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Abstract 

Techniques are presented for  moving between adjacent 
tetrahedra in a tetrahedral mesh. The tetrahedra result from 
a recursive decomposition of a cube into six initial congru- 
ent tetrahedra. A new technique is presented fo r  labeling the 
triangular faces. The labeling enables the implementation 
of a binary-like decomposition of each tetrahedron which 
is represented using a pointerless representation. Outlines 
of algorithms are given for  traversing adjacent triangular 
faces of equal size in constant time. 

1. Introduction 

Several applications including scientific visualization, 
medical imaging, and finite element analysis, deal with in- 
creasingly large sets of three dimensional data describing 
scalar fields. A volume data set consists of a set of points in 
the three-dimensional space with a value for some function. 
Such data is often modeled by a mesh consisting of tetrahe- 
dral volume elements. The mesh can be regular or unstruc- 
tured depending on the distribution of the points in the data 
set. 

In order to handle volume data sets of large size and to 
accelerate rendering, multiresolution models have been pro- 
posed which allow approximating the mesh connecting the 
original data points with a collection of simplified meshes at 
different levels of detail [2 ,  3, 14, 221. The resolution (i.e., 
the density of the cells) of an approximating mesh may vary 
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in different parts of the field domain (e.g., inside a box, or 
along a cutting plane) or in the proximity of interesting field 
values. 

In particular, when the data is regularly-distributed (i.e., 
from a grid), hierarchical tetrahedral meshes generated by 
recursive bisection are used [S, 9, 14, 20, 221. We use the 
term hierarchical regular tetrahedral mesh to describe such 
meshes. Such meshes have been introduced for domain de- 
composition in finite element analysis [lo, 131. The basic 
element of decomposition is a tetrahedron which is bisected 
along its longest edge to generate the next level in the hierar- 
chy. The hierarchy results from the application of a regular 
decomposition process to a cube initially split into six tetra- 
hedra. This process is continued while obtaining smaller 
and smaller tetrahedra each of which is of one of three ba- 
sic shapes so that all of the tetrahedra are elements of three 
similar types. 

The techniques presented in this paper expand upon this 
basic decomposition strategy by ordering the tetrahedra is 
such a way that it becomes possible to find not just the chil- 
dren and the parent of a given tetrahedron, but also neigh- 
boring tetrahedra using simple arithmetic and bitwise oper- 
ations. This allows us to move between adjacent tetrahedra 
(and any corresponding data) in constant time. The result is 
that we have more flexibility in extracting selectively refined 
meshes from the hierarchical structure and moving along ad- 
jacent tetrahedra, as in algorithms for isosurface extraction 
or in direct volume rendering techniques. Our work is re- 
lated to our previous work on traversing triangle elements 
of a triangular mesh where each triangle is recursively de- 
composed into four equilateral triangles [ l l ]  where we also 
obtained constant time neighbor finding algorithms. 

The rest of this paper is organized as follows. In Sec- 
tion 2 we discuss related work. In Section 3 we present our 
method of labeling the tetrahedral elements within a me:jh, 
which is new. Section 4 shows how to find a neighbor of 
equal size within one of the tetrahedra of the cube in time 
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proportional to the maximum level of resolution while Sec- 
tion 5 describes how to find the neighbors in constant time. 
Concluding remarks are drawn in Section 6.  

2. Related work 

Finding neighboring elements in a recursive decomposi- 
tion of space is a subject of a considerable amount of re- 
search in recent years. The earliest results dealt with al- 
gorithms to find adjacent blocks (i.e., neighbors) of greater 
than or equal size in region quadtrees [ 161 and region oc- 
trees [ 171. In this case, the decomposition was into congru- 
ent hyper-rectangle blocks. These algorithms made use of 
a pointer structure of the tree and thus had execution time 
proportional to the resolution of the underlying image. Sub- 
sequently, methods for representing such structures that did 
not require pointers were developed. In this case, each block 
in the decomposition is represented by a unique pair of num- 
bers known as its location code where the first number indi- 
cates the depth of the tree at which i is found and the sec- 
ond number indicates the path from the root of the tree to i 
(e.g., [7]). The path consists of the concatenation of the two- 
bit (three-bit for three dimensions) numbers corresponding 
to the child types of each node that is traversed on the path 
from the root of the tree to i .  We refer to the path as the 
path array component of the location code. Pointer-less rep- 
resentations enable finding neighbors of equal size in  con- 
stant time as they consist of bit manipulations such as arith- 
metic and logical operations. These results were extended 
by Lee and Samet [ 1 I ]  to also apply to triangular blocks that 
are made up of four equilateral triangles. 

Related work has also been done by Evans et al. [5] who 
use a hierarchy of right triangles based on a regular de- 
compostion to decompose the domain of a two-dimensional 
scalar fields. Hierarchies of right triangles have been exten- 
sively used for multiresolution terrain modeling [4, 12, 151. 
Coordinates are not explicitly stored since they can be calcu- 
lated from the label (or location code) of the triangle. Since 
a pointer-based binary tree structure would be inefficient in 
its use of space, Evans et al. use an array where the label of a 
node determines the node location in the array. Algorithms 
for finding neighbors in time proportional to the length of the 
location code (i.e., proportional to the depth of the triangle) 
as well as in constant time by using a relatively small num- 
ber of arithmetic and bitwise logical operations. Our work 
is related to that of Evans et al. in that we start with a unit 
cube (just as they do with a unit square). 

Zhou et al. [22] present a multiresolution tetrahedral 
framework to manage regular volume data, based on a hi- 
erarchical regular tetrahedral mesh represented as a binary 
tree, stored in an array. Using this strategy, the addresses of 
children and parents are easy to obtain with simple calcula- 
tions which are the same for any binary tree. A similar data 

structure is used by Gerstner and Rumpf [8] for extracting 
isosurfaces at different levels of detail. 

Hebert [IO] introduces the idea of using symbolic algo- 
rithms to find parents, children, and neighbors in a nested 
tetrahedral mesh. Operations are done within symbolic 
tetrahedral codes which contain a path to the lattice origin 
of the tetrahedron and a triple (permutation number, rota- 
tion number, and descendent number) identifying the tetra- 
hedron relative to the lattice origin. These lattice origins 
effectively indicate which cubes (or sub-cubes) contain a 
given tetrahedron. In particular, the center of each cube is 
used to represent the cube and acts as the reference point for 
locating the tetrahedra. Using this technique, three of the 
four tetrahedra sharing a face will share the same lattice ori- 
gin and will require only a table lookup to get the symbolic 
code of the appropriate neighbor. For the fourth tetrahedron 
along the remaining face, the path to the lattice origin must 
be updated to get the complete symbolic code of the neigh- 
bor. 

3. Labeling the tetrahedral decomposition 

In this section, we review the recursive tetrahedral de- 
composition rule [22] that forms the basis of our regular 
tetrahedral data structure, and introduce rules for labeling 
the children of a tetrahedron and the vertices of these chil- 
dren. We consider a subdivision of a cube which contains 
six tetrahedra, all adjacent along the main diagonal of the 
cube (see Figure la). We are using a linear representation 
for the hierarchical tetrahedral meshes instead of a pointer 
based tree structure. Thus our encoding will be a sequence 
of locational codes, one for each tetrahedron. As these loca- 
tion codes determine a tetrahedron, the terms location code 
and tetrahedron code will be used interchangeably. 

For simplicity, we try to order the vertices of a tetrahe- 
dron such that its longest edge is 213214. This avoids calculat- 
ing edge lengths and makes the process of finding the mid- 
point U ,  easier. Since the longest edge in the cube is the 
diagonal, we label the diagonal 214213, where 214 is the ver- 
tex of the cube at the origin of the coordinate system. The 
remaining vertices must all be either 211 or wz., and no tetra- 
hedron can contain more than one vertex of type 211 and one 
vertex of type 212. Thus we use the label 01 for the three ver- 
tices which are closest to vertex 214 and label 212 for the three 
vertices which are closest to vertex 213. If we consider the 
main diagonal as a directed edge from vertex 214 to vertex 
w 3 ,  then we can label the tetrahedra themselves (effectively 
the children of the cube) in counter-clockwise order so that 
the first tetrahedron is labeled 0 and the last is labeled 5 (see 
Figure la). 

Each tetrahedron t (shown in Figure la) is recursively 
subdivided into two tetrahedra by bisecting the longest edge 
(213~4 in Figure 2a). As we will see below, the shape of each 
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(4 (b) 

Figure 1. Labeling of cube. 

of the six initial tetrahedra is analogous to the result of split- 
ting a pyramid three times in succession thereby creating 
what we term a 1/8 pyramid. 

Splitting the 1/8 pyramid along the longest edge re- 
sults in two tetrahedra which which have shape identical 
to that obtained by splitting a pyramid with a square base 
in half along the diagonal of its base. Therefore, we call 
the resulting shape a 1/2 pyramid (see Figure 2b). If t = 
[ V I ,  212, ~ 3 ,  vq], then the two resulting 1/2 pyramids are t o  = 
[74,4,~i,~i]  = [v , ,v~,v2,2r4]andt l  = [~{,~i,21i,21&] = 
[ U , ,  212, V I ,  2131, where z), is the midpoint of edge 213214. 

(4 (b) 

Figure 2. (a) Labeling of 1/8 pyramid, and (b) 
the resulting pair of 1/2 pyramids. 

All possible orientations (including rotation and reflec- 
tion) of the 1/2 pyramid generated by the subdivision of the 
1/8 pyramid can be summarized in one basic configuration 
which is shown in Figure 3a. Splitting the 1/2 pyramid along 
the longest edge results in two tetrahedra which have shape 
identical to that obtained by splitting a 1/2 pyramid into two 
halves. Therefore, we call the resulting shape a 1/4pyramid 
(see Figure 3b). If t = [VI, 212, zi3,214], then the two result- 
ing 1/4 pyramids are t o  = [ U : ,  vi, vi, v i ]  = [U,, V I ,  7~2,2131 

a n d t l  = [ W ~ , V ~ , ~ J ~ , ~ J ~ ]  = [ ~ , , ~ 1 , ~ 2 , ~ 4 ] , w h e r e v ,  is the 
midpoint of edge 7 ~ 3 ~ 4 .  

All possible orientations (including rotation and reflec- 
tion) of the 1/4 pyramid generated by the subdivision of the 
1/2 pyramid can be summarized in one basic configuration 

(a) (b) 

Figure 3. (a) Labeling of 1/2 pyramid, and (b) 
the resulting pair of 1/4 pyramids. 

which is shown in Figure 4a. Splitting the 1/4 pyramid along 
the longest edge results in two tetrahedra which have shape 
identical to that obtained by splitting a 1/4 pyramid into two 
halves, and the resulting shape is a 1/8 pyramid (see Fig- 
ure 4b).If t = [ V I ,  212,213, uq] and the parent was child 0, then 
the two resulting 1/8 pyramids are t o  = [w:, U;, w i ,  vi] I= 
[ v m , v l , w , w ]  a n d t l  = [4,4,4,41 = [ ~ m , ~ ~ , ~ 2 , 4 ,  

where v, is the midpoint of edge ~3214. On the other hand, 
if t = [ V I ,  U? ,  213, 2141 and the parent was child 1, then we 
swap the labels of the children so that t o  = [U:, U:, U ; ,  v:] := 
[U,, V I ,  v2, v4] and t l  = [U:, .U;, U:,  41 = [U,, ~ 1 ,  212, ~ 3 1 .  

v2 

v 3  vtl, v 4  v)4 v’l v’, v i  

(a) (b) 

Figure 4. (a) Labeling of 1/4 pyramid, and (b) 
the resulting pair of 1/8 pyramids. 

Notice that after the above three decomposition steps we 
ended up with the same shape with which we started the de- 
composition process. This is why used the term 1/8 pyramid 
to describe the tetrahedra that resulted from the initial de- 
composition of the unit cube. In fact, if we continue to sub- 
divide, we will always continue to generate the same three 
shapes. In particular, we will always cycle through the 112, 
1/4, and 1/8 pyramids. Note that using our labeling scheme 
for vertices and children, it is quite simple to traverse the tree 
using only local computations to determine where we are in 
space. The only computation is finding the midpoint V, of 
the longest edge. All other vertices can be obtained directly 
from the vertices of the parent tetrahedron. 
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4. Neighbor finding 

In this section we describe how to find an equal-sized face 
neighbor of a tetrahedron. The algorithm uses an approach 
analogous to that defined in [18]. We will not make use of 
the actual coordinate values of the tetrahedron correspond- 
ing to a given location code. Instead, only the location code 
itself will be processed. Elements of the path array will be 
referenced using array notation. 

We identify four neighbor directions. They are based 
on the four faces of an arbitrary tetrahedron denoted by 
t = [ V I ,  v2,  v3,  q ] .  A neighbor of type 1 is the tetrahedron 
which shares face 01 ~ 2 ~ 3 .  A neighbor of type 2 is the tetra- 
hedron which shares face u1u2v4. A neighbor of type 3 is the 
tetrahedron which shares face u1u3v4. A neighbor of type 
4 is the tetrahedron which shares face 21203214. It should be 
clear that repeated application of a given neighbor type will 
continuously switch between the two neighbors which share 
the specified face. The neighbor finding process consists of 
two steps. The first identifies the nearest common ancestor 
of the tetrahedron t and its neighbort' of type i. The second 
updates the location code for the neighbor using the infor- 
mation obtained while finding the nearest common ancestor. 

4.1. Locating the nearest common ancestor 

For a given neighbor direction i (which determines the 
face we must cross to get the neighbor), we simply scan the 
location code from right to.left until the neighbor direction 
forces us to cross face wlv2v3 of the ancestor. This works 
because face v1v2v3 is shared by siblings and the parent of 
these sibling ancestors is also the nearest common ancestor 
of the input tetrahedron t and its neighbor t'. 

As an example, consider the location code 2 1 0 0 1 1 .  
Since the depth is five, this location code refers to a 1/4 pyra- 
mid. If we want to find a neighbortype 3 (face 'u12132)4), then 
we must first find the nearest common ancestor using the 
right to left scan which was just described. As our neigh- 
bor direction forces us to cross face v1v3v4, we must look 
at the parent (21001).  Keeping the same neighbor direc- 
tion means that we must now cross face 212v3v4 of the parent. 
Again, we must look at the next ancestor (2 100) .  Keeping 
the same neighbor direction means that we must now cross 
face ' ~ 1 2 1 2 ~ 3  of the ancestor. Crossing face ~ 1 ~ 2 ~ 3  is our 
stopping condition, so we stop at 2 1 0  0. Officially, the near- 
est common ancestor (2 10)  is one level up (see Figure 3, 
but we need to know which child contained our input tetra- 
hedron in order to get the appropriate sibling for the neigh- 
bor. 

Depth 2 

Depth 4 

" I  

210 \ 

V? / 

v 4  \ 

v 2  

21001 

v 4  

Depth 3 v,qv3 '.:'.!;.. 21001 1 
. ' >  

v 4  

Depth 5 

Figure 5. Finding the nearest common ances- 
tor of 21 001 1. 

4.2. Updating the location code 

In this step we just invert the one bit corresponding to the 
child of the nearest common ancestor. This process works 
regardless of the original neighbor type which we were try- 
ing to find. No further work is necessary, as all neighbors 
location codes differjust by this one bit. This process is rel- 
atively similar to the location codes used by Fekete [6] for 
two-dimensional triangular meshes except that our tetrahe- 
dron codes are three-dimensional. 

If we continue with our example from Section 4.1, then 
we know that the nearest common ancestor is 2 1 0 .  Since 
2 10 0 has a sibling in the desired neighbor direction, we just 
invert the last bit to point to the new sibling. In this example, 
the sibling of 2 1 0 0  is 2101 ,  so the neighbor of 2 1 0 0 1 1  
which shares face ~ 1 1 ~ 3 ~ 4  is 2 1 0 1 1 1  (see Figure 6). 

4.3. Extensions to the entire cube 

Since we actually have six tetrahedra at the first decom- 
position level of the cube, we need to make sure that our 
transitions work between these six top level tetrahedra. The 
order of the vertices for these six tetrahedra have been orig- 
inally selected so that they imitate the ordering or layout of 
tetrahedra at lower levels of the decomposition. Note that, 
the labeling of these top six tetrahedra themselves is not crit- 
ical since we can always use table lookup to find the top- 
level neighbors. 

In terms of neighbor finding, the first change is that we 
must stop whenever we encounter the top of our location 
code. If the neighbor direction forces us to exit the cube, 
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v4 

Depth 2 

v 3  V I  

Depth 4 

21001 

v 4  1 21011 1 ~ v ~ l o o l ~  * % < I ,  

v 2  v 4  

which shares face v2v3v4 is 3 1 0 0 1 1  (see Figure 7). 

V "  

Depth 5 

Figure 6. Updating the location code when 
finding the neighbor of type 3 of 210011. 

Depth 4 

then we need to return an error. Otherwise, we know that 
a neighbor must exist, so we consider the entire cube as the 
nearest common ancestor for the two neighbors. 

When we encounter the top level, finding the neighbor is 
no longer simply a matter of inverting one bit. However, the 
process is still quite simple. We only need to pick a new top 
level tetrahedron, since the rest of the path will be identical 
for both neighbors. This property is similar to the fact that 
two neighbors within one top level tetrahedron differ by only 
one bit. Therefore, we simply select the new top level bits 
based on a table lookup. 

As an example, we again consider the tetrahedron of lo- 
cation code 2 1 0  0 11, and we try to find its neighbor of type 
4 (sharing face u ? u ~ v ~ ) .  Since our neighbor direction forces 
ustocross face u ~ v 3 v 4 ,  wemustlookattheparent(21001). 
Keeping the same neighbor direction means that we must 
now cross face v1 U ? V ~  of the parent. Again, we must look 
at the next ancestor (2 100). Keeping the same neighbor di- 
rection means that we must now cross face v2v3v4 of the 
ancestor. Again, we must look at the next ancestor (210). 
Keeping the same neighbor direction means that we must 
now cross face ~ 1 ~ 3 2 1 4  of this ancestor, so we must look at 
the next ancestor. Keeping the same neighbor direction for 
the next ancestor (21)  means that we must now cross face 
v1v3 u4 to find the neighbor. Again, we must look at the next 
ancestor (2). Keeping the same neighbor direction means 
that we must now cross face vl  v3v4 of this ancestor. We can- 
not find the parent of this tetrahedron because we are at the 
top level, so we use a table lookup to determine that the ap- 
propriate neighbor is 3. Therefore, the neighbor of 2 1 0  0 11 

Depth 5 

Figure 7. Example illustrating finding neigh- 
bor type 4 of 21 001 1. 

5. Constant-time neighbor finding algorithm 

In this section we describe how to perform neighbor find- 
ing in worst-case constant time. The algorithms presented 
here make use of the carry property of addition to quickly 
find a neighbor without specifically searching for a nearrest 
common ancestor. We replace the iteration which was part 
of the right to left scan in the previous neighbor finding al- 
gorithm by an arithmetic operation that takes constant time 
instead of as much as the depth of the tree. The algorithms 
make use of just a few bit manipulation operations which 
can be implemented in hardware using just a few machine 
language instructions. Of course, the constant time bound 
arises because the entire path array for each location code is 
assumed to fit in one computer word. If more than one word 
is needed, then the algorithms are a bit slower but still take 
constant time. 

We use an identification technique similar to the one used 
in navigating between 2D triangle meshes (see [ 111). In the 
2D case, we used bit masks to identify certain bit patterns 
within the location codes. We called them idmasks. These 
bit masks help us to identify which nodes contain (or fail to 
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contain) a sibling in the appropriate neighbor direction, and 
therefore which positions in the location code should propa- 
gate the carry. Assuming that we generate our bit masks cor- 
rectly, finding the location of the nearest common ancestor is 
as simple as a single addition. We use the highest carry po- 
sition after the addition to determine which bit gets inverted 
in order to find the neighbor. 

Determining which positions should propagate the carry 
is not always an easy task. The first thing we need to con- 
sider is what bit patterns indicate a carry based on the neigh- 
bor direction which we are given. To simplify our tables 
and algorithms, we only consider the recurrence relations 
for a 1/8 pyramid. It requires a maximum of two steps (or 
changes in level) in  order to ensure that we are working 
within a location code of a 118 pyramid. 

vant face is face q v 2 v 3 .  Let a denote these positions. Since 
we want carries where the sibling cannot be determined, we 
need to complement a and then perform the addition. To 
isolate the one bit that needs to be inverted in the location 
code, we perform a logical AND on the result of the addition 
with the value originally in a (i.e., the original uncomple- 
mented idmask) which denotes the positions where we can 
determine the sibling. Let b denote the result. The bits are 
offset by one position at this point, so we shift b to the left 
by one bit position. Finally, we simply invert the appropri- 
ate bit in the location code, by using a logical XOR operation 
between the location code and the current bit mask b (which 
contains only one bit marking the position where we found 
the sibling). 

5.1. Neighbor type 1 

Neighbor type 1 always goes straight to the sibling (the 
nearest common ancestor is the parent), so not much work 
is required. In fact, finding the sibling is simply a matter of 
inverting the last bit (based on the level or depth in the hier- 
archy) in the location code. 

5.2. Neighbor type 2 

Face ~ 1 ~ 2 ~ 4 ,  corresponding to neighbor type 2, is always 
contained by either face v 1 v ~ v 3  or face v1v2v4 of the third 
ancestor. This is a direct result of the splitting rules given 
in Section 3. If face u1v?v4 in the child is contained in 
face V I  212213 of the third ancestor, then we know the neigh- 
bor, because face v l v ~ v 3  in the third ancestor is shared by 
the ancestor and its sibling. However, if face v 1 v ~ v 4  in 
the child is contained in face v1v2u4 of the third ancestor, 
then the identity of the neighbor isn’t immediately obvious. 
We must continue searching for the neighbor through face 
~ 1 ~ 2 ~ 4 ,  corresponding to neighbor type 2,  for the third an- 
cestor. This process continues until we can determine the 
sibling of an ancestor and we know that we can find the sib- 
ling when we are on face V I  712213 on the ancestor. 

Since our goal is to find the appropriate neighbor in con- 
stant time, we want to use simple addition and take advan- 
tage of any carries. In particular, we want a carry to occur 
whenever we need to continue searching (looking at the an- 
cestor) in the hierarchy. Finding neighbor type 2 requires 
finding either neighbor type 1 or 2 of the third ancestor (i.e., 
having the same shape, double the edge size, and eight times 
the volume) depending on which child of the third ancestor 
was needed toreach the input location code. This means that 
we need a carry if the child of the third ancestor was a child 
of type 0, and no carry if i t  was a child of type 1. 

The algorithm locates the positions within the location 
code where the sibling can be determined because the rele- 

// 1010 \ 
Deoth 3 

Depth 6 

Y)/ 1010101011 \ 
v3 

Depth 9 

v 4  

Depth 12 

Figure 8. Example illustrating finding neigh- 
bor type 2 of 101 01 01 01 101 0. 

As an example, let us consider location code 
1 0  1 0  10 1 0 1  1 0  10 (see Figure 8). We can determine 
the sibling at any position where the first bit (out of 3) is 1. 
The mask marking these positions is 0 0 0 0 10 0 0 0 0 0 0 0, 
so this is stored in a. The complement of bit pattern a 
is 1 1 1 1 0 1 1 1 1 1 1 1 1 .  Adding one to this value gives 
us 1 1 1 1 1 0 0 0 0 0 0 0 0 .  We isolate the one bit that needs 
to be inverted using the logical AND. This gives us 
0000100000000.  We need to shift left, so we get 
0 0 0 1 0 0 0 0 0 0 0 0 0 .  Finally, we use the logical XOR 
to invert the appropriate bit. The input location code 
1 0 1 0 1 0 1 0 1 1 0 1 0  XOR 0 0 0 1 0 0 0 0 0 0 0 0 0  gives us our 
final answer of 1 0  11 1 0  1 0  11 0 10. 
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5.3. Neighbor type 3 

Face ~ 1 ~ 3 ~ 4 ,  corresponding to neighbor type 3, is gen- 
erally contained by either face w 1 v 3 q  or face u2w3v4 of the 
third ancestor. If it is contained by any other face, then the 
neighbor can be determined without examining the third an- 
cestor. This is a direct result of the splitting rules given in 
Section 3. Whenever the neighbor cannot be determined be- 
cause the nearest common ancestor is beyond the third an- 
cestor (this will occur if face ~ 1 ~ 3 ~ 4  in the child is contained 
in face 2112132)4 or face 217213214 of the third ancestor), then 
we must continue searching for the neighbor through the ap- 
propriate face of the third ancestor. Notice that if this is 
face 211213214 of the third ancestor, then we continue to search 
for the same neighbor type (i.e., 3). Otherwise, if it is face 
212213214 of the third ancestor, then we must change our strat- 
egy a bit, effectively finding neighbor type 4 of the third an- 
cestor. 

Since our goal is to find the appropriate neighbor in con- 
stant time, we want to use simple addition and take advan- 
tage of any carries. We want a carry to occur whenever we 
need to continue searching higher in the hierarchy. Finding 
neighbor type 3 either terminates at the second ancestor or 
requires finding neighbor type 3 or 4 of the third ancestor 
depending on the bits corresponding to the first and second 
ancestors of the node. Basically, there should be no carry if 
the first ancestor was child 0 of the second ancestor. Other- 
wise, we want a carry and the neighbor type will depend on 
the child type of the second ancestor. 

Since a carry occurs whenever we search higher than the 
third ancestor, and we might need to find either neighbor 
type 3 or 4 of the third ancestor, we need an indicator to keep 
track of which neighbor type we want to find at each level 
(or at least at every third level). We use a "neighbor mask" 
to store this information. 

The first step in finding neighbor type 3, is identifying the 
positions within the location code where the sibling can be 
determined because the relevant face is face ~ 1 ~ 2 ~ 3 .  These 
positions will be recorded in a mask a whose construction 
is described below. Since neighbors are determined before 
we reach the third ancestor (otherwise, we continue upwards 
in the hierarchy), we will examine the bits in sets of three, 
where the leftmost (or most significant) bit is called bit 1, the 
next (or middle) bit is called bit 2, and the rightmost (or least 
significant) bit is called bit 3. 

If bit 2 is 0 and we are looking for neighbor type 3 at this 
level (this is determined by examining the neighbor mask), 
then we can identify the neighbor. If bits 1 and 3 are the 
same and we are looking for neighbor type 4 at this level, 
then we can identify the neighbor. The mask a is constructed 
based on these patterns. Next, we complement a prior to the 
addition because we want a carry to occur whenever we can- 
not identify the neighbor at a given level. The carry is prop- 

agated until we reach the bit corresponding to the level at 
which this neighbor can be identified. To isolate the one bit 
that needs to be inverted in the location code, we perform 
a logical AND on the result of the addition with the value 
in a (i.e., the original uncomplemented idmask) which de:- 
notes the positions where we can determine the sibling. Let 
b denote the result. Depending on which neighbor type we 
are finding at this point (again, determined by examining the 
neighbor mask), the bits might be offset by one position. If 
so, we shift b to the right by one bit position. Finally, we 
simply invert the appropriate bit in the location code, by us- 
ing a logical XOR operation between the location code and 
the current bit mask b (which contains only one bit marking 
the position where we found the sibling). 

v r 7 v 4  

v 4  

Depth 4 

\ 

/ v2 

Depth 6 

1010001011010 

Depth 12 

Figure 9. Example illustrating finding neigh- 
bor type 3 of 101 01 01 01 101 0. 

As an example, let us consider location code 
1 0 1 0 1 0 1 0 1 1 0 1 0  (see Figure 9). We can determine 
the sibling if bit 2 is 0 (for neighbor type 3), or if  bits 
1 and 3 are the same (for neighbor type 4). This is not 
true for the rightmost triple (010, starting with neighbor 
type 3), not true for the adjacent triple (011, still using 
neighbor type 3), true for the next adjacent triple (101, 
still using neighbor type 3), and true for the leftmost 
triple (010, with neighbor type 4 since the previous triple 
caused the neighbor type to change). Therefore, the mask 
a which marks the true positions is 0 10 0 10 0 0 0 0 0 0 0. 
The complement of a is 1011011111111. Adding one 
to this value gives us 1 0 1 1 1 0 0 0 0 0 0 0 0 .  We isolate 
the one significant bit using the logical AND. This gives 
us 0000100000000.  Finally, we use the logical XOR 
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to invert the appropriate bit. The input location code 
1010101011010  XOR 0000100000000 gives us our 
final answer of 1010001011010. 

5.4. Neighbor type 4 

Finding a neighbor of type 4 is quite similar to the tech- 
nique used for neighbor type 3. Again, we use simple ad- 
dition and take advantage.of the carries. Finding neighbor 
type 4 either terminates at the first ancestor or requires find- 
ing neighbor type 3 or 4 of the third ancestor depending on 
the bits corresponding to the current node and its second an- 
cestor. Basically, there should be no carry if the second an- 
cestor was child 0 of the third ancestor and the current node 
is child 0, or if the second ancestor was child 1 of the third 
ancestor and the current node is child 1. Otherwise, we want 
a carry and the neighbor type will depend on the child type 
of the second ancestor. 

5.5. The neighbor mask 

When seeking neighbor type 3 (4) and finding that the 
child of the third ancestor is child 1, we switch to the method 
of finding neighbor type 4 ( 3 ) .  This causes somewhat of a 
problem since we need to know the neighbor type for which 
we are searching along the entire location code simultane- 
ously. If we drop back to an iterative approach, then we lose 
our constant time behavior. Thus, we introduce a neighbor 
mask which stores the state of our neighbor switching. This 
allows us to make neighbor type 3 and 4 transitions in con- 
stant time. 

Of course, we need to be able to update or maintain our 
neighbor mask in constant time too. Note that the neighbor 
mask only changes when the bit corresponding to a 112 pyra- 
mid changes. When such a bit changes, we need to make 
sure that all bits in our neighbor mask which occur before the 
given bit are changed also. This is easily accomplished in 
constant time usingjust a few bit operations not given here. 

. 

5.6. Transitions across the six top level tetrahedra 

Transitions between the six top level tetrahedra are rela- 
tively simple. This situation arises if the addition from our 
constant time algorithm generates a carry past the leftmost 
end of the input location code. This is done in the same way 
as described for the traditional neighbor finding method that 
does not run in constant time (see Section 4.3). 

6. Concluding remarks 

We have described a constant time technique for navi- 
gating between adjacent tetrahedra in a hierarchical regular 

Figure 10. Example of a consistent mesh with 
1365 vertices and 6556 tetrahedra generated 
using an error tolerance of 14% from a bucky- 
ball data set with 32K vertices and 192K tetra- 
hedra. 

tetrahedral mesh. Fast navigation is useful for many appli- 
cations. One such application is in the generation of a selec- 
tively refined mesh from a multiresolution tetrahedral model 
of a scalar field. In particular, we want to extract a consis- 
tent (i.e., with no “cracks” which means that adjacent faces 
are equal) tetrahedral mesh for a specified error tolerance. 
While we have only described the technique used for equal- 
sized neighbors, it is easy to extend the technique in order 
to handle the variable resolution mesh (with many differ- 
ent tetrahedron sizes) which is generated during such error 
based extractions. In this case, our neighbor finding meth- 
ods can be used to speed up the process of ensuring that all 
neighboring faces are of the same size especially when they 
do not result from a split of the same larger ancestor tetrahe- 
dron. Figure 10 is an example of such a mesh for a bucky- 
ball data set. Moreover we can obtain a description of the 
resulting mesh which also contains adjacencies among tetra- 
hedra. Adjacencies are necessary for depth sorting and com- 
position of tetrahedral cells involved in direct volume ren- 
dering techniques [ 19, 211. Octree data structures and algo- 
rithms have many similar benefits, but d o  not grant the same 
level of flexibility as true tetrahedral decompositions which 
are necessary in order to generate consistent meshes. Both 
octrees and the techniques presented here assume a cube is 
used as the basis for further subdivision. However, unstruc- 
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tured meshes can be stored with minimal overhead using the 
same techniques, if the unstructured mesh is placed within 
the enclosing cube's boundaries. 

v 

Figure 11. Sample isosurface using a field 
value in the 40% range for the bucky-ball data 
set (viewed from a different angle). 

Once we have extracted a consistent mesh we often want 
to find isosurfaces within the extracted mesh. This is usu- 
ally done by a two-step process which, in  the absence of an 
index on the scalar field values (such as the pyramid [ l]), 
must visit every tetrahedron in the extracted mesh to deter- 
mine if it is crossed by the isosurface. On  the other hand, our 
neighbor finding methods enable us to perform the mesh and 
isosurface extraction simultaneously by using the combined 
information (i.e., the scalar field value for the isosurface and 
the error threshold) when processing the complete multires- 
olution tetrahedral structure. Figure 11 is a sample isosur- 
face for the bucky-ball data set in Figure 10 (viewed from a 
different angle). 
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