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ABSTRACT
Twitter captures invaluable information about real-world news, span-
ning a wide scale from large national/international stories like a
presidential election to small local stories such as a local farmers
market. Detecting and extracting small news for a local place is a
challenging problem and the focus of this work. The main challenge
lies in identifying these small stories that correspond to a local area
of interest, which are typically harder to detect compared to national
stories in the sense that there may be just a handful of tweets about a
local story. A system, called Firefly, is proposed that overcomes the
data sparsity and captures thousands of local stories per day from
a metropolitan area (e.g., Boston). The key idea lies in combining
the enhancement of a local live tweet stream in Twitter, the iden-
tification of “locality-aware” keywords, and using these keywords
to cluster tweets. Experiments show that the proposed system has
a significantly higher recall over a set of representative local news
agencies, and at the same time, outperforms the baseline approach
TwitterStand. More importantly, the results also demonstrate that our
system, by utilizing the enhanced local live tweet stream, discovers
much more local news than the methods working only on geotagged
tweets, i.e., those with embedded GPS coordinate values.
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1 INTRODUCTION
The popularity of Twitter arises from its capability of letting users
promptly and conveniently contribute tweets on a wide variety of
subjects such as news, stories, ideas, and opinions. As a result, with
people discussing what is happening outside in the real world by
posting tweets, an invaluable amount of information on the real
world news is hidden in Twitter. Therefore, many researchers have
devoted remarkable efforts to discover this knowledge. For example,
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TwitterStand [1–5] is a news tweet processing system that aggregates
tweets from a sparsely sampled tweet source to detect news.

However, this approach is too brute-force for smaller-scale local
news where every single tweet matters because such types of news
may only span a very limited number of tweets. Figure 1 shows
a news story about the “Westborough Education Foundation” that
happened at around 6:30 PM on Oct 24, 2016 at Westborough, MA.
We only found 6 tweets (8 if retweets are included) about this news by
the time we captured the screenshot, and none of them is geotagged,
i.e., containing a pair of geographical lat/lon coordinate values. No
access to full tweets in Twitter makes data sparsity pervasive in
Twitter’s publicly accessible tweets, and further compromises the
possibility of collecting all 6 tweets about this news. The challenge
in capturing such news lies in being able to find these tweets, cluster
them into a news story, and subsequently displaying it on a map.

Figure 1: A local news in Westborough, MA on Oct 24th, 2016
In this paper, we are interested in detecting news (a set of tweets)

that are being discussed by local people from a given place (e.g.,
Boston city), and meanwhile emphasizing on finding local news.
The term “local news” refers to a news event that happens at or is
of great interest to the given place. For instance, the news story
in Figure 1 may only be of interest to the local community and
not much further beyond. Local news can sometimes escalate to
be of national/international interest such as when it is dramatic
(e.g., Boston Marathon bombing in May 2013). We want to capture
both these types. Other national and international stories that are
discussed by local people (e.g., a presidential election) are also
in by providing a local perspective to larger news stories. Our
focus is primarily the former two classes of stories, and later in
our experiments we evaluate how well we do with and without
considering these national and international news stories.

Identifying the news stories that are of great interest to a place
requires a combination of approaches. It requires first finding users
that reside and tweet about our place of interest. To find such users,
we implement an efficient online social network-based Twitter user
geotagging approach, which is to approximate the location of a
Twitter user by examining the publicly-known locations of his social
friends (neighbors). The publicly-known location, termed the profile-
location, is provided in a Twitter user’s profile, but is only available
for around 20% (in our case, 32%) of Twitter users [6]. This makes the
procedure of geotagging Twitter users indispensable in our system.
With the help of this scheme and its efficiency, our system, Firefly,
keeps trying to find as many as possible active Twitter users from a
given area and putting their posting statuses (tweets) to a local live
tweet stream to largely increase its number of local tweets.
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Next, there is a larger problem of clustering these local tweets so
that news can be captured. For example, some features like bursty
words [7, 8] or TF-IDF [1, 9] that are commonly used to group
tweets together might not work well with small local news because
such news span over a very limited number of tweets, and thus words
in them hardly bring about burstiness or yield distinguishing TF-IDF
scores. Another category of methods that only exploit geotagged
tweets such as [10, 11] would simply miss the news example in
Figure 1 because few of its tweets are geotagged.

In this paper, we utilize an idea of “locality-aware keywords”
to capture the changes in word-usage patterns caused by a news
of limited local interest from the perspective of individual people.
Essentially, the locality-aware keywords in each tweet are a set of
words that are used only recently by this tweet’s publisher and also at
the same time only appear in a limited number of other Twitter users’
tweets. Such locality-aware keywords correspond to the aspects of
a local news being “novel” as its nature of being new, as well as
having a small spread span among Twitter users. Take the one in
Figure 1 for example, “Westborough”, “Education”, “Foundation”,
“Trivia” and “Bee” are considered as locality-aware because they are
new words used by this set of people.

To capture news from the enhanced local live tweet stream, we
keep identifying and updating locality-aware keywords from tweets
that are in the latest 6-hour sliding time window (The choice of
6-hour window is in recognition that television media usually has
four times of locally-oriented news broadcast in one day and thus
is an appropriate lifetime of local news), and group tweets together
that share at least a number of locality-aware keywords to form news
clusters. Finally, in the UI, a Twitter timeline is created to post the
news we detect. We also estimate the geographic focus of detected
news (tweets clusters) to display them on maps.

The main contribution of this paper is summarized as follows:
• We implement an efficient online Twitter user geotagging pro-

cedure on Apache Spark, which takes less than 3 seconds to
geotag Twitter users appearing in 1000 tweets. Such efficiency is
essential to maintaining the liveness of the enhanced local tweet
stream and furthermore the timeliness in news detection.

• Our enhanced local live tweet stream easily covers up a typical
metropolitan area. For example, in Boston, we are tracking 176K
Twitter users, which is considered sufficient since Boston has a
population of 646K1 and that one-fifth of the USA population
are active Twitter users2.

• The design of locality-aware keywords emphasizes the word us-
age characteristics of small, local news from the view of Twitter
users who are discussing them (e.g., only a small number of
people talk about them and use words they didn’t use before).

• We evaluate our system against a set of representative local
news agencies as well as a few baseline approaches. The results
show we achieve the highest news coverage and at the same
time, outperform the baseline approaches. More importantly, our
method detects hundreds of more local news in comparison with
the methods that solely utilize the existing Twitter’s publicly
available tweet stream.

The rest of this paper is organized as follows. Section 2 summa-
rizes the related work. Section 3 details the design and implementa-
tion of our system. Section 4 describes the experimental evaluation
of our methods. Section 5 contains concluding remarks as well as
directions for future work.

1http://www.census.gov/popest/about/terms.html
2https://www.statista.com/statistics/274564/monthly-active-twitter-users-in-the-
united-states/

2 RELATED WORK
There is a large body of related work that deals with extracting useful
patterns (e.g., news, events) from social media, Twitter in particular.
Two recent surveys Atefeh and Khreich [12], and Abdelhaq [13]
provide an excellent description of different techniques. We review
some of the related work that deals specifically with the problem of
detecting local events. There are two broad categories of methods
for taking location into consideration when performing detection
tasks, namely: location-anchored and event-anchored. The essential
difference is whether event or location is the primary clustering key.
For example, event-anchored methods first detect an event and then
determine its location, while location-anchored methods examine if
an event happens at a certain location.
Location-Anchored Methods: Among the location-anchored meth-
ods are two popular approaches: model dimension extension and
geographical space tessellation. Model dimension extension treats
geographical information as an additional variable to the existing
models. For example, in calculating similarity between documents
while performing a clustering algorithm, geographical distance be-
tween tweets can be incorporated in the clustering algorithm [14] to
form potential events [11, 15–17]. Hong et al. [18], Zhou and Chen
[19] and Wei et al. [20] treat geographical regions as latent variables
in their generative topic model.

Geographical space tessellation fills the map with small, non-
overlapping cells. The motivation here is that local news or events,
which usually have an limited geographical area impact, should fall
in the same or nearby cell(s). Grid tessellation is the simplest yet
most commonly used way of subdividing the geographical space into
small equal-sized cells [21–25]. In reality however, the geographical
distribution of social media documents is not homogeneous, fre-
quently requiring the consideration of adjacent cells in the analysis.
To alleviate this issue, a few strategies are proposed including re-
sizing the cells, connecting nearby cells if they share similar features,
or utilizing an adaptive hierarchical tessellation structure [26]. For
example, Krumm and Horvitz [10] et al. discretize the space with
a hierarchical triangular mesh. Magdy et al. [27, 28] describe a
system called Mercury for querying top-k spatio-temporal queries
on microblogs in real-time using a pyramid structure.

After tessellation, the social media documents or features are
aggregated into small cells according to their inferred geographical
information. Next, an intuitive way to detect the existence of any
anomaly at a specific location is to count aggregated documents or
other feature entities like keywords to see if their number exceeds a
certain threshold. Counting, however, is easily plagued by distribu-
tion heterogeneity both temporally and spatially. Therefore, various
anomaly detection techniques have been explored. For example, Xu
et al. [29] employ a probabilistic model that recovers spatio-temporal
signals using a Poisson point process estimation to deal with sample
bias and data sparsity problems. Others exploit the usages of a dis-
crepancy paradigm which compare between previous data (to build
up a baseline) and the newly observed data [10, 22, 30, 31].

Nevertheless, such methods have heavy dependence on the avail-
ability of social media documents containing geographical informa-
tion. Such geographical information, however, is very rare in Twitter,
with geotagged tweets accounting for less than 1% [24, 32, 33]. Some
works have proposed to estimate a geographical location for a non-
geotagged tweet. The intuitive approach towards this problem is to
geotag nominal locations (place names) embedded in the content
of a microblog to get its possible longitude/latitude coordinates by
aligning against existing gazetteer databases or services, e.g. GeoN-
ames [13, 24, 34, 35]. While another set of works try to assign a
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geographical location to a non-geotagged tweet by its poster’s lo-
cation [32, 36, 37] , which might be initially estimated through a
social network based procedure [6, 38–41] or content-based meth-
ods [42–51].

Event-anchored Methods: This class of methods, after iden-
tifying events, leverages an additional step of spatial analysis to
determine the locations where they are happening. For example,
TwitterStand [1], after clustering tweets to identify events, estimates
each news cluster’s geographical focus by making use of both geo-
graphical information in the content of the tweet and by the source
location of the users. This geographic focus is computed as a whole
by ranking the geographic locations in the cluster. One basic mea-
sure of relevance used in their ranking is the frequency of occurrence
of each geographic location in the cluster. The reasoning is that
if a geographic location is important to the event at hand, the it
would be mentioned in many tweets and linked articles belonging
to the cluster. In addition, they also give a higher relevance score to
groups of locations that are mutually proximate by considering that
geographic locations that are nearby to each other lend evidence to
each other. To infer and track the location of detected earthquake
or typhoon events, Sakaki et al. [52] resort to Kalman filtering and
particle filtering by treating each Twitter user as a sensor.

Even though all event related documents are exploited (not just
the ones with location information) in event-anchored methods, their
data sources still suffer from sparsity to detect small, local events.
For example, TwitterStand’s data source, which then claimed to
sample around 10% of all tweets but now only 1%, is still too few for
small-scale events that might only span 3 ∼ 5 tweets in total.

Therefore, realizing it is the local data sparsity that undermines
the opportunities for researchers to discover small-scale events in
Twitter, our system proposes to enhance the public local live tweet
stream for an area by i) identifying as many Twitter users as possible
that are from that area and then ii) tracking the tweets that they
publish in real-time. Weng and Lee [53] similarly track a number
of users in Singapore to detect news but only at a small scale, i.e.,
1K Twitter users. In contrast, we identify and track 176K users
in Boston. Our work is also different from Albakour et al. [54],
which directly chooses several areas in London to collect tweet data,
and tries to detect events for each of these areas separately [54].
Their method doesn’t solve the problem of local data sparsity by
using Twitter’s Streaming API, i.e., statuses/filter with parameter
“locations”, in our experiment, is still very sparse and thus makes a
very limited contribution to local news detection.

3 SYSTEM
In this section, we present the design and implementation of our
event detection system, Firefly, as illustrated in Figure 2. Including
the User Interface, Firefly consists of 5 major modules, which are
described below sequentially.
3.1 Online Twitter User Geotagging via Spark
The goal of this module is to keep estimating the geographical
locations for more Twitter users, and thus to maintain a large pool of
geotagged Twitter users. In so doing, for a given geographical area
like the Boston Metropolitan area, our system can easily retrieve a
large body of Twitter users in it. Tracking tweets posted by these
users significantly enhances our local live tweet stream.

The motivation behind geotagging Twitter users is that the profile-
location information for specifying where a Twitter user comes from
is only sparsely available in public data. Therefore, inspired by
studies [55, 56] that online social friendships are often formed over
short geographic distances, a social network-based Twitter user geo-
tagging method is proposed in [6], which approximates a user’s

location by examining the publicly-known locations of his online
friends (neighbors). This method is reported to have state-of-the-
art city-level accuracy when geotagging a large body of Twitter
users and, more importantly, doesn’t require sophisticated natural
language processing in comparison with tweets content-based meth-
ods [42–46], making it more suitable for online geotagging.

To be specific, the social network-based geotagging problem is
addressed from the point of view of solving an optimization problem,
i.e., inferring user locations is solved by finding

argmax
f

д(f ) s.t. fi = li , ∀i ∈ L (1)

where f = (f1, f2, f3... fn ) represents location estimation for each
user 1...n, and L denotes the set of users who opt to make their
locations li public. The total variation is formulated as ‖∇f ‖ =∑
i j wi j ∗ d(fi , fj ), where d(·, ·) measures geographical distance.and

wi j weighs the friendship between user i to user j, which essentially
reflects how many times user i reciprocally interacts with j such
as retweeting, mentioning etc. Note that, an edge between i and j
in the graph is bidirectional and only formed if both i and j have
actively initiated at least one interaction with each other, and we use
reciprocal neighbors or friends to term such edges.

The above minimization problem could be solved by calculat-
ing, for each user, the L1-multivariate median from his reciprocal
neighbors’ locations. The value of L1-multivariate median [57],
which acts as a user’s estimated (geotagged) location and is de-
noted by lL1mm , essentially finds a point that minimizes the sum
of its distances to the users’ reciprocal neighbors. For a user j, its
L1-multivariate median lL1mm

j is mathematically defined as,

lL1mm
j = argmin

l

∑
li ∈Lj

wi, j ∗ d(l , li ) (2)

where, Lj contains the locations of j’s reciprocal neighbors. In the
implementation, Equation 2 can be solved through a coordinate
descent procedure. Upon completing the calculation of location
estimate, for a user j, how far lL1mm

j deviates from his reciprocal

neighbors determines whether he accepts lL1mm
j . This deviation,

called Geographical Dispersion, is defined as,
GD(Lj ) =mediani wi, j ∗ d(l

L1mm
j , li ) s.t. li ∈ Lj (3)

For example, user j will accept his estimated location if GD(Lj ) is
less than a given threshold, γ . In our experiments, we setγ = 100 km,
which is suggested as a suitable trade-off between geotagging cover-
age and accuracy for the city-level scenarios [6].

One drawback of [6] lies in indiscriminately utilizing all available
location information from reciprocal friends to calculate a candidate
location estimation in Equation 2, while some of them might be
noisy points as discussed in [39]. For example, as illustrated in
Figure 3 (where each circle represents a reciprocal friend and the
number in each circle denotes the weight to that friend), a user from
Boston has 9 reciprocal friends with available location information,
4 of them (red circles) are relatively far away from Boston and can
be seen as noisy points or outliers because incorporating them into
Equation 2 is likely to yield a location estimation that does not
satisfy the geographical dispersion constraints γ , and thereby fails
to geotag this Twitter user. Inspired by the observation in [39] that
the location of a friend is usually more reliable if a user has multiple
friends from that or nearby location, we propose a single-linkage-
clustering based outlier removal procedure to get rid of potential
noisy points. As presented in Algorithm 1, this procedure works as
follows. Take the locations of a user j’s reciprocal neighbors, Lj ,
as the input, we first perform the Single Linkage Clustering with
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Figure 3: An illustration of outliers in the locations of friends.
geographical dispersion γ being the distance threshold. During the
clustering, two location points in Lj that are within γ are grouped
into the same cluster; and two clusters are merged if a pair of points
from each of them are within γ . Next, we select the cluster with
maximum sum of weights and use it as new Lj in Equation 2 to
calculate the location estimation.

Algorithm 1: Outlier Removal
Input: The locations of user j’s reciprocal neighbors –Lj
Output: A list of locations after removing outliers – L′j

1: A set of clusters C = {C1,C2,C3...} ←− Single Linkage
Clustering on Lj with distance threshold γ ;

2: L′j = argmax
Ck ∈C

∑
li ∈Ck

wi, j

Another improvement over [6] is a minimum size constraint for
L′j because too few location information might be considered as

weak evidence [40]. In other words, we refuse to calculate lL1mm
j

for user j if |L′j | is less than a given threshold λ. The experimental
results show that such a constraint for λ might effectively improve
the accuracy of geotagging in the sparse social networks where users
have only a few reciprocal friends, especially the ones with locations.

Publicly-Known Locations of Twitter Users In Twitter, there
are two sources to know a user’s location: profile-location or the
GPS coordinates embedded in his tweets. The profile-location is
often in the form of place names like “College Park, MD” and
can be aligned with databases like GeoNames to decode its geo-
graphical latitude/longitude coordinates. In order to assign a unique
pair of latitude/longitude coordinates, for a user having multiple
GPS points available in his tweets, we compute the L1-multivariate
median for these points and similarly check the geographical dis-
persion to decide whether to use this median or not. At last, for
a Twitter user who has a valid profile-location as well as a valid
L1-multivariate median calculated from his tweets, we opt to use
his profile-location if this location is within γ of the median; other-
wise, his two sources of location information seem to be conflicting
with each other and thus wouldn’t be utilized. Algorithm 2 out-
lines our online Twitter user geotagging procedure, which utilizes
a streaming computing platform Spark Stream by maintaining 4
RDD variables [58–61]. Resilient Distributed Dataset (RDD), is a
distributed memory abstraction which gives Spark the ability to per-
form fast in-memory map-reduce operations. IndexedRDD extends

key-value RDD by enforcing key uniqueness and pre-indexing the
entries for efficient look-up operations. In practice, RDD could be
seen as a table in the database. The IndexedRDD variable for GeoN-
ames, location→latlon, is to align the profile-location, e.g., “Boston,
MA”, to decode its latitude/longitude coordinates, e.g., [42.3584,
-71.0598]. The RDD variable, location→user keeps a reversed index
from a user to his profile-location to perform join operation in Spark.
The RDD variable, user→twGPS, stores the GPS coordinates em-
bedded in a user’s tweets. The RDD variable, user→neighb., stores
the neighbor-ships. Finally, the IndexedRDD variable, user→latlon,
caches the geotagged user to retrieve users in an area.

To quickly start-up our online geotagging procedure, i.e., fill
in the RDD variables, we boost our algorithm with one year of
tweets data collected from the Twitter Sample API statuses/sample.
We discretize this live tweet stream into 23-second intervals using
DStream in Spark to perform the online Twitter user geotag. For
an incoming user, we first look-up his geographical coordinates in
user→latlon; if this fails, then we try to align his profile-location (if
provided) to GeoNames; otherwise, we retrieve a list of his reciprocal
neighbors’ locations to estimate his location.

Algorithm 2: Online Twitter User Geotagging via Spark
Input: Twitter’s Public Live Tweet Stream – G; 1 year of

tweets collected from Twitter Sample API – T
Output: Geotagged Twitter Users

1: Boosting Phase:
a. Load location→latlon from GeoNames; and extract

location→user, user→neighb., and user→twGPS in T;
b. user→latlon←− location→user join location→latlon;
c. Update user→latlon with users whose lat/lon can be

calculated upon user→twGPS using Equation 2 and 3.
2: Online Geotagging:
a. Init a Spark DStream D in G w/ a 23s time window;
b. Update user→neighb. and user→twGPS with D;
c. for each user u in D who is not in user→latlon and fails to

align profile-location in location→latlon and fails to calculate
a lat/lon in user→twGPS then do

i). get u’s reciprocal neighbors’ coordinates Lu by
joining u, user→neighb. and user→latlon;

ii). L′u ← Outlier-Removal(Lu )
iii). calculate lL1mm

u by L′u if |L′u | ≥ λ;
iv). u accepts lL1mm

u if GD(Lu ) ≤ γ ;
end for

3.2 Enhancing Local Live Tweet Stream
Given a geographical area, this module tries to collect as many
tweets as possible from three sources: two of Twitter’s statuses/filter
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Streaming API – “follow” and “locations”3, and tweets filtered from
another Twitter Sample API statuses/sample 4, which returns a small
random sample (usually 1%) of all public tweets. The Statuses/filter
”follow” real-time returns the postings of a list of specified Twitter
users (5, 000 at most) as they publish tweets; while “locations” tracks
the tweets falling in a geographical area either according to tweet’s
embedded GPS coordinates or place names.

After specifying an area A, our system first retrieves a set of Twit-
ter user who fall inside A using IndexedRDD variable user→latlon
built in Section 3.1, and collects their live tweets via statuses/filter
“follow”. Our experiments in Section 4.2 show that doing so dra-
matically increases the number of local tweets and thereby boosting
the number of detected local news in our system. Meanwhile, sta-
tuses/filter “locations” is also initiated to collect tweets with embed-
ded GPS coordinates or place names falling inside A. Finally, we
also keep one’s tweets captured from Twitter Sample API if he is
from A. As the system runs, we also keep following the newly found
Twitter users belonging to A to track their real-time tweets.

3.3 Extracting Locality-Aware Keywords
“Hot” news or events in Twitter often cause, temporally or spatially,
noticeable changes (e.g., word usage and increase in the number of
related-tweets) in Twitter, thereby encouraging the exploitation of
anomaly detection techniques such as the discrepancy paradigm [10,
22, 30] which makes a comparison between previous data (to build
up a baseline) and the newly observed data to discover anomalies.
These techniques are often addressed only from the perspective of
detecting anomalies in the entire set of tweets (e.g., a set of tweets
collected or aggregated together either geospatially or temporally),
and in so doing might miss small-scale local news. Again, the data
sparsity might make the problem worse. For example, to detect the
news in Figure 1 is like finding a needle in a haystack from tweets
because such a story, with only 6 tweets, hardly affects the word
usage pattern in that evening at Westborough, MA.

However, if we look at the news story in Figure 1 from the view
of individual people involved, such a small news poses noticeable
changes in their word-usage pattern. For example, “Westborough
Education Foundation Trivia Bee” are recently used words for 3 the
Twitter users in that afternoon.

Therefore, given the sparsity of local news tweets, we utilize
the following observations to capture such news. First, instead of
looking for bursty or frequently used words with respect to a corpus
of tweets from different Twitter users, we focus on the newly-used
words with respect to the tweets from a single Twitter user. In
other words, for a Twitter user, we are only interested in the words
recently used by him. Such newly-used words correspond to the
aspect of local news being “novel” as its nature of being news.
Second, to reflect the aspect of local news being discussed by a
limited number of people, we look for the words that are only used
by a limited number of Twitter users, instead of the ones intensively
used by people. Therefore, for a given tweet, we identify the words
exhibiting the above two properties and call them locality-aware
keywords in the sense that they are aware of the characteristics of
local news. For example, in Figure 1, “Westborough”, “Education”,
“Foundation”, “Trivia” and “Bee” are considered as locality-aware
because they are new words used by this set of people.

Inspired by this, we recognize a word (only non-stopwords) in
a tweet to be locality-aware by looking at 3 measures: how many
times this tweet’s publisher uses it, how many other users are using it
and how many tweets contain it. To ensure the local news we detect
3https://dev.twitter.com/streaming/reference/post/status/filter
4https://dev.twitter.com/streaming/reference/get/statuses/sample

Algorithm 3: Online Extracting Locality-Aware Keywords and
Online Clustering to Detect News

Input: the latest 6-hour sliding window in enhanced local live
tweet stream – S; the locality-aware constraints – RT F ,
RDF and RCF ; the threshold valuesm, n and r

Output: news, i.e., clusters of tweets
1: load hash variables uid→tids, word→uid, word→tids,

tid→uid, tid→cid, tid→r.t. in last time window;
2: while true do

a. pull a tweet from S , get its non-stopword tokens
W , tweet id t , and user id u;

b. Locality-Aware KeywordsWL ←− ∅
c. Extracting Locality-Aware Keywords Procedure:

for each word w ∈W do
i). calculate TFw , TF ′w , DFw , CFw , CF ′w from

uid→tids, word→uid, word→tids;
ii). WL ←−WL ∪ {w} if TFw , TF ′w , DFw , CFw and

CF ′w meet with RT F , RDF and RCF ;
iii). update word→uids, word→tids by inserting w

and its corresponding u and t ;
end for

d. update uid→tids by inserting u and t ;
e. update tid→r.t. by inserting t and retweet number;
f. Online Clustering Procedure:

for eachWm
L ∈ subsets ofWL with sizem do

i). retrieve Q – the ids of tweets containing all words
inWm

L , from word→tids;
ii). retrieve the user set U in Q using tid→uid;

iii). continue if |U | < n;
iv). extract the largest group of tweets C from Q with

the same cluster id c (a null c means that the
tweets in C haven’t formed a cluster yet);

v). calculate RTC , which is the sum of retweet
number of each tweet in C, using tid→r.t..

vi). if |C | ≥ d |Q |2 e and |U | ≥ dr ∗ RTC e then
c ←− generate a new id if c is null;
assign t to cluster c in hash tid→cid;
report t as a news tweet to system UI;
break;

end if
end for

g. Remove obsolete tweets from uid→tids, word→tids,
tid→uid, tid→cid and update word→uids;

end while
are up to date, all these measures are computed in the latest 6-hour
sliding time window from the enhanced local live tweet stream. If
we treat a user’s tweet as a sentence, then all his tweets in time order
form a document, and all the tweets in the latest time window consist
of a corpus. This is different from the idea of TF-IDF used in [1, 9]
which treat each single tweet as a document.

We term the above 3 measures as term frequency, document fre-
quency and corpus frequency, i.e., TF, DF and CF, respectively.
Here we assume that a word appears at most once in a tweet (or
counts only once if more), which is reasonable given the 140-
character limit. For a given word w in the tweet posted by user
u, these measures are computed as: TFw = |Tu ∩Tw |, DFw = |Uw |,
and CFw = |Tw |. Tu denotes the tweets of user u, Tw denotes the
tweets containing word w , Uw denotes the users who recently used
the wordw . Our heuristic is that, in order for a wordw to be locality-
aware, it should have a smallerTFw (i.e. how many times it has been
used recently by a Twitter user), which indicates that word w might
be newly used by this user and thereby captures a news’s ”novelty”;
DFw (i.e., how many Twitter users have been using wordw recently)
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should have a limited range (like [3, |US |20 ] specified in parameter
settings in Section 4.4.1, where US is the set of Twitter users), to
reflect the local news’s characteristic of having a limited spread
among people; and also CFw should be small to avoid commonly
used words like “day” and “people” etc. In our implementation, to
account for the heterogeneity of the rates of publishing tweets for dif-
ferent users and for the number of tweets collected at different times
and different places, we also use the relative frequencies of TFw
and CFw , i.e., TF ′w =

|Tu∩Tw |
|Tu |

, CF ′w =
|Tw |
|TS |

, where TS represents
all current tweets. The constraints for TF , TF ′, DF , CF and CF ′ —
denoted by RT F , RDF and RCF — are discussed in Section 4.4.1.

3.4 Online Clustering to Detect News
As presented in Algorithm 3, we take into account the following two
aspects to group tweets together. First, the tweets need to share at
least a number m of locality-aware keywords to be grouped together.
Second, at least n different Twitter users must exist in a cluster. Ex-
isting methods usually neglect the importance of these two aspects.
For example, GeoBurst [11] measures the semantic similarity be-
tween two tweets by performing random walks on their keyword
co-occurrence graph to calculate the average probability that one
tweet reaches another. However, without requiring a minimum num-
ber of keywords in a tweet, two tweets containing and sharing very
few keywords could be mistakenly considered semantically coherent
even if they are not on the same topic. In addition, TwitterStand [1]
groups tweets together as long as they are similar enough in the
TF-IDF vector space and in so doing, might form noisy clusters out
of a single Twitter user’s repeated tweets.

Therefore, in our method, to cluster an incoming tweet, we first
retrieve a set of tweets sharing at leastm locality-aware keywords.
If these tweets were contributed by less than n Twitter users, or
the majority of the tweets don’t locate in the same cluster, then we
don’t group this new tweet and try another set ofm locality-aware
words. We also require that a news spreads among more local people.
In Twitter, the spread extent of a tweet is provided by its retweet
number, i.e., how many other Twitter users retweet it. We now define,
for a given news cluster C, its spread extent RTC to be the sum of
the retweet number of each tweet in it. And the local spread ratio
spreadlocal is computed by |U |

RTC , where U is the users contributing
to C. In our experiments, we set spreadlocal ≥ r = 0.4 to account
for the local tweets that we might not capture.

The details of calculating the above measures are presented in
Algorithm 3. Generally, Firefly uses a one-shot process, meaning
that once a tweet is added to a cluster, it remains there forever.
We will never revisit or recluster the tweet, which is desirable for
real-time detection of news from a local live tweet stream.

3.5 System User Interface
As shown in Figure 4, our user interface consists of two parts: a
Twitter Timeline5 and a Google Map based Web Application [1].
The Twitter Timeline allows a user to view a list of tweets collected
for various purposes, such as real-time monitoring of a Twitter
user’s updates or searching for the latest tweets on a specific topic.
Therefore, in order to demonstrate the latest news that we detect in
real-time, a Twitter Timeline 6 is created via Twitter Collections API,
which is very convenient for other Twitter users to view and even
subscribe to. Note that the Collections API only allows for a user to
retain a few thousand of tweets and automatically delete the oldest
ones if it has too many tweets. To display the events that we detect

5https://support.twitter.com/articles/164083
6https://twitter.com/bostonnewslocal/timelines/878280225074950144
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Figure 4: System User Interface
on the Google map-based web application, we utilize a procedure
to estimate the geographical focus for a news cluster in [1], which
makes use of both the geographical information in tweet content and
the source location of the users in an event cluster. After geotagging
an event cluster, the Google map-based web application displays a
marker for this event at its coordinates.

4 EXPERIMENTS
4.1 Online Processing Settings and Efficiency
Our system adopts sliding time window techniques to meet the de-
mand for online processing of a live tweet stream. The experiments
are evaluated on a Spark cluster of 5 computing nodes where each
node has two 6-core Intel Xeon E5-2620 v3 CPUs and 128GB RAM.

For Online Geotagging, we utilize Spark Stream to discretize the
live tweet stream from the Twitter statuses/sample API into intervals
of 23 seconds, which is the average time to accumulate 1000 tweets.
Similarly, a 6-hour sliding time window is applied on the enhanced
local live stream for locality-aware keyword extraction and online
clustering. The 6-hour window size is intuitively set in recognition
of the fact that television media usually has four times of a locally-
oriented news broadcast in one day. The day of Jan 16, 2017 is
chosen to evaluate our system for news detection with respect to
the Boston metropolitan area i.e., the rectangle area [42.008339,
-71.803026, 42.732923, -70.577545].

In our experiments, we find the major overhead is the Boosting
Phase in Algorithm 2, which takes around 76 minutes to finish. But
this procedure runs only once to start up the system and does not
affect the timeliness of subsequent procedures. After the Boosting
Phase, the online geotagging procedure takes an average of 3 seconds
to process 1, 000 tweets from the Twitter statuses/sample API, and
geotags an average of 47 unknown-location Twitter users per second.
Afterwards, Algorithm 3 processes 70 tweets per second on average
(which is also the approximate arriving rate of tweets in enhanced
local live stream) and reports about 3 tweet clusters per minute.

4.2 Twitter User Geotagging via Spark
4.2.1 Boosting Dataset. To boost the startup of geotagging

Twitter users, we utilize a set of tweets collected between 09/2015
and 09/2016. This dataset consists of 2, 876, 822, 081 tweets,
102, 382, 292 users and 824, 303, 126 pairs of neighbor-ships. Among
these users, 31, 250, 047 have valid location source (successfully
aligning profile-location to GeoNames or having embedded GPS
coordinates) and are used to build-up the variable user→latlon. Ac-
cordingly, variable user→neighb. builds from the extracted neighbor-
ships. Filtering down to only reciprocal neighbors, we have a recip-
rocal graph of 24, 946, 962 vertices (8, 787, 152 of them have lat/lon
coordinates) and 54, 550, 871 bidirectional edges.
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4.2.2 Effectiveness. In lack of a ground-truth for Twitter users’
locations, we exploit the boosting dataset to evaluate the effective-
ness on coverage and accuracy. Specifically, for the 8, 787, 152
Twitter users with lat/lon coordinates in the reciprocal graph built
in Section 4.2.1, their lat/lon coordinates are obtained from their
profile-location or GPS coordinates in their tweets, and are thus
treated as ground-truth. We then perform a leave-p-out validation
by randomly sampling 10% (i.e., 878, 715 ) of these Twitter users to
evaluate the coverage and accuracy. The coverage is to calculate
how many Twitter users in the sampling set would get geotagged,
while accuracy is to calculate the mean distance error between the
ground-truth and their estimated location.

Our experiment shows that with γ = 100 km, λ = 2, 13.6% (i.e.,
119, 505 out of 878, 715) test users get geotagged with a mean error
of 228.66 km and a median of 27.93 km, which as shown in [6], is
accurate at city-level for majority of test users.

Effect of Outlier Removal We now exclude the step of outlier-
removal in Algorithm 2 to geotag the 10% test Twitter users with γ
fixed at 100 km and λ at 2. This brings us a lower 7.1% coverage with
a larger mean error of 279.81 km, showing that removing outliers
significantly increases the chances for test users to get successfully
geotagged while without compromising accuracy.

Figure 5: CCDFs.

λ Coverage (%) Error (km)

1 53.3% 1900.54
2 13.6% 228.66
3 6.5% 251.34
4 3.9% 213.62
5 2.5% 191.65
10 0.6% 234.72
20 0.1% 187.16

Table 1: Effect of λ.

Effect of λ (the Minimum Number of Reciprocal Friends with
Valid Locations) We first plot the distributions on the number of
reciprocal friends of these 10% Twitter users in Figure 5, as well
as the ones with locations and the ones that have survived from
the outlier removal step. Figure 5 shows that lots of the Twitter
users have very few reciprocal friends that have locations. In such a
sparse reciprocal graph, it may not be fair to decide the location for
a Twitter user only based on very few of his friends locations.

To investigate the sensitivity of the minimum constraint parameter
λ in Algorithm 2, we set γ = 100 km and use different values of
λ = {1, 2, 3, 4, 5, 10, 20} for the 10% sampling test users and list the
corresponding coverage and mean errors in Table 1. The results
show that although λ = 1 is able to geotag more than half of the test
users, it brings about an acceptably large error; λ = 2 seems to reach
the best trade-off point between coverage and accuracy; while larger
λ values have similar accuracy, they have relatively low coverage.

4.3 Enhanced Local Live Tweet Stream
At the start of the day on Jan 16, 2017, 176, 007 users are found
in the input Boston bounding box. Among them, 101, 409 provide
valid location source (profile-location or GPS), and the remaining
74, 598 are geotagged using Algorithm 2. Following these two sets of
users to track their real-time postings comprises of the two sources of
Streaming API w/ “follow” I and II as listed in Table 2, respectively7.

Table 2 first shows how many local tweets (i.e., the tweets that
fall in the given area or are published by people there) as well as
how many cluster tweets (i.e., the tweets that compose the detected

7Multiple API tokens are used because one only follows up to 5000 users.

Table 2: Contributions of Different Local Live Tweet Sources

Source
# of tweets # of news

Local tw. Cluster tw. Involved Excl. (acc. %)
Sample API 6,182 638 167 21 (35.5%)
Str. API w/ loc. 76,983 2,123 359 76 (52.9%)
Str. API w/ fol. I 2,986,291 23,120 2,489 1,241 (58.5%)
Str. API w/ fol. II 1,730,889 16,654 1,857 609 (52.7%)

Total 4,800,345 43,535 N/A N/A
clusters) each source contributes to our enhanced local live tweet
stream. The table shows that Twitter Streaming API statuses/filter
“follow” (I and II) yield the most of tweets. More importantly,
Table 2 further shows that tracking Twitter users who don’t have
valid location sources also make significant contributions just like
tracking the users with valid location sources. This reinforces the
important role that the online Twitter user geotagging procedure
plays in our system.

In addition, Table 2 also lists the number of “Involved” news (i.e.,
how many news a source’s tweets have participated in forming) and
the number of “Exclusive” news (i.e., how many news a source’s
tweets have exclusively formed, in other words, these news are
formed by tweets only from this source), along with its accuracy of
positive local news (the accuracy evaluation method is detailed in
Section 4.4.4). The result shows that the majority of news events
are generated using the tweets in Streaming API statuses/filter w/
“follow”, indicating that by tracking local Twitter users, our method is
able to find much more news than solely using the Twitter’s publicly
available tweet streams.

4.4 Local News Detection
In this section, we evaluate the performance of our system on detect-
ing news from the enhanced local live tweet stream using mutual
recall and precision. Mutual recalls are evaluated between our sys-
tem and a set of local news media agencies, together with a few
baseline approaches. As for precision, we recruited 3 volunteers to
individually judge the detected news and collect the results using the
strategy of majority votes.

4.4.1 Parameter Settings. Note that although some of the
following parameter settings depend on the specific input city, they
are simply statistics and easy to infer for other places. There are
3 constraints for a word to be locality-aware: RT F , RDF and RCF .
For RT F , the main goal is to capture a local news’s nature of being
new and to reflect a person’s word-usage anomaly, by requiring both
TF and TF ′ to be small (of course, at least greater than 0). This
means that, an upper boundary needs to be imposed on TF . To
obtain an empirical value of this, we collect the tweets posted by
the Twitter accounts listed in Table 3 (note that the Twitter account
of @fox25news has changed to @boston25 in April 2017), and
perform an analysis, for each individual agency, of how many of its
tweets are about the same news. The results, presented in Figure 6a,
show that an agency usually tweets only 1 or 2 tweets (5 at most)
about the same news. The situation is similar when the time period
narrows down to a 6-hour (e.g., from 15:00 to 21:00). We therefore
set the upper bound of TF to 5. Figure 6b reminds us that this
value could work for most of Twitter users as they usually post
less than 10 tweets, either in one day or in a 6-hour time window,
This value, however, seems too strict for Twitter users who publish
10 or more tweets and perhaps keep posting updates on the same
news event. We therefore turn to TF ′ to relax the constraint of TF ,
and set a threshold value of 0.3 for TF ′. To summarize, we have
RT F := (|Tu | < 10 ∧ TF ≤ 5) ∨ (|Tu | ≥ 10 ∧ TF ′ ≤ 0.3).
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(a) Histogram of # of tweets in a news by
each individual news agency.

(b) Histogram of # of tweets posted by
each individual Twitter user.

Figure 6: Histograms of # of tweets.
RT F alone, however, is not enough because it would mark most

of the words for most of Twitter users as locality-aware. We further
utilize DF to explore another characteristic of local news: being
“limited spread”. Recalling the fact that one-fifth of the population
are active Twitter users, we set RDF := 3 ≤ DF ≤ |US |20 , where US
are all the users in the time window S . Our argument is that when
DF = 3, there might be an equal number of users reporting the same
activity in Twitter. This further indicates that in reality, there might
exist an ongoing news event that involves 15 people. Likewise, we
set the upper boundary to 1% of the population, which is around
|US |
20 . The distribution of detected cluster size in Figure 8a further

validates our assumption.
Finally, there is an additional constraint RCF to get rid of com-

monly used words. Our analysis on the CF ′s of most common
non-stopwords in English shows that they have a min CF of 0.57%
(max: 2.7%, mean: 1.6% and median: 1.8%) . Also considering that
the average number of tweets published by a Twitter user is around
2 (e.g., in Figure 6b, 2.30 and 1.82 for one day and 6-hour) and DF ’s
upper bound, we set the upper bound of CF to |US |10 . Therefore,

RCF is set as RCF := CF ≤ |US |10 ∧CF
′ ≤ 0.57%, which helps us to

successfully recognize words like “trump”, “martin”, “luther”, “day”
and “people” as not locality-aware.

We then have 3 more threshold values to set for online clustering
in Algorithm 3. For the least number of overlapping words between
two tweets to cluster together, we set m = 5 because it is usually
large enough to cover a news’s “who”, “what” and “where” informa-
tion, e.g., the bold words in the example event of Figure 1. In our
experience, a largerm makes clustering tightly cohesive yet might
split the same news story into several clusters; while a smaller m
might not fully reveal a story’s own trait and groups non-related
things together. To be consistent with RDF , we set the least number
of people in a cluster n = 3. At last, we set the local spread ratio
threshold r = 0.4 to deal with the tweets we might miss.

4.4.2 Local News Media and Baseline Approaches. Rep-
utable Local News Media Agencies We select 9 Boston local news
agencies, as listed in Table 3 in the form of “@ScreenName”, to
collect their news tweets as a groud-truth dataset to compare with.
As most of the tweets of these agencies are of good quality, we
perform a simple single-linkage cluster algorithm to extract news
from them. That is, for a single news agency, as long as any two of
its tweets share m = 5 non-stopwords, we group them together, and
throw away tweets with less non-stopwords.

Baseline Approaches We also compare our method with the
following four baseline approaches.
• TwitterStand: TwitterStand [1] groups news tweets into cluster

of tweets to form news stories using a TF-IDF based similarity.

• TwitterStand-3: By default, TwitterStand only reports a cluster as
a news story if it has more than 10 tweets. In this setting, we relax
the minimum number of tweets to 3, out of the consideration of
fairness for TwitterStand to be able to detect news of small scale.

• EvenTweet: EvenTweet [22] first identifies temporal bursty key-
words and spatial local keywords and then clusters them together
according to their spatial density distribution. The spatial density
distribution is calculated based on a 50 × 50 grid tessellation.

• GeoBurst: GeoBurst [11] first generates candidate events by
identifying pivot tweets based on geographical and semantic
similarities and then ranks the candidates according to their
spatiotemporal burstiness to filter out noisy ones.

As summarized in Section 2, TwitterStand (or TwitterStand-3)
is an event-anchored method and therefore is fed with the same
enhanced local live tweet stream in Firefly to detect news, while the
last two are location-anchored methods which only take geotagged
tweets ( 33, 966 tweets with embedded GPS coordinates) as input.

4.4.3 Mutual Recalls. The mutual recalls are computed by
examining how many news in the news agencies or baseline ap-
proaches have been found by our system and vice versa. We claim a
news cluster cX in agency X recalls a news cluster cY in agency Y
if there is a tweet in cX and another tweet in cY that share at least
5 non-stopwords. The results are summarized in Table 3, in which
a news agency’s “@Screen Name” is to represent its tweets news.
Also, to make the table compact, we give each agency an order
denotation in the column headers. Below the column headers are the
number of news found in an agency or our system Firefly. So for a
cell, it shows how many news row X covers over column Y.

Table 3 shows that Firefly achieves high recalls against most of
news agencies. For example, we successfully detect news like “Stab-
bing Reported at Stoughton Home of UMass Boston Chancellor”,
“Dog killed by coyote in Gloucester, police issue warning” and “A
woman caught in the line of fire in Lyn” etc which are also reported
by “@7News”. In contrast, a very large portion of news in Firefly
don’t receive coverage from any of the listed news agencies, e.g.,
“There is a growing collection of lonely hand warmers at Fallon Field
in #Roslindale”, “Hockey star Kacey Bellamy took a break from
prepping for the 2018 Winter Olympics to chat with @BrooksSchool
girls hockey team today!” and “Just a portion of the many people
that volunteered today to build STEM kits for Boston schools” etc.

In contrast, the default settings of TwitterStand have much lower
recalls across the 9 local news agencies. Although relaxing its
cluster size to have minimum of 3 tweets yields many more clusters,
it doesn’t yield clearly higher recalls. We conjecture that in doing
so, TwitterStand-3 is reporting many small clusters for the same
news due to the fragmentation problem in its online clustering [1].
For example, the 409 news of TwitterStand are covering 1, 607 news
of TwitterStand-3. This also explains TwitterStand-3’s extremely
asymmetric mutual recalls over the local news agencies.

It comes as no surprise that EvenTweet and GeoBurst, both of
which only run on sparsely available geotagged tweets, have low
recalls across the local news agencies too. This is essentially be-
cause geotagged tweets cover very limited news in our dataset. For
example, none of the news tweets posted by local news agencies
contain geotagged tweets. Similarly, in all the tweets clusters gen-
erated by our system Firefly, only 633 of them contain geotagged
tweets and only 107 of tweets clusters are formed by only geotagged
tweets. This shows that by utilizing non-geotagged tweets, we are
able to detect much more local news than methods EvenTweet and
GeoBurst and further reinforces the importance of enhancing local
live tweet stream by finding and tracking local Twitter users.
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Table 3: The Mutual Recalls between Firefly, Baseline Approaches and the 9 reputable Boston Local News Agencies

Order A B C D E F G H I J K L M N

# of news 3364 409 2331 184 179 61 21 128 95 52 64 11 15 110
Firefly A 3364 305 1213 135 164 48 21 85 32 41 49 6 10 69
TwitterStand B 200 409 1607 71 46 7 5 13 15 4 4 0 2 12
TwitterStand-3 C 215 395 2331 51 66 8 6 16 19 4 5 0 5 15
EvenTweet D 236 218 292 184 151 6 6 3 3 15 2 0 3 15
GeoBurst E 132 64 202 126 179 7 1 3 3 7 5 0 3 5
@7News F 49 73 212 2 13 61 3 4 7 2 6 0 1 9
@BostonDotCom G 21 22 47 1 1 3 21 6 5 0 2 1 0 3
@BostonGlobe H 85 83 210 2 6 4 6 128 4 3 1 2 0 5
@bostonherald I 38 82 179 1 3 7 5 4 95 0 7 1 1 5
@CBSboston J 41 64 149 2 8 2 0 3 0 52 1 0 0 4
@fox25news K 49 23 64 2 5 6 2 1 7 1 64 0 2 2
@GlobeMetro L 6 0 0 0 0 0 1 2 1 0 0 11 0 0
@metroBOS M 11 27 62 2 5 1 0 0 1 0 2 0 15 0
@WCVB N 69 95 217 7 13 9 3 5 5 4 2 0 0 110

4.4.4 Precision. We asked 3 human judges to independently
examine the 3, 364 clusters of tweets detected in Firefly. As shown in
Figure 7, each candidate news is a set of tweets with their urls. The
set of tweets are selected by having the most non-stopwords, retweet
numbers and overlapping words with each other and no more than 5
tweets. The drop-down list provides 3 available options: “Positive”,
“Neutral” and “Negative”, which are used by the judges to answer
the question: “Are the three or more tweets describing the same local
news?”. The instructions given to judges are summarized as follows:

Each candidate news has a set of tweets, followed by their urls.
Please read the tweets and answer if they are talking about the same
news. A local news, here, refers to an event that happens in Boston
Metropolitan area. For example, local news can be about traffic,
weather, missing persons/pets, farmer’s market, yard-selling and
book-selling, happy hour of bars and restaurants, crimes, protests,
gatherings, award-nominations, and parties, meetings, celebra-
tions, conferences, sports games etc. You can utilize the tweets’
urls to get more information such as where the news happened. If
you can’t determine where it happened, choose “Negative”. Na-
tional/international news are recognized as “Neutral”. News that
happened in another place, like sports held in another city, should
be “Negative”. Also if you don’t think the presented tweets are
representing a news, select “Negative”.

Figure 8b presents the distribution of judges’ answers of the
2, 574 events out of 3, 364 that received a majority of “Positive”s
or “Negative”s. Among the 2, 574 events, 73.6% had 2 or more
“Positive”s and were consented to be local news. The median number
of tweets and median number of users in these local news are only 7
and 6, respectively, as shown in Figure 8a. We also discovered that
most of the clusters with a majority of “Negative” were formed by a
set of people tweeting like ”My fitbit for 1152017 6145 steps and
29 miles traveled”. This surprised us because this crowd behavior
meets our constraint for local news. In addition, out of 3, 3364 news
we detect, 649 received 2 or more “Neutral”s and were considered
to be national or international news.

Table 4: Proportions of Different Types of Tweet Clusters
≥2 Positives ≥2 Neutrals ≥2 Negatives

Firefly 1,894 (56.3%) 649 (19.3%) 680 (20.2%)
TwitterStand 14 (3.4%) 306 (74.8%) 76 (18.6%)
TwitterStand-3 123 (5.28%) 1302 (55.9%) 816 (35.0%)
EvenTweet 44 (23.9%) 27 (14.7%) 90 (48.9%)
GeoBurst 52 (29.1%) 21 (11.7%) 70 (39.1%)

Figure 7: Example of Human Judging UI

(a) Distribution of tweets and users. (b) Distribution of human evaluation.
Figure 8: Distribution of news cluster sizes and human evaluation
Next, we evaluate the clusters in TwitterStand, TwitterStand-3,

EvenTweet and GeoBurst in the same way and list their proportions
of news receiving more than 2 “Positives”, 2 “Neutrals” and 2 “Nega-
tives” respectively in Table 4. In comparison, among the 409 clusters
in TwitterStand, only 14 are identified as local news. The low pro-
portion of local news in the default settings of TwitterStand is caused
by its constraint that at least 10 tweets to form a cluster. Although
relaxing this limit to 3 tweets in TwitterStand-3 captures more lo-
cal news, its non-news proportion increases much more by falsely
recognizing some repeating tweets from Twitter users as news, e.g.
“@healylike”. In contrast, by only exploiting the sparsely available
geotagged tweets, EvenTweet and GeoBurst are only able to detect a
small number of positive local news. Similarly, in Firefly, out of the
107 clusters that are formed by only geotagged tweets, 47 of them
receive ≥ 2 “Positives” and are considered positive local news. This
further illustrates that making only use of geotagged tweets will miss
the majority of local news reported in non-geotagged tweets.

5 CONCLUSIONS AND FUTURE WORK
In this paper, we presented a system called Firefly to detect news for
a given geographical area. In order to deal with the infamous sparsity
problem in publicly available Twitter data, Firefly first enhances the
local live tweet stream by identifying a large body of Twitter users
in an area to follow via an online geotagging procedure and thereby
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significantly increases the amount of tweets generated from that area.
With the enhanced local live tweet stream, we propose a method
to identify locality-aware keywords and further use them to cluster
tweets together to detect news. Comparing with news extracted from
a set of local news agencies’ tweets, our system achieves the highest
recalls, and at the same time, outperforms the baseline approach
TwitterStand regarding both recall and precision in detecting local
news, and more importantly, is able to detect much more local news
than the approaches that only use geotagged tweets.

A small portion of news might be present in two or more clusters
if these news don’t get updates in a time period that exceeds 6-
hour, which is the main reason whey Table 3 is not symmetric for
Firefly. A remedy to this problem in the future might be to simply
lengthen the time window or to keep a pool of news clusters before
the current sliding time window and keep them active if they receive
updating tweets. In addition, the importance of various users should
be addressed differentially. For example, reporter or news agencies
should be more trustworthy to publish news. Additionally, as the
human verification yields a ground-truth of local news, a learning
procedure might be explored to help determine the parameter values
in extracting locality-aware keywords and online clustering. We
leave these questions for our future work.
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