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ABSTRACT
�e three ways of interactions in Twi�er–retweet, reply, and men-
tion–comprise of a latent dynamic information �ow network be-
tween users, which can be utilized to determine in�uential users.
�is paper focuses on determining which Twi�er users have great
in�uence on a query location Q in the sense that they are assumed
to provide information that is of su�cient interest to prompt people
atQ to interact with them. Note that an in�uential Twi�er user who
is of great in�uence onQ may not be necessarily fromQ . �erefore,
we �rst de�ne generalized influential Twi�er users regardless
of whether their location was known or not, meaning that such
generalized in�uencers onQ can be either from insideQ , or outside
Q , or even unknown. A more interesting subset of generalized
in�uencers is the ones whose location is in Q , and termed as local
influential Twi�er users. One potential application of �nding
local in�uencers (e.g., local news media) is to detect local events by
tracking their tweets.

Using a large amount of data collected from Twi�er, we �rst
build a large-scale directed interaction graph of Twi�er users and
present an analysis of the geographical characteristics of the edges
in this interaction graph and make several interesting observations.
Based on these �ndings, we propose two versions of PageRank
that measure spatial in�uence on the interaction graph: Edge-Local
PageRank (ELPR), and Source-Vertex-Locality PageRank (SVLPR),
which takes into account the spatial locality of edges and the spatial
locality of source vertices in edges, respectively. In addition, a Geo-
graphical PageRank (GPR) is also proposed trying to incorporate
both of these two factors together. In the experimental evaluation,
we examine the e�ectiveness of the proposed methods with regards
to 3 di�erent US cities “Boston, MA”, “Bristol, CT” and “Sea�le,
WA”, and the results show that our algorithms outperform their
baseline approaches including the topological network metrics and
the original PageRank. In addition, we also explored the possibility
of using local in�uential Twi�er users as potential news seeders and
showed that some types of in�uential users have high credibility
in outpu�ing local place-relevant tweets.
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1 INTRODUCTION
Twi�er, one of the most popular micro-blogging services, allows
users to publish short messages, called tweets, on various subjects.
In Twi�er, each user, can subscribe to another user to receive the
contents the la�er publishes, through “following” the la�er. In so
doing, the former user becomes one of the la�er’s “followers”, and
the la�er becomes one of the former’s “friends”. �e de�nition
of making a “friend” on Twi�er is di�erent from establishing a
reciprocal “friend” relationship in other social network services
like Facebook, because such a “following” operation in Twi�er
completes without requiring the user being followed to grant per-
mission nor follow back the user who initiates the “following”,
which generates a directed follower-following relationship. With
users as vertices, and their directed relations of following and being
followed as edges, a social network in Twi�er builds up.

Such a direct follower-following social graph, however, is not
always available due to the di�culties imposed by the Twi�er API
rate limits in obtaining an access to a complete social network link
structures in current Twi�er. On the other hand, Twi�er o�ers a few
more dynamic ways to interact with other people such as retweet,
reply, mention, which have been utilized in some works to determine
in�uential Twi�er users such as [1, 2]. Di�erent from the absence
of follower-following relationship, interactions are embedded in
the meta-data of tweets and need no further request to Twi�er
API once a tweet dataset is ready. �erefore, one of the popular
strategies is to �rst rebuild a social network from interactions and
then determine in�uential users in the interaction graph [3–12].

But few of the existing approaches to determining the in�uence
of Twi�er users on the social network gives credits to where they
are from and furthermore how close they are. �erefore, in this
paper, we are focusing on answering the following question: Given
a query location Q , which Twi�er users have great influence
on it? We refer Q to a circular region de�ned by a geographical
center point lq and a radius ϵ .

We consider a Twi�er user to be spatially in�uential at Q if his
authority has been endorsed by the local people from Q . We deem
the interactions (retweet, reply, mention) one user initiates to an-
other as his endorsement to the la�er’s authority. In essence, the
more people from a location endorse a Twi�er user, more spatially
in�uential he becomes on that location. In this de�nition, we don’t
require a Twi�er user to have to be from location Q (e.g., his home
location falls within Q) to be considered in�uential there. In such
sense, the infuential Twi�er users are termed as generalized in-
fluential Twi�er users on Q . �e more interesting subset of the
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in�uential Twi�er users onQ is the ones who are also from location
Q , termed as local influential Twi�er users on Q .

Solving this problem is bene�cial to many applications like
targeted advertising, political campaign, trend analysis [13], and
location-based recommendation [14]. In particular, �nding local
in�uential Twi�er users also has the potential to discovering local
news and events. For example, the Twi�er accounts representing
local news media usually cover and deliver information in their
posted tweets regarding what is happening at a location and can be
utilized as news seeders [15, 16] to help news detection [17, 18]. To
test the viability of local in�uential Twi�er users in such applica-
tions, we examined the tweets published by a set of top in�uential
Twi�er users in Boston for a week. �e results show that more
than half of the tweets are considered local by virtue of discussing
content relevant to the local place, and the ratio of local tweets
goes higher if only considering speci�c group of users such as news
person (e.g., News Media and Reporter) and sports person (e.g.,
Sport Player and Sport Team).

In this paper, we �rst build a large-scale directed interaction
graph. An intuitive solution to �nding in�uential Twi�er users
then is to append a post-processing location �lter step a�er �nding
in�uential people in general. For example, one can rely on the
indegrees of vertices in the interaction graph or apply the PageRank
schema to yield a ranking order for Twi�er users regarding their
in�uence, and then select the ones who fall within Q and identify
them as in�uential Twi�er users on Q .

Our proposed methods improve over this strategy by addition-
ally considering spatial locality in the edges and its source vertices
respectively. Speci�cally, by emphasizing on spatially local edges
(applying a exponential distance-decay on the edges), i.e., whose
two vertices have smaller geographical distances, our method Edge-
Locality PageRank (ELPR) more e�ectively �nd local influential
Twi�er users than the network metrics like indegree and the orig-
inal PageRank. By focusing on the edges whose source vertices are
spatially local to the query location center lq , our method Source-
Vertex-Locality PageRank (SVLPR) doesn’t rely on a post-processing
location �lter step and thereby also capture the Twi�er users who
are of great in�uence on but not necessarily from the locationQ . �e
experiments also show that SVLPR outperforms its indegree-based
baseline approach. Moreover, our hybrid method Geographical
PageRank (GPR) a�empts to bring geographical distances among
Twi�er users into the process of �nding spatially in�uential Twi�er
users, which improves over PageRank by taking into consideration
both link structure and geographical distance during propagating
in�uence among users.

�e rest of this paper is organized as follows. In Section 2, we
review related work. In Section 3, we describe the dataset we are
using, along with an interaction graph built from it. In Section 4, we
�rst present our two methods to determine local and generalized
in�uential Twi�er users, respectively and additionally propose a
hybrid method trying to combine them. Section 5 describes the
experimental evaluation of our methods. Concluding remarks are
drawn in Section 6.

2 RELATEDWORK
�ere has been a plural of works on identifying the in�uential
users in the social networks, Twi�er in particular. A few of recent
surveys Gayo-Avello [19], Kardara et al. [20] and Riquelme and
González-Cantergiani [21] provide comprehensive summarizations
on the di�erent techniques regarding identifying in�uential Twi�er
users.

In the Twi�er social graph, an intuitive way to measure a user’s
in�uence is by his number of followers, i.e., the indegree of the
vertex representing this user. Although it is suggested Twi�er itself
is also using the same strategy [22], the metric of indegree isn’t
always able to re�ect the real happening information �owing pat-
terns in Twi�er [1, 2, 22, 23] and therefore limited in discovering
in�uence pa�erns. Dynamic interactions are further exploited to
determine in�uential Twi�er users. For example, Kwak et al. [1],
one of the earliest e�ort to quantitatively study the topological
characteristics of Twi�er’s social network, have studied ranking
users by the number of retweets and �nd that it is quite dissimilar
with ranking users by the number of their followers. Furthermore,
some derivatives of interactions have also been investigated like the
normalized or averaged retweets and mentions by total tweets or
total followers [2], which might yield a slightly di�erent in�uence
ranking result. Nevertheless, such statistical properties of inter-
action don’t a�ribute credibility to the phenomenon that a user’s
in�uence might be propagated to distant users that are not directly
connected to (or interacting with him) on social networks.

On the other hand, there have been some works borrowing
PageRank from ordering webpages in the connected World Wide
Web Page et al. [24] to ranking users in Twi�er directed social
network graph [1, 22, 23, 25, 26]. PageRank improves over previous
measures that are based directly on simple metrics in the sense
that it assumes that by following a user, the followers are implicitly
conferring some in�uence to him and then iteratively propagates
a user’s in�uence through the whole social graph. To avoid the
limitations of Twi�er API in obtaining the follower-following net-
work structure and meantime capture the dynamic information
�ow between Twi�er users, the interactions like retweet, reply, and
mention have been utilized trying to build similar social graphs [3–
12]. With these graphs, the iterative in�uence propagation schema
such as PageRank can be applied. For example, MultiRank [4] builds
di�erent graphs for di�erent interactions such as retweet and reply
respectively, in a given topic.

Another strategy of �nding in�uential users in social networks
is by in�uence maximization, which is to select k users to maximize
the expected number of users being in�uenced [27]. Location-aware
in�uence maximization methods are also proposed such as Bouros
et al. [28] and Li et al. [29], to �nd top k in�uential users in a
geographical region. Although they have a similar problem context
to us regarding identifying local in�uential Twi�er users, our work
di�ers from them by addressing people’s geographical proximity
(distance) during propagating each other’s in�uence through the
social network. Moreover, our algorithms inherently bring ranking
orders to all the users by running only once, which is bene�cial
over their work for queries with varying value of k .

With regard to incorporating geographical proximity between
graph vertices into PageRank, the work of Chin and Wen [30] is
the most related to ours. �ey solve a di�erent problem to capture
spatial concentration of population movement by running on a
geospatial network, where each vertex represents a unique geo-
graphical place and edges form between places within reachability
in a given travel time.

3 BUILD AN INTERACTION GRAPH G
3.1 Dataset
Like the directed follower-following relationships, each Twi�er
interaction between users has an underlying direction too, pointing
from the user who actively initials the action of rewtweet, reply
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(a) (b)
Figure 1: (a) – �e number of vertices and edges of interaction
graphs built by using 1, 3, 6, 12 and 24-month of tweets. (b) – Venn
Diagram of edges in G by retweet, reply andmention, respectively.

(a) (b)
Figure 2: (a) – Distributions of the i-follower/i-friends a Twitter user
has. (b) – Distribution of the distances of edges

or mention to the other one. �erefore, during building up the
interaction graph G = (V, E), a directed edge ei j from user vi to
user vj is constructed and added to E if there exists at least one
interaction pointing from vi to vj , both of whom are also added to
V as vertices. For convenience, in a directed edge ei j of G, we call
vi one of vj ’s i-followers, i.e., interaction followers, and vice versa,
vj one of vi ’s i-friends, i.e., interaction friends.

Our dataset consists of 5, 515, 214, 722 tweets collected between
January 2015 and December 2016. In these tweets, there are
1, 097, 055, 845 retweet interactions, 587, 550, 806 reply interactions
and 2, 147, 483, 647 mention interactions. We therefore build an in-
teraction graph G of 1, 503, 853, 848 directed edges and 147, 842, 352
users as vertices. G is relatively sparse in comparison to the one
reported in [1]–a complete Twi�er social network by July 2009,
though G is on the similar scale in terms of the number of edges.
For example, the ratio of number of edges over the number of ver-
tices in G is 10.17 while the one in [1] has a ratio of 35.25 with a
total number of 1, 468, 365, 182 edges. Although collecting more
tweets for longer time will increase the ratio, such increase is at a
very slow speed as showed in Figure 1a.

Regarding the contribution to building edges in G, as showed in
Venn diagram Figure 1b, mention is the most signi�cant by covering
99.779% of edges, while retweet 55.005% and reply only 25.445%.
�e Venn diagram also shows that mention is covering most of the
edges constructed from retweet and reply, indicating that most of
the users who retweet or reply each other also mention each other.
�is, however, is not the case between retweet and reply, who only
share 2.524% edges in common.

Regarding the distributions of indegree/outdegrees in the interac-
tion graph G, we plot the complementary cumulative distributions
of the number of i-followers/i-friends each Twi�er user has in
Figure 2a, which shows a power-law pa�ern.

(a) (b)
Figure 3: (a) – CDFs of i-followers for 5 local news agencies over
their geographical distance. (b) – CDFs of i-followers for the top 5
users (who are selected by maximum indegrees in G).
3.2 Twitter User Locations
In Twi�er, there are two sources to know a user’s location: the
geographical coordinates in his GPS-tagged tweets and the home
location in his pro�le – also termed as pro�le-location. �e pro�le-
location is o�en in the form of place names like “College Park, MD”
and can be aligned with databases like GeoNames1 to decode its
geographical latitude/longitude coordinates [31, 32]. In order to
assign a unique pair of latitude/longitude coordinates, for users
who has multiple pairs of geographical coordinates, we compute
the L1-multivariate median which essentially �nds a point having
the minimum sum of distances to a given set of points Z [33]:

argmin
z′

∑
z∈Z

distance(z′, z) (1)

A�er discarding coordinates of (0.0, 0.0) that are likely caused by
GPS malfunction, we then have 54, 428, 031 (36.8%) Twi�er users
having geographical coordinates, and 4, 933, 524 of them from GPS-
tagged tweets. Correspondingly, 625, 186, 580 (41.6%) edges of G
have both their vertices with geographical locations.

Next, we use Twi�er users/lookup API to download the pro�le
information for Twi�er users whose pro�le-location have not been
exposed in our dataset. �ese users are usually the ones who had
appeared in our dataset but were only being replied to or mentioned
by others and thereby lacking the pro�le location information.
A�er downloading pro�les for these users, we get the locations
of additional 12, 018, 353 users, making a total 66, 446, 384 (44.9%)
users have geographical locations. �is makes 756, 737, 542 (50.3%)
edges in G have both of their vertices with geographical locations.

Furthermore, there have been methods proposed trying to es-
timate locations for Twi�er users whose locations are unknown
such as [33], we therefore investigate the e�ect of utilizing such a
geotagging procedure in Section 5.5.

Geographical Distribution of Edge Distances In this paper,
the distance of an edge in G refers to the geographical distance
between its two Twi�er users. For the edges both of whose two
vertices have geographical coordinates to calculate a distance, we
plot their distance distribution in Figure 2b, which shows that inter-
actions happen over various distances and not always over shorter
distances and should receive di�erent geographical considerations.

4 MEASURING SPATIAL INFLUENCE IN G
4.1 Observation and Motivation
�e objective of measuring the spatial in�uence of Twi�er users is
to �nd, given a query location Q , which Twi�er users have great
in�uence on it. An intuitive solution to this problem is to append a
post-processing location �lter step a�er �nding in�uential people
1 h�ps://www.geonames.org

https://www.geonames.org
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(a) (b)
Figure 4: (a) – Top 100 Twitter users in Boston sorted by the number
of i-followers. (b) – Top 100 Twitter users in Boston sorted by the
number of i-followers within 100 km.

in general. For example, one can use the indegrees of vertices
in G or apply the original PageRank schema (i.e., without giving
geographical considerations) to yield a ranking order for Twi�er
users regarding their in�uence, and then select the ones who fall
within Q and identify them as in�uential Twi�er users on Q .

Such strategy, however, neglects a few important observations.
Regarding Local In�uential Twitter Users: First, by utiliz-

ing a location �lter, the above strategy assumes that, for a Twi�er
user in Q , his general in�uence equals to his local in�uence. �is,
however, is not necessarily true. For example, as showed in Fig-
ure 4a, a Twi�er user from location Q who have many i-followers
is not guaranteed to have many local people interacting with them,
and vice versa in Figure 4b. A similar observation is also reported
in [34] but on a scale of country-level.

Second, as shown in Figure 3a, for local in�uential Twi�er users,
their interaction followers are more aggregated around the local
place, and the number of their followers decreases over longer
distance, which implies that their in�uence is more revealed at
local places and decays over longer distance. �is motivates us to
gives di�erent geographical considerations to edges with di�erent
distance using a distance-decay function.

Regarding Generalized In�uential Twitter Users: A user
from a place (or even without specifying his home location) other
than the query location Q might have a considerable amount of
i-followers from Q and thereby have a chance to exhibit non-
negligible and even noticeable in�uence on Q . For example, even
though the Twi�er user “@Youtube” is from thousands of miles
away from Boston, the number of his i-followers from Boston is
larger than any other Twi�er users that are in Boston. Another
example is “@Patriots” who is a Boston-based Twi�er user account,
but we found in our dataset, thousands of people from Bristol, CT
retweeting, replying and mentioning this user even though those
two cities are almost 200km away. Applying a location �lter to
only keep the Twi�er users who are within a limited geographical
range to the query location center lq is likely going to miss such
users, and therefore is not suitable for determining the generalized
in�uential Twi�er users. �is inspires us to alternatively measure
a Twi�er user’s spatial in�uence on Q based on the spatial local-
ity of his i-followers with respect to the query location center lq
and thereby capture Twi�er users of great in�uence on Q without
requiring them to have to be from Q .

In the following subsections, we �rst give a brief description
of the PageRank algorithm. Next, we present our 2 instances of
PageRank that address the above two observations, respectively. At
last, a hybrid method is proposed trying to combine the 2 instances
of PageRank together using distance-decay functions, along with a

location query speci�c teleportation vector, which determines the
initial in�uence values assigned to each vertex.

4.2 PageRank Overview
�e mechanism behind PageRank can be brie�y explained by an
intuitive random surfer model on a given graph where this surfer
visits a vertex with a certain probability and follows an outbound
edge at random to visit next vertex. �e in�uence of each vertex is
then coded in the probability for the random surfer reaching that
vertex, calculated as the sum of probabilities of the surfer following
all possible edges towards to that vertex.

Additionally, PageRank de�nes a damping factor h which con-
trols the probability that the random surfer, before starting visiting
next vertex, chooses to follow an edge in the given graph to reach
next vertex or simply teleport to one which is not connected by
edge with the previous vertex. �is damping factor is used to avoid
the random surfer being trapped in some disconnected compo-
nents (if exist) in the directed graph and guarantees the conver-
gence of PageRank. In summary, suppose we have a directed graph
G = (V ,E) in which V is the vertex set and E is the directed edge
set, the PageRank procedure can be iteratively de�ned as follows:

�
t+1 = (1 − h) ∗Π + h ∗�t ×� (2)

where�t =
[
r t1 r t2 · · · r tN

]
is the ranking result a�er iterating

t times, N is the number of vertices N = |V |, and each element r ti
represents the PageRank score of the vertexvi ; h is the damping fac-
tor ranging from 0 to 1; Π =

[
π1 π2 · · · πN

]
is a teleportation

vector in which each element πi denotes the probability that the
surfer teleports to the vertex vi from any other vertices; and� is
the transition probability matrix which is a N ×N matrix with each
elementmi j specifying the probability that the surfer transits to ver-
tex vj from vertex vi by following an existing directed edge in the
graph. In the typical PageRank algorithm, the teleportation proba-
bility to each vertex is identical by se�ing Π =

[ 1
N

1
N · · · 1

N
]
,

and the transition probability mi j is 0 if vertex vi doesn’t have a
outbound edge to vertex vj , and mi j = 1

|OUTi | if such an edge
exists, where OUTi denotes the set of vertices to which vi has an
outbound edge. For simplicity, we use the lowercase script outj (or
inj ) to denote the cardinality of the setOUTj (or INj which denotes
the set of vertices from whom vertex vj has an inbound edge).

Transition Probability in Weighted Graph Generally, given
an weighted graph, for example, G = (V, E,W) where wi j ∈ W
denotes the weight of an edge ei j ∈ E , the transition probability
from vertex vi to vertex vj can be calculated de�ned as [35]:

mi j =
wi j∑

vk ∈OUTi
wik

(3)

4.3 Edge-Locality PageRank
Figure 3a shows that, as the representatives of local in�uential Twit-
ter users, the local news agencies have more followers aggregated
around the local place but less and less as geographical distance
increases, indicating that their in�uence might decay over distance.
�is, therefore, inspires us that in determining local in�uential
Twi�er users, one Twi�er user transfers more in�uence to another
if they have a shorter geographical distance. We therefore propose
to use a distance-decay function [30] to assign edges weights as
follows and hence give more geographical considerations to edges
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who have shorter distances, e.g,, those who are spatially local.

f EL := 1
(di j + 1)κ ∗ δ (ei j ) (4)

where δ (ei j ) is a binary checking function that outputs 1 if both
of the two vertices vi and vj have geographical locations in G,
otherwise outputs 0. di j is the distance between vertex vi and vj
when δ (ei j ) = 1, otherwise, set to 0. Adding 1 to distance is to
avoid zero-divisions. �e parameter κ is the scale factor of distance
decay [30] and determines the degree at which the power-law
curve declines. In general, a larger κ yields a steeper curve and
more signi�cant e�ect on distance decay.

With the above weight function f EL , we calculate a Edge-Locality
Transition Matrix MEL using Equation 3. Along with the identical
transportation vector Π in Equation 2, we now de�ne Edge-Locality
PageRank (ELPR) as follows:

�
t+1
ELPR = (1 − h) ∗Π + h ∗�tELPR ×MEL (5)

�e ranking result yielded in ELPR, however, is not speci�c to the
query locationQ and thereby needs a location �ltering post-process
to �nd the Twi�er users who are from Q .

Location Filtering Given a ranking list of Twi�er users and a
query location Q : (lq , ϵ), an location �ltering step is to output a
Q-speci�c ranking list in which only the Twi�er users at a distance
of ≤ ϵ to lq are kept and their relative orders in the original ranking
list are also reserved.

4.4 Source-Vertex-Locality PageRank
�e preferences for spatially-local edges in the Edge-Locality PageR-
ank (ELPR) proposed in previous section might miss some Twi�er
users who have been retweeted, replied or mentioned by a consid-
erable amount of people from the query location Q , even though
they are not from Q . To remedy this, in this section, we propose
Source-Vertex-Locality PageRank (SVLPR) which addresses if a
vertex is spatially local to the query location lq , de�ned follows:

De�nition 4.1. A vertex vi ∈ V is spatially local to a query
location lq if their distance(li , lq ) is within a threshold ϵ . Vertices
that don’t have a location li are not spatially local to lq .

We then propose the following source-speci�c weight function
f SV L : ei j → wi j in G:

f SV L := δ ′(vi , lq , ϵ) (6)
in which, δ ′(vi , lq , ϵ) is a binary spatial locality checking function
that outputs 1 if the vi is spatially local to lq , otherwise outputs 0.
In other words, Equation 6 essentially removes all edges ei, j where
vi is not in range ϵ of the query location lq .

A Source-Vertex-Locality Transition Matrix MSVL is then cal-
culated using this weight function and Equation 3. Since MSVL is
already lq -speci�c, we adopt identical transportation vector Π and
de�ne Source-Vertex-Locality PageRank (SVLPR) as follows:

�
t+1
SV LPR = (1 − h) ∗Π + h ∗�tSV LPR ×MSVL (7)

4.5 Geographical PageRank
Edge-Locality PageRank (ELPR) and Source-Vertex-Locality PageR-
ank (SVLPR) �nd in�uential Twi�er users on location Q by address-
ing two di�erent geographical considerations of G. �e former
emphasizes on the edges that are formed within a shorter spatial
distance, while the la�er focuses on the edges whose source ver-
tices fall spatially-locally to the query location center lq . In this
section, we combine these two factors in a Geographical PageRank

(GPR) algorithm. Speci�cally, concatenating these two factors in
GPR is completed by the operation of multiplication via the weight
function f GEO de�ned as:

f GEO :=



1
(di j + 1)κ ∗ δ (vi , lq , ϵ), both vi , vj have locations,

|IN li ,ϵ
j |
|INj |

∗ δ (vi , lq , ϵ), only vi has a location

1
(dmax + 1)2κ

, otherwise.

(8)
where di j is the distance between vertex vi and vj , dmax is the
maximum value of all di j and used to punish edges both of whose
two vertices don’t have available locations. And δ (vi , lq , ϵ) has the
same de�nition with the one in Equation 6.

Recall that INj is the set of vertices from whom vertex vj has
an inbound edge, i.e., the set of interaction followers of user vj .
We additionally de�ne IN li ,ϵ

j , a subset of INj in which each vertex
is within ϵ distance to the location li . When a vertex vj doesn’t

have a location label, our intuition of using |I N
li ,ϵ
i |
|I Ni | as its spatial

in�uence to li is out of consideration its likeliness of falling nearby
li by treating its interaction followers’ locations as its potential
location distribution.

From Equation 8 and 3, we then calculate a Geographical Transi-
tion Matrix MGEO. To give more preferences to Twi�er users who
have shorter distance to the query location center lq , we propose
the following Q-Speci�c Teleportation Vector ΠQ to complement
the Geographical Transition Matrix MGEO.

�eryLocationQ-Speci�c TeleportationVector For a query
location Q , we �rst de�ne a vertex vi ’s spatial relevance to Q as
follows:

rel (lq ,vi ) =



1(
distance(li , lq ) + 1

)κ , vi has geo-coordinates li

|IN lq,ϵ
i |
|INi |

, otherwise
(9)

where distance(li , lq ) calculates the geographical distance be-
tween the query location lq and the location li of vertexvi . And the

de�nition of |I N
lq ,ϵ
i |
|I Ni | is similar to the one de�ned in Equation 8 but

now measures the likeness of an unknown-location vertexvi falling
in Q by treating vi ’s interaction followers’ locations as its potential
location distribution. Now, we normalize the spatial relevance to
get a vertex’s teleportation probability πi = r el (lq,vi )∑

vk ∈V r el (lq,vk ) and

use ΠQ to denote such a teleportation vector.
Combining the Geographical Transition Matrix MGEO and the

query location Q-Speci�c Teleportatoin Vector ΠQ , we de�ne the
Geographical PageRank (GPR) as follows,

�
t+1
GPR = (1 − h) ∗ΠQ + h ∗�tGPR ×MGEO (10)

Like SLVPR, we don’t apply a location �ltering post-process on
GPR, which will miss the generalized in�uential Twi�er users on
the query location Q . �is distinguishes from ELPR, which is not
query location speci�c and thereby runs only once for di�erent Qs,
although a location �lter is needed.
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5 EMPIRICAL EVALUATION
In this section, we �rst describe the experimental se�ings including
the related baselines approaches, the evaluation methods and de-
fault parameters se�ings. Next, we report the results of measuring
spatial in�uence of Twi�er users by di�erent methods regarding 3
cities in USA. A�erwards, we choose the city of Boston, MA to re-
port the comparing results. Furthermore, we study the e�ects of the
interaction’s types, along with the e�ects of applying a geotagging
procedure to estimate locations for unknown-location Twi�er users,
followed by a study on the sensitivity of the distance-decay factor
κ in ELPR and GPR. At last, we discuss the potential applications of
using local in�uential Twi�er users as news seeders regarding to
local news (event) detection.

5.1 Experimental Settings
5.1.1 Baseline Approaches. Because the di�erence in types

of in�uential Twi�er users ELPR and SVLPR are trying to �nd –
the former �nds local in�uential Twi�er users who are not only
having great in�uence on a location but also from there while the
la�er �nd generalized in�uential Twi�er users and doesn’t have a
requirement regarding where they are from, we put them in two
di�erent control groups and list their related baseline approaches
separately as follows. In addition, we also present the results of
the hybrid method GPR to investigate its e�ects of combing the
two types of spatial locality de�ned in Section 4.3 and Section 4.4,
respectively. Baseline approaches to ELPR (Edge Locality Group):
• InD: measures the in�uence by a user’s In-Degree in G, i.e.,

the number of i-followers a Twi�er user has.
• LocInD: measures the in�uence of a user by the number of its

i-followers who are within ϵ distance to this user.
• PR: i.e., PageRank, measures the in�uence by a user’s score by

running PageRank on G.
Baseline approache to SVLPR (Source Vertex Locality Group):
• iFol − lq : measures the in�uence of a user by the number of

its i-followers who are within ϵ distance to lq .
Since InD, LocInD, PR and ELPR are not Q-speci�c, a location �lter
is applied to only keep the Twi�er users within ϵ distance to lq .

5.1.2 Evaluation Methods. Choosing the city of Boston, MA,
we study two aspects of the ranking algorithms: correlation and
e�ectiveness.

1) Correlation. �e correlation is measured by a modi�cation of
Kendall’s τ [36] used in Kwak et al. [1]. �is modi�cation overcomes
the the limit in the original Kendall’s τ that rankings in comparison
must have the same element and allows for comparing only top
k elements in each rankings. �e correlation ranges from 0 to 1,
and a larger value indicates a stronger agreement. In this paper, we
only compare the top 100 in each algorithm’s ranking result.

2) E�ectiveness. It is very di�cult to evaluate the e�ectiveness
of rankings in lack of ground-truth. To approach the e�ectiveness
evaluation, for the methods in the group of “Edge Locality”, we
utilize a set of manually-collected local in�uential Twi�er users
in Boston, MA and compute the average ranking order in each
of the methods; for the methods in the group of “Source Vertex
Locality”, we calculate the number of veri�ed Twitter accounts
in the top 100 in�uentials identi�ed in each of the methods.

Average Ranking Order: We �rst manually collect 20 locally
in�uential Twi�er users accounts from 4 di�erent categories in
Boston metropolitan area and list them as follows:

News Agencies – “@wcvb”, “@bostondotcom”, “@cbsboston”,
“@7news”, “@bostonhearld”;

Sports Team – “@redsox”, “@celtics”, “@nhlbruins”, “@theboston-
pride”, “@bostoncannons”;

Government – “@marty walsh”, “@cityo�oston”, “@bostonpo-
lice”, “@boston�re”, “@masddot”;

University – “@bu˙tweets”, “@harvard”, “@mit”, “@berkleecol-
lege”, “@northeastern”;

As describe in the following, the selection of the representative
local in�uential Twi�er users is very much completed by using an
external authority, i.e., Google Search Engine, and such knowledge
is not known a prior. More importantly, the experimental evaluation
is not only to identify these local in�uential users but instead to
compare the average ranking order of them.

Collecting Twi�er users in �rst 2 categories are completed by
�rst typing the keywords in Google “Boston local news”, and “Boston
Sports team” to �nd top related websites and then locating their
o�cially Twi�er accounts on the webpages. We didn’t choose the
news agency of “Fox 25 Boston” because it changes its Twi�er
account from “@fox25news” to “@boston25” in April 2017. �e
Twi�er accounts in the category of Government are the o�cial
accounts of Boston Mayor, Boston Government, Boston Police De-
partment, Boston Fire Department and Massachuse�s Department
of Transportation, respectively. And the Twi�er accounts in the
category of University are the o�cial accounts of Boston University,
Harvard University, Massachuse�s Institute of Technology, Berklee
College of Music and Northeastern University, respectively.

�e order of Twi�er users in a ranking starts from 0. �e smaller
order a Twi�er user has, the more in�uential he is in that ranking.
�e average ranking order of a set of in�uential Twi�er users in
a ranking is the average of the orders of each in�uential Twi�er
in that ranking. Therefore, a smaller average ranking order
indicates a be�er ranking algorithm.

Number of Veri�ed Accounts: In Twi�er, veri�ed accounts
are the ones that have been examined to be authentic by Twi�er
itself and considered as high-quality Twi�er users. �e status of
veri�cation can be found in the Twi�er user’s pro�le information.
We therefore propose to check the quality of a ranking algorithm
by counting how many veri�ed Twi�er accounts in its top 100
elements. Themore veri�ed accounts a ranking algorithmhas
in its top 100, the higher quality this ranking algorithm is of.

Note that in the evaluation, we also report the performance
of the “Source Vertex Locality” methods regarding the metric of
Average Ranking Order; and vice versa., the performance of the
“Edge Locality” methods regarding the metric of Number of Veri�ed
Accounts is also given.

5.1.3 Default Parameter Se�ing. �e default parameters used
in our methods and related baseline approaches are set as follows.
• lq : the query location centers of “Boston, MA”, “Bristol, CT”

and “Sea�le, WA” are set to 42.3584/-71.0598, 41.6812/-72.9407
and 47.6062/-122.332, respectively, using GeoNames database.

• ϵ : the radius ϵ in the query location Q (also the spatial locality
threshold in De�nition 4.1), is set to 100km, which we think is
large enough for majority of the cities.

• h: the damping factor in PageRank is set to 0.85 for the algo-
rithm PR, ELPR, SVLPR and GPR.

• κ: the distance-decay factor in ELPR and GPR are set to 4 in
default. �e sensitiveness of κ will be reported in Section 5.6.

• PageRank Iterations: 100 for PR, ELPR, SVLPR and GPR.
• Distance Unit: the distance is in the unit of ϵ , i.e., 100km. .
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Table 1: �e top 5 in�uential Twitter users identi�ed for 3 di�erent cities.
Ci

ty Edge Locality Source Vertex Locality Hybrid
InD LocInD PR ELPR iFol − lq SV LPR GPR

Bo
st

on
,M

A Patriots Patriots Patriots Patriots YouTube YouTube Patriots
CrazyFightz OnlyInBOS OITNB BostonGlobe realDonaldTrump realDonaldTrump Youtube
DrJillStein BostonGlobe JohnCena OnlyInBOS Patriots Patriots BostonGlobe
Diaryforcrush RedSox BostonGlobe RedSox GIRLposts BostonGlobe OnlyInBOS
TWICHISTE stoolpresidente RedSox NHLBruins HillaryClinton OnlyInBOS RedSox

Br
ist

ol
,C

T SportsCenter SportsCenter SportsCenter SportsCenter YouTube YouTube Youtube
espn espn espn espn realDonaldTrump realDonaldTrump SportsCenter
ESPNNFL SmackHighCT ESPNNFL SmackHighCT GIRLposts GIRLposts WSHHFANS
ESPNStatsInfo ESPNNFL ivoryella MikeAndMike SportsCenter SportsCenter realDonaldTrump
darrenrovell ESPNStatsInfo darrenrovell ESPNStatsInfo SincerelyTumblr CauseWereGuys Patriots

Se
a�

le
,W

A amazon Seahawks amazon Seahawks YouTube YouTube Seahawks
OriginalFunko Mariners Starbucks Mariners Seahawks Seahawks YouTube
Starbucks KING5Sea�le Seahawks SoundersFC realDonaldTrump realDonaldTrump Mariners
Seahawks sea�letimes BillGates sea�letimes HillaryClinton Mariners sea�letimes
XSTROLOGY SoundersFC Microso� KING5Sea�le GIRLposts DangeRussWilson SoundersFC

5.2 Top 5 In�uential Twitter users identi�ed
regarding 3 di�erent cities in US

In this section, we analyze and compare the top 5 Twi�er users iden-
ti�ed by our methods and the ones by related baseline approaches
with regards to 3 cities “Boston, MA”, “Bristol, CT” and “Sea�le,
WA”. �e results are listed in Table 1, in which the symbol “@”
ahead of a Twi�er username is omi�ed for compactness.

We notice that quite a few of the top 5 in�uential Twi�er users
listed in Table 1 are related to commercial accounts. �is doesn’t
come at a surprise in the sense that such users usually have more
interactions from other Twi�er users due to their population and
thus would rank at top positions. More examples of in�uential
Twi�er users from various walks of life (news media, reporters,
sports team, sports player, politicians, musicians etc.) with respect
to Boston can be found in the supplement table2.

But by listing only the top 5 in�uential Twi�er users, Table 1 is
able to show that in general, taking into geographical proximity
into consideration, our proposed methods yield be�er results than
the baseline approaches. Such di�erence becomes more signi�cant
when the ranking orders (i.e., as the one listed in the table) are
taken into account. We were surprised to observe such di�erences
even for only the top 5 users. In the following, we describe the
details of such di�erence observed in di�erent methods.

InD vs. LocInD: In general, InD might return noise Twi�er
users. For example, we do not consider the Twi�er users “@Diary-
forcrush” and “@TWICHISTE” for the city “Boston, MA” and the
Twi�er user “@XSTROLOGY” for the city of “Sea�le, WA” iden-
ti�ed by InD are of great in�uence on their cities because they
have very few people from their cities to interact with them. Take
“@TWICHISTE” for example, out of the 38, 187 i-followers he has,
only 10 are within 100km to the center of Boston, MA. In contrast,
the 5-th local in�uential Twi�er user “@stoolpresidente” identi�ed
by LocInD only has 11, 754 i-followers, but 2, 356 of them are within
100km to the center of Boston, MA. Although “@Diaryforcrush”
and “@XSTROLOGY” get the locations from their geotagged tweets,
disuse of such type of geographical information is not going to to-
tally eliminating noisy users because of the existence of users like
“@TWICHISTE” who indeed has a pro�le-location as “Boston, MA”,
and might also miss some important Twi�er users like “@Patriots”
and “@Mariners”, neither of them giving valid pro�le-locations.
2 h�p://www.cs.umd.edu/∼hyw/twiinf-supplement-table.pdf

In contrast, by �nding Twi�er users who have most interaction
followers from the local area, LocInD gives high quality results.
For example, most of the Twi�er accounts identi�ed by LocInD are
o�cially accounts of either sports teams, or local news agencies or
reporters in each of the three cities, with an exception of “@Smack-
HighCT” in the city of “Bristol, CT”, which is a branch account of a
social platform SmackHigh. �is account usually posts hilarious
contents on high school lifestyle and receives lots of “retweets”
from almost one thousand of people in “Bristol, CT”.

PR vs. ELPR: Both PR and ELPR improve over their indegree
counterparts InD and LocInD by not just considering how many
i-followers (or local i-followers) a user has but also the in�uence
of these i-followers. For example, in comparison with InD, the
Twi�er users in PR are all o�cial and veri�ed accounts. Similarly,
“@NHLBruines” ranked in the top-5 in ELPR but not in LocInD
because all the top-4 users in ELPR (or LocInD) are i-followers of
“@NHLBruines” while only 2 of them are i-followers of “@stool-
presidente” even though “@NHLBruines’ has less i-followers from
Boston than “@stoolpresidente”.

Taking the spatial locality of edges into consideration, ELPR gen-
erally outputs a di�erent set of top 5 in�uentials in comparison
with PR across the 3 cities because it focuses more on the interac-
tions happened geographically within a city-level. Take the city of
Boston for example, the top 5 in�uentials in ELPR has an average
of 4204.2 people from Boston actively interacting with them, while
the ones in in PR has only 2900.2. �e numbers for the cities of
Bristol and Sea�le are 1286.8, 1423.8 and 1396.0 and 2371.6, respec-
tively. �is means, ELPR more e�ectively �nds Twi�er users that
are locally in�uential.

iFol−lq vs. SVLPR: Comparing to previous algorithms, iFol−lq
and SVLPR �nd Twi�er users who are in�uential on a place but not
necessarily from there. For example, either the pro�le-locations of
“@YouTube”, “@realDonaldTrump” or “@HillaryClinton” is spec�-
�ed as the 3 cities. Another Twi�er user “@GIRLposts” doesn’t has
a pro�le-location. But this doesn’t mean they don’t have in�uence
or negligible in�uence on the 3 cities. For example, for each of the
3 cities, “@YouTube” has the most number of i-followers from that
city than any other accounts, even the ones who are at the city.

In comparison with iFol − lq , the portion of the Twi�er users
who are from the query city identi�ed by SVLPR slightly increases
due to its additional consideration of link structures.

http://www.cs.umd.edu/~hyw/twiinf-supplement-table.pdf


In Proceedings of the 1st ACM SIGSPATIAL Workshop on Analytics for Local Events and News (LENS 2017), Redondo Beach, CA, November 2017.
Article 2.

Furthermore, in these two methods, several Twi�er users are
found in�uential across all the three cities such as “@YouTube”
and “@realDonaldTrump”, indicating that the in�uence of these
Twi�er users are not limited on a local place and goes beyond their
pro�le-locations. �is corresponds to the distance distributions of
such Twi�er users to their i-followers as showed in Figure 3.

GPR: Taking both the spatial locality of edges and source ver-
tices into consideration, GPR outputs a combination of the top
in�uentials in ELPR and in SVLPR. �e most interesting �nding is
that “@Patriots”, the o�cial Twi�er account of a sport team based
in Boston, ranked 5th in GPR regarding its in�uence on the city of
Bristol, CT. �is is because on one side, “@Patriots” has thousands
of people from Bristol, CT to interact with it and on the other side,
Boston,MA is at a moderate distance of 170km from Bristol, CT.
5.3 Correlation and E�ectiveness

5.3.1 Correlation. �e correlations between the algorithms
are listed in Table 2, in which the highest correlation in each row
is in bold font. It is clearly that indegree methods are more related
to their PageRank counterparts, for example, InD vs. PR, LocInD vs.
ELPR and iFol − lq vs. SVLPR. In contrast, our proposed methods
have lower correlation with the existing metrics InD and PR, indi-
cating they generate di�erent ranking results to them. �is implies
identifying spatial in�uential Twi�er users is not a simply proce-
dure of �rst determining general in�uence in interaction graph G
by InD and PR and then applying a location �lter post-processing.

In addition, the methods InD, LocInD, PR and ELPR have lower
correlations to the methods iFol − lq and SVLPR because the former
group of methods require that a Twi�er user who is in�uential on
a location Q is also from that location, while the la�er group of
methods don’t have such a requirement.

In default, our hybrid method GPR is slightly more correlated
with SVLPR than ELPR, indicating that it emphasizes more on the
spatial locality of source vertices than the spatial locality of edges
and might have more Twi�er users who are not from the query
location Q in its ranking results as showed in Table 1.

Table 2: Correlation Matrix between di�erent algorithms.
Edge Locality Source Vertex Locality Hybrid

Corr. InD LocInD PR ELPR iFol − lq SV LPR GPR

InD 1.0 0.35 0.60 0.35 0.17 0.17 0.28
LocInD 0.35 1.0 0.36 0.60 0.30 0.38 0.30

PR 0.60 0.36 1.0 0.40 0.20 0.18 0.29
ELPR 0.35 0.60 0.40 1.0 0.30 0.19 0.50

iFol − lq 0.17 0.30 0.20 0.30 1.0 0.60 0.53
SVLPR 0.17 0.38 0.18 0.19 0.60 1.0 0.56

GPR 0.28 0.30 0.29 0.50 0.53 0.56 1.0

(a) (b)
Figure 5: (a) –�e average ranking orders of 4 di�erent categories of
the local in�uentials in Boston, MA. (b) – �e correlations between
di�erent types of interactions.

5.3.2 E�ectiveness. AverageRankingOrder: Figure 5a shows
the average ranking orders of the 4 categories of manually-collected
locall in�uential Twi�er users in Boston by di�erent algorithms.
Clearly, our method ELPR outperforms its baseline approaches InD,
LocInD and PR. In addition, LocInD outperforms both InD and PR,
justifying the bene�ts brought by considering the spatial locality
of edges in graph G in determining the spatial in�uence of Twi�er
users. Moreover, our another method SVLPR that is aware of the
spatial locality of source vertices to query location lq , also achieves
be�er performance than its baseline approach iFol − lq by addi-
tionally taking into account of link structures. At last, our hybrid
method GPR considering both of the two types of spatial locality in
ELPR and SVLPR has a moderate performance because it introduces
popular users like “@YouTube” who are not in Boston, MA.

Number of Veri�ed Accounts: Table 3 list how many veri�ed
accounts are there in the top 100 Twi�er users identi�ed by di�erent
methods. �e results show that in the group of “Source Vertex
Locality”, our proposed method SVLPR is slightly be�er than its
baseline approach iFol − lq because its additional awareness of
link structures; and in the group of “Edge Locality”, our proposed
method ELPR clearly outperforms other related methods because
in reality, most of the local in�uential accounts are o�cial accounts
of entities like organizations etc and such accounts are usually
get veri�ed by Twi�er. Our hybrid method, GPR, again achieves
a moderate performance. �is is because, comparing the ELPR, it
also retrieves Twi�er users that are pouplar among people but not
necessarily get veri�ed like “@WSHHFANS” because such Twi�er
users may not represent any organization entities in real world.

Table 3: Number of Veri�ed Twitter users in the top-100
Edge Locality Source Vertex Locality Hybrid

InD LocInD PR ELPR iFol − lq SV LPR GPR

46 76 63 81 55 59 60

5.4 Di�erent Types of Interactions
As showed in Figure 1b, the 3 types of interactions retweet, reply and
mention contribute di�erently in building the edges in the interac-
tion graph G. To investigate how much di�erence in the in�uential
Twi�er users identi�ed by di�erent types of interactions, we run
the algorithms on the graphs constructed from only using retweet,
reply and mention, respectively and calculate the correlations for
retweet vs. reply, retweet vs. mention and reply vs. mention. �e re-
sults are plo�ed in Figure 5b, which shows that retweet vs. mention
generally has stronger correlations than retweet vs. mention and
reply vs. mention. �is corresponds to Figure 1b where retweet and
mention have more edges in common than the other two.

5.5 E�ects of Geotagging Twitter users
In this section, we study the e�ects of applying a geotagging proce-
dure to estimate locations for unknown-location Twi�er users. We
use relative changes (+/-) in Average Ranking Order and relative
changes (+/-) in the Number of Veri�ed Accounts to evaluate an
algorithm’s changes before and a�er geotgagging. �e relative
changes of Average Ranking Order is calculated with respect to all
the 20 manually-collected Twi�er users in Boston in Section 5.1.2.

We estimate location for unknown-location Twi�er users by uti-
lizing a Twi�er user geotagging procedure [33], which is reported
to have the state-of-the-art city-level accuracy. In essence, [33] as-
signs a location estimation to a Twi�er user by using his reciprocal
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friends’ locations as a set of points in Equation 1 to calculate a me-
dian point. A�er the geotagging, we have 74, 846, 116 (50.6%) Twit-
ter users assigned with geographical locations, and 1, 084, 772, 048
(72.1%) edges whose two vertices both have geographical locations.

We then again run the di�erent algorithms using the new set
of location labels of vertices for G, and list their results in Table 4.
For the changes in Average Ranking Order, in the control group of
“Edge Locality”, methods InD, LocInD and PR get more a�ected by
the geotagging procedure while ELPR receives less e�ects with the
Average Ranking Order by only increasing 5.4. �e method iFol−lq
is much more susceptible of geotagging than SVLPR because iFol−lq
only considers the the location of source vertices and would exhibit
larger di�erence when more Twi�er users are geotagged as in Q .

For the changes in the Number of Veri�ed Accounts, all methods
yield slight changes before and a�er geotagging, indicating geotag-
ging unknown-location Twi�er users has less e�ect on the veri�ed
o�cial accounts. �is is because in most cases such veri�ed o�cial
accounts are likely to provide a pro�le-location, which lets us have
their geographical location at hand before geotagging.

Table 4: E�ects of Geotagging on Di�erent algorithm
Edge Locality SV Locality Hybrid

InD LocInD PR ELPR iFol − lq SV LPR GPR

Avg. Order 477.8 97.6 232.8 56.7 764.9 301.9 107.7
Avg. Order +/- +38.1 +13.35 +19.15 +5.4 +72.4 +10.75 -13.25
Veri. Accts. 48 75 62 80 52 56 58
Veri. Accts. +/- +2 +1 +1 -1 -3 -3 -2

5.6 Sensitivity of Distance-Decay Parameter κ
To investigate the sensitivity of κ in ELPR, we compare its correla-
tions to InD under di�erent values of κ. Similarly, for the sensitivity
of κ in GPR, we compare its correlation to ELPR and SVLPR respec-
tively. �e results are listed in Table 5.

Table 5 shows that until κ = 23, ELPR is becoming more similar
to InD as the value of κ continues to increase to generate a more
signi�cant e�ect of distance-decay in MEL . �is indicates that
a larger κ makes ELPR more prefer Twi�er users having shorter
distance to the query location center lq . �e correlation drops
at κ = 23 because LocInD relies on a location �lter and doesn’t
geographically distinguish the Twi�er users within ϵ = 100km
to the query location lq , while ELPR continues preferring to rank
higher for those who have even shorter distance to lq .

Table 5 also shows thatGPR has more similarities to SVLPR across
di�erent κ than ELPR. In the meantime, as κ increases, GPR gives
more weights on edges having shorter distances and thereby its
correlation with ELPR increases. Such trade-o� stabilizes a�er 22.

Table 5: Sensitivity of κ in RELPR and RGPR regarding their corre-
lation with RLocInD , RELPR and RSV LPR , respectively.

κ 2−3 2−2 2−1 20 21 22 23

ELPR vs. LocInD 0.01 0.01 0.05 0.33 0.54 0.60 0.57
GPR vs. ELPR 0.02 0.02 0.02 0.11 0.39 0.50 0.50
GPR vs. SVLPR 0.46 0.46 0.47 0.52 0.57 0.56 0.56

5.7 Application to News Detection
In this section, we explore the potential of local in�uential Twi�er
users in acting as news sources (e.g., news seeders [15, 37]) by
examining how many of their tweets are about local news (events).

Using the dataset in Section 3, we collected 1, 306 tweets posted
by the top 70 Boston in�uential Twi�er users identi�ed by the

(a) (b)
Figure 6: (a) – Ratio of “Local”, “Global” and “None” tweets by top
70 Boston in�uential users in method ELPR. (b) – Number of total
tweets vs. number of “Local” tweets for di�erent categories of users.ELPR method (which is given in the supplement table3) between
Dec 01, 2016 and Dec 07, 2017, and manually categorize these tweets
into “Local”, “Global” and “None”, indicating whether a tweet is
about Boston’s local news (events), or generally global news or
neither of both. �e mean and median number of tweets in each
user are 18 and 6, respectively. �e distribution is presented in
Figure 6a, showing that 75% of the tweets are about news, and more
importantly, 67.1% are considered local. �is supports the viability
of using local in�uential users as potential local news seeders.

However, not every local user tweets about the local location.
For example, although “@HarvardBiz” is considered in�uential in
Boston, his tweets are mostly reviews on business and technology
etc, and are rarely about local news or events. �us, to investigate
which category of Twi�er users (the category information of users
is provided in supplement table4 in tiny font) are contributing
“Local” tweets, for each category of users, we plot the number
of their total tweets and the number of their “Local” tweets in
Figure 6b, which shows that the users in the categories of Reporters,
News and Sports are contributing most of the “Local” tweets and
meanwhile maintain a high fraction of “Local” tweets in their own
tweets. In addition, most of the tweets posted by users in University,
Government and Education are considered “Local”, though they
have fewer tweets. �erefore, these users might be considered as
news seeders, and additional procedures such as classi�cation or
topic-sensitive ranking [22] might be exploited in the future to pick
out such types of users to improve the quality of news seeders.
6 CONCLUSIONS
�is paper focuses on �nding spatial in�uential Twi�er users on a
query locationQ based on the interactions sent out by the local peo-
ple fromQ . �e experiments show that by making use of the spatial
local edges, our proposed method Edge-Locality PageRank (ELPR)
outperforms other related algorithms in �nding local in�uential
Twi�er users. As local in�uential Twi�er users don’t include the
ones who are from other places but still have great in�uence on Q ,
we furthermore present a method Source-Vertex-Locality PageRank
(SVLPR) to �nd generalized in�uential Twi�er users on the query
location Q without requiring them to be from location Q . A hybrid
method Geographical PageRank (GPR) taking into account both
edge locality and source vertex locality to determine in�uential
Twi�er users is also presented. In addition, we also investigate the
in�uence determined by using di�erent types of interactions and
also the e�ects of applying a geotaggging procedure.

�ere are still many aspects of interactions to explore, such as
the frequency and temporal properties [38]. �e reciprocity of
interactions is also another interesting factor. Also, it is an interest-
ing topic to investigate the typical pa�erns how user’s in�uence
evolves across regions.In addition, SVLPR or GPR can be modi�ed
3 h�p://www.cs.umd.edu/∼hyw/twiinf-supplement-table.pdf
4 h�p://www.cs.umd.edu/∼hyw/twiinf-supplement-table.pdf
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to �nd local in�uential Twi�er users by appending a location �lter
and therefore to compare with InD and ELPR. At last, as discussed
in Section 5.7, topic-sensitive technologies like LDA might be ex-
plored further to identify local in�uential Twi�er users that are in
the topic of local news (events).
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