
Traversing the Triangle Elements of an Icosahedral Spherical
Representation in Constant-Time�

Michael Lee and Hanan Samet
Computer Science Department

Center for Automation Research
Institute for Advanced Computer Studies

University of Maryland
College Park, Maryland 20742

magus@umiacs.umd.edu
hjs@cs.umd.edu

Tel: (301) 405-1755
Fax: (301) 314-9115

In Proc. 8th Intl. Symp. on Spatial Data Handling, Vancouver, Canada, July 1998, pp. 22–33

Abstract

Techniques are presented for moving between adjacent triangles of equal size in a hierar-
chical representation for spherical data that is projectedonto the faces of an icosahedron. The
faces of the icosahedron are represented by a triangular quadtree. The operations are analo-
gous to those used for a quadtree representation of data on the two-dimensional plane where
the underlying space is tessellated into squares. A new technique is presented for labeling
the triangular faces as well as the smaller triangles withineach of the triangular faces of the
icosahedron. The labeling enables the implementation of the quadtrees corresponding to the
individual triangle faces of the icosahedron as linear quadtrees (i.e., pointer-less quadtrees).
Outlines of algorithms are given for traversing adjacent triangles of equal size in constant time.
The labeling and algorithms can also be used with minor modification (and no change from a
computational complexity standpoint) with a hierarchicalrepresentation for spherical data that
is projected onto the faces of an octahedron.

Keywords: Spherical representations, neighbor finding, data structures, algorithms, quadtrees

1 Introduction

The representation of spatial data is an important issue in geographic information systems (GIS). In
this paper we are interested in the efficient representationof spherical data such as the surface of the
Earth. In many applications it is desired to make use of a recursive decomposition of the underlying
space such as a quadtree. Projecting the sphere onto the plane poses problems in that units of equal
area in the projection do not necessarily correspond to units of equal area on the sphere. This has led�This work was supported in part by the National Science Foundation under Grant IRI-9712715, the Department of
Energy under Contract DEFG0295ER25237, and an AASERT Fellowship Number DAAH04-93-G-0106.

1



In Proc. 8th Intl. Symp. on Spatial Data Handling,Vancouver, Canada, July 1998, pp. 22-33. 2

to approximations of the sphere by Platonic solids where thesurface is projected onto the faces of an
inscribed regular polyhedron. The faces are decomposed using conventional techniques such as the
region quadtree (e.g., [11, 12]). There is one quadtree for each face where the sphere is represented
as a collection ofn quadtrees wheren is the number of faces in the inscribed polyhedron. The most
commonly used polyhedra are the octahedron (n= 8) and the icosahedron (n= 20) whose faces
are equilateral triangles. We prefer the icosahedron [4] asit provides the best approximation of
the sphere although the octahedron [1, 6] is also used since it can be aligned so that the poles are
at opposite vertices of the octahedron and the prime meridian and the Equator intersect at another
vertex. For example, Figure 1 shows the top level triangularfaces of an icosahedron corresponding
to the surface of the Earth where the continents are highlighted.

Figure 1: The top level triangular faes of an iosahedron orresponding to the surfaeof the Earth where the ontinents are highlighted.
In this paper we show how to move between adjacent triangularelements of an icosahedron ap-

proximation of the sphere by adapting traditional two-dimensional neighbor finding techniques [10,
11] for square quadtrees. We focus on linear quadtrees [5] which represent a quadtree as a col-
lection of numbers corresponding to its leaf nodes thereby dispensing with the need for pointers.
In particular, for each quadtree corresponding to one of thefaces of the inscribed polyhedron, leaf
nodei is represented by a unique pair of numbers known as itslocation codewhere the first number
indicates the depth of the tree at whichi is found and the second number indicates the path from the
root of the tree toi. The path consists of the concatenation of the two-bit numbers corresponding to
the child types of each node that is traversed on the path fromthe root toi. We refer to the path as
thepath array component of the location code.

One of the attractions of the linear quadtree when the faces correspond to squares (e.g., for the
cube) is the ability to make use of binary arithmetic to navigate between any pair of adjacent nodes
(i.e., corresponding to squares) of equal size in time independent of the depth of the quadtree at
which the nodes are found [13]). In this paper we show how to adapt the linear quadtree to triangles
and in particular to the icosahedron so such navigation can be performed. The adjacent triangles
are not restricted to lie on the same face of the icosahedron.Our solution is in contrast to existing
methods [3] which take time proportional to the maximum level of resolution and require the use
of a number of tables in order to deal with transitions between triangles in different faces of the
icosahedron. It is difficult to adapt these methods to use binary arithmetic as the transitions and
node labels depend on orientation. Note that our approach isnot restricted to the icosahedron and
could also be used with an octahedron. In this case, again, our methods differ from existing methods
(e.g., [6, 9]) which also take time proportional to the maximum level of resolution.



In Proc. 8th Intl. Symp. on Spatial Data Handling,Vancouver, Canada, July 1998, pp. 22-33. 3

The rest of this paper is organized as follows. In Section 2 wepresent our method of labeling
the triangle elements of the faces of the icosahedron, whichis new. Section 3 shows how to find
a neighbor of equal size within one of the triangles of the icosahedron in time proportional to the
maximum level of resolution while Section 4 extends the method to the entire sphere (i.e., the 20
triangle quadtrees). Section 5 describes how to find the neighbors in constant time. Concluding
remarks are drawn in Section 6.

2 Tree Node Labeling

Each of the icosahedron’s 20 triangular faces is decomposedrecursively into four equilateral trian-
gles. The result is a triangle quadtree. These triangles always have one of two orientations: tip-up
(Figure 2a) and tip-down (Figure 2b).Tip-upmeans that the corresponding trianglepointsupward
(really toward the north pole).Tip-downmeans that the trianglepointsdownward. As tip-up tri-
angles cover a different section of space than tip-down triangles (and cannot be made to cover the
same space short of some transformation such as rotation), we subdivide the two triangle types
differently. Since we decompose each triangle into four smaller equal-sized triangles, each child
triangle adds two bits to the path array component of the location code of the parent. Regardless
of the orientation of the triangles, we use the termsvertical, left, andright to refer to neighboring
triangles of equal size along the horizontal, left angular,and right angular edges, respectively.

00

01
10

11(a)
01 11

10

00(b)Figure 2: Possible triangle orientations: (a) tip-up, and (b) tip-down.
There are several advantages to using this coding scheme. Ifwe use the top-most or bottom-most

point to locate a triangle (since we only need one vertex, theorientation, and the size to determine
the other two vertices), then it is quite simple to traverse the tree using only local computations
to determine where we are in space. The vertices of children are easy to determine relative to the
positions of their parents. In particular, children are always one half of the size (one quarter of the
area) of their parent. Child10 always has the opposite orientation of its parent. The remaining three
children always have the same orientation as the parent. SeeFigure 3 for an example of a tree which
is encoded using this node labeling method.

Our triangle labeling method is similar to that used for the octahedron [1, 2, 6]. However, the
difference is that the neighbor finding methods that are usedthere take time proportional to the
maximum level of resolution although they are based on the same principle as our methods that
have the same execution time complexity. In contrast, our triangle labeling method is very different
from that used by Fekete [3] for the icosahedron and likewisefor the neighbor finding methods. In
particular, Fekete’s labeling method is based on a ‘floating’ scheme where the labels associated with
each triangle are based not on its global orientation but, instead, are based on that of its parent. This
enables the path components of all location codes that correspond to the neighbors of a particular
triangle to differ by one directional code (at different depths of the hierarchy) at the expense of



In Proc. 8th Intl. Symp. on Spatial Data Handling,Vancouver, Canada, July 1998, pp. 22-33. 4

000000

000001

000010

000011

000100

001000

001100

000101

000110

000111

001001

001010

001011

001101

001110

001111

010000

010001

010010

010011

010100

010101

010110

010111

011000

011001

011010

011011

011100

011101

011110

011111

110000

110001

110010

110011

110100

110101

110110

110111

111100

111101

111110

111111

111000

111001

111010

111011

100000

100001

100010

100011

100100

100101

100110

100111

101000

101001

101010

101011

101100

101101

101110

101111

Figure 3: Example labeling of a tree whih is three levels deep.
added complexity. In contrast, our labeling method is considerably simpler and can be enhanced
easily to yield a neighbor finding method that locates equal-sized neighbors in constant time.

3 Neighbor Finding

In this section we describe how to find an equal-sized neighbor of a nodep along an edge in the
same face of the icosahedron. The algorithm does not need to make use of the actual coordinate
values of the triangle block corresponding top. Instead, it just processes the path array component
of the location code. Our algorithm is decomposed into threesteps to make it easier to understand.
The first step finds an ancestor ofp which also contains the desired neighborq of p. This node is
called thenearest common ancestorof q andp. The technique used for finding the nearest common
ancestor is effectively the same as that found in most standard quadtree implementations [10, 11]
that use trees. Of course, we aren’t actually dealing with tree nodes. Instead, we want to find the
location code of the nearest common ancestor withinp’s location code.

We now show how to find the right neighbor ofp. If we start withp and work our way up (right



In Proc. 8th Intl. Symp. on Spatial Data Handling,Vancouver, Canada, July 1998, pp. 22-33. 5

to left in the path array corresponding to the location code), then we can stop scanning upward
(leftward) when we find the ancestor ofp which must contain the right neighbor ofp. We stop
when we encounter a node that has a right sibling (or the parent contains a node that is adjacent and
to the right ofp). If we look at Figure 2a, then we see that this is true for children01 and10. Also,
in Figure 2b, children01 and10 have right siblings. Thus, we can stop as soon as we find a01 or10 in the path array corresponding to the location code. A similar analysis is used to determine the
nearest common ancestor when finding the left or vertical neighbor of a node.

Step two identifies and sets the position in the path array to the child type of the nearest common
ancestor (found in step one). This step is easy. Let’s say we are looking for a left neighborq of
node p. If we have the nearest common ancestor and we know what childcontainsp, then it is
easy to determine what child containsq. We move left. If child10 containsp, then child01 must
contain the neighbor nodeq. If we were looking for a right neighbor, then we move right. The same
procedure also holds for vertical neighbors.

The final step finds the path from the child obtained in step twoto the neighbor ofp. This won’t
require searching since we can exploit the fact that the pathto a neighbor of a node is the reflection
of the path to the node. In particular, for square quadtrees,we reflect the path top to get the path to
the neighborq. For triangles, things work a little differently. Of course, the layout of the children
that we have chosen (see Section 2) keeps things simple. Keeping in mind that a tip-up triangle is
always adjacent to a tip-down triangle (and vice versa), reflection for the triangles has three cases
(one for each neighboring direction).

For left neighbors,00 always becomes11. Notice that00 is always within the samey coordinate
range as01, 10, and11 in the adjacent parent triangle. Since11 is the closest of the three children,11 is the appropriate “reflected” value. Child01 always becomes00. Only00 in the adjacent parent
triangle is within the samey coordinate range as01, so00 is the only candidate for the “reflected”
value. Finding the left neighbors of children10 and11 is easy because their neighbors don’t require
leaving the parent node.

For right neighbors,00 always becomes01. Again,00 is always within the samey coordinate
range as01, 10, and11 in the adjacent parent triangle. Since01 is the closest of the three children,01 is the appropriate “reflected” value. Finding the right neighbors of children01, and10 is easy
because their neighbors don’t require leaving the parent node. Child11 always becomes00. Only00 in the adjacent parent triangle is within the samey coordinate range as11, so00 is the only
candidate for the “reflected” value.

For vertical neighbors, finding the neighbors of children00 and10 is easy because their neigh-
bors don’t require leaving the parent node. For both01 and11 the “reflected” value is equal to the
original value (as Figures 2a and 2b are vertical reflectionsof each other).

Since step one (finding the nearest common ancestor) involves examining each two-bit pair in
the path array of the location code, the computational complexity is on the order of the length of
the code (related to the height of the tree). Step two (changing two bits in the location code) always
takes a constant amount of time. Step three (changing the remaining bits) requires examining the
same bits as in step one, so the computational complexity is on the order of the length of the code.
Overall, neighbor finding requires time proportional to thelength of the location code.



In Proc. 8th Intl. Symp. on Spatial Data Handling,Vancouver, Canada, July 1998, pp. 22-33. 6

4 Extensions to the Entire Sphere

Indexing the entire icosahedron (rather than just one of itsfaces) requires 20 of the previously
described triangular quadtrees. This means that whenever we reach the top level (or root) of one of
these trees, special work is required although it doesn’t really create any substantial difficulties.

We label the 20 nodes corresponding to the roots of the quadtrees of the faces of the icosahedron
using a 6 bit code ranging from000000 (decimal 0) to010011 (decimal 19). We could have fit the
20 values in just 5 bits, but we decided to use an even number ofbits because the machine word
length is always an even number of bits. The order in which thetriangular faces of the icosahedron
are numbered isn’t important since tables will be used most of the time. Thus we numbered the
faces using a simple left-to-right and top-to-bottom order(see Figure 1). Our numbering scheme
has the property that triangles 0 to 4 are all tip-up, 5 to 9 areall tip-down, 10 to 14 are all tip-up,
and 15 to 19 are all tip-down.

Neighbor finding involves several modifications to our previous algorithm, but, as we show, the
changes are minor and have little impact on the computational complexity of the algorithms. We
continue to work with the location code only. No coordinate values are used.

The only necessary modification to step one is that if we reachthe top level of the spherical
quadtree, then we stop looking for the nearest common ancestor. Obviously, the entire sphere
contains every possible location and is therefore an ancestor to every node. We always stop at the
top level. Also, note that since Figure 1 is really a sphere, every triangle has a neighbor in every
direction (triangles on the ends wrap around), so we are wellprepared for step two.

Step two is basically unchanged. The only modification is theuse of a relation to indicate how
to update the path array component corresponding to the child of the root. It summarizes the actions
for all possible neighbors from Figure 1. This relation is used only when the nearest common
ancestor from step one is the entire sphere.

Step three requires one more relation to deal with the special case of reflection needed for nodes0 to 4 and nodes15 to 19. All other nodes still use the same technique described for neighbors in
the same face in Section 3. The rationale for this additionalrelation is as follows. If we consider
the left neighbor case and use a standard “mirror reflection”, then we see that00 stays00 and01
reflects to11. 10 and11 cannot occur along the left edge of a node. Similarly, if we consider the
right neighbor case, then we see that00 stays00 and11 reflects to01. 01 and10 cannot occur
along the right edge of a node. The vertical case doesn’t needto be updated.

5 Constant Time Neighbor Finding Algorithm

We now describe how to find neighbors in constant time. Only the ideas behind the algorithms are
given (see [7] for pseudo-code). The algorithms make use of the carry (borrow) property of addition
(subtraction) to find a neighbor without specifically searching for a nearest common ancestor and
reflecting the path to the neighbor. We replace the iterationin steps one and three by an arithmetic
operation that takes constant time instead of as much as the depth of the tree as in the worst case
of the iterative process. Of course, the constant time boundarises because the entire path array
for each location code can fit in one computer word. If more than one word is needed, then the
algorithms are a bit slower but still take constant time. Ouralgorithms are based on the method



In Proc. 8th Intl. Symp. on Spatial Data Handling,Vancouver, Canada, July 1998, pp. 22-33. 7

devised by Schrack [13] for square quadtrees implemented using pointer-less quadtrees represented
by the location codes of the leaf nodes. Our contribution is twofold:

1. Its adaptation to triangle quadtrees and the formulationof the appropriate triangle quadtree
node labeling technique.

2. Its adaptation to the icosahedron in the sense that we makeit work for neighboring triangles
that are in different base triangles of the icosahedron.

Neighbor finding in square quadtrees is achieved in constanttime by making use of the equiv-
alence between the path array and the result of interleavingthe bits that comprise the binary repre-
sentation of thex andy coordinates of one of the corners (e.g., the upper-left-most corner), chosen
in a consistent manner, of the blocks corresponding to the leaf nodes. The result of the bit inter-
leaving is also known as theMorton code[8, 11]. For example, if we want the Morton code based
on coordinatesx andy, then the code has the formyn�1xn�1 � � �y1x1y0x0, where they coordinate is
the most significant. The right neighbor of equal size is obtained by incrementing thex coordinate
value of the corner of the block by one. Assuming that we work with the Morton code of the block,
instead of the individual coordinate values, then we start this process by incrementingx0 by one.
If there is a carry, then we add one tox1. If there is another carry, then we add one tox2 and so
on. This process is iterative in the sense that the carries are propagated one bit at a time. Ideally,
we want to accomplish the propagation of the carry using one operation. The problem is that when
the addition operation is applied directly to the Morton code value, we need to skip the values of
the correspondingy coordinates. Schrack [13] achieves the propagation of the carries in constant
time by saving the values of all of they bits, replacing their corresponding bit positions with1s,
performing the addition, and then restoring they bits to their original values.

Using standard Morton codes for square quadtrees, we find a neighbor by addition by skipping
every other bit in the Morton code. This method does not work directly in the case of the triangle
quadtree, although something similar can be made to work. One problem is the lack of a direct cor-
relation between the coordinate system of the decomposition induced by the triangle quadtree and
the path array. Nevertheless, the values of the path array ofthe triangle quadtree can be manipulated
in an analogous manner to that of the values of the path array of the square quadtree. In the rest of
this section we show how this is done.

We first consider a transition from one triangle to its right neighbor. This requires that we look
at the transitions from the different children. Transitions from a01 child to a10 child or from a10
to a11 child are achieved by adding one when the neighboring triangles are brothers. The triangle
quadtree analog of a carry in the square quadtree arises whenwe make a transition from a00 child to
a01 child or when we move from a11 child to a00 child (see Figure 4a). This is the case when the
neighboring triangles are not brothers. Making a transition from a11 child to a00 child is handled
by use of addition. Basically, we add one to the bit string represented by the path array and the carry
automatically updates the parent node. However, moving from a00 child to a01 child doesn’t work
so simply. We want a carry but we don’t naturally get one. One way to obtain the carry is to locate
and replace all occurrences of00s with11s so that either of the following two situations is properly
handled:

1. A carry will be generated if necessary (i.e., the00 is at the extreme right of the path array)

2. A carry will be properly propagated (i.e., the00 is the recipient of a carry).



In Proc. 8th Intl. Symp. on Spatial Data Handling,Vancouver, Canada, July 1998, pp. 22-33. 8

00

01
10

11
00

00
01

01

10

10

11

11(a) 00

01
10

11
00

00
01

01

10

10

11

11(b)Figure 4: (a) Examples of rightward transitions that generate a arry (denoted by arightward pointing arrow). (b) Examples of leftward transitions that generate a borrow(denoted by a leftward pointing arrow).
The00 case is handled by using the concept of anidmaskwhich we name00ID11. It is formed

by invoking a procedureMAKE_IDMASK(INPUT,V,MP) which sets all pairs of bits inidmaskfor
which the corresponding bit pairs inINPUT have valueV to MP, while the bits corresponding to
the other bit pairs are set to00. For right neighbors, the idmask00ID11 is formed by a call toMAKE_IDMASK(INPUT,00,11) and contains11 in the bit positions of the path array that have the
value00 and00 in the bit positions that have other values. We use the marking pattern11 because
taking its exclusive or with any input sequence will ensure that all pairs of bits with value00 will
be changed to11 and all bit positions with other bit pattern value pairs willbe left alone since the
result of applying exclusive or of any bit valuei with 0 is i. Note that virtually any pattern of bit
pairs can be identified by forming the appropriate idmask in constant time.

Therefore, finding a right neighbor of equal size proceeds asfollows. Replace all occurrences
of 00s in the input with11s by taking the exclusive or of the input with the idmask00ID11. Next,
add 1. After the addition, apply the following two steps:

1. Change all11s not affected by the addition (which were originally00s) back to00 by taking
the exclusive or of idmask00ID11with the result of the addition thereby creating a bit pattern
t. This leaves all pairs of bits that were not originally00 alone since the result of applying
exclusive or of any bit valuei with 0 is i. It also resets to00 all 11s at positions in the
original path array which originally contained00 (which is desired) and resets to11 all 00s
at positions in the original path array which originally contained00.

2. Change all11s which were affected by the addition and thus became00 (again, only the ones
which were originally00s) to01 (as00 plus one is01) by constructing a mask which has a11 at every pair of positions in the original path array which did not contain00 (obtained by
complementing idmask00ID11). Next, or this mask withEVENBITMASK (an alternating bit
pattern starting with0 at its left end — that is,010101...) which marks the even positions
in the original path array which were part of the00 pair with a01. Taking the and of the
resulting mask witht yields the desired result.

As an example, let us find the right neighbor of the triangle whose location code has path
array value00011100. Let RCODE refer to this path array value.00ID11 is 11000011 since both
both RCODE[1℄ and RCODE[4℄ have value00. Taking the exclusive or ofRCODE with 00ID11
changesRCODE to 11011111. Adding one toRCODE changes it to11100000. Taking an exclusive
or of RCODE with 00ID11 changesRCODE to 00100011. Taking the or ofEVENBITMASK with the
complement of00ID11 yields01111101. The final and of the latter withRCODE changesRCODE to00100001. This example is illustrated in Figure 5aa.



In Proc. 8th Intl. Symp. on Spatial Data Handling,Vancouver, Canada, July 1998, pp. 22-33. 9

00

10

01 11
00

00
01(a) 10

10

00

1101

01 11

(b)
01

10

11

11
00

00
01()Figure 5: Examples showing how to �nd neighbors of equal size: (a) right neighbor of00011100, (b) vertial neighbor of 10100111, () left neighbor of 01110001.

Next, we consider a leftward transition. This transition differs from a rightward transition in that
instead of adding1 to the path array value of the location code and propagating acarry when moving
between triangles that are not brothers, we subtract1 from the path array value of the location code
and propagate a borrow when moving between triangles that are not brothers.

Below, we look at leftward transitions from the different children. Transitions from a10 child to
a01 child or from a11 to a10 child are achieved by subtracting one when the neighboring triangles
are brothers. The leftward movement analog of a carry for therightward movement arises when we
make a transition from a01 child to a00 child or when we move from a00 child to a11 child (see
Figure 4b). This is the case when the neighboring triangles are not brothers. Making a transition
from a00 child to a11 child is handled easily by use of subtraction. Basically, wesubtract one from
the bit string represented by the path array and the borrow automatically updates the parent node.
However, moving from a01 child to a00 child doesn’t work so simply. We want a borrow but we
don’t naturally get one. One way to obtain the borrow is to locate and replace all occurrences of01s
with 00s so that either of the following two situations is properly handled:

1. A borrow will be generated if necessary (i.e., the01 is at the extreme right of the path array)

2. A borrow will be properly propagated (i.e., the01 is the recipient of a borrow).

As in the case of the rightward movement, the01 case is handled by using the concept of
an idmask. The idmask identifies the bit positions where we need to modify the path array value
before and after performing the subtraction. However, unlike the rightward movement, we must
identify the bit positions in the path array that have the value 01 and change them to00 prior to
the subtraction while leaving all other bit pattern pairs alone. This is not easily done if we were to
use the marking pattern of11, as we did in the case of a rightward movement, since our goal is to
change a bit pattern pair whose two values are not the same. This task is more easily accomplished
by observing that the result of taking the exclusive or of bitpattern pair01 with the bit pattern pair01 is 00, while the result of taking the exclusive or of all other bit pattern pairs with the bit pattern
pair00 leaves them unchanged. Thus for leftward transitions we usean idmask called01ID01 with
a marking pattern of01 for all occurrences of01 in the path array of the input. It is formed by a call
to MAKE_IDMASK(INPUT,01,01).



In Proc. 8th Intl. Symp. on Spatial Data Handling,Vancouver, Canada, July 1998, pp. 22-33. 10

Therefore, finding a left neighbor of equal size proceeds as follows. Replace all occurrences of01s in the input with00s by taking the exclusive or of the input with the idmask01ID01. Next,
subtract 1. After the subtraction, apply the following two steps:

1. Change all00s not affected by the subtraction (which were originally01s) back to01 by
taking the exclusive or of idmask01ID01 with the result of the subtraction thereby creating
a bit patternt. This leaves all pairs of bits that were not originally01 alone since the result
of applying exclusive or of any bit valuei with 0 is i. It also resets to01 all 00s at positions
in the original path array which originally contained01 (which is desired) and resets to10 all11s at positions in the original path array which originally contained01.

2. Change all00s which were affected by the subtraction and thus became11 (again, only the
ones which were originally01s) to00 (because01 minus one is00) by constructing a mask
which has a11 at every pair of positions in the original path array which did not contain01,
and a01 in the positions that did contain01 (obtained by taking the complement of the result
of shifting idmask01ID01 to the left by one bit position). Taking the and of the resulting
mask witht yields the desired result.

As an example, let us find the left neighbor of the triangle whose location code has path ar-
ray value01110001. Let LCODE refer to this path array value.01ID01 is 01000001 since bothLCODE[1℄ andRCODE[4℄ have value01. Taking the exclusive or ofLCODE with 01ID01 changesLCODE to 00110000. Subtracting one fromLCODE changes it to00101111. Taking the exclusive or
of LCODE with 01ID01 changesLCODE to 01101110. Complementing the result of shifting01ID01
by one bit to the left yields01111101. The final and of the latter with the value ofLCODE changesLCODE to 01101100. This example is illustrated in Figure 5ac.

We now examine a vertical transition. It differs from rightward and leftward transitions in that
the path array values do not change except for the transitionbetween brother triangles. In particular,
we need to make one, and only one, transition from the least significant00 child (i.e., right-most in
the path array) to the least significant10 child or vice versa (i.e., from the least significant10 child to
the least significant00 child). This is done by identifying the rightmost?0 child and complementing
the left bit of its bit pattern pair value. All remaining bit pattern pairs are left alone. Once again, we
make use of the concept of anidmask. In this case, we use the idmask?0ID10 which identifies the
bit positions in the path array of the input with value?0 and marks them with10. It is formed by a
call toMAKE_IDMASK(INPUT,?0,10).

Finding a vertical neighbor proceeds as follows: Create a new maskm from ?0ID10 which
is zero at all bit positions with the exception of the rightmost 10. This is achieved by taking the
complement of?0ID10. The result is a maskn which contains11 in all bit pair positions to the
right of the rightmost10 of ?0ID10 which itself has become01 in n. Adding 1 to n yielding p
means that all11s to the right of the rightmost01 have become00 while the rightmost01 has
become a10. All other bit pair positions inn are unchanged. We can now obtain our desired mask
m by taking the and ofp and?0ID10. The reason is that all items to the left of the rightmost10
in p are the complement of the corresponding items in?0ID10 while all items to the right of the
rightmost10 in p are0. Our final step is an exclusive or ofmwith the original input value. This has
the correct effect of complementing the left bit of the rightmost?0 in the original input value since
the result of applying exclusive or of any bit valuei with 1 is the complement ofi.

As an example, let us find the vertical neighbor of the triangle whose location code has path
array value10100111. Let VCODE refer to this path array value.?0ID10 is 10100000 since both



In Proc. 8th Intl. Symp. on Spatial Data Handling,Vancouver, Canada, July 1998, pp. 22-33. 11VCODE[1℄ and VCODE[2℄ have value?0. Taking the complement of?0ID10 yields 01011111
which is stored in variableMASK. Adding one toMASK yields01100000. Taking the and ofMASK
with ?0ID10 changesMASK to00100000. The final exclusive or ofMASKwith VCODE changesVCODE
to 10000111. This example is illustrated in Figure 5ab.

We now show how to make transitions across different faces ofthe icosahedron. They arise if
the addition steps in the rightward and vertical transitions generated a carry past the left-most end
of the the path array or if the subtraction step in the leftward transition generated a borrow past the
left-most end of the the path array. In this case, a carry (borrow) or overflow indicator is set. This
flag is tested by a one cycle machine instruction on most computer architectures.

Vertical transitions between different faces of the icosahedron as well as left and right transitions
between nodes corresponding to the faces of the icosahedronlabeled05 to 14 as shown in Figure 1
are straightforward in the sense that there is no change in the algorithms. Left and right transitions
between nodes corresponding to the faces of the icosahedronlabeled00 to 04 and15 to 19 are
handled in the same way as in Section 4 except that we now want to perform them in constant time.
The issue here is that the left and right neighbors are “mirror reflections”. In particular, recall that
in the case of a right neighbor,00 stays00 while 11 reflects to01. 10 and01 cannot occur along
the right edge of a node Similarly, in the case of a left neighbor, 00 stays00 while 01 reflects to11.10 and11 cannot occur along the left edge of a node.

These situations are handled just like vertical transitions in that we use reflection. The dif-
ference is that we perform reflection for all occurrences of11 and 01 for right and left neigh-
bors, respectively. These situations are identified by complementing the left bit of the bit pattern
value of each?1 child. This is done by using the idmask?1ID10 which identifies the bit positions
in the path array of the input with value?1 and marks them with10. It is formed by a call toMAKE_IDMASK(INPUT,?1,10)All remaining bit pattern pairs are left alone.

We use a marking pattern of10 as it changes child01 to 11 (for left neighbor reflection) and
child 11 to 01 (for right neighbor reflection) using the exclusive or operation. In fact, the desired
neighbor is obtained by taking the exclusive or of the original input value with idmask?1ID10.
The same technique works for both left and right neighbors. In particular, when it is invoked in the
left neighbor case, since we are on the extreme left edge of one of the triangles of the faces of the
icosahedron, the path array can only contain the bit patternpairs with values00 and01. Thus all01s are ‘marked’ by?1ID10 (with the pattern10). Therefore, one application of exclusive or to
the input with?1ID10 changes all01s to11s as desired. Similarly, when it is invoked in the right
neighbor case, since we are on the extreme right edge of one ofthe triangles of the faces of the
icosahedron, the path array can only contain the bit patternpairs with values00 and11. Thus all11s are ‘marked’ by?1ID10 (with the pattern10). Therefore, one application of exclusive or to the
input with idmask?1ID10 changes all11s to01s as desired.

6 Conclusions and Future Work

The triangle coding scheme described in this paper providesa new way to handle spherical data
using a standard quadtree-like approach. Our algorithms assumed an icosahedron but they also
work for the tetrahedron and the octahedron. The only modification that is needed is to include a
mechanism to handle the case that the neighboring trianglesare in different base triangles of the
solid (i.e., tetrahedron and octahedron). Our coding scheme is particularly useful for traversing the



In Proc. 8th Intl. Symp. on Spatial Data Handling,Vancouver, Canada, July 1998, pp. 22-33. 12

triangular elements. We did not address other operations such as determining whether two triangle
elements are adjacent, but this can be accomplished in constant time using our coding scheme. Also,
our method is well suited to operations such as finding all triangle elements that connect any two
points of the sphere [6].

References

[1] G. Dutton. Geodesic modeling of planetary relief.Cartographica, 21(2&3):188–207, Summer
& Autumn 1984.

[2] G. Dutton. Locational properties of quaternary triangular meshes. InProceedings of the 4th
International Symposium on Spatial Data Handling, vol. 2, pages 901–910, Zurich, Switzer-
land, July 1990.

[3] G. Fekete. Rendering and managing spherical data with sphere quadtrees. InProceedings
IEEE Visualization’90, A. Kaufman, ed., pages 176–186, San Francisco, October 1990.

[4] G. Fekete and L. S. Davis. Property spheres: a new representation for 3-d object recognition.
In Proceedings of the Workshop on Computer Vision: Representation and Control, pages 192–
201, Annapolis, MD, April 1984. Also University of MarylandComputer Science Technical
Report TR–1355, December 1983.

[5] I. Gargantini. An effective way to represent quadtrees.Communications of the ACM,
25(12):905–910, December 1982.

[6] M. F. Goodchild and Y. Shiren. A hierarchical spatial data structure for global geographic
information systems.CVGIP: Graphical Models and Image Understanding, 54(1):31–44,
January 1992.

[7] M. Lee and H. Samet. Navigating throught triangle meshesimplemented as linear quadtrees.
Computer Science Technical Report TR–3900, University of Maryland, College Park, MD,
April 1998.

[8] G. M. Morton. A computer oriented geodetic data base and anew technique in file sequencing.
Technical report, IBM Ltd., Ottawa, Canada, 1966.

[9] E. J. Otoo and H. Zhu. Indexing on spherical surfaces using semi-quadcodes. InAdvances in
Spatial Databases—3rd International Symposium, SSD’93, D. Abel and B. C. Ooi, eds., vol.
692 of Springer-Verlag Lecture Notes in Computer Science, pages 510–529, Singapore, June
1993.

[10] H. Samet. Neighbor finding techniques for images represented by quadtrees.Computer Graph-
ics and Image Processing, 18(1):37–57, January 1982. Also inDigital Image Processing and
Analysis: Vol. 2: Digital Image Analysis, R. Chellappa and A. Sawchuck, eds., pages 399–419,
IEEE Computer Society Press, Washington, DC, 1986; and University of Maryland Computer
Science Technical Report TR–857, January 1980.

[11] H. Samet.Applications of Spatial Data Structures: Computer Graphics, Image Processing,
and GIS. Addison-Wesley, Reading, MA, 1990.



In Proc. 8th Intl. Symp. on Spatial Data Handling,Vancouver, Canada, July 1998, pp. 22-33. 13

[12] H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley, Reading,
MA, 1990.

[13] G. Schrack. Finding neighbors of equal size in linear quadtrees and octrees in constant time.
CVGIP: Image Understanding, 55(3):221–230, May 1992.


