1 would be represented
by the interior of a circle with the two wiggly lines as holes.

Most image databases treat images as a whole and index them on the basis
of color and texture [7, 8, 14]. However, shape features have also been used
[1, 11]. In all of these cases the objects that are being indexed based on shape
are assumed to be simple (i.e., composed of only one part). Most research in
map recognition has concentrated on skeletonization and vectorization meth-
ods [15]. Some research has been done on separating the layers of scanned
maps [13]. Recognizing geographic symbols in the context of map recognition
has also been considered [5, 16]. The methods employed in these studies are
either very computationally expensive or require the user to explicitly build a
semantic model that is used to perform the classification of map objects. Thus,
these methods are not applicable in the context of an image database.

In this paper, we study the appropriateness of using the negative symbol
representation. In addition, we describe a set of shape features that can be
used to characterize symbols represented by their negation as well as symbols
that are only composed of one part and thus are not represented by their



3rd International Workshop on Visual Form Capri, Italy, May, 1997 3

@ airfield < fishing site . Diesel fuel

@ campingsite & beach food

® hotel @® first aid g restrooms

@ service station ‘® holiday camp
® = SCenic view pedestrian crossing
cafe’

@ picnic site % site of interest camper
m Yyouth hostel

€ information (® post office poison

Figure 1: Geographic symbols and their semantic meaning.

negation (termed positive symbols). These features should be easy to compute
since we need to calculate them for a large number of images. Furthermore,
the number of features should be relatively small in order to facilitate efficient
comparison of features. Finally, these features should be effective in discrimi-
nating between different geographic symbols. We have used negative symbols
along with these features to successfully index maps in a map image database
system that we have developed [10]. In this paper, we assume that we are
using the classification approach to storing images. That is, we are classifying
the geographic symbols as the map images are input to the system. However,
these same features can also be stored directly in the database if using the
abstraction method [12].

The rest of this paper is organized as follows. Section 2 presents an
overview of the symbol recognition method that we used. Section 3 motivates
our use of negative symbols. Section 4 describes the shape features that we
use to represent geographic symbols. Section 5 discusses the implementation
and experimental results. Section 6 contains concluding remarks.

2 Overview of Symbol Recognition Method

Figure 2 is an overview of the method. The symbol layer of the map is scanned.
Next, segmentation is performed which identifies the individual symbols to be
classified. Features are extracted for each individual symbol. Finally, each
symbol is classified. In our system, segmentation is performed via a connected
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Figure 2: Block diagram of symbol classification system

component labeling algorithm. This results in a labeled image in which each
pixel has a region number as its value.

As mentioned above, complex map symbols are represented by the interior
of the symbol with the enclosed shapes considered as holes. This enables us to
represent symbols such as the beach symbol that are composed of more than
one piece by only one connected component. Our system assumes that the
symbols may be distinguished from each other by just one connected compo-
nent using this method.

Symbols are classified based on the shape features that are computed for
the connected component using a weighted bounded several-nearest neighbor
classifier [2]. This classifier makes use of a training set with several represen-
tative feature vectors for each symbol. We construct an initial training set
library by analyzing the legend and inserting the feature vector of the con-
nected component that was chosen to represent each symbol into the training
set. The training set 1s later expanded by adding feature vectors of symbols
that are identified by the user as having been erroneously classified. For more
details about this process, see [10].

3 Why Use Negative Symbols?

We encountered several problems when using only positive symbols. We use
Figure 3, a typical image used in our application, to illustrate the difficulties
with positive symbols. Recall, that our goal i1s to represent each symbol by
only one feature vector in order to simplify the search process at query time.

The main problem with positive symbols is ambiguity. For example, using
only positive symbols we cannot distinguish between the hotel @) symbol and
the youth hostel wsymbol. If we choose to represent the hotel {@) by the square
inside the circle, then there is no difference between it and the youth hostel m
symbol. The circle cannot represent the hotel @) either, as it is common to
many symbols. However, using negative symbols the hotel @) is represented
by a circle with a square cut out of it and the youth hostel ®is represented
by a square, and thus we can distinguish between the two. Another source
of ambiguity is that using positive symbols we cannot distinguish between a
letter that is enclosed in a circle, and is thus a legend symbol, and a letter that
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Figure 3: Example map tile

is part of a word. For example, we cannot distinguish between the symbol
for cafe ® and the “K” in the word “Kuski” (see Figure 3). However, using
negative symbols the cafe (&) is represented by a circle with a “K” cut out of
it, and thus the “K” in the word “Kuski” will not be erroneously considered a

cafe ®) .

It is worth noting that if we were to represent symbols by more than one
region, we would encounter additional problems using positive symbols. For
example, we could represent the hotel @) as a combination of a square and a
circle. However, we would then need to also model the topological layout (that
is, that the square is inside the circle). The database search process would
need to verify this at query time, and as a result searching would be much
more complex. In addition, if two symbols touch each other (e.g., ), then
the two circles would be considered one region and we could not recognize
either symbol. However, this is not a concern when using negative symbols.
Although the circles touch, the interiors do not, and thus we have two separate
regions and this problem does not arise.

As part of the segmentation process, we set a threshold for the minimal
acceptable size of a segment. Any segment (i.e., connected component) that is
smaller than this threshold is not considered a potential symbol. When using
positive symbols, this threshold has to be smaller than when using negative
symbols since a symbol may be represented by a relatively small component.
For example, we could represent the beach & symbol by one of the waves — .
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The size of the wave = 1s relatively small. In order to ensure that we do not
discard it during segmentation, the minimal size for acceptable segments needs
to be relatively small as well. As a result, each image contains more segments
and thus the database is larger. In addition, a larger number of segments
that do not represent valid symbols will potentially be erroneously classified
as valid symbols (false hits). Using negative symbols, the beach & symbol is
represented by a circle with the two waves = cut out. The size of this region is
much larger than each individual wave — . We can thus set a higher threshold
and each individual wave = is discarded during segmentation.

To summarize, the reason that map symbols are enclosed in a circle is to
group several pieces into one and to delineate the difference between symbols
and text. The negative symbol representation naturally captures this group-
ing using only one connected region. Furthermore, the size of this region is
large relative to the size of the individual components that make up the pos-
itive symbol, and thus many non-relevant symbols can be filtered out during
segmentation by use of a simple threshold.

4 Shape Feature Selection

The selection of the particular shape features that are used to characterize the
symbols is one of the most important factors in achieving high recognition rates.
Numerous shape features have been described in the literature (e.g., [6]). These
features are generally either based on the boundary or interior representation
of the object. The boundary-based shape features capture the “jaggedness”
and complexity of the object. In order to use these features, the object is
usually approximized by a polygon. Measurements such as the number of
sides, the relative length of these sides, and the angles between the sides of
the polygonal approximation are then used to describe the shape of the object.
Since we are performing symbol recognition as part of the input process of an
image database, we wanted to keep the computation as simple and quick as
possible. Thus, we did not use such features.

The features that we use are all based on the interior representation of the
symbols as output by the connected component labeling process. Recall that
each symbol is represented by one of its connected components. In particular,
in the case of complex symbols, this component is the negation of the symbol
(i.e., the interior of the circle). Figure 4 demonstrates this process for an
example symbol. The symbol has three regions after connected component
labeling. Region 3, which is the interior of the circle with the letter “H” cut
out is selected to represent this symbol. The shape features that we compute
approximate the boundary complexity and the shape regularity of the symbol’s
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Figure 4: Processing one example symbol: (a) Binary represen-
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representative component based on the area of this component, the perimeter
of the component, and the major and minor axes of the component. In addition

to these global features, we also compute some local features pertaining to holes

in the component. We define a hole as a region that is enclosed in another

region either vertically or horizontally. These features are required in order
to distinguish between symbols that are represented by their negation. The
global shape is very similar for all of these components as they are all basically
circles. The discriminating factor between them is the shape of the holes. Note
that all of the features that we compute require only one pass over the image
following connected component labeling. We use the following shape features.

Fy: First invariant moment [4], which is defined as

Here pi,, is the central moment given by

My = piag + pio2.

Hpg = ZZ(Z =) (j -y, j),

where I(4,7) is the intensity (grey level) at point (4, j) in image I, and Z and

y are defined as follows:
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Mpq 18 the two-dimensional (p + ¢)th order moment and is defined as
Mpg = > > I, ).
(A

This feature is invariant to scale and orientation. The invariant moment is
computed for the connected component that was selected to represent the
symbol. For the example symbol in Figure 4, we compute the invariant moment
for region 3 and its value is 0.2078. Note that since this symbol is represented
by its interior, we are actually computing the moment of the “white” part of
the symbol in its binary representation.

Fy: FEccentricity [9], which is defined as

_|1p=Wwi

= 5

where W and D are the length of the minor and major axis of the component.
Eccentricity is a measure of the elongation of the symbol. It is 0 for a square
and approaches 1 for elongated shapes. Eccentricity is useful for characterizing
positive symbols (i.e, symbols not represented by their negation) such as the
scenic view " symbol in Figure 1. However, it does not discriminate well
between negative symbols since the length of the axes is not affected by the
holes in their representative component, and eccentricity will thus have similar
values for all such symbols. For the example symbol in Figure 4 which is
represented by region 3: width = 15, height = 16, and thus eccentricity =
0.9375.

Fs: Circularity [3], which is defined as

E

PZ
T ArA

where P is the perimeter of the component, and A is its area. Circularity
equals 1 for a circle and takes on larger values for distortions therefrom. It
is useful for characterizing both positive and negative symbols. The area and
perimeter of negative symbols 1s computed for the component that represents
the interior in effect measuring the “white” region in the binary representation
of the symbol. For the example symbol, area = 175, perimeter = 92, and thus
circularity = 3.848.

F4: Rectangularity, which is defined as

A
PB=—,
App
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where A is the area of the component, and Ay is the area of the minimal
rectangle enclosing the component. Rectangularity equals 1 for a rectangle
and approaches 0 for least rectangular shape. If the bounding box is restricted
to being parallel to the axes, then this feature is not invariant to rotation.
Rectangularity is not very effective for negative symbols since the bounding
box is not affected by the hole area. However, since the component area is
affected by the hole area, there will be some variation in rectangularity between
negative symbols. For the example symbol, area = 175, bounding box area =
240, and thus rectangularity = 0.729.

F5: Hole area ratio, which is defined as

Ap
HAR = R
where A is the area of the component and Ay is the total area of all holes
in the component. Hole area ratio is most effective in discriminating between
symbols that have big holes (e.g., the first aid station @ symbol) and symbols
with small holes (e.g., the beach & symbol). For the example symbol, area =
175, hole area = 32, and thus hole area ratio = 0.18.

Fs: Horizontal gaps ratio, which is defined as

HG?
HGR = ——,

where A 1s the area of the component, and HG is the number of horizontal
gaps in the component (i.e., the number of pixels in the object whose right
neighbor is a hole). This feature discriminates among symbols based on the
shape of the holes themselves. For the example symbol, area = 175, horizontal
gaps = 18, and thus horizontal gaps ratio = 1.85.

F7: Vertical gaps ratio, which is defined as

VG2
VGR = —

where A is the area of the component, and V(G is the number of vertical gaps in
the component (i.e., the number of pixels in the object whose bottom neighbor
is a hole). Tt has the same characteristics as the horizontal gaps ratio. For the
example symbol, area = 175, vertical gaps = 8, and thus vertical gaps ratio =

0.366.
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5 Implementation and Experiments

The shape features described above were incorporated into the feature extrac-
tor of a map image database system developed by us [10]. Using these shape
features, the system was tested on the red sign layer of the GT3 map of Fin-
land. The scale of the map is 1:200,000. The layer was scanned at 240dpi.
Figure 3 shows the extracted red sign layer. An initial training set containing
22 symbols was constructed from the legend. 60 tiles were used to expand the
training set to 100 samples. The remaining tiles were processed automatically.

In the context of an image database, the classifier is evaluated in terms of
the accuracy of the results of a query requesting images that contain particular
symbols. We evaluated the accuracy using two error types that are commonly
used in document analysis studies. A type I error occurs when an image that
meets the query specification was not retrieved by the system (a miss), and a
type Il error occurs when an image that the system retrieved for a given query
does not meet the query specification (a false hit). Note that type I and type
IT errors correspond to the recall and precision metrics, respectively, used in
information retrieval experiments.

351
304 HType |
OType ll -
254
S
@ 204
s
§ 154
(5]
104
| L ﬂ l
04 L
Total Cafe Beach Post Service Picnic

Ofc
query symbol

Figure b: Type | and type Il error rates.

We computed the error rates by querying the database for all tiles con-
taining each symbol in our application. Type II error rates were calculated by
counting how many results did not meet the query specification for each sym-
bol. The total type II error rate is the total number of incorrect results (over
all symbols) divided by the total number of results. Type I errors, were calcu-
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lated by determining which tiles contain each symbol, and checking whether
any result tiles were missed. We did this for 50 tiles (out of the 425 tiles)
chosen at random and for each one of the symbols. Type I error rates were
computed for each symbol in addition to a total type I error rate which is the
total number of missed results divided by the total number of results we should

have had.

Figure b reports the total type I and type II error rates, as well as these
error rates for a few of the symbols. The total type T error rate was 6% (i.e.,
94% of the tiles that should have been retrieved were in fact retrieved by the
system). The rates varied from 0% for the post office (# symbol to 11% for
the cafe ® symbol. The total type IT error rate was 19% (i.e., 81% of the
tiles that were retrieved did in fact contain the desired symbol). Tt varied
from 1% for the beach & symbol to 33% for the service station () symbol.
We attribute the variance in the error rates between different symbols to the
ability of the system to distinguish between them based on the selection of
shape features, the classification method, and the content of the training set
used for classification. Although the results that we report here are for one
particular training set, we experimented with various configurations, and these
results were consistent in all cases. In order to achieve lower error rates, more
features would most likely be required.

6 Concluding Remarks

Representing geographic symbols that are composed of more than one compo-
nent by their negation was effective for distinguishing between such symbols.
The experimental results showed that with the particular shape features that
were used, we can on average retrieve 94% of the required images. We are
currently analyzing the effects of the individual features both analytically via
principal component analysis, and empirically by using subsets of the features
for classification. In addition, we plan to explore whether using additional fea-
tures such as higher order moments, minimum bending energy of the curvature,
and other curvature-based features will improve the accuracy. Furthermore,
for symbols that are represented by their negation we need to investigate other
features that can characterize the shape and the distribution of the holes as an
aggregate that are invariant to scale and orientation (e.g., average circularity
and eccentricity of the holes).
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