
equivalent to the task of verifying an inequality propo- 
sition regarding the minimax value of a continuous- 
valued game tree [5] of identical structure, and, conse- 
quently, the former cannot be more complex than the 
latter. Thus, the quantity (~Jl  - ~n)d should also lower 
bound the expected number of nodes examined by any 
algorithm searching a continuous-valued game tree. 
This, together with Eq. (18), establishes the asymptotic 
optimality of a-ft. 
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Measures  for evaluating solutions to the line division 
problem in computer justified text are presented. They 
are based on the belief that documents tend to have a 
more pleasing visual appearance when the deviation be- 
tween interword breaks in a paragraph is reduced. This 
effect is achieved by not placing the maximum number of 
words on each line. The measures are variations on the 
variance of  the number of  extra spaces per interword 
break in a paragraph. They are applicable to both fixed 
and variable width fonts. One of  the measures is exam- 
ined in greater detail. It has the property that a lower 
bound can be computed, thereby indicating when further 
rearrangement of  the text is futile. Several text rear- 
rangement algorithms are proposed that make use of  this 
measure. 

CR Categories and Subject Descriptors: 1.7.2 [Text 
Processing]: Document  Preparation--format and nota- 
tion, photocomposition; H.4 [Information Systems Appli- 
cation]: Office Automation--wordprocessing 

General Term: Algorithms 
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justification, typesetting, layout, spacing, line breaking 

I. Introduction 

The dramatic rise in the use of interactive computer 
facilities has been coupled with a rise in the use of text 
editing programs. This has in turn led to the development 
of document processing systems whose role is to trans- 
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form the input text into output which meets a certain 
specification. The most notable of  these new systems are 
SCRIBE [6] and TEX [4]. 

One of  the functions of  such document processing 
systems is to perform text justification. This is generally 
achieved by processing the text in sequence, placing as 
many words as can be fit within the margins in each line, 
and then inserting extra spaces if necessary to achieve 
the desired effect (termed filling). The main problem 
with such a method is its unidirectionality, i.e., docu- 
ments tend to look nonuniform because of  long words 
that cannot be fit at the end of  certain lines (e.g., Fig. 1). 
Note that this tendency could have been reduced by 
moving forward some words from previously filled lines 
to reduce the glaring nonuniformity in the line in ques- 
tion. For  example, Fig. 2 applies such a technique to Fig. 
1. The problem of  nonuniformity is termed the line 
division problem by Knuth [3]. 

In this paper we discuss measures for evaluating 
solutions to the line division problem. One of  the mea- 
sures is examined in greater detail and is shown to have 
the property that a lower bound can be computed, 
thereby indicating when further rearrangement of  the 
text is futile. The measure could be used as a cost 
function and its value optimized through dynamic pro- 
gramming techniques [1]. This approach is described in 
[3], where a different measure is used. The measure is 
applicable to both fixed and variable width fonts. As a 
note of  caution, we mention that nonuniformity is an 
aesthetic property and thus our results are based in part 
on our judgment that use of  our measure leads to text 
that is usually more attractive in a visual sense. 

so does the value of  the measure. This section motivates 
the type of  measure we seek and proposes two possible 
candidates. One of  the candidate measures is shown to 
meet our criteria in a superior manner to the other. 
However, first we make the following remark. 

Remark 1. For a given parggraph, a text justification 
method that processes the words in the body in increasing 
order, packing as many words as possible in a line, uses 
a minimum number of lines. 

Proof Denote by B the result of  justification in 
increasing order and let n be the number of  lines that are 
required. Denote by B'  the result of  another justification 
method that requires m lines. We say that B(k)  and 
B'(k) correspond to the number of  words in lines k in B 
and B', respectively. Define S( i )  and S'( i)  as follows: 

i 
S( i )  = ~ B(k) 

k : l  

i 

S'(i) = ~ B'(k). 
k = l  

By definition of  the text justification method used to 
obtain B we have 

S( i )  >_ S'(i),  1 <. i <_ min(m, n) (*) 

Assuming n > m, we have that S(m)  < S(n). Using (*), 
we have S(n)  > S(m)  >_ S ' (m)  or S(n)  > S'(m). But 
S(n)  = S ' (m)  = number of words in the paragraph, and 
thus we have a contradiction. Therefore, we have proven 
that there is no text justification method that uses fewer 
lines than one that processes the body in increasing 
order, packing as many words as possible in each line. 

Q.E.D. 

2. Measure 

Any measure that we define must satisfy the follow- 
ing criterion. First, it must be simple from the standpoint 
of  computational complexity. Second, it must correlate 
with nonuniformity, i.e., as the nonuniformity decreases, 

Nonuniformity can be defined formally as a property 
of  a document which is characterized by a wide fluctua- 
tion in the amount of  space in excess of  a mandatory 
minimum interword break. We make the following re- 
mark. 

Fig. 1. Text Sample. 

Compiler test ing is a term we use to describe a means of proving that  
given a compiler or fo r  that  matter any program t rans la t ion  procedure 
that  the t rans la t ion  has been cor rec t ly  performed. We are especia l ly  
interested in cases where the t rans la t ion involves a considerable amount 
of opt imizat ion.  Some possible approaches to th is  problem include 
program proving[London72], program testing[Huang75], and 
decompilat ion[Hollander73]. 

Fig. 2. Result of Rearranging Fig. 1. 

Compiler test ing is a term we use to describe a means of proving that 
given a compiler or fo r  that  matter any program t rans la t ion  procedure 
that  the t rans la t ion  has been correct ly  performed. We are especia l ly  
interested in cases where the t rans la t ion involves a considerable 
amount of  opt imizat ion.  Some possible approaches to th is  problem 
include program proving[London72], program testing[Huang75], and 
decompilat ion[Hollander73]. 
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Remark  2. The average amount of extra space per 
interword break in a paragraph is a constant when the 
text justification method uses a minimum number of 
lines to contain the paragraph. 

Proof. A direct consequence of Remark 1. Q.E.D. 

In other words, the average amount of extra space 
per interword break cannot be increased or decreased no 
matter how we allocate the spaces within a line whenever 
the minimum number of  lines is used. We ignore the last 
line of  a paragraph since nonuniformity is not a factor 
here, i.e., nothing can be moved from this line to the 
previous lines and, similarly, moving words from previ- 
ous lines into the last line will only result in increasing 
the average amount of extra space per interword break 
in the paragraph (excluding the last line). We assume 
that the minimum interword break is a constant. This is 
an oversimplification in the case of  a period. 

Since the average amount of extra space per inter- 
word break is constant for each paragraph, we need at 
least a measure of the second order variation of  this 
quantity (the average is the first order variation). Such 
a measure is similar to the variance [5]. We propose two 
possible measures. However, first let us define some 
terms that are useful in describing our measures. Note 
that in our definitions a paragraph is defined to begin at 
the extreme left of the first line (i.e., no indentation) and 
is said to contain all subsequent lines with the exception 
of  the last line. Also, space is defined in units appropriate 
to the font being used (e.g., 1 for fixed width fonts and 
mills for variable width fonts). 

n = number of  lines in a paragraph 
w = number of words in a paragraph 
b = w - n, number of interword breaks in a paragraph 
s = minimum interword break length (s > 0) 
e/: = extra space between words j and j + 1 in line i 
e, = extra space in line i 
wi = number of  words in line i 
b~ = w~ - 1, number of interword breaks in line i 
/* = average extra space per interword break in a par- 

agraph (a constant) 
/*~ = edb~, average extra space per interword break in 

line i 
= Y,7=1 (/*i/n) 

d i =  e~ div b~, result of integer division of  e~ and bi 
m~ = e~ mod b~, remainder of integer division of  e~ and 

bi. 

N o t e  t h a t  ei = bi*di 4- mi .  

Two possible measures are given in (1) and (2): 

n l b~ 
2 vij=Z-21 (el: --/*)2 
i=1 (1) 

n b I 
Z E (eij --  /*)2 
i=, :=1 (2) 

b 

566 

The meaning of  measure (2) is obvious: the average 
variation of all the extra interword space in the para- 
graph, without regard to its distribution. Measure (1), 
however, is slightly more complex in that it consists of 
finding the average variation per line and then finding 
the average of  this average throughout the paragraph. 

Equation (1) can be reduced to yield (1') as follows. 

l n l b i  

- ~--l bii j  ~= ( e i j -  1 

1 n 1 ~ , 
= -  ~ 2 (ei 5 -  2/*eii +/*2) 

n iT1  b// j= l  

1 e2 ' 2/* b~ 
= - -  t y - - - -  ~ eij q- 

n i=1 \ u i j = l  bi j=l  bi ] ]  

1 ~ 1 ( ( ~  2 )  2 e/ ) 
= - -  e i j -- /* bii + / . 2  

rl  .=  j = l  

1 ~ ~ e 2/*/*i +/*2 
Y/ i=1 j = l  ] 

( 1  " ( ~  ~ 2 ) )  2/* (~1/*i)  n/*" 
= ~ ei j  -- - -  -t 

t j= l  ~ r/ 

= i=l ~- ~ l  \ j = l  (~ e2:) -2/*~t ÷ / * 2 .  ( 1 ' )  

Equation (2) can be reduced to yield (2') as follows 

1 n b i 

-~ E Y, (eij--/*)2 
i=1 j = l  

l n b i 

-- ~ Y, (ei~ -- 2geij +/*2) 
b i=~ j=l 

~ bi 2bt ~ b, 1 " _ 1  ~ e 2 .  - 
b i=l i=l ': --b i=l i=,Z eq + -~ i=,Z bill 2 

l n b t 
- Z Z e 2 -  /*2 

b i=1 j=l 'J 2/*2 + 

l n b i 
= _ e2_ /*2 .  (2') 2 2 . b j= l  

Note that we made use of  the relation 

II b i 

E eij = b/*. 
i = l  j ~ l  

We now have sufficient information at hand to eval- 
uate the two measures. We do not use as our basis the 
minimum variance of  the estimator [2]; instead, we use 
criteria based on the application at hand. First, measure 
(1) is computationally more complex than measure (2). 
This stems from the presence of  the 2./**~ term which 
must be re-evaluated whenever e,j changes. Second, and 
most importantly, measure (1) is less desirable than 
measure (2) because it tends to weigh equally lines with 
a small number of  long words and lines with a large 
number of  short words. This means that the overall 
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cont r ibut ion  per  word  to the nonuni formi ty  raggedness 
measure  f rom a line with a small  n u m b e r  of  long words 
is greater  than  the contr ibut ion of  a line with a large 
n u m b e r  o f  short  words. Moreover ,  we want  to distribute 
the extra  space evenly th roughout  all o f  the in terword 
breaks  in the pa rag raph  ra ther  than to distribute the 
extra space evenly th roughout  each line as measure  (1) 
favors. In other  words, moving  words into lines with a 
small  n u m b e r  o f  long words is more  effective in reducing 
nonun i fo rmi ty  according to measure  (1) than vice versa, 
whereas  we want  to be able to move  words onto any  line 
with an equal  effect on the nonuni formi ty  measure.  This  
is the case with measure  (2). 

Tak ing  advan tage  o f  the discreteness o f  the width of  
characters  leads us to obta in  the following simplif ications 
for  our  measures.  Observe  that  any  space distr ibution 
a lgor i thm will al locate the extra spaces in the following 
manner :  

di spaces in each o f  bz - m~ interword breaks in 
line i (3a) 
d, + 1 spaces in each o f  m~ interword breaks in 
line i. (3b) 

Subst i tut ion o f  (3a) and  (3b) into (2 ')  yields 

1 n ba 

i=l j=l  

1 ~ 
= - ~, (d'~(bi - mi) + (di + 1) '~ mi) - g2 

b i = l  

1 n 
- ~ (bid'~ - d~mi + d'~mi + mi + 2dimi) - #2 

b i = l  

l n 
- ~ (bid~ + mi + 2dimi) - I~ 2 

b i = l  

I ~ 
-- b ~ (mi + di(bidi + 2m/)) - / z  2 

1 ~ 
,~1= (mi + di(bidi + mi + mi))  #2 

b 

1 ~ 
b i= (mi + di(ei + mi))  tz 2. 

Hence  we only need to a t tempt  to reduce the sum: 

o = ~ (mi + di*(ei + mi)). (4) 
i=1 

In order  to s implify future  discussion we define the 
following relationship.  

Oi = m i  + di*(ei  + mi ) .  

The  algebraic representat ion o f  (4) has several im- 
por tan t  ramificat ions.  First, notice that  e~ is measured  in 
terms o f  space units; thus, (4) holds for both fixed and  
var iable  width fonts. Second, (4) yields in format ion  as to 
whether  fur ther  text r ea r rangement  is worthwhile.  In 
essence, (4) implies that  there exists a lower bound  for 

the measure  as given by the following remark .  

R e m a r k  3. ~7=1 ei is a lower bound  for measure  (2) 
and  is a t ta ined when ei _< bi for  every line i. 

Proof.  Recall  that  ei = bi*di + mi. Clearly,  for 0 ___ ei 
< bz, we have  that  d g =  0 and m~ = ev Also, for e, = b~, 
we have  that  d i =  1 and m i  = 0. Thus,  whenever  ei <- b~ 
for every line i, (4) at tains a m i n i m u m  value and  likewise 
for measure  (2). Q.E.D. 

Therefore ,  when R e m a r k  3 is satisfied, no fur ther  
work  can reduce the value o f  measure  (2) and thus a one 
pass a lgori thm, as is used in most  documen t  processors, 
will achieve opt imali ty .  Note,  also, that  (4) only involves 
integer quanti t ies  and thus, if it were to be implemented  
in ha rdware  (e.g., using a microprocessor) ,  then there 
would  be no need for a f loating point  ar i thmetic  capa-  
bility. 

At this point  we e laborate  fur ther  on the opt imal i ty  
cri terion set forth in the previous paragraph .  The  conclu- 
sion that  opt imal i ty  is achieved when  e~ is less than  or 
equal  to bi for all i is intuitive. For  example ,  consider  the 
case o f  decreasing oj by moving,  f rom lines j - 1 to j ,  nj 
words occupying si units o f  space. Such action causes 
aj_~ to increase, and  as long as sj is less than or equal  to 
bj-i  - nj - ej-l, then o remains  constant.  1 Otherwise,  it 
increases, or we must  pe r fo rm a similar opera t ion  be- 
tween lines j - 2 and  j - 1, and  so forth. Opt imal i ty  is 
achieved whenever  we encounter  a line k such that  the 
previous  condi t ion is satisfied, i.e., sk -< b,_~ - nt~ - ek-~. 

The  close relat ionship between (4) and opt imal i ty  is 
the reason for the selection o f  measure  (2) over  measure  
(1). Note  that  the simplif ications (3a) and (3b) appl ied 
to (2') to obta in  (4) could also have  been appl ied to (1') 
to obta in  the following: 

n 

I-t 2 + ~ ( ( m i  + di*(ei  + m i )  - 2 * ~ * e i ) / b i ) .  
i ~ l  

Any a lgor i thm that  we would devise would a t tempt  
to reduce the sum: 

rt 

((mi + di*(ei + mi) - 2*l~*ei)/bi). (5) 
i = 1  

However ,  unlike (4), there is no obvious  way to 
de te rmine  how close a specific value o f  (5) is to the lower 
bound  for opt imali ty .  For  example ,  letting oi denote  the 
e lements  being summed,  we have  that  when 0 ___ e~ _< b~, 
ol =- (ei - 2*l.t*ei)/bi. Note  that  changes to ei within a 
line cause b~ to change.  Thus  o~ is no longer constant  for 
0 _< ei ----- hi, as is the case when  measure  (2) [i.e., (4)] is 
used. 

T h e  n e w  n u m b e r  o f  i n t e r w o r d  b r e a k s  in l ine j - 1 is bj ~ - nj. 
M o t i o n  o f  s / u n i t s  o f  space  f rom l i n e s j  - 1 t o j c a u s e s  l i n e j  - 1 to have  
sj + ej- j  ex t r a  un i t s  o f  space .  O p t i m a l i t y  r equ i re s  tha t  this  be  less t h a n  
o r  e q u a l  to the  n u m b e r  o f  i n t e r w o r d  b r e a k s  w h i c h  has  n o w  been  
r e d u c e d  to bj -  R - nj. Hence ,  we  h a v e  t ha t  sj + ej_ ~ _< bj_ ~ - nj o r  sj --< 
h i  i - -  n i - -  e j - i .  

567 C o m m u n i c a t i o n s  A u g u s t  1982 
o f  V o l u m e  25 
the  A C M  N u m b e r  8 



Fig. 3. Alternative Rearrangement of Fig. 1. 

Compiler testing is a term we use to describe a means of proving that 
given a compiler or for that matter any program translation procedure 
that the translation has been correctly performed. We are especially 
interested in cases where the translation involves a considerable 
amount of optimization. Some possible approaches to this 
problem include program proving[London72], program testing[Huang75], and 
decompi I a t i  on[Hol  I a n d e r 7 3 ] .  

3. Example 

As an example of  the validity of  our candidate mea- 
sures, let us apply them to the paragraph in Fig. 1 and 
see whether they can distinguish between Figs. 1, 2, and 
3. The difference between Figs. 2 and 3 is in the fifth 
and sixth lines of  the paragraph where one more word 
has been squeezed into line 6 of  Fig. 3 and consequently 
one less word occurs in line 5. We assume a fixed width 
font. The values of  the measures [using (4) and (5)] for 
the three figures are given in Fig. 4. Notice that the value 
of  measure (2) for Fig. 2 is very close to the lower bound 
for the measure which is 33. However, it should be clear 
that there need not exist a version of  the paragraph 
whose measure value equals the lower bound. Hence 
Fig. 2 corresponds to the optimal paragraph both from 
an aesthetic point of  view (this is somewhat arbitrary) 
and as a result of  the application of  our measures. Thus 
it is seen that both measures perform adequately in this 
case. As expected, measure (1), relatively speaking, is 
biased towards any rearrangement of  text that reduces 
the extra space between words in a line with a small 
number  of  long words. 

4. Algorithms 

This section presents several heuristic algorithms for 
reducing the value of  ~. These algorithms differ in the 
amount  of  work that they perform, although it is not 
guaranteed that for all of  the algorithms more work 
implies greater closeness to optimality. Note that in the 
case of  fixed width fonts very little computat ion is nec- 
essary since most often it is the case that di = 0 which 
means that we are already at optimality for line i. Rarely 
does one find di > 1 unless the length of the line is quite 
short. Thus, for fixed width fonts, o u r  measures and 
algorithms may result in the avoidance of  a good deal of  
work. In the case of  variable width fonts, di is greater 
than or equal to 1 for most lines due to the small unit of  
measure (i.e., mills). In such cases the presence of  a 
floating point capability would indicate that we might 
prefer to use as our measure 

n 

( e'~,/ bi) 
i = 1  

which is the varying component  of  (2) when e~i is ap- 
proximately equal to edb~ for all j, as is the case with a 
variable width font. 

Any algorithm that we devise must have two phases. 
The first phase scans the paragraph in the forward 
direction filling each line with as many  words as possible. 
The second phase processes the paragraph in the back- 
ward direction and attempts to move words from lines i 
- 1 to i. The exact number  of  words to be moved is 
governed by the amount  of  extra space that is available. 
Since we want to reduce the overall nonuniformity, we 
will not want to fill all of  the extra space in a particular 
line as this will decrease the contribution to nonuniform- 
ity due to line i at the expense of  increasing the contri- 
bution of  line i - 1. 

The worst approach from a computat ional  complex- 
ity point of  view is one that enumerates all of  the possible 
rearrangements of  words. Clearly, the optimal solution 
will be found. As noted earlier, dynamic programming 
can be employed as an alternative with our measure 
serving as the cost function to be minimized. Given n 
lines and a max imum of  K words that can be fit on a 
line, such an approach requires work on the order of  
nK 2, where each line serves as a stage in the dynamic 
programming solution and at each stage a K by K matrix 
of  values must be computed. Dynamic  programming is 
used by Knuth  [3] in conjunction with a sixth order cost 
function. Knuth  points out that an improved algorithm 
can be obtained whose running time is almost always of  
order K. 

We propose a pair of  heuristic algorithms that make 
use of  our measure and may require considerably less 
work for a reasonably sized paragraph (i.e., n and K 
having the same order of  magnitude) than an exhaustive 
method such as dynamic programming.  In particular, 
our algorithms rely heavily on the optimality property of  
the measure. One algorithm, Algorithm 2, will visit each 
line in the backward direction only once, while the other, 
Algorithm 1, will make at most n - i + 1 visits to line i. 
Thus Algorithm 2 will make 2*n visits to all of  the n 
lines while Algorithm 1 will make a max imum of  order 
n 2 visits to all of  the n lines. Both algorithms make use 
of  a "move heuristic" termed MOVE (see Sec. 5) to 
decide how many words to move between adjacent lines. 
As we shall see, the algorithms have the property that 
the value of  our measure will not increase although this 
is no guarantee that optimality will be attained. 

Fig. 4. Sample Measure Values. 
Fig. 1 Fig. 2 Fig. 3 

Measure (1), i.e., (5) 11.3 0.67 2.07 
Measure (2), i.e., (4) 81 39 49 
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Prior to describing the algori thms let us define the 
following terms in addit ion to o :  

i--I 

T i ~  X Oj 
j = l  

n 

yi ~- ~ Oj 
j = i + l  

Note  that zi, o~, and )'i denote the contr ibut ion o f  
lines 1 to i - 1, line i, and lines i + 1 to n, respectively, 
to the nonuni formi ty  measure. For  each line L the first 
phase o f  any  o f  our  algori thms records e,, bi,  ol, and r~. 
The  second phase records the value o f  ~,~ for each line i. 
Procedure MOVE(i )  has the effect o f  moving words f rom 
lines i - 1 to i and returns as its value the number  o f  
words moved.  In order  to keep track o f  the status o f  each 
line immediate ly  after words have been moved  in and 
out, M O V E  records the addit ional  information specified 
below. In the following, assume that M O V E  has deter- 
mined that v words o f  total length t (not including the 
manda to ry  blanks) are to be moved f rom lines i - 1 to 
i. 

e~- i  ~ e i - ]  + v * s  + t 

b~- i  ~ b i - i  - v 

o~-1 ~ m ; - a  + d } - l * ( e ; - 1  + m'i-a)  

e l '  <---e[ - v * s -  t 

b "  ~ b" + v 

o ,, m,'¢ re. ,, i <--" • + d i  (ei  + m [ ' )  

Single primes indicate the state o f  a line immediately 
after words have been moved  out o f  it and before any 
words have been moved  into it f rom a previous line. 
Double  primes indicate the status o f  a line once words 
have been moved  out o f  it and into it. Clearly, for the 
next to the last line, i.e., line n, in any paragraph  e~,, b~, 
and o~ must  be initialized to e, ,  b , ,  and o, ,  respectively. 

Algor i thm 1 is shown in Fig. 5. 2 The basic idea is to 
process the paragraph  starting at lines n and n - 1 and 
to attempt, through the use o f  MOVE,  to move words 
f rom lines n - l to n. This procedure is repeated for lines 
n - 1 and n - 2, etc., until a pair  o f  lines k and k - 1 are 
reached such that no  words can be moved  f rom lines k 
- 1 to k. At this point, backtrack to the last line, say j ,  
which had words moved  into it without  having any 
words moved  out o f  it (i.e., line n in the initial case). 
Next, find the m a x i m u m  numbered  line i, k _< i --<.L such 
that the sum ~'i + o" + 3'i" is a minimum.  U n d o  the 
M O V E  operat ions between lines k + 1 and i - 1. Set e l ' ,  

b[', and a," to e ' ,  b ' ,  and o;, respectively, and reapply 
the algori thm starting at line i - 1. Notice that the 
algori thm may  make  as m a n y  as n - i + 1 visits to line 
i. Hence the n lines m a y  be visited a m a x i m um  o f  order  
n 2 times in the backward  direction. 

2 We only describe the second phases of the rearrangement algo- 
rithms. 

Fig. 5. A l g o r i t h m  1. 

procedure A L G O R I T H M  1 ( i n t e g e r  n) ;  

begin 
integer i, last, m, temp; 

m <---- n ;  

while m > O do 
begin 

last  <-- m; 
e ~ast e - -  e last ;  

b~ast ~ bl,,st; 

O~ast *-- Olasg 
while MOVE(m)  NEQ O d o  m *-- m - 1 ; 

t emp *--- ~qast + o&st + ")'[~st; 
for i , - - l a s t  - 1 s t e p  - 1 un t i l  m d o  

begin 
if temp > r i  + o" + 7, '  t h e n  

begin / * f i n d  a m i n i m u m * /  

temp ~-- Ti + o" + - /" ;  
last *-- i; 

end ;  

end ;  
for i ~-- last s t e p  - 1 un t i l  m + 1 d o  UNDO(MOVE( i ) ) ;  

e f'st *-- e ~ast; 

b'%st * -  blast; 
# a . 

Olast  <--- (7last , 

m *--- last - 1 ; 

end ;  

end ;  

Algor i thm 2, shown in Fig. 6, is very similar to 
Algor i thm 1. Once again we apply procedure M O V E  
until a line k is encountered such that no words can be 
moved  f rom lines k - 1 to k. The only difference is that  
once the line i with m i n i m u m  Ti + o/' + ),/' is found,  all 
lines, j,  k - l < j < i, are left alone and the algori thm is 
reapplied starting at line k - 1 rather than at line i - 1 
as is done in Algor i thm 1. Notice that each line is visited 
at most  once in the backward  direction. 

Fig. 6. Algorithm 2. 

procedure ALGORITHM2(integer n); 
begin 

integer i, last, m. temp;  

m ~- -  n ;  

while m > 0 do 
begin 

last *-- m; 
e~ast * - -  e last ;  

o~ast *-- Cqasg 
while MOVE(m)  NEQ O d o  m ,--- m - 1 ; 

t emp <--- 7"last 4" O~ast -{- ~ [~s t ;  

for i , - - l a s t  - 1 s t e p  - 1 un t i l  m d o  
begin 

if t emp > r,. + o" + 7 "  t h e n  
begin / ' * f i nd  a m i n i m u m * / '  

temp ,--  r i  + o" + - f " ;  
last , , -  i; 

end ;  

end ;  

for i , - -  last s t e p  - 1 un t i l  m + 1 d o  UNDO(MOVE( i ) ) ;  

e ~ t  *-- e[~st; 
u b s . b l a s t  * - -  last, 
r~ f . 

O last ,6-- O'last, 

m * - - m - l ;  
end ;  

end ;  
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In  each algori thm the statement "while M O V E ( m )  
N E Q  0 do m *-- m - 1;" acts as a pruning device on the 
search since it identifies the segments o f  text which can 
be processed as independent  blocks. Also, each algori thm 
guarantees that the value o f  the nonuni formi ty  measure 
will not  increase as a result o f  its application. This follows 
f rom the choice o f  a line in each independent  block such 
that the sum ~-~ + o" + y "  is a minimum. Note  that the 
starting value o f  the sum (i.e., i = n) is simply the value 
obtained when the convent ional  one-pass text justifica- 
tion algori thm is used. 

In the case o f  fixed width fonts, we can make a 
further  simplification o f  Algor i thm 2. Recall that an 
opt imal  solution is one where e~ is less than or equal to 
b~ for all lines i. Therefore,  we only at tempt to justify in 
the backward  direction lines whose value o f  ei exceeds 
that o f  bi. Thus  Algor i thm 2 is modif ied so that it is only 
applied to the first such line that is found. The  new 
algorithm, termed Algor i thm 3, is shown in Fig. 7. Notice 
that in the case o f  variable width fonts this a lgori thm 
can still be applied; however,  it is most  often identical to 
Algor i thm 2 due to the small units in which space is 
measured  (e.g., mills). 

5. Move  

In the previous section we saw the need for a mech-  
anism to decide how many  words, if any, to move f rom 
lines i - 1 to i in a t tempting to reduce the value o f  the 
nonuni fo rmi ty  measure. There  is often a choice. A right 
choice means  that there is no need to employ an algo- 
r i thm which uses backtracking.  This section describes 
some possible decision mechanisms.  

The  simplest decision mechanism is termed the 
"greedy mechanism."  It moves as m a n y  words as possible 
f rom lines i - 1 to i, and likewise from lines i - 2 to i 
- 1, and so on until a line j is found such that no words 
can be moved  from lines j - 1 to j. Such an approach  
can be likened to a pyramid  with the result that  line j 
will have a large value o f  ej which will have an undesir- 
able effect on  the value o f  our  measure. Our  proposed 
mechanisms are a imed at reducing the "greediness" at 
each line. However ,  it should be clear that if only one 
word can be moved,  then greediness may  prevail. Hence 
our  solutions are geared to situations where there is a 
choice o f  how m a n y  words to move. Three possible 
decision mechanisms are given below. 

(1) For  each line the number  o f  words to be moved  is 
chosen to be the ceiling o f  one-ha l f  o f  the m a x i m u m  
number  o f  words that can be moved.  

(2) Move  a number  o f  words m f rom lines i - 1 to i, 
such that moving  m words results in e[' _< ei/2 and 
moving  m - 1 words results in e" > eJ2.  

(3) Move  a n u m b e r  o f  words m f rom lines i - 1 to i, 
such that moving  m words results in e;'-i <- 2*e~_~ 
and moving m + 1 words results in e;'-~ > 2*ei-1. 
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Fig. 7. Algorithm 3. 

procedure A L G O R I T H M 3 ( i n t e g e r  n ) ;  

begin 
integer i, las t ,  m ,  t e m p ;  

m<--n ;  
while m > 0 do 

begin 
if e m >  bm then 

begin 
l as t  *--  m ;  

e fast ~ elast; 

b{ast <-- b~ast; 

O~ast ,e-- Olast; 

while M O V E ( m )  N E Q  0 do m *-- m - 1 ; 

t e m p  *-- lq.st + a{.st + y[ 's t ;  
for i *--  l as t  - 1 s t e p  - 1 u n t i l  m do 

begin 
if t e m p  > % + a ;  + y," then 

begin / * f i n d  a m i n i m u m * /  

t e m p  . - -  % + a~ + 7 " ;  
l as t  *--  i; 

end; 
end; 

for i . - -  l as t  - 1 s t e p  - 1 u n t i l  m + 1 do 
U N D O ( M O V E ( i ) ) ;  

e ~ t  *-" eta,,; 

b{~st ~ b~ast; 
o~s,  < i  O'{ast; 

end; 
m < - - m - l ;  

end; 
end; 

Mechan i sm (1) is independent  o f  the amoun t  o f  space 
moved.  There  is no way  to distinguish between short 
words and long words. Thus  when words are not o f  
un i form length, we may  tend to move  too much  or  too 
little f rom one line to another  depending on whether  
there is a sequence o f  long or short words, respectively, 
at the end o f  the line in question. Mechanisms (2) and 
(3) are 50 percent rules. Mechanism (2) results in a 50 
percent  decrease in the amoun t  o f  extra space in line i, 
while mechan i sm (3) results in a 50 percent increase in 
the amoun t  o f  extra space in line i - 1. We  feel that  
mechan i sm (2) is the preferred o f  the alternatives pro- 
posed since its computa t ion  only depends on the current  
line and not on what  happens  in the future; i.e., mecha-  
nism (3) must  also take into account  the effect o f  moving  
words f rom lines i - 2 to i - 1, etc. Note  that a variat ion 
o f  mechan i sm (3) with e' substituted for e"  is undesirable 
because lines with small values o f  ei-~ will have fewer 
words moved  than lines with larger values o f  ei-1. How-  
ever, often this is the opposite o f  what  should happen  
since frequently small values o f  el-] mean  that more 
words can be moved  to line i with less deletorious effects 
on the nonuni formi ty  measure. 

6. C o n c l u d i n g  R e m a r k s  

A measure and related algori thms for reducing the 
nonuni fo rmi ty  o f  compute r  justified text have been pre- 
sented. The  measure  has been shown to be computa t ion-  
ally simple as well as to have an attainable lower bound.  
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Once again, we reiterate that nonuniformity is an aes- 
thetic property and thus our results are essentially only 
valid if one adopts our measure. Nevertheless, visual 
inspection of  the result of its application does not refute 
its reasonableness. The ultimate test lies in psychological 
experiments. 

The presence of a hyphenation capability will prob- 
abily result in less of a need for the measure although it 
remains useful in applications such as newspapers and 
magazines where columns are relatively narrow. How- 
ever, such a hyphenation capability does make our heu- 
ristic algorithms more attractive than the dynamic pro- 
gramming approach since their execution time is inde- 
pendent of  the maximum number of word segments in 
a line (i.e., K). In particular, Algorithm 3 with its check 
for optimality for each line should yield the best results 
in terms of execution speed. 
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The garbage compaction algorithm described works 
in linear time and, for the most part, does not require 
any work space. It combines marking and compaction 
into a two-step algorithm that is considerably faster than, 
for example, Morris's method. The first step marks all 
nongarbage cells and, at the same time, rearranges the 
pointers such that the cells can be moved; the second 
step performs the actual compaction. 

CR Categories and Subject Descriptors: D.4.2 [Op- 
erating Systems]: Storage Management--allocation~ 
deallocation strategies. 

General Terms: Algorithms, Theory 
Additional Key Words and Phrases: garbage collec- 

tion, compaction, relocation, storage reclamation 

I. Introduction 

In a storage area divided into cells of  possibly differ- 
ent sizes where some but usually not all are accessible by 
the user's program, a garbage compactor can move the 
accessible cells to one end of the storage area and update 
all pointers to these cells (pointers stored in cells as well 
as those that point to cells from the outside) such that 
they point to the new locations of the cells. At the other 
end of the storage area, this process creates a block of 
adjacent, unused fields as large as the sum of  the fields 
occupied by all inaccessible (garbage) cells. Algorithms 
for this task consist of two phases. The first phase 
identifies all accessible cells by marker bits; the second 
phase performs the actual compaction. 
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