
In Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Analytics for Local Events and News (LENS 2019), Chicago, IL, November

2019. Article 9.

DeLLe: Detecting Latest Local Events from Geotagged Tweets

Hong Wei1, Hao Zhou1, Jagan Sankaranarayanan1, Sudipta Sengupta2 and Hanan Samet1
1Department of Computer Science, University of Maryland, College Park, MD 20742

2Amazon Web Services (AWS), Sea�le, WA 98101
1{hyw,hzhou,jagan,hjs}@cs.umd.edu 2sudipta@amazon.com

ABSTRACT

Geotagged tweet streams contain invaluable information about

the real-world local events like sports games, protests and tra�c

accidents. Timely detecting and extracting such events may have

various applications but yet unsolved challenges. In this paper,

we present DeLLe, a methodology for automatically Detecting

Latest Local Events from geotagged tweets. With the help of novel

spatiotemporal tweet count prediction models, DeLLe �rst �nds

unusual locations which have aggregated unexpected number of

tweets in the latest time period and thereby imply potential local

events. Next, DeLLe calculates, for each such unusual location, a

ranking score to identify the ones most likely having ongoing local

events by addressing the temporal burstiness, spatial burstiness and

topical coherence. Furthermore, DeLLe infers an event candidate’s

spatiotemporal range by tracking its event-focus point, which es-

sentially re�ects the most recent representative occurrence site.

Finally, DeLLe chooses the most in�uential tweets to summarize

local events and thereby presents succinct but yet representative

descriptions. We evaluate DeLLe on the city of Sea�le, WA as well

as a larger city of New York. �e results show that the proposed

method generally outperforms competitive baseline approaches.

CCS CONCEPTS

•Information systems →Data streaming; Clustering;

KEYWORDS
Twi�er, Geotagged Tweet Stream, Local Events, Event Detection

ACM Reference format:

Hong Wei, Hao Zhou, Jagan Sankaranarayanan, Sudipta Sengupta and

Hanan Samet. 2019. DeLLe: Detecting Latest Local Events from Geotagged

Tweets. In Proceedings of 3rd ACM SIGSPATIAL International Workshop on

Analytics for Local Events and News , Chicago, IL, USA, November 5, 2019

(LENS’19), 11 pages.

1 INTRODUCTION
With people posting what is happening outside in the real world,

tweets in Twi�er encapsulate invaluable information on real-world

events as they break. Accessing news tweets by location is of great

interest (e.g.,see [1, 2] which are based on the NewsStand system [3–

5]). Geotagged tweets are particularly interesting in the sense

that they provide the complement information about the place of

interest [6–14], e.g., where the events occur. In this paper, we aim

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.

LENS’19, Chicago, IL, USA

© 2019 ACM. 978-1-4503-6958-9/19/11. . . $15.00
DOI: 10.1145/3356473.3365188

Figure 1: Examples of geotagged tweets about the soccer game of

“Seattle Sounders” vs “D.C. United” at the stadium of “CenturyLink

Field” at 7:30 PM, 2017-07-19. All the tweets were located at the sta-

dium of “CenturyLink Field”, i.e., the red grid cell in Figure 2a.

to detect the latest local events from live geotagged tweet streams.

A local event is de�ned as an unusual activity that appears at

some speci�c time and place and also shows topical coherence. For

instance, Figure 1 presents some exampling geotagged tweets about

a soccer game held in the city of Sea�le, WA. Timely discovering

such local events has a wide range of applications. For example,

people can acquire the latest information about such local activities

in their living town, and thereby enhance their daily lives. In such

cases, a�er learning what is happening, the commuters can actively

make a decision to bypass the congested road segments or avoid

the accident sites .

It is, however, challenging to detect local events from live geo-

tagged tweet streams. First, detecting local events by capturing

unusualness requires considering not only temporal historical pat-

terns but also spatial circumstances. Some studies [15–18] measure

the burstiness, intensity of increment in the number of tweets at

a place over a short time period, as signals of local events. But

burstiness does not always imply the occurrence of a local event.

For example, the burstiness of tweets at a shopping mall or a fa-

mous co�ee bar in the morning is o�en expected and not unusual.

Some work improves this measure to capture temporally routine

pa�erns by gathering time-aware statistics [19]. However, without

geographical consideration, occasional nation-wide events may

also accumulate a temporally unusual number of tweets at local

places. For example, on presidential election nights, one may ob-

serve suddenly more tweets all over the places. Second, a local

event, as it develops, may receive follow-up updates on its content

and may also migrate geographically. For example, when a crime

happens at a place, people expect to receive updates as investiga-

tion progresses. Another example is that a demonstration protest

may follow a route moving from one place to another. �erefore,

it is desirable to dynamically and timely monitor and track the

development of an ongoing event, and report its latest updates.

In Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Analytics for Local Events and News (LENS 2019), Chicago, IL, November

2019. Article 9.

In this paper, we propose DeLLe to discover, track and describe

local events from live geotagged tweets. �e contribution of DeLLe

lies in its four modules: seeker, ranker, expander and summarizer.

Seeker �nds unusual locations which exhibit spatiotemporal un-

usualness with respect to the number of tweets and therefore poten-

tially correspond to local events. For this purpose, seeker employs

a novel prediction-based anomaly detection strategy. In particular,

seeker �rst exploits convolutional LSTMs (ConvLSTM [20]) to pre-

dict the expected number of tweets in the future, which accounts for

not only historical pa�erns but also neighboring locations. Next,

seeker compares the predicted value with the actual number of

tweets to determine the existence of unusualness. Unlike previous

studies [16, 21] which claim anomalies only based on the local time

series data of a location, we also consider the horizontal situation in

other places simultaneously to mitigate the e�ects of global events.

Ranker suppresses the possibly noisy candidates of local events.

In practice, not all spatiotemporal burstinesses necessarily corre-

spond to an actual local event. We therefore bring order to the candi-

dates with a ranking procedure by considering temporal burstiness,

spatial burstines and topical coherence, and thereby select the top

ones likely to be corresponding to the occurrence of local events.

Expander tracks and updates the movement of an ongoing local

event in both space and time using event-focus and content simi-

larity. An event focus records its most important site of occurrence

at certain time. While the content similarity between the tweets in

two nearby locations is used as a measurement to check whether

an ongoing local event moves to nearby locations or keeps bub-

bling up at the same place. In so doing, this module is dynamically

monitoring the impact range of a local event.

Summarizer generates an abstract for a detected local event by

selecting its most in�uential tweets. For human consumption, an

event should be presented in a succinct description [21] but yet

with up-to-date and key information. It is therefore important

to choose representative tweets to summarize the detected local

events. �is module builds tweet authority graphs based on their

textual similarities and subsequently runs random walk procedures

to select the most in�uential tweets for events.

2 RELATED WORK
�ere has been a plural of works on detecting local events using

tweets in Twi�er. Atefeh [22] and Abdelhaq [23] provide two excel-

lent surveys. In general, existing methods focusing on geotagged

tweets can be classi�ed into two strategies: model dimension exten-

sion and geographical space tessellation. Model dimension extension

treats location as additional variables to existing models. For exam-

ple, some studies treat location as latent variables in their generative

topic model [24–27]. Location distance between tweets can also be

incorporated to measure similarities [28–31] during clustering.

Geographical space tessellation divides space into small and dis-

joint cells for aggregating geotagged tweets. �e motivation is that

a local event usually has a limited spatial impact and would fall in

the same or nearby cell(s). �e grid is the simplest yet most com-

monly used way of tessellation. although other structures have also

been explored including hierarchical triangular meshes [21], pyra-

mid structures [32, 33], Voronoi tessellations [34] and k-d tree [35].

A�er aggregating tweets to tessellation cells, a simple way for

event detection is to examine whether the number of the aggregated

tweets or the arriving rate exceeds a certain threshold [15, 19]. �is,

however, is easily plagued by tweet distribution heterogeneity both

temporally and spatially. �us, various anomaly detection methods

have been explored. �e core idea is to use previous history of

data to build a baseline (or make a prediction) and then compare

with the actual value to check for signi�cant discrepancies [16,

17, 21]. For example, TwitInfo [36] uses the weighted average

of historical tweet counts to compute the expected frequency of

tweets. But sole historical data o�en neglect the e�ects exerted by

nearby geographical regions. Krumm and Horvitz [21] therefore

include features like tweet counts from adjacent regions in their

anomaly detection method. Our method is di�erent from the above

methods in two senses: 1) our prediction model captures both

spatial dependencies and temporal pa�erns [10]; 2) when claiming

an anomaly, we account for not only the history of a location itself

but also the situation at other places in the meantime to mitigate

the e�ect of unexpected global events.

�e most related work to our task are EvenTweet [16] , Eyewit-

ness [21], GeoBurst [28] and TrioVecEvent [24]. EvenTweet de-

tect events by identifying and clustering temporal bursty keywords.

However, using words instead of tweets as clustering elements,

this method may group semantically irrelevant words together and

in the meantime not sit well with event summarization. Eyewit-

ness [21] discretizes space and time and �nds tweet volume spikes

as potential local events by comparing the predicted value with the

observed value. However, it needs to perform an exhaustive sweep

through di�erent space and time pieces and thereby is not easy

to modify for online processing. GeoBurst [28] generates candi-

date events by identifying pivot tweets based on geographical and

semantic similarities and ranks them using spatiotemporal bursti-

ness to �lter out noisy ones. TrioVecEvent learns multimodal

embeddings of tweets to address the information on location, time

and text during clustering and is reported to achieve much be�er

accuracy than its baseline approaches. However, neither of these

two methods actively performs event detection on a given tweet

stream unless a query time window is speci�ed.

Due to the sparsity of geotagged tweets (1%), some methods

try to acquire more local tweets by tracking local people [9, 37].

�e location information in these methods, however, are usually

in a very coarse resolution (e.g., city-level) and rarely used when

grouping tweets together. Some methods try to �rst detect an event

and then estimate its location a�erwards, e.g., Twi�erStand [2].

�ese methods are di�erent from our focus as we instead try to

extract local events from geotagged tweet streams.

3 PRELIMINARIES
3.1 Problem
Given a geotagged tweet stream, our goal is to identify the latest lo-

cal events. Formally, suppose that t is the current (latest) time point

and ∆t is a short time interval, we de�ne Dt to be the geotagged

tweet stream up to t , and Dt−∆t→t be the geotagged tweet stream

from t − ∆t to t . In other words, Dt−∆t→t essentially represents

the latest geotagged tweets with respect to ∆t . For simplicity, a

geotagged tweet d can be seen as a tuple 〈timed , locd , txtd ,userd 〉

in which timed is the publication time, locd is the geographical lo-

cation (i.e., a pair of lat/long coordinates), txtd refers to the textual

content and userd is the user posting this tweet. �e latest local

In Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Analytics for Local Events and News (LENS 2019), Chicago, IL, November

2019. Article 9.

1

1

1

1

2

1

1

2

4

4

14

3

(a)

-300 -200 -100 0 100 200 300
0

5

10

15

time (in 30 mins) centered at 7:30 PM, 2017-07-19

#
 o

f
tw

e
e
t

(b)
Figure 2: �e soccer game in Figure 1 brings about an anomalous

amount of tweets both spatially and temporally. (a) Spatial distri-

bution of the tweets around the stadium at 7:30 PM - 8:00 PM. �e

stadium lies in the red square. Each red dot is a tweet, and the

number in a grid cell refers to its number of tweets while an empty

cell means no tweets. (b) Temporal distribution of the tweets at the

game stadium. �e tweets are aggregated every 30 minutes.

event detection problem is then to extract from Dt−∆t→t all pos-

sible local events, where each event is a cluster of geographically,

temporally and semantically close tweets.

Typically, the occurrence of a local event o�en brings about an

unusually considerable amount of relevant tweets at the happening

location for a certain time period. For example, a soccer game

started at 7:30 PM at the stadium “CenturyLink Field” near the

center of Sea�le, yielding many tweets with keywords “Sounders”,

“soundersfc” and “CenturyLink Field” etc (Figure 1) at that location

during the game. Figure 2 shows that an unusual amount of such

tweets were observed both geographically and temporally.

Motivated by the above observation, we propose a prediction-

based method for detecting the latest local events, called DeLLe.

�e key idea of DeLLe is to �rst detect spatiotemporal unusualness

as possible candidates of local events and then select the ones that

most likely corresponding to local events.

3.2 System Overview
Figure 3 demonstrates DeLLe’s overall design. DeLLe can work in

two modes: batch mode and online mode. �e major di�erence is

that the batch mode exploits a disjoint discretization in the time

dimension while the online mode utilizes a continuous sliding time

window and correspondingly a set of updating modi�cations for

online processing. We will detail these modi�cations in Section 5.

Summarizer

Space
Batch Mode

Online ModeTessellation

Figure 3: System Overview

We utilize a uniform grid to tessellate the spatial region into

squares of size ∆l × ∆l , where ∆l is the side length of the square.

Although more complex tessellation structures [21, 33, 38] have

been explored, grid tessellation is the simplest yet most commonly

used way of subdividing geographical space [16, 39–42]. More

importantly, it enables us to exploit state-of-the-art spatiotemporal

tweet count prediction model [10] by treating each grid cell as a

pixel and therefore thewhole grid as image-like data. In reality, local

events may not fall neatly on the grid cell boundaries. �erefore,

we propose a module of expander to connect nearby cells which

share similar content to alleviate that issue.

A�er discretizing space, the tweets are subsequently fed into a

pipeline of four modules: seeker, ranker, expander and summarizer.

Seeker �nds spatiotemporal unusualness in the number of tweets

as potential candidates of local events. Ranker selects which set of

unusualness found by the seeker are most likely to be local events.

A�erwards, the expander tries to infer a local event’s span in both

time and space under the metric of semantical similarity. At last,

the summarizer generates an abstract for a detected local event by

selecting the latest top in�uential tweets.

4 THE BATCH MODE
In this section, we present the work�ow of DeLLe in its batch mode.

In order to detect the local events fromDt−∆t→t , we discretizes the

geotagged tweet stream into a set of disjoint intervals, i.e.,{· · · [t −

2∆t , t − ∆t), [t − ∆t , t)}. In the following, we explain how to do

tweet count prediction, unusualness detection, event expansion,

and summarization for this time series of tweets.

4.1 Seeker
A�er tessellating the space into anM×N grid and time into periods

of ∆t , the task of seeker is to identify grid cells that show an unusual

aggregation of tweets in latest geotagged tweet stream Dt−∆t→t

or DT where T denotes the last time interval of length ∆t .

4.1.1 Tweet Count Prediction. �e goal of tweet count pre-

diction is to use previously historical tweet count data in a local

region to forecast on the number of tweets to appear in the next

time step [10]. On an M × N grid map, the tweet count values in

the grid cells at time step τ can be wri�en in a tensor Xτ ∈ �
M×N

where Xτ (m,n) is the tweet count in the grid cell (m,n) at time step

τ . �erefore, the prediction problem is formulated as follows:

De�nition 4.1. �e tweet count prediction problem P is to gen-

erate a prediction YT , which is an estimation of XT , given a list of

historical observations {Xτ |τ = 0, · · · ,T − 1}.

Making high-quality predictions of tweet count in a region is

challenging due to complex spatial and temporal dependencies.

Additionally, there are studies pointing out that spatiotemporal

data also has a certain periodic pa�ern [21, 43], which indicates

that we should also capture the periodic time-varying changes in

tweet volume. For instance, if there are consistent bursty tweets

at a co�ee shop (e.g., Starbucks) in the morning, it should not be

mistakenly reported as unusual. �e advances in deep learning have

motivated a few recent studies to introduce deep neural networks

into modeling spatiotemporal data for be�er capturing spatial and

temporal dependences [43, 44]. In this paper, we utilize a residual

Convolutional LSTM (ConvLSTM [20]) based prediction model [10],

which is reported to have state-of-the-art accuracy.

We now give a brief introduction to this tweet count prediction

model [10]. Figure 4 illustrates the structure of the neural network

model. Zhang et al. [43, 44] pointed out that making predictions on

spatiotemporal data relies on not only the observations of recent

time but also those in near history and distant history, and model

these temporal dependencies as temporal closeness, period and trend.

A similar observation on tweet count data is also found [10]. In-

spired by this, the model consists of three main branches: closeness,

period and trend, to incorporate temporal pa�ern information at

di�erent scale in tweet data, together with a meta-data branch to

In Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Analytics for Local Events and News (LENS 2019), Chicago, IL, November

2019. Article 9.

Table 1: List of main notations in Section 4
∆l the side length of a grid cell

t , ∆t current time, length of time interval
τ , T time step, the latest time step

Dt , DT tweet stream up to t , tweet stream during T
Xτ , Yτ tweet count at τ , prediction of tweet count at τ
(m,n) a grid cell in anM × N grid map
c , p, q closeness, period, trend

ET , ET prediction error, a list of prediction errors up to T
k∆E′T unusualness threshold

YT (m,n) a list of historical predictions on (m,n)
WT (m,n) the set of keywords in (m,n) at T

SDDw
T
(m,n) spatial density distribution of wordw in (m,n) at T

TS(d ′,d ′′) topical similarity between tweet d ′ and d ′′

TBT (m,n) temporal burstiness of cell (m,n) at T
SBT (m,n) spatial burstiness of cell (m,n) at T
TCT (m,n) topical coherence of cell (m,n) at T

TECT (m,n) the set of Temporal Expansion Cells of cell (m,n)
SECT (m,n) the set of Spatial Expansion Cells of cell (m,n)

k
the number of tweets for event summarization as
well as in calculating topical coherence

capture features such as time-of-day (e.g., in minutes), day-of-week.

ConvLSTM

ConvLSTM

+

ResConvLSTM

ConvLSTM

ConvLSTM

ResConvLSTM

ConvLSTM

ConvLSTM

ResConvLSTM

tim
e

of
 d

ay
,

da
y

of
 w

ee
k

FCs

trend period closeness
meta
data

time

Figure 4: Twitter Count Prediction Model. ResConvLSTM: Residual

ConvLSTM block; FCs: Fully-Connected Layers, i.e. Dense layers.

To be speci�c, the closeness sequence is a list of lc continuous

tweet count values right before the current time step and is denoted

by X c
τ =

[

Xτ−lc Xτ−(lc−1) · · · Xτ−1
]

. �e period sequence

is a lp -long list of historical tweet count values periodically sam-

pled everyp interval: X
p
τ =

[

Xτ−p ·lp Xτ−p ·(lp−1) · · · Xτ−p ·1
]

.

Similarly, the trend sequence is a lq -long list of historical tweet

count values periodically sampled but every q interval: X
q
τ =

[

Xτ−q ·lq Xτ−q ·(lq−1) · · · Xτ−1·q
]

. In practice, p is set to a

duration of one-day to capture daily periodicity and q to one-week

to reveal weekly trend. Each ofX c
τ ,X

p
τ andX

q
τ is separately fed into

three designated neural networks which share the same structure

but with di�erent weights, to generate separate predictions Y cτ , Y
p
τ

and Y
q
τ , respectively. At last, a parametric-matrix-based fusion is

applied to combine the 3 prediction results, together with the meta-

feature of time, to generate the �nal prediction. In the following,

we will brie�y explain the key stacking blocks in Figure 4, including

the ConvLSTM layer, the ResConvLSTM block and the FC layer.

(1) ConvLSTM layer. �e Convolutional Long Short-TermMemory

(ConvLSTM) was �rst proposed in [20] and is an extension of

FC-LSTM [45]. ConvLSTM innovatively uses a convolution op-

erator in the state-to-state and input-to-state transitions, and

thereby overcomes the traditional LSTM’s ignorance of spatial

information when the temporal sequence is multi-dimensional.

(2) ResConvLSTM block. By adding skip connections directly from

the output of lower layers to the input of higher layers, resid-

ual networks [46] have proven to be e�ective to alleviate the

problem of vanishing gradient in deeper networks during the

training process and achieved signi�cantly be�er performance

in many applications. As shown in Figure 5, the tweet count

prediction model also assemblies a residual block of ResCon-

vLSTM using ConvLSTM layers. �is is a key di�erence from

ST-ResNet [44] which uses a regular convolutional layer.

+BN ReLU CL BN ReLU CL

Figure 5: ResConvLSTM block. BN: Batch Normaliza-

tion; ReLU: Recti�er Linear Unit; CL: ConvLSTM

(3) FC layer. To help capture the regular time-varying changes,

meta-data features such as time-of-day, day-of-week are also

hooked in the model by stacking two fully-connected layers.

�e �rst is an embedding layer for features and the second

maps from low to high dimensions to make the output have

the same shape as the target [44].

In Figure 4, ConvLSTM layers usually have 32 hidden states

except for the output which has 1 to re�ect the tweet count value.

In addition, the size of the �lter in ConvLSTM is set to 3×3, because

the spatial correlation of tweet count data is quite local, i.e., the

number of tweets in a grid cell is correlated with the ones in the

nearby grid cells instead of grid cells farther away [10].

4.1.2 From Prediction To Unusualness. We de�ne the pre-

diction error to be ET = YT −XT , whereXT is the latest tweet count

on a spatial M × N grid and YT is the prediction of XT . ET (m,n)

indicates the prediction error of the grid cell (m,n). Intuitively, a

signi�cant negative ET (m,n) indicates a local event as there were

many more tweets than usual. Following [21], we de�ne precision

of our prediction model to be σET , where σET (m,n) is the standard

deviation of the grid cell (m,n) w.r.t. its history of prediction errors

ET (m,n) = {· · · ET−1(m,n),ET . To account for the precision of the

prediction model, we re-de�ne the prediction error as:

E
′
T = ET ⊘ σET (1)

where ⊘ denotes the element-wise division operation.

To detect unusual grid cells, we utilize an image restoration

framework called Deep Image Prior [47]. Our intuition is that un-

usualness in E
′
T is like spike noise in an image, and Deep Image

Prior can be used to denoise corrupted images without prior knowl-

edge of training data. Suppose that E′′T is the restored image of

E
′
T , and ∆E

′
T = E

′′
T −E

′
T , we claim a grid cell (m,n) is unusual if

|∆E′T (m,n) − µ∆E′T |≥ k∆E′T · σ∆E′T (2)

where µ∆E′T and σ∆E′T are the mean and standard deviation of

grid cells in ∆E′T , respectively. k∆E′T is a prede�ned threshold for

determining the unusualness of a grid cell. Di�erent from [21], our

approach accounts for both history of a grid cell and information

of other cells on the whole region when detecting unusualness in a

location. �is is important in di�erentiating global events which

might cause an unusual number of tweets on a local grid cell.

4.2 Ranker
�e seeker module described above outputs a set of unusual grid

cells. In this section, we make a ranking of these unusual locations

to identify the top ones that are most likely corresponding to the oc-

currence of local events, by addressing temporal burstiness, spatial

burstiness and topical coherence.

In Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Analytics for Local Events and News (LENS 2019), Chicago, IL, November

2019. Article 9.

4.2.1 Temporal Burstiness. For a grid cell (m,n), suppose that

YT (m,n) represents a history of estimations on its number of tweets

up to the time step T , and is de�ned as:

YT (m,n) = {· · ·YT−1(m,n),YT (m,n)} (3)

�en we use z-score to quantify the grid cell (m,n)’s temporal

burstiness [28] at T , denoted as TBT (m,n) and de�ned as:

TBT (m,n) =
XT (m,n) − µYT (m,n)

σYT (m,n)
(4)

where µYT (m,n) and σYT (m,n) are the mean and standard deviation

of YT (m,n), respectively. Recall that XT (m,n) is the actual number

of tweets in grid cell (m,n) at time step T .

4.2.2 Spatial Burstiness. Given a grid cell (m,n), the spatial

burstiness is measured by the spatial density distribution of key-

words of the tweets in (m,n). �e intuition is that a low spatial

density distribution means that the keyword is widely spread over

space and a high distribution means that the keyword occurs only

at a few locations. �erefore, the keywords in local events should

have higher spatial density distribution to be spatially bursty.

Suppose thatDT (m,n) is the tweet set in grid cell (m,n) atT , and

WT (m,n) is the set of keywords (e.g., a�er removing stop words)

in (m,n), i.e.,WT (m,n) = {w | w ∈ txtd and d ∈ DT (m,n)}. Let

SDDw
T
(m,n) be the spatial density distribution of keyword w in

grid cell (m,n) at T , i.e.,

SDDw
T (m,n) =

ofw in grid cell (m,n)
∑

(m′,n′)∈M×N
ofw in grid cell (m′,n′)

(5)

We now de�ne the spatial burstiness of grid cell (m,n) as:

SBT (m,n) =
∑

w ∈WT (m,n)

SDDw
T (m,n) (6)

4.2.3 Topical Coherence. �e topical coherence is to capture

the semantical similarity of tweets in a grid cell. In other words,

the tweets posted on the same event should be discussing similar

content and probably using similar vocabularies. Twee2Vec [48]

learns the vector-space representations of tweets using a character-

based bi-directional recurrent neural network model, and has been

demonstrated to have good performance in the application of clus-

tering semantically similar tweets together [49]. To measure the

topical similarity between tweets, we use Tweet2Vec implementa-

tion1 to encode a textual tweet in character sequence to a vector

embedding with a default dimension size of 500.

Let TS(d ′,d ′′) be the topical similarity between tweets d ′ and

d ′′. To measure the topical coherence of the tweets in cell (m,n),

we construct a graph, called Tweet In�uence Graph.

De�nition 4.2. (Tweet In�uence Graph). �e tweet in�uence

graph on the grid cell (m,n) at T , is an undirected graph GT =

(VT ,ET) where VT is the set of all tweets in DT (m,n), ET is the set

of edges between tweets, and the weight of an edge between d ′ and

d ′′ is their topical similarity TS(d ′,d ′′).

We now employ PageRank [50], a randomwalk procedure, on the

tweet in�uence graph to bring orders to the in�uence of tweets in

DT (m,n) and thus identify the top k tweets with the most in�uence,

denote by Dk
T
(m,n). �e topical coherence is thus de�ned as:

TCT (m,n) =

∑

d ′∈Dk
T
(m,n),d ′′∈Dk

T
(m,n)

TS(d ′,d ′′)

k2
(7)

1h�ps://github.com/vendi12/tweet2vec clustering

�e rationale is that if the tweets in DT (m,n) are about the same

local event, the most topically in�uential tweets should have higher

topical similarity between each other. One may point out that such

a topical coherence measurement would suppress a grid cell having

multiple topically unrelated ongoing events. We argue that such a

case is very rare with a �ne space and time discretization.

4.2.4 Ranking Function. As the �nal step, we now de�ne the

ranking score of the grid cell (m,n) by aggregating its temporal

burstiness, spatial burstiness and topical coherence, a�er rescaling

them to [0, 1] with respect to other grid cells:

RT (m,n) = TB
′
T (m,n) · SB

′
T (m,n) ·TC

′
T (m,n) (8)

where TB′
T
(m,n) = (TBT (m,n) − TB

min
T

)/(TBmax
T

− TBmin
T

) with

TBmax
T

and TBmin
T

being the maximum and minimum of topical

burstiness among all grid cells at T . Spatial burstiness and topical

coherence are rescaled in the same way, receptively.

4.3 Expander
Suppose that we choose the top K unusual grid cells a�er ranking

at T , and claim that they are the candidates most likely to be local

events in DT . In reality, di�erent local events might have di�erent

spatial and temporal ranges, e.g., spanning over a larger region

than the grid cell size ∆l ∗ ∆l or for a longer duration than the time

discretization interval ∆t . We therefore, in this section, try to infer

the spatiotemporal range of these local event candidates.

�e basic idea of expander is to connect (spatially or temporally)

nearby grid cells if they share similar content. As presented in Al-

gorithm 1, the expansion consists of two parts: temporal expansion

and spatial expansion. �e temporal expansion checks whether the

occurrence of previous event candidates continues to the present,

and updates them if so. �e spatial expansion examines whether

nearby grid cells are relevant to the same event.

During the expansion, for each event candidate, we maintain a

grid cell as its event-focus grid cell. �e event-focus grid cells are

initially set to be the most unusual cells (i.e., the top ranking cells

in Equation 8). As time proceeds, the event-focus grid cell of an

event might stay at the same grid cell (e.g., a sit-down protest), or

move to another one (e.g., a demonstration protest), or simply no

longer exists (e.g., the ending of an event). Meanwhile, new event-

focus grid cells might join as well if new events happen. Note that

during the spatial expansion, several event-focus grid cells might

exist adjacently and need to be merged if they are about the same

content. For a given cell (m,n), we denote by SECT (m,n) (Spatial

Expansion Cells) the cells for it to examine for spatial expansion atT ,

and similarly TECT (m,n) (Temporal Expansion Cells) for temporal

expansion. SECT (m,n) and TECT (m,n) are de�ned as follows.
SECT (m,n) = {(m ± i,n ± j)T | i, j ∈ {−1, 0, 1}} \ {(m,n)T }

TECT (m,n) = SECT (m,n) ∪ {(m,n)T }
(9)

�e spatial range for expansion is currently set to adjacent cells

incident at an edge or vertex and can extend further if necessary.

Whether or not two adjacent grid cells are connected depends

on their content similarity. We treat each grid cell containing

its tweets as a document and thus build a term-document matrix.

In this matrix, each row represents a token (non-stop words) in

tweets, each column represents a document, i.e., a grid cell, and each

element can refer to the token frequency (or TF-IDF) per document.

Next, the content similarity between two grid cells can be calculated

https://github.com/vendi12/tweet2vec_ clustering

In Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Analytics for Local Events and News (LENS 2019), Chicago, IL, November

2019. Article 9.

Algorithm 1: Expander

Input: CT−1 — the set of event-focus grid cells at time T − 1,
C ′
T
— the top K ranking grid cells at time T (i.e., the

newly identi�ed event-focus grid cells), εcs — content
similarity threshold.

Output: �e updated event-focus grid cells CT at time T
/* Temporal Expansion */

1 foreach event-focus grid cell (m,n)T−1 ∈ CT−1 do
// TCCT (m,n) are the grid cells at time T
// that are temporally connected to (m,n)T−1

2 TCCT (m,n)←− { c | c ∈ TECT (m,n),
εcs ≤ ContentSimilarity(c, (m,n)T−1)} ;

3 if TCCT (m,n) 6= Ø then
4 c ′ = argmax

c ∈TCCT (m,n)
ContentSimilarity(c, (m,n)T−1) ;

// c ′ is now a new event-focus grid cell
// transited from (m,n)T−1

5 C ′
T
←− C ′

T

⋃

{c ′};

/* Spatial Expansion */

6 foreach event-focus grid cell (m,n)T ∈ C
′
T
do

// SCCT (m,n) are the grid cells at time T
// that are spatially connected to (m,n)T

7 SCCT (m,n)←− { c | c ∈ SECT (m,n),
εcs ≤ ContentSimilarity(c, (m,n)T)} ;

// If (m,n)T is spatially connected to other
// event-focus grid cells, merge them.

8 if SCCT (m,n)
⋂

C ′
T
6= Ø then

9 Temp = (SCCT (m,n)
⋂

C ′
T
)
⋃

{(m,n)T };

10 c ′ = argmax
c ∈T emp

TopicalCoherence(c) ;

11 C ′
T
←− (C ′

T
\Temp)

⋃

{c ′};

12 return C ′
T

by their corresponding column vectors under the metric of cosine

similarity. More advanced document similarity techniques such

as Latent Semantic Analysis (LSA) [51] may further be applied

on the term-document matrix to measure the similarities between

documents at a lower rank. It is, however, usually a time-consuming

process due to the introduction of Singular Value Decomposition

(SVD). For approximation as well as e�ciency, we limit each column

vector to contain the information on its most frequent kcs tokens

during cosine similarity calculation, where kcs is a prede�ned value.

4.4 Summarizer
�e module of summarizer selects the most representative tweets

from a cluster of tweets in an event, and thereby produce a succinct

description. When summarizing an event across several time steps,

the tweets at the latest time step T are preferred to earlier ones in

order to re�ect the newest dynamic updates on events.

�e general idea of event summarization expects that the tweets

associated with the event demonstrate a meaningful description

of the event for human consumption [21]. For this purpose, we

exploit the most in�uential tweets in the grid cells. As discussed

in Section 4.2.3, Dk
T
(m,n) consists of the top k tweets with the

most in�uence at the grid cell (m,n). �e summarization works as

follows. First, if an event is limited to one grid cell, then its top k

tweets are the summarization set of tweets. i.e., Dk
T
(m,n). Second,

if an event impacts several grid cells, then we look at the top grid

cells with the largest topical coherence scores de�ned in Equation 7

to select which tweets to form the summarization. To be speci�c,

suppose that an event e’s spatial impact atT consists of a set of grid

cells, denoted by SIe
T
. �e subset of SIe

T
used for summarization is

de�ned as:
SISume

T = {(mi ,ni)| i = 1 · · · k ′} (10)

where 1 ≤ k ′ ≤ k , specifying that the summarization tweets are

only from the top-k ′ grid cells with the largest topical coherence

scores in SIe
T
. �e topical coherence score in each grid cell weighs

how many tweets it will contribute to the summarization. For

example, letTCT (m
i ,ni) be the i-th largest topical coherence score,

then the number of tweets its grid cell (mi ,ni) should contribute is:

ki = round(
TCT (m

i ,ni)
∑k ′

1 TCT (mi ,ni)
) ∗ k . (11)

And suchki tweets come from the topk in�uential tweets in (mi ,ni),

denoted by Dk i

T
(mi ,ni). �erefore, the summarization tweet set is:

SumTweetseT =
k ′
⋃

i

Dk i

T (mi ,ni) (12)

5 ONLINE MODIFICATIONS
In this section, we present the modi�cations that allow DeLLe to

process tweets in an approximately online way. �e major modi-

�cation is to utilize a continuous moving sliding window instead

of disjoint intervals of time. For example, suppose that the current

time is t , the window length is ∆t , and the current sliding window

is at [t − 2∆t , t − ∆t). �en the next sliding window to consider

in the online processing is at [t − 2∆t + ∆s, t − ∆t + ∆s), instead of

[t − ∆t , t) as in the batch mode. ∆s denotes the moving step length

in the sliding window. In what follows, we describe the changes to

the modules in the batch mode needed to enable online processing.

Seeker In the online processing, with a small moving step ∆s ,

two consecutive sliding windows mostly overlap each other and

might present li�le di�erence. Consequently, if the prediction

model takes the previous consecutive windows as the input, it

probably generates a prediction very similar to the current sliding

window and thus fails to detect anomalous aggregation of tweets.

�erefore, to make predictions in the online processing, we still use

the data in the previously disjoint time interval as the input. For

example, the last time interval in the closeness sequence used for

predicting the tweet count at [t − ∆t , t) is [t − 2∆t , t − ∆t), instead

of [t − ∆t − ∆s, t − ∆s), which is the last sliding time window.

Ranker As the sliding window proceeds, the tweets in the grid

cells may also change, as well as the scoring factors in the ranking

Equation 8. Recalculating some scores like spatial burstiness and

topical coherence from scratch can be very time-consuming. �ere-

fore, we leverage historical results to update the changes caused by

inserting new tweets as well as deleting old tweets. For example,

in updating the spatial burstiness scores, the system maintains a

keyword list which speci�es the frequency of a keyword’s appear-

ance in each grid cell. �us, only simple addition or subtraction

is necessary for updating frequencies of words. �e more com-

plex changes come from updating the scores of topical coherence as

the tweet in�uence graph may evolve when inserting new tweets

or deleting obsolete tweets. To handle such changes, we exploit

OSP [52], a fast random walk algorithm on dynamic graphs using

O�set Score Propagation. �e core idea of OSP is to �rst calculate

an o�set seed vector based on the adjacency di�erence between

In Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Analytics for Local Events and News (LENS 2019), Chicago, IL, November

2019. Article 9.

(a) (b)
Figure 6: (a) 12 × 12 grid map in Seattle. (b) 46 × 46 grid map in NYC.

old and new graphs.Next, such a seed vector is propagated across

the new graph, resulting in o�set scores. Finally, OSP adds up the

old and o�set random walking scores to get the �nal scores.

Expander �e most time-consuming part in this module is cal-

culating the content similarities between grid cells using their most

frequent keywords, which may change as news tweets come in

or old tweets go away. For a fast implementation, each grid cell

maintains a local heap to track the top frequent keywords in it.

Summarizer�e summarizer is easy to modify for online pro-

cessing because the topical coherence of each grid cell and its most

in�uential tweets have already been calculated in the modi�ed

ranker module. �erefore, the essential task is to, for each event,

maintain a list of top-k ′ grid cells with the largest topical coherence

scores, by using a priority queues.

6 EVALUATION
DeLLe is implemented in Python and evaluated on a computer

with an Intel Xeon E5 CPU, an Nvidia�adro P6000 GPU and 64GB

memory. �e tweet count prediction model is built using Keras [53].

6.1 Experimental Settings
6.1.1 Datasets. �e evaluation is performed on two sets of geo-

tagged tweets collected from 2015-07-09 to 2017-07-23 in two cities:

Sea�le, WA (SEA) and New York City (NYC) [10]. �eir geograph-

ical regions are two bounding boxes spanning from [47.579784, -

122.373135] to [47.633604, -122.293062] in SEA, and from [40.647984,

-74.111093] to [40.853945, -73.837472] in NYC as illustrated in Fig-

ure 6. �e total number of tweets a�er removing spam tweets [10],

is 756, 457 and 9, 353, 721, respectively. We take the data from 2017-

06-23 to 2017-07-23 for testing and local event detection, and its

previous data for training the tweet count prediction model.
6.1.2 Baseline Approaches. �e baseline approaches are below:

• EvenTweet [16] �rst identi�es temporal bursty keywords and

spatial local keywords and then clusters them to �nd local events.

• Eyewitness [21] �nds tweet volume spikes in discretized time and

space as potential local events by comparing the actual number

of tweets with the predicted value using a regression model.

• GeoBurst [28] �rst generates candidate events by seeking pivot

tweets based on geographical and semantic similarities and then

ranks them with spatiotemporal burstiness to remove noisy ones.

• TrioVecEvent [24] �rst learnsmultimodal embeddings of tweets

on the domains of location, time, and text and then uses a Bayesian

mixture clustering model to �nd event candidates.

6.1.3 Parameter Se�ings. We run DeLLe in its batch mode by

default and will evaluate its di�erence from the online processing

in Section 5. �e major parameters in DeLLe are set as follows. For

space and time, we set the side length of grid cells ∆l = 500m and

the length of time interval ∆t = 30 minutes (by dividing a natural

integral hour into two intervals) since such values provide �ne

enough resolution for local event detection as well as yield good

performance for tweet count prediction [10]. As a result, we have

a 12 × 12 grid map in SEA and 46 × 46 in NYC. For the moving

step length in sliding windows, we set ∆s = 5 minutes, which is

long enough for the online processing latency in our system. In

the seeker module, we set the length of closeness, period and trend

to lc = 3, lp = 1 and lq = 1 as in [10] because such a se�ing

achieves the best prediction accuracy. We set the threshold for

determining the unusualness of a grid cell k∆E′T = 3, a commonly

used value for anomaly detection. As for the PageRank procedure to

calculate topical coherence in the ranker module, we use the default

damping factor 0.8 and run 20 iterations in all cases. A�er tuning, in

calculating content similarity between grid cells for expansion, we

set the number of frequent tokenskcs to 5 and the content similarity

threshold εcs to 0.7. We set k = 5 as the number of the most

in�uential tweets used for calculating the topical coherence as well

as the number of tweets used to summarize a local event [21, 28].

In each time interval, we select at most K = 5 unusual grid cells

as the local event candidates. Because not every time interval

does necessarily have K local events happening, we apply a simple

heuristic for suppressing the negative candidates. It removes grid

cells having too few users (i.e., less than 5) or having a topical

coherence score less than 0.8, which is a suggested lower bound

for tweet clustering using Tweet2Vec [48, 49]. For fairness, we also

similarly �lter out the event candidates with less than 5 users for

the baseline approaches as well in the evaluation.

EvenTweet takes the same space partition as in DeLLe and

similarly selects the top K local event candidates. Since each event

in EvenTweet is a cluster of keywords instead of tweets, we use the

implementation in [28] to retrieve the top k representative tweets.

Eyewitness exhaustively sweeps through a set of di�erent space

and time discretization and is unsuitable for processing live tweet

streams. We ease its se�ings by using the same space and time

discretizations in the batch mode ofDeLLe. To select the topK local

event candidates, we rank them by the prediction error divided by

the standard deviation of the error of its regression function, which

has shown to be an important feature in classifying events to be

postivie or negative [21]. A�er that, each local event is represented

by by choosing k = 5 tweets with the highest frequency words.

For GeoBurst and TrioVecEvent, we adopt their default pa-

rameter se�ings and implementations in [28] and [24], respectively.

Since both methods require an input time window to query the

occurrence of local events, we set it as a list of disjoint ∆t-size win-

dows like the time discretization inDeLLe’s batch mode and choose

the top K candidates for comparison. Note that TrioVecEvent

also classi�es an event candidate to be true or false, we therefore

use the spatial deviation (i.e., lat/long deviations, which are the two

most important features in their classi�er) to rank local events.

6.2 Illustrative Cases
We select several positive and negative examples of local event

detection and present them in Figure 7 and Figure 8, respectively.

Each example is described by 5 representative tweets with locations

plo�ed as red circles in the accompanying maps. Ahead of each

In Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Analytics for Local Events and News (LENS 2019), Chicago, IL, November

2019. Article 9.

(a) A baseball game of Yankees-Mariners at Safeco Field (2017-07-20 7:00 PM). (b) NYC Pride March traversing down Fi�h Avenue (2017-06-25 10:30 AM).

Figure 7: Examples of true local events. �e le� is in Seattle, WA, and the right is in New York City, respectively.

(a) People talking about food near the Space Needle (2017-07-22 4:30 PM). (b) People waiting for 4th of July �reworks at East River (2017-07-04 5:00 PM).

Figure 8: Examples of false local events. �e le� is in Seattle, WA, and the right is in New York City, respectively.

tweet is its publisher’s username. Note that multiple tweets may

reside at the same location causing overlapping and dark red circles.

Figure 7 illustrates two positive local events reported in DeLLe.

Figure 7a is about a baseball game between the Yankees and the

Mariners held at the Safeco Field in Sea�le. Figure 7b is about

NYC Pride March 2017 traversing southward down Fi�h Avenue

in New York City. �ose two events are very demonstrative as

examples of local events because they have exhibited the necessary

properties DeLLe wants to capture: spatiotemporal unusualness re-

garding the number of tweets at a local place and topical coherence

regarding the content of aggregated tweets. �e tweets selected to

describe the events are also representative to convey the necessary

information. It is worth mentioning that the tweets in Figure 7a fall

closely to the common border of two neighboring grid cells. �e

expander module in DeLLe e�ectively captures this case by con-

necting spatiotemporally adjacent grid cells sharing similar content.

�ese two examples also appeared in the baseline approaches.

Figure 8 presents two cases of negative local events reported in

EvenTweet and Eyewitness, respectively. Figure 8a refers to an

activity about people talking food near the Space Needle in Sea�le,

WA. EvenTweet reported this activity as a local event since it

�nds some spatiotemporal bursty keywords like “Bite”. �is is

because, when the day comes around dinner time, that area seems

to be a popular place for people to eat and thereby aggregates

tweets with similar keywords about food. Likewise, GeoBurst

also falsely reported a related geo-topic cluster because it groups

together tweets mentioning similar keywords on the topic and

locating geographically closely. Although such an activity may

a�ract enough tweets at a high rate at certain time (e.g., dinner

time in the example), it usually follows a periodic daily pa�ern

and does not re�ect any unusual event. Neither Eyewitness or

our method DeLLe reported this activity because both of them

take routine pa�erns into consideration. Similarly, TriVecEvent

classi�ed it as a non-local event too. �is is because its multimodal

embedding model also addresses the e�ect of time in tweets and

unveils typical words in di�erent regions and time periods.

Figure 8b is an example of negative local event reported in

Eyewitness. It is about people waiting for the 4th of July �reworks

show at East River Ferry Dock in New York City. �is is more like

a national event in the United States because �reworks show on

Independence Day may happen at di�erent places in a nationwide

scale. When it comes close to the evening, one may expect that

tweets about �reworks suddenly increase all over the country. Both

GeoBurst and TrioVecEvent reported this nationwide event too.

�is is because such an event is also geographically compact and

more importantly, semantically coherent. In contrast, we do not

�nd the occurring grid cell of this event ranked in the top unusual

grid cell candidates in our method DeLLe. �ere are three reasons

behind this. First, the likelihood of unusualness in this grid cell was

not high considering that other places were experiencing similar

burstiness in tweet volume. Second, the spatial burstiness was not

strong either because similar keywords were being used every-

where. �ird, the topical coherence in this grid cell deteriorated

due to the presence of lots of other tweets like “@511NY Cleared:

Incident on #ServiceBus at Midtown”. EvenTweet did not report

this event either because the keyword like “�reworks” and “july4th”

appeared adequately in other regions too and thus was considered

not to be local to this event’s occurring site.

6.3 �antitative Analysis
Table 2: Comparison results using Precision, Recall and F-Score.

Method
Sea�le, WA NYC

P R F # P R F
EvenTweet 354 0.391 0.390 0.390 1665 0.146 0.131 0.138
Eyewitness 273 0.769 0.593 0.670 1204 0.614 0.398 0.483
GeoBurst 354 0.517 0.517 0.517 1665 0.203 0.182 0.192
TrioVecEvent 240 0.858 0.582 0.694 1214 0.704 0.461 0.557
DeLLe 269 0.862 0.655 0.745 1128 0.741 0.450 0.560

6.3.1 E�ectiveness. We �rst evaluate the di�erent local event

detection methods using precision, recall and f-score. For precision,

we recruited 3 volunteers to individually judge the detected events

In Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Analytics for Local Events and News (LENS 2019), Chicago, IL, November

2019. Article 9.

and collect the results using the strategy of majority votes2. In lack

of groundtruth on the set of events happened in the real world,

we build a pseudo groundtruth by assembling a set of distinct true

positive local events reported in di�erent methods to calculate the

recall and f-score. �e comparison results are listed in Table 2. It

shows that DeLLe outperforms baseline approaches in most cases.

In particular, a signi�cant improvement is observed over Even-

Tweet and GeoBurst. DeLLe also achieves comparatively be�er

results to Eyewitness, showing the e�ectiveness of its unusualness

detection and consideration of topical coherence. We notice that

TrioVecEvent outperforms all other methods except for the pro-

posed one, showing its e�ectiveness of multimodal embedding of

location, time and text information in tweets.

0.887

0.818

0.869

0.785

0.862

0.768

0.862

0.76

0.862

0.741

1 2 3 4 5

K

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0
1

2
0

0

N
u

m
b

e
r

o
f

e
v
e

n
ts

Positive events in SEA

Positive events in NYC

Negative events

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13

Number of grid cells / time intervals

0
2

0
0

4
0

0
6

0
0

8
0

0

N
u

m
b

e
r

o
f

p
o

s
it
iv

e
 e

v
e

n
ts

Spatial Region Size in SEA

Temporal Size in SEA

Spatial Region Size in NYC

Temporal Size in NYC

(b)
Figure 9: (a) Precision with di�erent K values. (b) Temporal span

and spatial region size of positive local events in DeLLe.

To evaluate the sensitivity of K , Figure 9a illustrates the number

of positive local events out of the total detected ones in DeLLe

when K varies. �e decimal number above each bar represents

the precision. In general, the precision decreases as K increases

because a larger K likely outputs more negative local events, even

thought it may also give more positive ones. We notice that the

precision and the number of positive local events nearly maintain

the same in SEA a�er K = 2 and NYC a�er K = 3.

Figure 9b plots the distributions of positive local events inDeLLe

regarding the temporal span (i.e., number of time intervals) and

spatial region size (i.e., number of grid cells). �e results show

that majority of the events fall within one single time interval and

one grid cell. �is validates our se�ings in the time and space

discretization.

6.3.2 E�iciency. To investigate the e�ciency, a�er each time

interval ends, we record the time spent in processing the tweets

aggregated during that interval for the 5 di�erent methods. �e

results are reported on the NYC dataset as it contains relatively

more tweets. �e total number of time intervals is 1, 488.

2�e instructions given to the judges are summarized at h�p://www.cs.umd.edu/∼hyw/
instructions-local-events.txt

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Time (seconds)

1
0

0
1
0

1
1
0

2
1
0

3

N
u

m
b

e
r

o
f

b
a

tc
h

e
s
 (

ti
m

e
 i
n

te
rv

a
ls

)

Our Method
EvenTweet
Eyewitness
GeoBurst
TrioVecEvent

(a) (b)
Figure 10: Distributions on the numbers of time intervals over their

processing times in (a), and over their number of tweets in (b).

Figure 10a presents the distributions of time intervals over their

processing time in di�erent methods. To have an idea of the number

of tweets in each time interval, we plot its histogram in Figure 10b.

Among the three methods that exploit space partition strategy

(i.e., EvenTweet, Eyewitness and DeLLe), Eyewitness in general

is the most e�cient method because it does not require sophisti-

cated tweet text processing except when summarizing its detected

event. DeLLe has achieved similar e�ciency with Eyewitness in

majority cases, even though a few of the cases sometimes take as

long as 15 seconds. �e major overhead lies in computing topical

coherence in the ranker module as well as content similarity in the

expander module. �ese steps, however, are only necessary when

an unusual grid cell appears. Simply running the seeker module

to identity potential local event candidates is very fast and takes

0.06 seconds on the average. EvenTweet is less e�cient than the

other methods due to its calculation of spatial entropy to identify

spatially local keywords and then performing clustering. Although

GeoBurst and TrioVecEvent have excellent e�ciency as well,

their implementations [24, 28] require certain preprocessing steps

on the tweets like extracting keywords and keyword co-occurrence

relation, which would take considerably more time.

6.4 Online Modi�cations
�e batch mode of DeLLe divides the temporal dimension into

disjoint time intervals, i.e., {· · · [t − 2∆t , t − ∆t), [t − ∆t , t)}. In

practice, some local events may fall across these interval boundaries.

We made online modi�cations in Section 5 for handling this issue.

In this section, we investigate the e�ectiveness and e�ciency of

these modi�cations on the NYC dataset.

(a)

1 3 5 7 9 11 13 15 17 19

Time (seconds)

1
0

0
1
0

1
1
0

2
1
0

3
1
0

4

N
u

m
b

e
r

o
f

s
lid

in
g

 t
im

e
 w

in
d

o
w

s

(b)
Figure 11: (a) Venn diagram on the sets of events in batch mode and

online mode. (b) Distribution of time spent in online mode.

E�ectiveness is evaluated by examining how many local events

detected in the batchmode are also detected in the online processing

and meanwhile how many local events the batch mode misses. For

comparison, we here claim that two local event candidates refer

to the same occurrence if i) their content similarity is greater than

0.7; ii) their time centroids (i.e., the average publish time of the

tweets) are within 2∆t (i.e., one hour); iii) they come from the

same grid cell. Figure 11a shows the Venn diagram of di�erent

sets of local event candidates generated in batch and online mode.

For comparison, we also include one variant of the batch mode,

called Batch 1
2∆t

, which o�sets the disjoin time intervals by 1
2∆t ,

i.e, {· · · [t − 5
2∆t , t −

3
2∆t), [t −

3
2∆t , t −

1
2∆t)}. �e Venn diagram

shows that the online mode, with help of the �exible sliding time

window, has chances to screen di�erent interval se�ings on the

temporal dimension and indeed discovers more local events. We

http://www.cs.umd.edu/~hyw/instructions-local-events.txt
http://www.cs.umd.edu/~hyw/instructions-local-events.txt

In Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Analytics for Local Events and News (LENS 2019), Chicago, IL, November

2019. Article 9.

also found that Batch 1
2∆t

has slightly more events than the original

batch mode (i.e., dividing an integral hour into two time intervals).

�is is reasonable in the sense that although the la�er time division

�ts more with the habits of people for planning events, people are

likely to post tweets before an event starts when they have chances.

For evaluating the e�ciency, we similarly record the processing

time for each step in the sliding moving window. �e results are

presented in Figure 11b. Generally, the online processing shows a

similar trend with the batch mode except with more cases falling

a�er 10 seconds. A�er analyzing, we found that the major over-

head lies in the frequent invocation of the expansion procedure

to connect temporally adjacent cells that are semantically similar.

Even so, the worst case takes less than 20 seconds in general and is

likely acceptable for many applications.

7 CONCLUSIONS
In this paper, we presented DeLLe for detecting latest local events

in geotagged tweet streams. In essence, DeLLe �rst identi�es spa-

tiotemporal unusualness using a novel prediction-based anomaly

detection approach, and subsequently ranks them to identify poten-

tial local events, by addressing both spatiotemporal burstiness and

topical coherence. A�erwards, DeLLe monitors the impact range

for an ongoing local event in space and time by tracking its move-

ment with content similarity, and meanwhile selects in�uential

tweets for summarization. �e evaluation results on two selected

cities show that DeLLe outperforms competitive baselines in most

cases, showing the e�ectiveness of the proposed method.

�e human evaluation yields a groundtruth of local events, and

therefore enables the exploration of learning to classify spatiotem-

poral unusualness into true/false local events using features like

burstiness and topical coherence. We leave this for our future work.

8 ACKNOWLEDGEMENT
�isworkwas supported in part by the National Science Foundation

under grant IIS-1816889.

REFERENCES
[1] N. Gramsky and H. Samet. Seeder Finder: Identifying Additional Needles in the

Twi�er Haystack. LBSN ’13.
[2] J. Sankaranarayanan, H. Samet, B. E. Teitler, et al. Twi�erStand: News in Tweets.

SIGSPATIAL ’09.
[3] H. Samet, J. Sankaranarayanan, M. D. Lieberman, et al. Reading News with Maps

by Exploiting Spatial Synonyms. Commun. ACM, 2014.
[4] H. Samet, M. D. Adel�o, B. C. Fruin, et al. Porting a Web-based Mapping

Application to a Smartphone App. SIGSPATIAL ’11.
[5] H. Samet, B. E. Teitler, M. D. Adel�o, et al. Adapting a Map �ery Interface for

a Gesturing Touch Screen Interface. WWW ’11.
[6] M. D. Lieberman, H. Samet, and J. Sankaranayananan. Geotagging: Using

Proximity, Sibling, and Prominence Clues to Understand Comma Groups. GIR
’10.

[7] M. D. Lieberman and H. Samet. Multifaceted Toponym Recognition for Streaming
News. SIGIR ’11.

[8] M. D. Lieberman and H. Samet. Adaptive Context Features for Toponym Resolu-
tion in Streaming News. SIGIR ’12.

[9] H. Wei, J. Sankaranarayanan, and H. Samet. Finding and Tracking Local Twi�er
Users for News Detection. SIGSPATIAL ’17.

[10] H. Wei, H. Zhou, J. Sankaranarayanan, et al. Residual Convolutional LSTM for
Tweet Count Prediction. WWW ’18 Companion.

[11] H. Wei, H. Zhou, J. Sankaranarayanan, et al. Detecting Latest Local Events from
Geotagged Tweet Streams. SIGSPATIAL ’18.

[12] H. Wei, J. Sankaranarayanan, and H. Samet. Enhancing Local Live Tweet Stream
to Detect News. ACM SIGSPATIAL LENS ’18.

[13] G.�ercini, H. Samet, J. Sankaranarayanan, et al. Determining the Spatial Reader
Scopes of News Sources Using Local Lexicons. GIS ’10.

[14] A. Jackoway, H. Samet, and J. Sankaranarayanan. Identi�cation of Live News
Events Using Twi�er. LBSN ’11.

[15] M. Mathioudakis and N. Koudas. Twi�erMonitor: Trend Detection over the
Twi�er Stream. SIGMOD ’10.

[16] H. Abdelhaq, C. Sengstock, and M. Gertz. EvenTweet: Online Localized Event
Detection from Twi�er. PVLDB ’13.

[17] T. Lappas, M. R. Vieira, D. Gunopulos, et al. On the Spatiotemporal Burstiness of
Terms. PVLDB ’12.

[18] Q. He, K. Chang, and E.-P. Lim. Analyzing Feature Trajectories for Event Detec-
tion. SIGIR ’07.

[19] H. Abdelhaq, M. Gertz, and C. Sengstock. Spatio-temporal Characteristics of
Bursty Words in Twi�er Streams. SIGSPATIAL’13.

[20] X. Shi, Z. Chen, H. Wang, et al. Convolutional LSTM Network: A Machine
Learning Approach for Precipitation Nowcasting. NIPS ’15.

[21] J. Krumm and E. Horvitz. Eyewitness: Identifying Local Events via Space-time
Signals in Twi�er Feeds. SIGSPATIAL ’15.

[22] F. Atefeh andW. Khreich. A Survey of Techniques for Event Detection in Twi�er.
Comput. Intell., 31(1):132–164, February 2015.

[23] H. Abdelhaq. Localized Events in Social Media Streams: Detection, Tracking, and
Recommendation. PhD thesis, Heidelberg University, November 2015.

[24] C. Zhang, L. Liu, D. Lei, et al. TrioVecEvent: Embedding-Based Online Local
Event Detection in Geo-Tagged Tweet Streams. KDD ’17.

[25] L. Hong, A. Ahmed, S. Gurumurthy, et al. Discovering Geographical Topics in
the Twi�er Stream. WWW ’12.

[26] X. Zhou and L. Chen. Event Detection over Twi�er Social Media Streams. VLDB,
23(3):381–400, June 2014.

[27] W. Wei, K. Joseph, W. Lo, et al. A Bayesian Graphical Model to Discover Latent
Events from Twi�er. ICWSM ’15.

[28] C. Zhang, G. Zhou, Q. Yuan, et al. GeoBurst: Real-Time Local Event Detection
in Geo-Tagged Tweet Streams. SIGIR ’16.

[29] C. Zhang, D. Lei, Q. Yuan, et al. GeoBurst+: E�ective and Real-Time Local Event
Detection in Geo-Tagged Tweet Streams. ACM TIST ’18.

[30] M. Walther and M. Kaisser. Geo-spatial Event Detection in the Twi�er Stream.
ECIR ’13.

[31] A. Boe�cher and D. Lee. EventRadar: A Real-Time Local Event Detection Scheme
Using Twi�er Stream. GreenCom ’12.

[32] A. Magdy, M. F. Mokbel, S. Elnikety, et al. Mercury: A Memory-Constrained
Spatio-temporal Real-time Search on Microblogs. ICDE ’14.

[33] A. Magdy, A. M. Aly, M. F. Mokbel, et al. GeoTrend: Spatial Trending�eries
on Real-time Microblogs. SIGSPATIAL ’16.

[34] R. Lee and K. Sumiya. Measuring Geographical Regularities of Crowd Behaviors
for Twi�er-based Geo-social Event Detection. LBSN ’10.

[35] Z. Liu, Y. Huang, and J. R. Trampier. LEDS: Local Event Discovery and Summa-
rization from Tweets. SIGSPATIAL ’16.

[36] A. Marcus, M. S. Bernstein, O. Badar, et al. Twitinfo: Aggregating and Visualizing
Microblogs for Event Exploration. CHI ’11.

[37] J. Weng and B.-S. Lee. Event Detection in Twi�er. ICWSM ’11.
[38] W. Kang, A. K. H. Tung, F. Zhao, et al. Interactive hierarchical tag clouds for

summarizing spatiotemporal social contents. ICDE ’14.
[39] A. Skovsgaard, D. Sidlauskas, and C. S. Jensen. Scalable top-k spatio-temporal

term querying. ICDE ’14.
[40] K. Y. Kamath, J. Caverlee, K. Lee, et al. Spatio-temporal Dynamics of Online

Memes: A Study of Geo-tagged Tweets. WWW ’13.
[41] K. Watanabe, M. Ochi, M. Okabe, et al. Jasmine: A Real-time Local-event

Detection System Based on Geolocation Information Propagated to Microblogs.
CIKM ’11.

[42] C. Jonathan, A. Magdy, M. F. Mokbel, et al. GARNET: A holistic system approach
for trending queries in microblogs. ICDE ’16.

[43] J. Zhang, Y. Zheng, D. Qi, et al. DNN-based Prediction Model for Spatio-temporal
Data. SIGSPATIAL ’16.

[44] J. Zhang, Y. Zheng, and D. Qi. Deep Spatio-Temporal Residual Networks for
Citywide Crowd Flows Prediction. AAAI ’17.

[45] A. Graves. Generating Sequences With Recurrent Neural Networks. CoRR ’14.
[46] K. He, X. Zhang, S. Ren, et al. Deep Residual Learning for Image Recognition.

CVPR ’16.
[47] D. Ulyanov, A. Vedaldi, and V. S. Lempitsky. Deep Image Prior. CVPR ’17.
[48] B. Dhingra, Z. Zhou, D. Fitzpatrick, et al. Tweet2Vec: Character-BasedDistributed

Representations for Social Media. ACL ’16.
[49] S. Vakulenko, L. Nixon, and M. Lupu. Character-based Neural Embeddings for

Tweet Clustering. SocialNLP ’17.
[50] L. Page, S. Brin, R. Motwani, et al. �e PageRank Citation Ranking: Bringing

Order to the Web. Technical report, Stanford InfoLab, 1999.
[51] T. Landauer, P. Foltz, and D. Laham. An introduction to latent semantic analysis.

Discourse processes, 25:259–284, 1998.
[52] M. Yoon, W. Jin, and U. Kang. Fast and Accurate Random Walk with Restart on

Dynamic Graphs with Guarantees. WWW ’18.
[53] F. Chollet et al. Keras. h�ps://github.com/fchollet/keras, 2015.

https://github.com/fchollet/keras

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Problem
	3.2 System Overview

	4 The Batch Mode
	4.1 Seeker
	4.2 Ranker
	4.3 Expander
	4.4 Summarizer

	5 Online Modifications
	6 Evaluation
	6.1 Experimental Settings
	6.2 Illustrative Cases
	6.3 Quantitative Analysis
	6.4 Online Modifications

	7 Conclusions
	8 Acknowledgement
	References

