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1 Introduction

Not so long ago the term database management system (DBMS) was a euphemism for

distinguishing commercial applications (e.g., banking, insurance, etc.) from scienti�c appli-

cations (e.g., number crunching). Today the distinction is rapidly disappearing as users try

to come to grips with an information explosion that increasingly involves the world around

them. Some new application areas include geographic information systems (GIS), engineer-

ing information systems, CAD/CAM, remote sensing, environmental modeling, and image

databases. The common thread behind all of these applications is that they make use of

spatial data.

Spatial data is a term used to describe data that pertains to the space occupied by

objects in a databases. This data is geometric and is varied. It consists of points, lines,

rectangles, polygons, surfaces, volumes, as well as time, and data of even higher dimension.

Spatial data is usually found in conjunction with what is known as attribute or nonspatial

data (e.g., the name of a river, the type of soil found in a region, the current speed during

a time interval, etc.).

Spatial data can be discrete or continuous. When it is discrete (e.g., points in a multi-

dimensional space, or speci�c instances of time), then it can be modeled using traditional

techniques from relational DBMSs. In particular, the coordinate values of the point or the

time instant can be treated as additional attributes in a tuple. In contrast, such data as

lines, regions, time intervals, etc. is continuous. By continuous we mean that the data spans

a region in space or time. In other words, the attribute value holds at more than just one

point or instance of time.

In this chapter, we focus on the modeling of spatial data and its integration into a DBMS.

The result is termed a spatial database. Since the application domain is so wide, we restrict

ourselves to the requirements and examples for a geographic information system. This

chapter is organized as follows. Section 2 gives a brief overview of the type of queries that a

spatial database must be able to handle. Section 3 presents a number of di�erent methods

of interacting with a spatial database, although the emphasis is on SQL as it is the most

commonly used method. Section 4 discusses the integration of spatial and nonspatial data

to build a spatial database system. The examples are primarily in the context of relational

databases as this is where most of the work has been done. Section 5 describes some of

the issues that must be addressed when building a query optimizer for an environment that

contains spatial and nonspatial data. Note that we do not elaborate on temporal data,

although we do briey mention the close relationship between temporal and spatial data

especially when they are both present (known as a spatiotemporal database [Al-Taha et al.

1993]). We also do not dwell on the representation of spatial data. This is the subject of

the chapter on spatial data structures.

2 Typical Queries

There are several levels at which queries to a spatial database such as a geographic infor-

mation system (GIS) can be described. At the highest level, the most common queries are

to display the data, to �nd a pattern in the data, and to predict the behavior of the data at

another location or instance of time. These queries are so general that often their execution

does not require interacting with a spatial database. Frequently, they can be answered
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directly. On the other hand, other queries are at such a low level that they don't require

use of a DBMS either (e.g., digitization, conversion between di�erent data formats, map

projections, enhancement, etc.).

The remainder of the queries fall in an area where a DBMS is useful. These queries can

be viewed as dealing with a hierarchy of data [Tomlin 1990]. At the highest level, we have

a library of maps (more commonly referred to as layers) all of which are in registration

(i.e., they have a common origin) and the goal is to perform a sequence of operations on

them. Each layer is partitioned into zones (regions) where the zones are sets of locations

with a common attribute value. For example, for a given map, we can have a land-use

layer, a road network layer, and a pollution layer. In the land-use layer, land is divided into

land-use zones (e.g., wet-land, river, desert, city, park, and agriculturaal zones). The road

network layer contains the roads that pass through the portion of space that is covered by

the map. The pollution layer contains regions with di�erent degrees of pollution. Other

possible map layers correspond to vegetation, �re stations, roads, rivers, elevations, etc.

Each layer can be viewed as a relation in a relational DBMS (or a class of objects in an

object-oriented DBMS). The attributes in the di�erent layers reect some property of the

map. For example, the land-use layer can have the attributes: zip-code, soil type, land-

usage, and a spatial attribute of some geometric data type that represents the shape or

boundary of each land-use region.

The di�erent queries can be classi�ed in terms of this hierarchy [Tomlin 1990]. Local

queries involve locations that are coincident on various layers (e.g., what combination of

features are found at location x?). Zonal queries are in terms of groups of locations that have

the same attribute value on the same layer (e.g., where does wheat grow?). Focal queries

deal with neighborhoods of locations on the same layer. The extent of the neighborhood is

usually limited by either distance, direction, or possibly time (e.g., �nd all wheat growing

regions within 10 miles of the boundaries of rice-growing regions). These queries are analogs

of range queries in a conventional database management system. The di�erence is that the

shape of the range depends on the extent of a spatial feature (i.e., the area spanned by

it) rather than being a hyper-rectangle as in a conventional DBMS (e.g., �nd all people

between the ages of 30 and 35 and who weigh between 150 and 180 pounds).

Using these classi�cations we can describe in greater depth some of the analytic capa-

bilities that a spatial database must have in order to be able to respond to the queries that

are expected to be posed1. Local queries consist of retrieval, classi�cation and possibly

recoding, generalization (i.e., reducing detail), and measurement (e.g., area, perimeter).

Another important query is known as polygon overlay or simply overlay. In this case, two

layers involving di�erent nonspatial attributes are overlaid and a function is applied to the

corresponding attribute values at each location. For example, we can overlay the land-use

and pollution layers in order to generate a new layer of land-use/pollution regions. In this

case, a wet-land region can get decomposed into several regions, each with a di�erent degree

of pollution. Recalling our analogy between layers and relations (or objects), the e�ect is

much like a join operation where the common spatial attribute is the space spanned by the

two layers. Thus the result is like a Cartesian product of the two layers. This operation is

a special case of what we term a spatial join, although the spatial join is far more general

1These queries are typical of a GIS environment and where necessary we give a brief de�nition in

parentheses.
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since it can involve relations more general than layers as long as the operand relations have

spatial attributes that span the same underlying space.

Zonal queries are often used to implement a special case of polygon overlay. A typical

zonal query involves three layers. The �rst two layers are the operands to the query, while

the third layer contains the result. The �rst layer serves as a mask that partitions the

second layer into zones where the value of each location in the third layer is the result of the

application of the designated zonal query to all locations in the second layer that coincide

with each zone. An example of a zonal query is to �nd the average rainfall for each region

where a particular crop or crops are grown. Notice the distinction from the polygon overlay

in that a zonal operation does not create new zones whereas a polygon overlay does since

its result is the Cartesian product of the two operand layers. Thus the result of a zonal

operation is more like a spatial selection.

Focal queries include search, proximity determination (e.g., Voronoi diagrams which,

given a set of points termed sites, partition the plane into regions such that each point in a

given region is closer to a particular site than to any other site), spatial region queries (also

known as bu�ers or corridors), interpolation, generation of triangulated irregular networks

(TINs) for dealing with surface data, etc. Connectivity queries are also closely related to

focal queries. They involve factors such as ow and visibility.

An alternative, and even simpler, way to classify queries is on the basis of whether

they are location-based (e.g., what grows at location x?) or attribute-based (e.g., where

does wheat grow?). This classi�cation has a direct bearing on the way the spatial data is

organized and is discussed in greater detail in the chapter on spatial data structures.

3 Spatial Query Languages

The design of a proper query language (termed interaction method here) for a spatial

database is a nontrivial task. For the sake of this discussion, we say that the interac-

tion takes the form of a command or a probe. We use the identity and sophistication of the

user to distinguish between these two rather similar concepts. In the case of a command, the

user generally knows exactly what he wants to do and there is a premium on the avoidance

of ambiguity. Thus the command can be given using a prede�ned syntax that simpli�es its

processing. The objective is to be concise and exact. On the other hand, in the case of a

probe, the user does not know exactly what he wants. He is performing data exploration.

Frequently, he has little or no knowledge of the nature of the data that is stored in the

database, and even less about how it is represented. However, he may have a visual concept

of what he is trying to achieve. Thus the querying may use the display of previous results

by means such as pointing.

Attention must also be paid to the actual interaction with the spatial database. Surpris-

ingly, in most systems this is usually an afterthought. Natural language is one approach.

However, its drawback is its inherent ambiguity. This can be overcome by using a graphical

user interface (e.g., [Scholl and Voisard 1992; Vijlbrief and van Oosterom 1992]). Unfor-

tunately, designing a graphical user interface to a GIS involves more than just replacing

typed commands by menus. It is important to realize that spatial data is characterized by

geometry and map display. Tabular concepts and representations, as are common in some

SQL-based approaches, do not play as prominent a role. Instead, we may need to develop
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some uniformly accepted iconic representations for spatial concepts.

A number of interaction methods are possible. They range from SQL to queries by

example. In most cases, the emphasis is on retrieving data using a standardized language.

This is coupled with a desire to provide sophisticated methods to formulate more complex

commands and logical combinations thereof. Some of the issues that arise are a result of

the presence of abstractions of spatial data that are more complex than relations. Also,

there is a need to support the graphical display of the results of queries. For example, in

the case of points, it is preferable to display them rather than to list the values of their

coordinates. Further utility is provided by also displaying some context with the points,

or even highlighting them by use of techniques such as reverse video, blinking, or simple

circling or boxing.

Interaction with spatial data should be graphical. This means that both the input and

the output should be graphical. One interaction technique is for the user to draw the shape

of the desired output. Selection can be achieved by pointing; however, this is ambiguous

if several objects are associated with the same region. Selection can also be accomplished

by wandering around an area (e.g, a pan operation) or by zooming. The use of graphical

renderings is also important. For example, using the same rendering for di�erent objects

at di�erent locations conveys a notion of similarity, while the dissimilarity of renderings

emphasizes di�erences between the objects. Of course, a legend is also needed to convey

the semantics of the di�erent renderings.

A good inspiration for the design of the interface is to make use of classical cartographic

concepts [Tufte 1983; Tufte 1990]. For example, color is often used to indicate depth and

height. A legend is useful to convey information about a map. Operations between maps are

usually performed by overlaying them. This means that the individual map layers should

be iconized and a hierarchical mechanism developed to facilitate the expression of their

interrelationship. The key is to study the daily workings of a cartographer.

Here we focus on the use of SQL as it is the most commonly used method of interacting

with a relational database. In fact, at times, it is also used to interact with an object-

oriented database (e.g., [Deux, O. et. al 1990]). Thus it is often proposed to use it with a

spatial database as well (e.g., [Aref and Samet 1991a; Gadia 1993; Roussopoulos et al. 1988;

Scholl and Voisard 1992]). Note that it has been argued (e.g., [Egenhofer 1992]) that SQL

is the wrong approach. These arguments are based on the inability to refer to the results of

previous operations or on how the output is to be displayed. Similarly, selection by pointing

is di�cult to achieve. The problem is that SQL is primarily a means to retrieve from a

tabular representation while spatial applications often require retrieval from a graphical

representation. This is a reformulation of our earlier criticism that spatial data cannot

always be represented as a point in a higher dimensional space (which is what a tuple really

is | for more details on these issues, see the section on spatial indexing in the chapter on

spatial data structures).

Of course, in order to use SQL with spatial data we need to extend it. There are a

number of choices. Some systems extend the SQL grammar by adding a set of spatial oper-

ators (e.g., PSQL [Roussopoulos et al. 1988]). In essence, the idea is to extend the standard

select : : : from : : : where : : : syntax to also include spatial operators and relations in-

volving spatial data. Its drawback is that operators cannot be added at runtime which

limits its extensibility. An alternative approach is for the query language to permit user-
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de�ned functions and operators which are made known to the DBMS at runtime (termed

registering [Stonebraker and Rowe 1986; Haas et al. 1990]). They can be scalar (e.g., area),

or multivalued in which case the result can be a relation (termed a table function [Haas et

al. 1990]).

In the rest of this section we discuss how to incorporate the spatial attributes into the

relation. For the present, let us associate the spatial attributes with the tuple [Aref and

Samet 1991a; Roussopoulos et al. 1988]. In this case, the spatial attributes appear at the

same conceptual level as the nonspatial attributes. Thus the value of a particular spatial

attribute is common to all of the nonspatial attributes in the tuple.

3.1 One Spatial Extension to SQL

3.1.1 Spatial Data De�nition

Using the above method of incorporating spatial attributes, we now show how SQL

would be used in a spatial database by examining a typical situation. Consider a set

of objects (e.g., points and lines) in two-dimensional space, and a set of features which

partition the space into nonoverlapping or overlapping regions. We use the following two

schemas. The �rst schema is for a relation containing line segments called roads, and

the second is for a relation containing areas called regions. The roads relation has one

spatial attribute road coords of type LINE SEGMENT. The regions relation has one spatial

attribute region location of type REGION. Of course, other spatial data types are available

such as POINT, POLYGON, BOX, etc.

create table roads

(road id NUMBER,

road name CHAR(30),

road type CHAR(30),

road coords LINE SEGMENT); /* spatial attribute */

create table regions

(region id NUMBER,

region name CHAR(30),

region zip code NUMBER,

region utilization CHAR(30),

region importance NUMBER,

region location REGION); /* spatial attribute */

3.1.2 Spatial Data Manipulation

The standard relational operations such as projection, selection, and join are available

in the nonspatial domain and are also adapted to the spatial domain. There are many ways

of characterizing an SQL predicate as being spatial or relational (equivalent to nonspatial).

Here we characterize a predicate as spatial if the condition (i.e., in the where clause) involves

at least one of the spatial attributes or a spatial operation (e.g., intersection); otherwise,

the predicate is characterized as relational. This is the case even if the predicate results
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in a map as is the case whenever all the attributes are selected and at least one of the

attributes is spatial. This can be seen by the following example which selects all regions

whose importance is greater than 5. In particular, the result is a new relation which means

a new region map as well. This new relation (and map) contains all the tuples selected in

the operation (i.e. it will contain the regions with importance values > 5).

select all

from regions

where region importance>5;

Spatial and relational projections are distinguished in the same way as spatial and

relational selections. The di�erence is that in the case of projection only a subset of the

attributes are selected. In fact, if none of the selected attributes are spatial, then only a

relation results (and not a map).

Spatial conditions typically consist of comparisons involving the result of the application

of functions of spatial attributes. Some examples are given below:

area(region attr)>val

perimeter(spatial attr)

centroid(region attr)

object at(spatial attr,location)

in circle(spatial attr,location,radius)

nearest to(spatial attr)=a

length(line attr)>val

in window(spatial attr,x1,y1,x2,y2)

3.1.3 The window operation

As an example of the use of a spatial condition, consider the following command which

combines a spatial selection (i.e., a window operation which is the same as a rectangular

range query) with a nonspatial selection. The result is a map containing just the part of

the freeways contained in the space spanned by the window. In addition, we have a new

relation whose tuples correspond to the freeways that lie in the window.

select all

from roads

where in window(road coords,w) and

road type=freeway;

The window operation is a special case of a set-theoretic operation in that we are tak-

ing the intersection of the space spanned by a regular map and an otherwise empty map

containing the space spanned by the window. The attribute values of the regular map in

the selected area are retained as a result of this operation. Using our classi�cation of op-

erations it is a local operation as it involves corresponding locations in two layers. Given
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one or more spatial attributes, set-theoretic operations can be applied to them as well. For

example, suppose we wish to �nd the names of all the roads that pass through College Park.

It is executed by intersecting the region location(s) of the tuple(s) whose region name

is College Park with the road coords attribute of the road map.

select road name

from roads regions

where region name=College Park

and intersect(region location,road coords);

3.1.4 Spatial Join

When the intersection involves more than one spatial attribute, the operation is a spatial

join rather than a spatial selection. The reason is that we are now combining two relations.

In particular, we know that a �-join is a join that involves comparisons between attributes

that are �-comparable, where � is a comparator. If the comparator is based on spatial

attributes, then the command is said to be a spatial join, while if the comparator is based

on a nonspatial attribute, then the operation is called a nonspatial or relational join.

To understand the meaning of the spatial join better, suppose that in our example

we selected all the attributes instead of just the road names (i.e., we ignore the projection

implied by the fact that we only selected the nonspatial attribute corresponding to the names

of the roads). The result of the join is a new relation consisting of a merge of all tuples

whose corresponding spatial attributes are in College Park. This new relation contains all

the attributes of the two participating relations including the two spatial attributes (i.e.,

region location and road coords) and their corresponding maps. Some other examples

of spatial join operations include determining all spatial features that are adjacent to other

spatial features, within a certain distance of other spatial features, contained in other spatial

features, etc. Interestingly, the spatial join may involve the same relations. For example,

to �nd all regions adjacent to Universities we would use the following command.

select all

from l regions, k regions

where adjacent to(l.region location,k.region location)

and l.region utilization=university;

In this case, the resulting relation will have two spatial attributes corresponding to

region location and two maps { that is, one map for the university regions and one map

for the neighboring regions.

It is interesting to note that in the literature, the term spatial join has a number of

meanings. For example, in [Orenstein and Manola 1988], Orenstein uses the term spatial

join to mean, in the context of this chapter, the spatial join intersection operation. Ooi [Ooi

1988] does not distinguish between spatial join and spatial selection. They use the term

spatial join to mean both join and selection. They perform selections by �xing one of the

arguments of the spatial join. However, no join action, in the conventional database sense,
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takes place in this case. In fact, a window operation can be viewed as a selection operation

rather than a spatial join with a constant object (the window) that has no further nonspatial

attributes. G�uting [G�uting 1989] de�nes spatial joins and spatial selections in essentially

the same way as done here.

3.2 An Alternative Spatial Extension

The approach that we have described above associates the spatial attributes with the tuple.

In particular, the spatial attributes appear at the same conceptual level as the nonspatial

attributes { that is, the value of a particular spatial attribute is common to all of the non-

spatial attributes in the tuple. An alternative approach associates the spatial attributes as

a sub-hierarchy of the nonspatial attributes [Gadia 1993]. This is equivalent to distributing

the spatial attribute across all of the nonspatial attributes. The drawback is that we have

now established a hierarchy where the spatial attributes are subservient to the nonspatial

attributes.

As an example of this alternative, consider the regions relation. Let us add the at-

tribute region soil. In this case, the spatial attribute region location no longer appears

with the nonspatial attributes in the schema. Instead region location is declared at the

top level with the name of the relation. Let the new relation be called new regions.

This means that region location is to be distributed across the nonspatial attributes and

region location has a value for every nonspatial attribute in each tuple. In fact, the

nonspatial attributes in each tuple may now have several values if the corresponding spatial

attribute requires decomposition. This is the case when the region name, region zip code,

and region soil values are not the same for the entire region represented by the tuple.

create table new regions

(spatial attribute: region location REGION)

(region id NUMBER,

region name CHAR(30),

region zip code NUMBER,

region utilization CHAR(30),

region importance NUMBER,

region soil CHAR(30));

For example, suppose that we have a tuple t with region utilization = university,

region id = 55, and region importance = 5. This area has more than one name (e.g., R1

is Beltsville, R2 is College Park, and R3 is Adelphi), more than one zip code (e.g., R4

is 20740 and R5 is 20742), and more than one soil type (e.g., R6 is sand and R7 is clay).

Figure 1 shows the resulting decompositions of the region. Tuple t now has multiple-valued

attributes. This must be expressed in the tuple. One way to incorporate this approach in

an instance (i.e., tuple) of the new regions schema is given below.

tuple in table new regions

(region id: 55,

region name:

8



R1=Beltsville

R3=Adelphi

R2=College
   Park

R4=20740

R5=20742

R6=sand

R7=clay

(a) (b) (c)

Figure 1: Three partitions of the same region: (a) by region name; (b) by zip code; and (c)

by soil type.

fR1: Beltsville,

R2: College Park,

R3: Adelphig,
region zip code:

fR4: 20740,

R5: 20742g,

region utilization: university,

region importance: 5,

region soil:

fR6: sand,

R7: clayg);

Using this approach, we can also separate the spatial conditions from the nonspatial

conditions. This is the approach taken by Gadia [Gadia 1993] who adds a restricted to

clause to the standard SQL command. In this case, the command takes the form select : : :

restricted to : : : from : : : where : : :. The condition in the where clause only includes

the nonspatial attributes, while the condition in the restricted to clause deals with the

spatial data.

For example, suppose that we wish to �nd the name of the regions covering a university

whose soil type is sand and are in the 20742 zip code. The query is formulated as follows:

select region name from new regions

restricted to region soil=sand \ region zip code=20742

where region utilization=university;

This query is executed by �rst selecting all the tuples whose region utilization value

is university and then examining their corresponding spatial attributes. In particular, we

restrict our view to the locations that are of soil type sand and in zip code 20742. Now,

we return the names of the regions that overlap these locations. This can be achieved by

intersecting the result of the restricted clause with the corresponding spatial attribute
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value of region name. Notice that what we have done is de�ne the semantics of a projection

operation in such an environment.

Gadia [Gadia 1993] proposes to use this approach to deal with spatiotemporal data.

The temporal attribute is treated in the same way as the spatial attribute. The di�erence

is that the temporal attribute is restricted to points or intervals by the very nature of the

time dimension. In contrast, there is no such restriction on the spatial dimension. It is also

interesting to note that SQL commands can be nested within the restricted clause.

4 Integration of Spatial and Nonspatial Data

The key issue in building a spatial DBMS is deciding how to integrate the representation

of spatial and nonspatial data. In Section 3, a number of methods for interacting with such

a database were proposed. This was done in a manner that was largely independent of the

underlying architecture of the system. In this section we discuss a number of spatial DBMS

architectures. Since the �eld is still developing, most of these architectures are research

prototypes rather than commercial systems.

Some researchers use the classi�cations dedicated, dual, layered, and integrated to dis-

tinguish between the di�erent architectures [Vijlbrief and van Oosterom 1992]. In the

following, we �rst give an overview of the issues that arise when using these architectures.

This is followed by a more detailed comparative discussion of features of some research

prototypes.

4.1 Dedicated Systems

Many prototype systems are suggested that support spatial objects. The principal short-

coming of these systems is their development path. One common path is as a dedicated sys-

tem with the purpose of supporting applications in a speci�c domain (e.g., CAD databases)

without a full understanding of database issues such as the absence of high-level data de�-

nition facilities (e.g., [Sha�er et al. 1990; Tomlin 1990]). Also, these systems are not easily

extendible in the sense that it is di�cult to modify them to perform actions not previ-

ously envisioned by the system's designers. An alternative path is a general database tool

that supports a wide variety of applications often without a complete understanding of the

requirements of such applications. In both cases, the mentioned shortcomings lead to a

reduction in the e�ciency of the data processing capabilities of the system.

4.2 Dual Architectures

Dual architectures are based on distinguishing between the spatial and nonspatial data by

using di�erent data models for them. Examples are ARC/INFO [Peuquet and Marble 1990],

SICAD [Schilcher 1985], etc. Communication between the systems is via common identi�ers.

The shortcomings are traditional database issues such as synchronization, locking, integrity

(e.g., the results of actions in the spatial data model might not be reected in the nonspatial

data model, etc.).

A dual architecture implies the existence of two storage managers. This can be avoided

by storing spatial data in a purely relational data model. This means that spatial data

must be transformed (e.g., by use of methods such as representative points) or decomposed
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into constituent pieces (e.g., a region boundary into a sequence of line segments or a region

interior into a set of blocks or pixels). This approach implies a hierarchy and in fact is the

basis of the layered architecture. In this case, we have a GIS at the top layer, followed by

a spatial support layer, followed by a relational DBMS at the bottom layer. Examples of

this approach include SIRO-DBMS [Abel 1989] and GEOVIEW [Waugh and Healey 1987].

Of course, the relative order of some of the elements in the hierarchy can be changed. For

example, in [Gadia 1993] spatial and temporal data are placed below the relational layer

(see the discussion at the end of Section 3).

4.3 Integrated Architectures

An integrated architecture is the most general. It involves users extending the DBMS with

their own abstract data types so as to provide better support for spatial applications. This

extension frequently involves making use of an extensible database management system

(e.g., [Carey et al. 1988; G�uting 1989; Haas et al. 1990; Schek and Waterfeld 1986; Stone-

braker and Rowe 1986]) as well as object-oriented DBMSs (e.g., [Deux, O. et. al 1990]).

Such systems attempt to provide a generalized DBMS that facilitates the support of uncon-

ventional applications such as spatial databases. These systems add some new constructs

to o�er additional modeling power. Included among the new constructs is support for ab-

stract data types (e.g., [Carey et al. 1988]), procedural �elds (e.g., [Stonebraker and Rowe

1986]), complex objects (e.g., [Carey et al. 1988; Kim et al. 1987]), set-valued attributes

(e.g., [Zaniolo 1983]), etc.

Users of integrated architectures are motivated in part by a belief that each of the data

types (i.e., spatial and nonspatial) should be represented by an appropriate data structure

that suits its operational needs. This has been done primarily by extending the relational

model (e.g., see [Stonebraker 1986]). At times, the extensions are such that the result is

a layered architecture. In such cases, the system can be described as belonging to both

architectures. Nevertheless, we describe it in conjunction with integrated systems as we feel

that being an extension of the relational model is the systems' most important characteristic.

4.4 Prototype Systems

SIRO-DBMS [Abel 1989], GEOVIEW [Waugh and Healey 1987], SAND [Aref and Samet

1991a], Gral [G�uting 1989], Probe [Orenstein and Manola 1988], GEOQL [Ooi 1988], Geo-

Kernel [Schek and Waterfeld 1986], and GEO++ [Vijlbrief and van Oosterom 1992] are

examples of systems based on extending the relational model. Some systems (e.g., [Abel

1989; Orenstein and Manola 1988; Waugh and Healey 1987]) implement a spatial database

on top of a relational DBMS with minor changes to the relational system. Changes are in

the form of shells outside the DBMS (as in [Abel 1989]). In most of these systems spatial

data is attened into the relational format which means that spatial data is treated as if it

is regular attribute data.

GEO++ [Vijlbrief and van Oosterom 1992] is built on top of the POSTGRES [Stone-

braker and Rowe 1986] extensible DBMS. It makes use of the primitive data types point,

line segment, path, and box provided by POSTGRES to de�ne other data types as well as

operators.

Probe [Dayal and Smith 1986; Orenstein and Manola 1986; Orenstein and Manola 1988]
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contains a general geometric object class: a point set, but no speci�c types (e.g., point, line,

etc.). It treats space and time as generic types with the same status as integers, oating

point numbers, strings, etc. Probe does not have a spatial query language. However, Probe

does provide a general method for indexing the space by linearizing the spatial index to one-

dimension through the use of bit-interleaving techniques and storing the resulting values

into an attribute that is indexed by a B-tree. The user can add spatial data types based

on his application needs as a specialization of the point set type, and index the underlying

space using this general spatial attribute. One disadvantage is that Probe limits itself to

space-�lling curve representations of spatial data when there are other interesting spatial

data structures that can be used.

Geo-Kernel [Schek and Waterfeld 1986; Wolf 1989] implements a geometric data model

on top of the DASDBS kernel system [Schek and Waterfeld 1986; Wolf 1989] that supports

Non-First-Normal-Form (NF2) relations [Schek and Scholl 1989]. The implementation fo-

cusses on e�cient processing of window queries with possible feature selection from the

window. Also, in contrast to the assumptions made in other systems (e.g., SAND [Aref and

Samet 1991a]), Geo-Kernel models sets of objects (e.g., a set of point, a set of lines, or a

set of regions) as atomic objects. A set of objects is the atomic unit of processing for each

geometric operator.

Other systems (e.g., Gral [G�uting 1989] and GEOQL [Ooi 1988]) extend the relational

model a step further to achieve e�cient spatial data processing. Spatial data is stored in

separate spatial data structures. Spatial operations are executed on top of these structures.

They build on the early work and ideas in [Stonebraker 1986].

Gral [G�uting 1989] permits user-de�ned data types and operations. It provides an

integrated data model and query language for geometric applications. The user interface is

algebraic and procedural. It uses a many-sorted algebra both as an algebraic query language

and as an executable language to describe query plans (although with lower-level primitives

and operators).

4.5 Linking Spatial and Non-spatial Data

One important issue that arises in the design of systems based on an integrated architecture

is how to link the spatial data description (stored in some data structure) of an object with

the rest of the object's nonspatial description. Many systems are biased towards either

the spatial or the nonspatial aspect of the system (e.g., GEOQL [Ooi 1988]). GEOQL ex-

tends SQL to support spatial applications. The underlying architecture is composed of an

SQL backend, a spatial processor, and an extended optimizer. In GEOQL, each relation

is assumed to have only one spatial attribute. Multiple spatial representation of an object

is di�cult under this model (e.g., modeling a city once as a point in a point map and

once as a region by de�ning its bounding perimeter). GEOQL is biased towards the rela-

tional component in several aspects. In particular, even though spatial data structures are

maintained, spatial operations cannot be composed directly without building intermediate

database relations. This limits the e�ciency of spatial query processing.

In SAND [Aref and Samet 1991a] spatial and nonspatial data are linked bidirectionally.

A spatial data structure is associated with each spatial attribute in the schema and is used

to store all data instances of that spatial attribute over the set of homogeneous objects

(e.g., line data in a road network). The spatial data structure that is chosen depends on
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the attribute's spatial data type (e.g., point, line, region, etc.). The spatial data structure

serves as an index for spatial objects and an environment for the execution of spatially-

related operations (e.g., image rotation and scaling, polygon intersection, area computation,

proximity queries).

The data instances of the set of nonspatial attributes are stored in database relations.

Each tuple in the relation corresponds to one object. Two logical links are maintained

between the spatial and nonspatial data instances of an object: forward and backward links

(see Figure 2). The linked instances and the links form what is termed a spatial relation.

Forward links are used to retrieve the spatial information of an object given the object's

nonspatial information. Backward links are used to retrieve the nonspatial information of

an object given the object's spatial information. Since the nonspatial information of an

object is stored in a tuple, the backward link can be the tuple-id. On the other hand, since

spatial data structures contain all the spatial information necessary to identify an object,

the forward link can be a representative value of one part of the object that uniquely selects

the object. For example, in the case of nonoverlapping region data, an example of a forward

link is a candidate point inside the region.

region1    non_spatial data

nonspatial attributes          S spatial data structure

region1

region2

region3

region2

region4

(a)

region2    non_spatial data

region2    non_spatial data

region3    non_spatial data

region4    non_spatial data

region1    non_spatial data

nonspatial attributes          S spatial data structure

region1

region2

region3

region2

region4

(b)

region2    non_spatial data

region2    non_spatial data

region3    non_spatial data

region4    non_spatial data

Figure 2: (a) Forward links and (b) backward links for the regions relation.

Maintaining forward and backward links between the spatial and nonspatial parts of a

set of objects facilitates browsing in the two parts and permits e�cient query processing.

Flexibility in the interaction between spatial and nonspatial attributes enable operations

(whether spatial or nonspatial) to be performed in their most natural environment.

The need to support bidirectional links between database objects has been realized as

early as hierarchical and network database management systems (e.g., IMS [McGee 1977]

and CODASYL DBTG [CODASYL 1971]). They are also proposed in [Lorie and Meier

1984]. In [Lorie and Meier 1984] arbitrary links (via references and identi�ers which could

be used to implement bidirectional links) are adapted to geographical databases where a

geographical object is represented by a tuple having some unique identi�er and a long

�eld to store the geographic representation of the object in addition to other nonspatial

attributes. Links are used to express explicit relationships between geographical objects

(e.g., parent-child, or reference relationships).

Bidirectional links are also used in Geo-Kernel [Schek and Waterfeld 1986; Wolf 1989]

in order to allow each of the spatial and nonspatial parts of an object to access the other

part. Spatial objects are partitioned into cells. Cells are clustered according to their two-

dimensional neighborhood. The address of the nonspatial description of an object is stored

with each cell of this object. Since Geo-Kernel uses nested relations [Schek and Scholl 1989],
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an attribute of type relation (i.e., a sub-relation) is used in order to store all the addresses

of the cells comprising a spatial object. This resembles a forward link in a spatial relation in

SAND [Aref and Samet 1991a]. However, in contrast to sub-relations, in a spatial relation

only one spatial identi�er is stored as a forward link and it is the responsibility of the spatial

data structure (or its encapsulating spatial process or ADT) to extract the rest of the spatial

description of an object. This greatly reduces the storage overhead from the relational side

as well as reduces the cost that must be borne in systems such as Geo-Kernel to maintain

the set of addresses stored in a sub-relation that refer to di�erent cells of the same object.

The idea of introducing abstract data types (ADTs) as new attribute domains into a

relational database system and supporting user-de�ned index structures appears in [Stone-

braker 1986]. Following this approach, spatial data structures are viewed in many extensi-

ble database systems (e.g., [G�uting 1989; Roussopoulos et al. 1988; Stonebraker and Rowe

1986]) as indexing structures. As a result, only backward links (i.e., from the index struc-

ture to the actual tuple) are needed in these architectures. In contrast, it is important to

note that in SAND's spatial relations [Aref and Samet 1991a], user-de�ned data structures

serve not only as spatial indexes for speeding up operations but also as containers for the

full description of spatial data. In the latter, the bidirectional links between corresponding

components of the ADT can be used for e�cient access. Spatial relations can be viewed as

a merge of the ADT work in [Stonebraker 1986] and the complex object support in [Lorie

and Meier 1984]. In a spatial relation, a spatial attribute is an ADT that is implemented

by user-de�ned data structures. Functions may be applied to an instance of one spatial

attribute in a given tuple (e.g., computing the area or perimeter of a region where a par-

ticular crop is grown), or to the whole relation (e.g., �nd all the crops that are grown in a

particular query).

Gral [G�uting 1989] avoids forward links (and hence does not use containers) by em-

ploying spatial data structures as indexes that approximate spatial objects (e.g., by using

bounding boxes). In addition, the full description of the spatial object (e.g., the coordi-

nate values of the vertices of a polygon) is stored with the object's corresponding tuple in

an on-line format (i.e., formatted in a memory-mapped image such that when the tuple

is loaded into main memory, the spatial description of the object is ready for use without

any additional format conversions). In this case, when a query is posed, the spatial data

structure is used as a �ltering step that produces a set of candidate objects, then the full

description of these objects is used as a re�nement step to produce the �nal answer to

the query. The performance of these alternative data architectures with respect to spatial

query processing and optimization is an interesting research problem. One drawback of this

approach, though, is that every time a tuple participates in a join, the full description of

the spatial object needs to be duplicated as well (in many cases, the size of this spatial

description of an object is large; for example, this is the case with polygon objects).

4.6 Protoypes based on Object-Oriented Systems

The object-oriented model can also be used as a basis of a spatial database. In the object-

oriented approach, information is highly structured by the introduction of classes and inher-

itance concepts. Data encapsulation and overloading facilitate data manipulation and make

the physical and logical representations of the data independent of each other. In the case

of a spatial database, concepts such as classes, inheritance, encapsulation, type and method

extensions are handy. The di�erent spatial data types can be implemented as classes with
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inheritance used to de�ne subclasses (e.g., the class for a polygon with holes inherits from

the more general polygon class). Complex objects can be de�ned from simpler ones (e.g., a

road is composed of several line segments).

Scholl and Voisard [Scholl and Voisard 1992] describe a GIS built on top of the O2

object-oriented DBMS [Deux, O. et. al 1990]. However, their implementation makes little

use of object-oriented techniques. Instead, they implement an extended relational system

on top of O2 where by extended we mean supporting relations with abstract data types to

encapsulate geometric data types. Spatial data is modeled at two levels: map and geometric.

A spatial database consists of a set of maps, where a map is a relation that has at least

one spatial attribute. Map operations are implemented as methods on map objects. The

geometric level corresponds to the spatial attributes which are represented by geometric

abstract data types (e.g., points, lines, regions, etc.).

5 Query Processing and Optimization

Query optimization for spatial databases is a relatively undeveloped �eld. It is heavily

dependent on the application. Frequently, there is no special treatment for spatial data

in the sense that the optimization strategies for the underlying DBMS are used with few

special provisions being made for the di�erence in the data. A cost model and framework

for comparing di�erent optimization strategies is needed.

One issue is how to take into account the e�ect of the di�erent representations and spatial

access methods. For example, for a given set of spatial queries, representations based on

computing a minimum bounding rectangle can be compared with representations based on

storing an exact description, on storing increasing levels of details, and transformations into

points in a higher dimensional space.

Another equally important issue is the nature of the datasets. For example, clustering

of the data may alter the selectivity of a window operation (i.e., what is the expected

percentage of the tuples that will be selected for output). Such clustering can be detected

by distinguishing between a rural and an urban area. For point and line data, data density

is important. For region data, skewness, roundness, connectedness, and topology (e.g.,

number of holes) come into play. As an example of the importance of skewness, it is useful

to distinguish between querying a map of rivers and a map of lakes.

Of course, a tighter grip on the issue of estimating the cost of spatial operations is

also needed. This depends on two factors. The �rst consists of the execution time of the

underlying algorithm and I/O. The second is the time needed to produce the output. The

latter is facilitated by a knowledge of selectivity factors. For example, consider the following

two di�erent spatial selection operations:

1. nearest to(p) which �nds the nearest object to point p.

2. object at(p) which �nds the object stored at point p.

Assume that spatial indexes exist for each operation. In this case, the selectivities are the

same for both operations { that is, each returns just one object and thus takes O(1) time to

produce the output. However, the execution times of the algorithms can be quite di�erent.
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In particular, depending on the underlying representation of the spatial data, nearest to

may require O(n) I/O operations while object atmay require just O(logn) I/O operations.

A number of recently suggested spatial database architectures address the issue of spatial

query optimization (e.g., SAND [Aref and Samet 1991b], Gral [G�uting 1989], GEOQL [Ooi

1988], and Geo-Kernel [Wolf 1989]). However, they di�er in the capabilities and degrees of

freedom that they provide to the spatial query optimizer as a result of the manner in which

they integrate spatial data with nonspatial data. In particular, the underlying architecture

may limit some feasible strategies for spatial query processing.

GEOQL's spatial query optimizer [Ooi 1988] extends the well-known query decomposi-

tion technique [Wong and Yousse� 1976] to handle spatial queries as well. However, GEOQL

is biased towards the relational side. In particular, every relation is supported by at most

one spatial attribute that is implicit and is always associated with the relation. Each query

is decomposed into disjoint subqueries that consist entirely of either spatial or nonspa-

tial conditions. The nonspatial subqueries are executed by an SQL backend, while spatial

queries are executed by a spatial processor. Additional SQL subqueries are introduced to

merge multiple partial results (i.e., temporary relations). Spatial operations cannot be com-

posed directly { that is, each operation returns a relation and no further optimization is

possible. GEOQL's optimizer only estimates the cost of nonspatial operations and does not

take the I/O cost of spatial operations into account (i.e., only their selectivities). Di�erent

query execution plans are attempted. Heuristics are used to prune the number of plans

whose costs are to be estimated (e.g., the cost of subqueries in an AND-clause that have no

overlap is not a�ected by their order of execution).

In Geo-Kernel [Wolf 1989] spatial information is stored in textual form as an attribute

value in a relation. For example, a polygon relation can be expressed as an attribute.

This is potentially quite costly from a storage point of view (i.e., spatial data is usually

voluminous) as a join may cause the same spatial data to be stored with di�erent records.

Nevertheless, during query evaluation appropriate spatial data structures are used to op-

erate on spatial data. Thus in Geo-Kernel there is a need for conversion procedures to

toggle between these data structures and the textual or byte-string form for each spatial

data type. Notice that in order to perform the operation intersects or closest, for example,

the entire set of spatial objects in the relevant relations have to be down-loaded into the

spatial data structures. This is an expensive task and its cost has to be included when

considering di�erent query evaluation plans. As a result, the query optimizer prefers to

perform relational selections before spatial selections in order to lower the cost of spatial

data conversion (i.e., downloading) by reducing the number of qualifying tuples.

Gral [Becker and G�uting 1989; G�uting 1989] uses an algebraic query language at both

the query description and execution levels. It uses a rule-based optimizer to normalize and

optimize at the descriptive algebra level. Some examples include exchanging the order of

operations using a prede�ned partial order of operations (e.g., selects before joins), and

�nding a good order for performing joins using selectivity estimates. The optimizer also

translates the query to an executable algebraic form and optimizes at that level (e.g., by

combining selection operations). It only takes the selectivity of the operation into account

and thus ignores the actual cost of performing the operation. For example, it prefers

performing a `closest' operation to a `select' operation since `closest' reduces the number of

tuples although its I/O execution cost may be considerably higher.

16



Systems such as GEO++ [Vijlbrief and van Oosterom 1992] are implemented on top of

POSTGRES [Stonebraker and Rowe 1986]. POSTGRES allows users to add application-

dependent operators. The operators are characterized so that the query optimizer can decide

which optimization techniques should be applied. This is done by using cost estimates.

Some of the characterizations include precedence, associativity, whether or not the operator

is hash joinable, commutator and negator operators, and select and join selectivities. The

operator and index characteristics are stored in tables. Based on these characteristics, the

optimizer maps the operators (if possible) into existing database methods (e.g., hardwired

join algorithms).

SAND's query processing and optimization strategies [Aref and Samet 1991b] include

the ability to reorder operations as well as merging. Merging is useful when a query contains

two conditions (can be spatial or nonspatial) and it is desired to perform them independently

and merge the results. Merging can be either homogeneous (i.e., the conditions are both

spatial or both nonspatial) or non-homogeneous (i.e., one condition is spatial while the

other is nonspatial). The former is implemented by intersecting the sets resulting from the

operations. For the latter, the execution can be either spatial-driven or relational-driven.

The one that is chosen depends, in part, on selectivity factors. For example, in the case of

a spatial-driven merge, the spatial data structure is traversed and only the spatial objects

(and their tuples) that satisfy the spatial condition and whose tuples satisfy the relational

condition are retained.

Other optimizations that SAND is capable of performing include combining successive

spatial operations or successive relational operations, as well as making use of pipelining and

composition. At times, an operation may not be very selective in which case it is preferable

to delete the unselected items from the map rather than creating a new map containing the

multitude of selected items. Early projection is also useful when it is known that some of

the attributes are no longer needed. Frequently, the optimization is application-dependent.

For example, when part of the condition involves the computation of the nearest object, it

may be preferable to rank order all the objects at once rather than computing the nearest

object anew each time.

6 Concluding Remarks

An overview has been presented of some of the issues that arise in building spatial databases.

As we saw, they consist, in part, of �nding better ways to interact with the database,

integrating the spatial and nonspatial data, and optimizing the processing of the queries.

It should be clear that such databases are still in their infancy in the sense that much

remains to be done before the ideas explored in research prototypes will �nd their way into

commercial systems.
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